6,180 research outputs found

    Double Alternating Minimization (DAM) for Phase Retrieval in the Presence of Poisson Noise and Pixelation

    Get PDF
    Optical detectors, such as photodiodes and CMOS cameras, can only read intensity information, and thus phase information of wavefronts is lost. Phase retrieval algorithms are used to estimate the lost phase and reconstruct an accurate effective pupil function, where the squared modulus of its Fourier transform is detected by a camera. However, current algorithms such as the Gerchberg-Saxton algorithm and Fienup-style algorithm do not consider the detector sampling rate and shot noise introduced by photon detection. If the sampling rate is low, we must interpolate the detected image in order to accurately reconstruct its pupil function. Here, we develop an appropriate estimation method for interpolating the detected image by using penalized I-divergence and then use the interpolated image for phase retrieval. In our simulation, after 300 iterations of our DAM algorithm, the phase-retrieved pupil function has a root-mean-squared error of about 43±3% less than Fienup-style algorithm with nearest neighbor interpolation when one hundred million photons are collected

    High-resolution ab initio three-dimensional X-ray diffraction microscopy

    Full text link
    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.Comment: 22 pages, 11 figures, submitte

    Complex wavelet based demosaicing for use in digital still cameras

    Get PDF

    Electronic Structure and Bulk Spin Valve Behavior in Ca3_3Ru2_2O7_7

    Full text link
    We report density functional calculations of the magnetic properties and Fermiology of Ca3_3Ru2_2O7_7. The ground state consists of ferromagnetic bilayers, stacked antiferromagnetically. The bilayers are almost but not exactly half-metallic. In the ferromagnetic state opposite spin polarizations are found for in-plane and out-of-plane transport. Relatively high out of plane conductivity is found for the majority spin, which is relatively weakly conductive in-plane. In the ground state in-plane quantities are essentially the same, but the out of plane transport is strongly reduced.Comment: 5 page

    Occlusion-related lateral connections stabilize kinetic depth stimuli through perceptual coupling

    Get PDF
    Local sensory information is often ambiguous forcing the brain to integrate spatiotemporally separated information for stable conscious perception. Lateral connections between clusters of similarly tuned neurons in the visual cortex are a potential neural substrate for the coupling of spatially separated visual information. Ecological optics suggests that perceptual coupling of visual information is particularly beneficial in occlusion situations. Here we present a novel neural network model and a series of human psychophysical experiments that can together explain the perceptual coupling of kinetic depth stimuli with activity-driven lateral information sharing in the far depth plane. Our most striking finding is the perceptual coupling of an ambiguous kinetic depth cylinder with a coaxially presented and disparity defined cylinder backside, while a similar frontside fails to evoke coupling. Altogether, our findings are consistent with the idea that clusters of similarly tuned far depth neurons share spatially separated motion information in order to resolve local perceptual ambiguities. The classification of far depth in the facilitation mechanism results from a combination of absolute and relative depth that suggests a functional role of these lateral connections in the perception of partially occluded objects
    • …
    corecore