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ABSTRACT  
 

Double Alternating Minimization (DAM) for Phase Retrieval  

in the Presence of Poisson Noise and Pixelation 

by 

Weimin Zhou 

Master of Science in Electrical Engineering 

Washington University in St. Louis, 2016 

Research Advisors: Dr. Joseph A. O’Sullivan 

        Dr. Matthew D. Lew   

 

Optical detectors, such as photodiodes and CMOS cameras, can only read intensity information, and 

thus phase information of  wavefronts is lost. Phase retrieval algorithms are used to estimate the lost 

phase and reconstruct an accurate effective pupil function, where the squared modulus of  its Fourier 

transform is detected by a camera. However, current algorithms such as the Gerchberg-Saxton 

algorithm and Fienup-style algorithm do not consider the detector sampling rate and shot noise 

introduced by photon detection. If  the sampling rate is low, we must interpolate the detected image 

in order to accurately reconstruct its pupil function. Here, we develop an appropriate estimation 

method for interpolating the detected image by using penalized I-divergence and then use the 

interpolated image for phase retrieval. In our simulation, after 300 iterations of  our DAM algorithm, 

the phase-retrieved pupil function has a root-mean-squared error of  about 43±3% less than Fienup-

style algorithm with nearest neighbor interpolation when one hundred million photons are collected.
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Chapter 1 

 

Introduction 
 

The following sections will introduce the motivation of  this research and give some related 

background. 

1.1 Motivation 
 

The resolution of light microscopy is naturally limited by the diffraction barrier (around half of the 

wavelength), which was thought to be unbreakable for a long time. However, due to the key 

innovation of switchable fluorophores, the Single Molecule Localization Microscopy (SMLM) was 

born [1-4] and allows us to observe nanoscale details of biological structures and activities, without 

damaging living cells [5-8]. The other important aspect of SMLM is the powerful detection and 

estimation algorithm, which helps us to localize single molecules accurately and precisely [6]. In order 

to find the location of single molecules, there are two main methods used: Least Squares fitting and 

Maximum Likelihood Estimation (MLE). Both of these two methods need to use the predicted model 

of measured data, which is the defocused Point Spread Function (PSF) of an optical system. The Least 

Square algorithm is to find the parameters (in this problem it is the localizations of light emitters) by 

minimizing the squared error between measurements and the model. Thus, the model mismatch will 

generate inaccurate results, especially when we use weighted least squares, in which the mismatch of 

PSF tails has significant impact on the results [6]. The MLE algorithm estimates parameters by 

maximizing the likelihood of data given an accurate model. Besides, there are also other algorithms 

that need to use an accurate PSF model, such as DAOSTROM [9], which is to estimate high density 

excited molecules’ positions in order to decrease the data acquisition time. Thus, in order to have a 

better estimation of locations of single molecules, the precise defocused PSFs have to be explored. 



 

2 

 

 

Ideally, we can calculate the PSF analytically from the pupil function in an optical system (since the 

PSF is the squared magnitude of a scaled Fourier transform of pupil function). However, the 

theoretically calculation does not account for aberrations in the optic system, so the PSF model is 

inaccurate for later use in localization algorithms [10]. Thus, in order to obtain more precise image 

models, we usually use calibration images that are obtained from the measurements of a single 

fluorophore on different pre-known axial positions. A popular way to reconstruct the experimental 

PSFs in continuous axial positions is to calculate the pupil function based on multiple defocused 

planes by using Fienup-style phase retrieval [11-13]. However, this method does not consider the 

Poisson noise of the measurements and the pixelation effects. Besides, this popular method is also 

lacking mathematical analysis. In this thesis, I invented a new method for solving phase retrieval 

problem in SMLM with specifically handling the Poisson noise and pixelation. The direct use of the 

Fienup-style algorithm [11-13] is just a special case in our generalized algorithm. 

1.2 Background   
 

The most important contribution of SMLM is allowing people to observe nanoscale structures in 

living cells and bacteria by breaking the diffraction limit of light microscopy. As an interdisciplinary 

technology, SMLM combines optics, chemistry, biology and information processing to help scientists 

pinpoint the positions of single molecules. The following are some important knowledge related to 

SMLM. 

1.2.1 Abbe’s diffraction limit and the principle of SMLM 
 

Ever since the invention of microscope in 1590 by Hans and Zacharias Janssen [29], it has played an 

important role in the study of biology by allowing the visualization of tiny structures of cells and 

bacteria. For example, bacteria were first being observed by Anton Van Leeuwenhoek by using a 

microscope with one lens in 1675 [29]. In 1911, Oskar Heimstadt created the first fluorescence 

microscope to image auto-fluorescence within bacteria [30]. The invention of fluorescence microscope 

improved the contrast of biological images (backgrounds signals are eliminated by a dichroic mirror). 
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However, all optical imaging modalities are limited by the diffraction barrier---Abbe’s diffraction limit. 

In 1873, Ernst Abbe first stated the relationship between microscopy resolution and wavelength [14]. 

Due to the limited size of a collection aperture, it is impossible to capture all of the light that is emitted 

from a point source. By Fourier optics, we know that any light distribution can be decomposed into 

a summation of an infinite number of plane waves, and each plane wave carries the information about 

Fourier transform of the image on object plane [27]. Thus, the effect of the limited size of aperture is 

equivalent to multiplying by a pupil or aperture function, which could be treated as some kind of 

window function or filter. This process implies that the impulse response of optical systems is related 

to the Fourier transform of the pupil function, which is an infinitely spread function on the image 

plane. For example, if the pupil is a circular function with diameter 𝐷, then the impulse response of 

the focused optical system with focus 𝑓 and light wave length 𝜆 is an Airy disk with radius 𝜌𝐴 =

1.22𝜆
𝑓

𝐷
≈

1.22𝜆

2𝑁𝐴
=

0.61𝜆

𝑁𝐴
, where 𝑁𝐴 is the numerical aperture. This equation defines diffraction limit 

that defines the resolution of optical systems. The diffraction limit has always been thought to be 

impossible to break. Fortunately, Single Molecule Localization Microscopy has since been developed. 

In 1997, Professor W. E. Moerner observed the blinking behavior of a mutant of Green Fluorescent 

Protein (GFP). Excited by 488 nm light, GFP emitted fluorescence for some cycles, and after blinking 

for some time, GFP transitioned to a dark state [15]. Fluorescence was reactivated by illuminating the 

sample with 405 nm light [15]. This property of fluorescent proteins provides a new way to overcome 

the diffraction limit. After labelling biological samples with fluorescent proteins, we can activate a 

sparse set of proteins at any point in time, and since the activated molecules are well separated, the 

locations of each single molecule can be estimated accurately and precisely far beyond the diffraction 

limit. Then we repeat this process many times to obtain a series of molecule locations. Finally, all of 

these locations can be combined together to form a super-resolved reconstruction of the structure of 

interest. 
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1.2.2 Estimation methods for localizing single molecules. 
 

The estimation process for locating positions of single molecules is comparing the received data with 

the image model. The decision rules for solving this estimation problem could be either least squares 

(LS) criterion or maximum-likelihood criterion (ML). LS criterion needs no information about the 

noise in the received signals; it aims to minimize the difference between the vectors of measurements 

and models in parameter space. In addition, the least squares are often weighted by dividing the 

expected variance of data [6]. This strategy utilizes the idea that the error should have more weight if 

the variance of the received signal is small. This assumption is reasonable since the Poisson noise 

model indicates that small signals have small variance. Thus, inaccurate modeling of PSF tails will 

introduce problems since the weight is large, affecting the estimated location. The other method, ML 

estimation, is widely used because it can theoretically approach the Cramer-Rao lower bound (CRLB) 

[7]. The principle of ML is to maximize the likelihood of the measured data, given the parameters of 

the imaging model. Thus, mismatch of the image formation model will lead to inaccurate estimations.  

1.3 Our contributions 
 

One of the most popular methods for calculating experimental PSFs is the Fienup-style phase retrieval 

algorithm. To my best knowledge, the first use of this Fienup-style method was in [12] and it is the 

modified version of Gerchberg-Saxton algorithm [12]. However, the rigorous mathematic validation 

of monotonicity for this method used with multiple defocused Fourier modulus constraints is still 

lacking. Our first contribution is that we discussed a rigorous mathematic framework to prove the 

feasibility of the Fienup-style method. Second, due to the size of detectors cannot be ignored, the 

measurements are the results of pixelation. Thus, if the detector size is large, the measurement vector 

will have lower dimension than the reconstruction vector, and this digitization and sampling process 

will introduce aliasing of the spatial domain function (and the measurements are in frequency domain), 

as discussed in Chapter 2. Under this scenario, the Fienup-style phase retrieval algorithm cannot be 

directly used since Fourier constraint information is incomplete. Thus, before the use of the Fienup-

style phase retrieval method, we need first to interpolate the Fourier modulus data that is missed 
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during the measurement process. In order to overcome this problem, we use the minimum I-

divergence estimation by taking the Poisson noise of received photons and pixelation of detectors into 

account, and then we obtain more precise model of experimental PSF.  
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Chapter 2 

 
Alternating Projections for Phase retrieval 
problem 

 

This chapter discusses two main methods for phase retrieval: Gerchberg-Saxton algorithm and the 

Fienup-style algorithm.  

2.1 Phase Retrieval Problem  
  

In Fourier optics, according to Fresnel approximation [27] discussed in Section 2.1.2, light waves 

transmitted through a single lens will generate the scaled Fourier transform of original input signals. 

Ideally, if we can measure the Fourier transform from output, we can restore input perfectly. However, 

the measurement process is not perfect. Due to the fact that optical detector can only measure the 

intensity of light, which is the squared magnitude of the defocused Fourier transform, the phase 

information is lost. 

2.1.1 Importance of phase information  
 

Phase determines the fundamental shape of the image since the phase carries information about the 

displacement of each sinusoid signals, which are the base functions for constructing image. The 

magnitudes of the Fourier transform, which construct the Fourier spectrum, are responsible for the 

intensity distribution in the image. The effects of Fourier phase and Fourier spectrum are shown in 

Figure 2.1. By comparing Figure 2.1 (b) and (c), which are reconstructed by only Fourier modulus and 

Fourier phase respectively, we can observe that the shape information of the image is restored by 

using phase of Fourier transform. Then, I introduce a new image which is the face of a mandrill. I 

calculated the Discrete Fourier Transform (DFT) of both Lena and Mandrill images and then switched 



 

7 

 

 

their Fourier spectrum and phase angle with each other. Figure 2.1 (e) shows the reconstructed image 

from the combination of Lena’s Fourier spectrum and Mandrill’s phase, and it looks like just a 

Mandrill’s face with some artifacts. Figure 2.1 (f) shows the reconstruction from combination of 

Mandrill’s magnitude and Lena’s phase, and it looks like Lena image with some artifacts. Thus, it is 

reasonable to say that the phase information of images has an important influence on image 

reconstruction.         

                  

Figure 2.1 Image reconstruction from different parts and combinations of Fourier transforms. (a) Original Lena 
image; (b) Reconstruct image by only using Fourier Spectrum; (c) Reconstruct image by using phase and set 
the Spectrum equal to one; (d) Original Mandrill image; (e) Reconstructed image by combining the Fourier 
spectrum of Lena and phase from Mandrill; (f) Reconstructed image by combining the Fourier spectrum of 
Mandrill and phase from Lena. 
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2.1.2 Phase Retrieval problem in SMLM 
 

In this sub-section, I will introduce some basic knowledge of  Fourier optics for deriving the Point 

Spread Function of  SMLM. Then I will discuss Gerchberg-Saxton algorithm and the Fienup-style 

algorithm for solving phase retrieval problem. 

2.1.2.1 Fourier Optics 

 

In all parts of this paper, with all mention of lights and optics, we are only concerned with the 

monochromatic light, which is represented by the complex amplitude: 

 𝑈(𝑟) = 𝑎(𝑟)exp[𝜃(𝑟)], (2.1) 

 

the corresponding complex wave function is: 

 𝑢(𝑟, 𝑡) = 𝑈(𝑟) exp(−𝑗2𝜋𝑣𝑡). (2.2) 

In this equation, 𝑟 represents position in space. The magnitude of complex amplitude is |𝑈(𝑟)| =

𝑎(𝑟), the phase is its argument arg{𝑈(𝑟)} = 𝜃(𝑟). The optical intensity is 𝐼(𝑟) = |𝑈(𝑟)|2.  

Suppose a plane wave 𝑈(𝑥, 𝑦, 𝑧) = 𝐴exp[𝑗(𝑘𝑧)] travels through a plane with transmittance 𝑓(𝑥, 𝑦), 

where 𝑘 is a wavenumber 𝑘 =
2𝜋

𝜆
 and 𝜆 is the wavelength. Taking the Fourier transform of 𝑓(𝑥, 𝑦), 

we can get 

 𝐹(𝑢, 𝑣) =  ∬ 𝑓(𝑥, 𝑦)𝑒−𝑗2𝜋(𝑥𝑢+𝑦𝑣)𝑑𝑥𝑑𝑦
 

𝑥,𝑦
, 

𝑓(𝑥, 𝑦) = ∬𝐹(𝑢, 𝑣)𝑒𝑗2𝜋(𝑥𝑢+𝑦𝑣)𝑑𝑢𝑑𝑣

 

𝑢,𝑣

. 

 

(2.3) 

The wave complex amplitude immediately after the transmittance plane is:  

 
𝑈(𝑥, 𝑦, 0) = 𝐴 ∬𝐹(𝑢, 𝑣)𝑒𝑗2𝜋(𝑥𝑢+𝑦𝑣)𝑑𝑢𝑑𝑣

 

𝑢,𝑣

. 
(2.4) 

Where A is just the amplitude. Then, the transmitted wave will be 
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 𝑈(𝑥, 𝑦, 𝑧) = 𝐴 ∬ 𝐹(𝑢, 𝑣)𝑒𝑗2𝜋(𝑥𝑢+𝑦𝑣)𝑒𝑗𝑘𝑧𝑧𝑑𝑢𝑑𝑣
 

𝑢,𝑣
, (2.5) 

where  𝑘𝑧 = 2𝜋√𝜆−2 − 𝑢2 − 𝑣2 . Thus, the transmittance separates the incident plane wave into 

infinite many plane waves with angles for each frequency 𝑢, 𝑣 to be: 

 𝜑𝑥 = sin−1𝜆𝑢 ≈ 𝜆𝑢, 

𝜑𝑦 = sin−1𝜆𝑣 ≈ 𝜆𝑣. 

 

(2.6) 

2.1.2.2 Fourier transform by using single lens 

 

Suppose there is a single lens system shown in Figure 2.2, where 𝑓 is the focal length and 𝑑 is the 

distance from input plane to the lens; 𝑓(𝑥, 𝑦) is the input and 𝑔(𝑥, 𝑦) is the output.  

     

 

Figure 2.2 Single lens microscopy model. 𝒇(𝒙, 𝒚) is the transmittance on input plane and 𝒈(𝒙, 𝒚) is the wave 
complex amplitude on output plane. 

 

According to the discussion in Section 2.1.2.1, the input wave is decomposed into different plane 

waves with different angles. Thus we can approximate the process of transmitting waves through a 

single lens as the superposition of separated processes for each plane wave. The transmittance of lens 

     d f 

Lens 

z 

g(x, y) 

 
  

f(x, y) 
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is 𝑡(𝑥, 𝑦) ≈ ℎ𝑡exp [−𝑗𝑘
𝑥2+𝑦2

2𝑓
], where ℎ𝑡 = 𝑒−𝑗𝑛𝑘𝑑0 , 𝑑0 is the thickness of the lens, and  𝑛 is the 

refractive index. 

Lemma 2.1: 

The plane waves transmitted through the lens will be transferred into a parabolic wave converging to 

a point on back focal plane. The proof is shown below. 

Proof: 

Assume the lens is located at the position 𝑧 = −𝑓. Then the incident plane wave is: 

 𝑈(𝑥, 𝑦, −𝑓) = 𝐴exp(−𝑗𝑘𝑓). (2.7) 

The output of the lens will be: 

 𝑈𝑙𝑒𝑛𝑠(𝑥, 𝑦, −𝑓) = 𝐴ℎtexp(−𝑗𝑘𝑓)𝑒𝑥𝑝 [−𝑗𝑘
𝑥2+𝑦2

2𝑓
]. (2.8) 

Since the Fresnel approximation of the diverging spherical wave is: 

 
𝑈(𝑥, 𝑦, 𝑧) ≈

𝐴

𝑧
exp(𝑗𝑘𝑧)𝑒𝑥𝑝 [𝑗𝑘

𝑥2 + 𝑦2

2𝑧
], 

(2.9) 

the waves outputted from the lens will converge to a point at the focal plane. In this case, the input 

plane wave is parallel with the optic axis, so the convergent point on focal plane is (0,0). Let us now 

assume that the lens is placed at position 𝑧 = 0, and then the result of the convergence shows that 

the superposition of all decomposed plane waves will converge to the central point on the focal plane 

𝑧 = 𝑓. If we rotate the plane wave from the input to the incident angle (𝜑𝑥0 ≈ 𝜆𝑢0, 𝜑𝑦0 ≈ 𝜆𝑣0), 

then we can treat this problem as a modulating transmittance of lens: 

 𝑡𝑚(x, y) = 𝐴𝑡(𝑥, 𝑦) × exp(𝑗2𝜋(𝑢0𝑥 + 𝑣0𝑦)

= 𝐴 ∬𝐹(𝑢, 𝑣)𝑒𝑗2𝜋(𝑥(𝑢+𝑢0)+𝑦(𝑣+𝑣0))𝑑𝑢𝑑𝑣

 

𝑢,𝑣

 

 

(2.10) 

From Equation (2.10), we can observe that each plane wave components of transmittance have also 

been rotated by angle (𝜑𝑥0, 𝜑𝑦0). Thus, the superimposition of these rotated components will also 
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rotate at the same angle; under the paraxial approximation, the convergence point is relocated 

at (𝜑𝑥0𝑓 ≈ 𝜆𝑓𝑢0, 𝜑𝑦0𝑓 ≈ 𝜆𝑓𝑣0). The output will be [27]: 

 𝑔(𝑥, 𝑦) ∝ 𝐹 (
𝑥

𝜆𝑓
,

𝑦

𝜆𝑓
). (2.11) 

The following expression then gives the precise expression for the output of a single lens system [27]: 

 𝑔(𝑥, 𝑦) = ℎ𝑙exp [−𝑗𝜋
(𝑥2+𝑦2)(𝑑−𝑓)

𝜆𝑓2
] 𝐹 (

𝑥

𝜆𝑓
,

𝑦

𝜆𝑓
). 

(2.12) 

Where ℎ𝑙 = −
𝑗

𝜆𝑓
exp(𝑗𝑘(𝑑 + 𝑓)). 

To prove this, we need to first introduce a lemma. 

Lemma 2.2: 

 
∫ 𝑓(𝑥, 𝑦)exp [𝑗𝜋

(𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2

𝜆𝑑
] 𝑑𝑥𝑑𝑦

+∞

−∞

= exp(𝑗𝜋
𝑥′2 + 𝑦′2

𝜆𝑑
)ℱ [𝑓(𝑥, 𝑦)exp(𝑗𝜋

𝑥2 + 𝑦2

𝜆𝑑
)] |

𝑢=
𝑥′

𝜆𝑑
,𝑣=

𝑦′

𝜆𝑑

 

 

 

(2.13) 

This shows that the convolution of 𝑓(𝑥, 𝑦)  and exp (𝑗𝜋
𝑥2+𝑦2

𝜆𝑑
)  is in the form of the Fourier 

transform of the product of them. 

Proof: 

 
ℱ [𝑓(𝑥, 𝑦)exp(𝑗𝜋

𝑥2 + 𝑦2

𝜆𝑑
)] |

𝑢=
𝑥′

𝜆𝑑
,𝑣=

𝑦′

𝜆𝑑

 

= ∬𝑓(𝑥, 𝑦)exp(𝑗𝜋
𝑥2 + 𝑦2

𝜆𝑑
) exp(−𝑗𝜋

(2𝑥𝑥′ + 2𝑦𝑦′)

𝜆𝑑
)𝑑𝑥𝑑𝑦 

= exp(−𝑗𝜋
𝑥′2 + 𝑦′2

𝜆𝑑
)∬𝑓(𝑥, 𝑦)exp(𝑗𝜋

(𝑥 − 𝑥′)2 + (𝑦′ − 𝑦)2

𝜆𝑑
)𝑑𝑥𝑑𝑦 

 

 

 

 

(2.14) 

Multiply it by exp (𝑗𝜋
𝑥′2+𝑦′2

𝜆𝑑
) will complete this proof: 
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exp (𝑗𝜋

𝑥′2 + 𝑦′2

𝜆𝑑
)ℱ [𝑓(𝑥, 𝑦)exp(𝑗𝜋

𝑥2 + 𝑦2

𝜆𝑑
)] |

𝑢=
𝑥′

𝜆𝑑
,𝑣=

𝑦′

𝜆𝑑

= ∬𝑓(𝑥, 𝑦)exp (𝑗𝜋
(𝑥 − 𝑥′)2 + (𝑦′ − 𝑦)2

𝜆𝑑
)𝑑𝑥𝑑𝑦 

 

 

(2.15) 

 

Now, we can move forward to the proof of Fourier transform property of a single lens. 

Proof of the Fourier transform by a single lens: 

Suppose the input of the system is 𝑓(𝑥). The waves firstly transmit distance 𝑑 in free space to arrive 

at the lens. According to Fresnel Approximation, the impulse response of free space is [27]:  

 
ℎ(𝑥, 𝑦) ≈ ℎ0exp(𝑗𝑘

𝑥2 + 𝑦2

2𝑑
),  

   ℎ0 = (−
𝑗

𝜆𝑑
) exp(𝑗𝑘𝑑). 

 

(2.16) 

Thus, the complex amplitude of the wave immediately before the lens is: 

 
𝑔𝑙𝑒𝑛𝑠−𝑖𝑛(𝑥′, 𝑦′) = ∫∫ℎ0𝑓(𝑥, 𝑦)exp[𝑗𝑘

(𝑥′ − 𝑥)2 + (𝑦′ − 𝑦)2

2𝑑

 

 

]𝑑𝑥𝑑𝑦 

= ℎ0𝑓(𝑥, 𝑦) ∗ exp(𝑗𝜋
𝑥′2 + 𝑦′2

𝜆𝑑
). 

 

 

(2.17) 

After waves transmitted through the lens, the complex amplitude will multiply by the transmittance 

of the lens, so the wave immediately after the lens is: 

 
𝑔𝑙𝑒𝑛𝑠−𝑜𝑢𝑡(𝑥

′, 𝑦′) = ℎ𝑡exp [−𝑗𝜋 (
𝑥′2 + 𝑦′2

𝜆𝑓
)] ℎ0𝑓(𝑥, 𝑦) ∗ exp(𝑗𝜋

𝑥′2 + 𝑦′2

𝜆𝑑
). 

(2.18) 

Then, propagate 𝑔𝑙𝑒𝑛𝑠−𝑜𝑢𝑡(𝑥
′) in free space of distance 𝑓, we will get the output of the system: 

 
𝑔𝑜𝑢𝑡(𝑥

′′, 𝑦′′) = ℎ1𝑔𝑙𝑒𝑛𝑠−𝑜𝑢𝑡(𝑥
′′, 𝑦′′) ∗ exp [𝑗𝑘

𝑥′′2 + 𝑦′′2

2𝑓
]. 

(2.19) 
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From Lemma 2.2: 

 𝑔𝑜𝑢𝑡(𝑥
′′, 𝑦′′)

= ℎ1exp [𝑗𝑘
𝑥′′2 + 𝑦′′2

2𝑓
]

× ∫𝑔𝑙𝑒𝑛𝑠−𝑜𝑢𝑡(𝑥
′, 𝑦′)exp [𝑗𝜋

𝑥′2 + 𝑦′2

𝜆𝑓
] exp [−𝑗2𝜋

𝑥′𝑥′′ + 𝑦′𝑦′′

𝜆𝑓
] 𝑑𝑥′𝑑𝑦′ 

≈ ℎ1exp [𝑗𝑘
𝑥′′2 + 𝑦′′2

2𝑓
]ℱ[𝑔𝑙𝑒𝑛𝑠−𝑖𝑛(𝑥′, 𝑦′)]|

𝑢=
𝑥′′

𝜆𝑓
,𝑣=

𝑦′′

𝜆𝑓

. 

 

 

 

 

(2.20) 

Where  ℎ1 = (−
𝑗

𝜆𝑓
) exp(𝑗𝑘𝑓). The approximation holds when we suppose the thickness of lens is 

sufficiently small, ℎ𝑡 → 1. 

Then we calculate the Fourier transform of 𝑔𝑙𝑒𝑛𝑠−𝑖𝑛(𝑥′, 𝑦′): 

 
ℱ[𝑔𝑙𝑒𝑛𝑠−𝑖𝑛(𝑥′, 𝑦′)] = ℎ0ℱ[𝑓(𝑥′, 𝑦′)]ℱ [(exp [𝑗𝜋

𝑥′2 + 𝑦′2

𝜆𝑑
])]. 

(2.21) 

The function exp[𝑗𝜋
𝑥′2

𝜆𝑑
] is a scaled Chirp function, so the Fourier transform of it is [27]: 

 
ℱ [(exp [𝑗𝜋

𝑥′2

𝜆𝑑
])] = 𝑒

𝑗𝜋
4 √𝜆𝑑 exp(−𝑗𝜋𝜆𝑑𝑢2). 

(2.22) 

Thus, 

 
ℱ [(exp [𝑗𝜋

𝑥′2 + 𝑦′2

𝜆𝑑
])] = 𝑗𝜆𝑑 exp(−𝑗𝜋𝜆𝑑(𝑢2 + 𝑣2)). 

(2.23) 

 

 ℱ[𝑔𝑙𝑒𝑛𝑠−𝑖𝑛(𝑥′, 𝑦′)] = ℎ0ℱ[𝑓(𝑥′, 𝑦′)]𝑗𝜆𝑑 exp(−𝑗𝜋𝜆𝑑(𝑢2 + 𝑣2)) (2.24) 

Multiply it in Equation (2.19): 

 𝑔𝑜𝑢𝑡(𝑥
′′) =  
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ℎ1exp [𝑗𝑘
𝑥′′2 + 𝑦′′2

2𝑓
] 𝑗𝜆𝑑 (−

𝑗

𝜆𝑑
) exp (𝑗

2𝜋𝑑

𝜆
) exp(−𝑗𝜋𝜆𝑑(𝑢2

+ 𝑣2))𝐹 (
𝑥′′

𝜆𝑓
,
𝑦′′

𝜆𝑓
) 

= ℎ1exp (𝑗
2𝜋𝑑

𝜆
) exp [𝑗𝜋

𝑥′′2

𝜆𝑓
− 𝑗𝜋

𝑑𝑥′′2

𝜆𝑓2
] exp [𝑗𝜋

𝑦′′2

𝜆𝑓
− 𝑗𝜋

𝑑𝑦′′2

𝜆𝑓2
]  𝐹 (

𝑥′′

𝜆𝑓
,
𝑦′′

𝜆𝑓
) 

= (−
𝑗

𝜆𝑓
) exp[𝑗𝑘(𝑓 + 𝑑)]exp [−𝑗𝜋

(𝑑 − 𝑓)(𝑥′′2 + 𝑦′′2)

𝜆𝑓2
]  𝐹 (

𝑥′′

𝜆𝑓
,
𝑦′′

𝜆𝑓
). 

= ℎ𝑙exp [−𝑗𝜋
(𝑑 − 𝑓)(𝑥′′2 + (𝑦′′2)

𝜆𝑓2
]  𝐹 (

𝑥′′

𝜆𝑓
,
𝑦′′

𝜆𝑓
). 

 

 

 

 

 

 

 

(2.25) 

Then Equation (2.12) has been proved. 

2.1.2.3 Imaging model for phase retrieval 

 

In SMLM, in order the variance of estimated 3D positions of single emitters to approach the Cremer-

Rao lower bound [11], we usually add an engineered pupil mask on the pupil plane, which is the image 

plane of the first single lens system in SMLM. There are some popular pupil masks that can be used 

to generate such PSFs such as astigmatism PSF and double-helix PSF [16] [17]. Also, the method for 

optimizing pupil masks over Zernike polynomial parameters [18] for achieving the  Cremer-Rao lower 

bound and the corresponding resultant Cat Mask PSF can be found in Supplemental material of [11]. 

Ideally, we can know the designed pupil mask exactly, and thus we can theoretically calculate the 

defocused PSFs for use in the estimation process of locating single molecules. However, due to the 

imperfection of optical systems, and there may exist some rays that do not satisfy paraxial 

approximation, the wavefronts aberrations will be inevitably introduced. The image model for 

estimating the locations of emitters is thus not optimal if we do not account for the wavefronts 

aberration. Therefore, the more realistic image models need to be discovered. We can obtain the 

accurate optical system model by knowing the overall effect of the phase term, which is the 
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multiplication of the aberrated phase distortion and the pupil mask. In this paper, we used effective 

pupil function to represent the combination of an engineered pupil mask and optical aberrations. In 

order to recover the effective pupil function, we need to know the phase information of the 

wavefronts. However, the data measured by detectors lose the phase information. Therefore, the 

phase retrieval algorithm is needed for solving this problem.  

In fluorescent microscopy, 4-f system is used, which is constructed by cascading two 2-f systems. The 

principle of 4-f system is that we can reconstruct the original image by taking the inverse Fourier 

transform (by using second 2-f system) of its Fourier transform (by using first 2-f system). If we move 

the fluorophore a small distance along the optical axis, the system becomes a cascade of a single lens 

system and a 2-f system, and then we can observe the defocused response on the image plane. From 

Equation (2.25), we can derive the expression of defocused PSFs. Suppose the fluorophore is placed 

at distance 𝑧𝑘 from the focus position, and then the output of the wave will be [27]: 

 
𝑔𝑘(𝑥

′, 𝑦′) = ℎ𝑙2ℱ {ℎ𝑙1exp [−𝑗𝜋
𝑧𝑘(𝑥

′′2 + 𝑦′′2)

𝜆𝑓2
]  𝑝(𝑥′′, 𝑦′′)} |

𝑢=
𝑥′

𝜆𝑓
,𝑣=

𝑦′

𝜆𝑓

 

ℎ𝑙1 = (−
𝑗

𝜆𝑓
) exp[𝑗𝑘(2𝑓 + 𝑧𝑘)] 

ℎ𝑙2 = (−
𝑗

𝜆𝑓
) exp[𝑗𝑘(2𝑓)] 

 

 

 

(2.26) 

Thus, we can simplify it as: 

 
𝑔𝑘(𝑥

′, 𝑦′) ∝  ℱ {exp [−𝑗𝜋
𝑧𝑘(𝑥

′′2 + 𝑦′′2)

𝜆𝑓2
]  𝑝(𝑥′′, 𝑦′′)} 

(2.27) 

The measurement at the detector plane is then given as: 

 

𝐼𝑘(𝑥
′, 𝑦′) ∝ |ℱ {exp [−𝑗𝜋

𝑧𝑘(𝑥
′′2 + 𝑦′′2)

𝜆𝑓2
]  𝑝(𝑥′′, 𝑦′′)}|

2

, 
(2.28) 

where 𝑘 = 1,2, … , 𝐾 are ordered numbers for different axial positions of the point source. The series 

of these images {𝐼𝑘(𝑥
′, 𝑦′): 𝑘 = 1,2, …𝐾} is called calibration image for the use of the phase retrieval 
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algorithm. The problem then becomes reconstructing the effective pupil function by using the known 

calibration images.  

2.1.2.4 Phase retrieval problem and conventional algorithms  

 

The problem of reconstructing effective pupil function comes from the fact that optical detectors can 

only measure the intensity of light, so that the phase information is lost during the measurement 

process. If we can know the exact phase information of the measurements, the Fourier transform of 

effective pupil function can be identified, and then the effective pupil function can be reconstructed 

by using inverse Fourier transform. However, since the phase information is lost in detection process, 

we cannot restore the effective pupil function directly.  

A single measured image from detector defines infinitely many pupil functions since we can assign 

arbitrary phase for each pixel to generate different Fourier transforms. All possible pupil functions, 

defined by this single measurement, are in a subset of the pupil function space, which is defined by 

possible functions. By introducing other measurements from propagations at different defocus 

positions, different subsets of constraints are defined. The goal is then to retrieve the pupil function 

that can comply with all measurement constraints. Thus, the intersection of all subsets defined by each 

constraint is the solution. 

Before we continue to discuss the phase retrieval problem, let us discuss the relationship between the 

projection operator and the least square problem. 

In least square problems, suppose the measurement is 𝑌 = (𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛)𝑇, we want to find the 

parameter 𝜃 = {𝜃1, 𝜃2, 𝜃3 … , 𝜃𝑚} to minimize the squared error between 𝑌 and 𝑋 = 𝜃1𝑥1 + 𝜃2𝑥2 +

⋯+ 𝜃𝑚𝑥𝑚. Let 𝑇 = {𝑥1, 𝑥2, … , 𝑥𝑚} be a set of independent n-dimensional vectors. This problem 

can be treated as finding the element in the subspace 𝑉 = span(𝑇) that has the minimum distance to 

the measurement vector 𝑌. Since the projection of a vector onto a space is defined as the minimum 

distance between vector and space, the least square problem is equivalent to find the projection of the 

measurement onto the model space. 

Let us go back to our pupil retrieval problem and introduce the famous Gerchberg-Saxton algorithm 

[19] [20]. In Gerchberg-Saxton algorithm, two constraints are introduced. One is the function 
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constraint at spatial domain; the other is the Fourier constraint defined by the modulus of the Fourier 

transform at the frequency domain. Suppose that the constraint of the function domain defines a set 

of functions that the modulus must equal to |𝑓(𝑥, 𝑦)|, the Fourier constraint defines another set of 

functions that the modulus of Fourier transform have to be|𝐹(𝑢, 𝑣)|. Then there are four main steps 

in each iteration to solve this phase retrieval problem [20]: 

(1) The estimated function at m-th iteration of function domain is inputted:  

 𝑓(𝑚)(𝑥, 𝑦) = |𝑓(𝑥, 𝑦)|𝑒𝑗𝜃(𝑚)(𝑥,𝑦) (2.29) 

Fourier transform it we get: 

 ℱ{𝑓(𝑚)(𝑥, 𝑦)} = 𝐺(𝑚)(𝑢, 𝑣) = |𝐺(𝑚)(𝑢, 𝑣)|𝑒𝑗𝜑(𝑚)(𝑢,𝑣) (2.30) 

(2) Force the magnitude of ℱ{𝑓(𝑚)(𝑥, 𝑦)} to be the Fourier constraint |𝐹(𝑢, 𝑣)| and then get the 

revised Fourier transform: 

 �̂�(𝑚) = |𝐹(𝑢, 𝑣)|𝑒𝑗𝜑(𝑚)(𝑢,𝑣) (2.31) 

(3) Inverse Fourier transform of �̂�(𝑚) and get the 𝑓(𝑚): 

 𝑓(𝑚)(𝑥, 𝑦) = ℱ−1{�̂�(𝑚)} = |𝑓(𝑚)(𝑥, 𝑦)|𝑒𝑗𝜃(𝑚+1)(𝑥,𝑦) (2.32) 

(4) Force the function domain constraint to 𝑓(𝑚) and get the updated 𝑓(𝑚+1): 

 𝑓(𝑚+1)(𝑥, 𝑦) = |𝑓(𝑥, 𝑦)|𝑒𝑗𝜃(𝑚+1)(𝑥,𝑦) (2.33) 

 

In the above algorithm, Step (2) and Step (4) are actually projection operators that minimize the 

squared error of 𝐺(𝑚)(𝑢, 𝑣) and  𝑓(𝑚)(𝑥, 𝑦) with each corresponding constraint set respectively. The 

reason is followed by the following lemma. 

Lemma 2.3  

 min
𝜑

|𝑎𝑒𝑗𝜑 − 𝑏𝑒𝑗𝜃|
2

= (𝑎 − 𝑏)2 (2.34) 
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Where 𝑎 and 𝑏 are real positive numbers, 𝜑 and 𝜃 are their corresponding phase angle. The optimal 

𝜑∗ to let the equation holds is 𝜑∗ = 𝜃. 

Proof: 

Suppose the difference between 𝜑 and 𝜃 is 𝛿, 0 ≤ 𝛿 ≤ 𝜋. According to Law of Cosines: 

 |𝑎𝑒𝑗𝜑 − 𝑏𝑒𝑗𝜃|
2

= 𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝛿 (2.35) 

Since cos 𝛿 ≤ 1,  𝑎2 + 𝑏2 − 2𝑎𝑏 cos 𝛿 ≥ 𝑎2 + 𝑏2 − 2𝑎𝑏. Thus, |𝑎𝑒𝑗𝜑 − 𝑏𝑒𝑗𝜃|
2

≥ (𝑎 − 𝑏)2. The 

equation holds only when cos 𝛿 = 1, i.e. 𝜑∗ = 𝜃. 

 

Thus, the Gerchberg-Saxton algorithm is an Alternating Projection algorithm. The Alternating 

Projection is widely used for solving problems of  convex sets, and the proof  for its convergence was 

shown in [22]. However, the Fourier constraints in phase retrieval problem are obviously not convex 

sets. The simple example for proving the non-convex property of  Fourier constraints is shown below. 

Suppose the Fourier constraint is |𝐹(𝑢, 𝑣)|, assign an arbitrary phase angle 𝜑(𝑢, 𝑣) we can get one 

element 𝐺(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)|𝑒𝑗𝜑(𝑢,𝑣)  in the defined constraint set. We set another phase angle 

∅(𝑢, 𝑣) = 𝜑(𝑢, 𝑣)+𝜋. Then we get another element 𝐺′(𝑢, 𝑣) = −|𝐹(𝑢, 𝑣)|𝑒𝑗𝜑(𝑢,𝑣) in that Fourier 

constraint set. It is obviously that the sum of  𝐺(𝑢, 𝑣) and 𝐺′(𝑢, 𝑣) is just 0 and it is not in this Fourier 

constraint set. Therefore, the Fourier constraint sets are non-convex, and the convergence proof  for 

convex Alternating Projection in [22] cannot be used in Gerchberg-Saxton algorithm. However, the 

Gerchberg-Saxton algorithm is also an error reduction algorithm, so we can prove the monotonicity 

by proving the property of  the decreasing of  the squared error. The proof  of  monotonicity of  

Gerchberg-Saxton algorithm is shown in Appendix A and it can also be found in [20]. 

For our phase retrieval problem discussed in this paper, there are multiple defocused Fourier 

constraints and no function constraint. Taking two Fourier constraints as an example, we can treat 

one as the function constraint, which defines a set of  functions that satisfy the defocused Fourier 

modulus constraint. The Gerchberg-Saxton algorithm for our problem then can be extended to be 

[10]: 
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(1) In m-th iteration the input is 𝑓(𝑚)(𝑥, 𝑦)  of  which the Fourier transform satisfies 

corresponding modulus constraint. 

(2) Multiply the first propagator and then take the Fourier transform of  this defocused function. 

(3) Replace the modulus of  output from (2) by the corresponding constraint values. 

(4) Inverse Fourier transform of  (3) and divided it by corresponding propagator phase term. 

(5) Multiply (4) by the second defocus propagator term and take Fourier transform. 

(6) Replace the modulus of  (5) by the corresponding constraint values, take Inverse Fourier 

transform and divided by second propagator to get the updated function 𝑓(𝑚+1)(𝑥, 𝑦). 

 

We will observe that the performance of  Gerchberg-Saxton algorithm is good for noise-free data. 

However, if  the noise is in the presence, the Gerchberg-Saxton algorithm cannot converge to the 

desired solution. The simulation results will be given in Section 2.2. 

From the basic Alternating Projection between constraints, there is an extension called Averaged 

Projection. This modified algorithm is just taking projections of  the function into each constraint set 

and then average these projections to get the updated function. The principle of  this averaged 

projection method can be understood as reformulating the minimization problem of  finding a vector 

consistent with all constraints to the problem that find the multiple same vectors that consistent with 

corresponding constraints. 

Let us define 𝑁 constraint sets {𝐶1, … , 𝐶𝑁}, and matrix 𝑀 = (𝑥1, … , 𝑥𝑁), where each 𝑥𝑖 is a column 

vector in the corresponding constraint set 𝐶𝑖: 𝑥𝑖 ∈ 𝐶𝑖. The solution we are finding is 𝑥1 = 𝑥2 = ⋯ =

𝑥𝑁. It is equivalent to find the intersection of  sets: 

𝐶 = {𝑥1, … , 𝑥𝑁: 𝑥1 ∈ 𝐶1, … , 𝑥𝑁 ∈ 𝐶𝑁} and 𝐸 = {𝑥1, … , 𝑥𝑁: 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑁}. 

Then, by using projections between 𝐶 and 𝐸, we have: 

 
{𝑥1

(𝑚+1)
, … 𝑥𝑁

(𝑚+1)
} = 𝑃𝐸 {𝑃𝐶{𝑥1

(𝑚)
, … 𝑥𝑁

(𝑚)
}} 
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= {

1

𝑁
(𝑃𝐶1

{𝑥1} + ⋯+ 𝑃𝐶𝑁
{𝑥𝑁}), … ,

1

𝑁
(𝑃𝐶1

{𝑥1} + ⋯ + 𝑃𝐶𝑁
{𝑥𝑁}) } 

(2.36) 

 

For phase retrieval in SMLM, It can be shown from the Figure 2.4 that the Gerchberg-Saxton 

algorithm will have a faster convergence rate than the Fienup-style algorithm when no noise 

introduced in data. This result is consistent with the result of  comparison between Projection onto 

Convex Set (POCS) and Parallel Projection Method (PPM) shown in [23]. The application of  

Gerchberg-Saxton algorithm for reconstructing experimental PSFs in SMLM can be found in [10]. 

However, in [10] they did not just take only one calibration image at each axial position, but instead 

they taken several calibration images at each position and averaged them to reduce the noise before 

input them into Gerchberg-Saxton algorithm. If  the noise is presented in data, the Fienup-style 

algorithm performs better than Gerchberg-Saxton algorithm. From Figure 2.5, we can observe that 

the log of  squared error resulted from Gerchberg-Saxton algorithm will decrease in the first several 

iterations and then tends to oscillate around a constant. This shows that Gerchberg-Saxton algorithm 

is severely impacted by noise. The intuitive reason is that since each of  the measurements suffered 

from noise at each iteration, and the next projection is depended on the previous projection, so if, at 

each stage, there are some deviations from the noise, the final output may have large deviation and 

the squared error cannot be further reduced. In contrast, in Figure 2.5, we can see that the result of  

Fienup-style algorithm can always reduce the log of  squared error even there is noise introduced, so 

the preferred phase retrieval method for reconstructing pupil mask in SMLM is Fienup-style averaged 

projection. If  the Gerchberg-Saxton algorithm is used, the preprocessing of  the measurements, such 

as taking multiple images at each defocused position and averaging them, is often used to reduce the 

noise effect before input the data into the algorithm [10]. Although there are many papers that used 

the averaged projection method, they did not give the relationship between this method and least 

square problem. Then, the proof  of  this robust performance of  averaged projection will be given 

below by proving that the averaged projection is exactly the same as the least square problem. Before 

we prove this, we will firstly introduce a lemma, which was previously used in [24]. 

Lemma 2.4 

Suppose 𝑎 and 𝑏 are real positive numbers, then 
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|𝑎 − 𝑏|2 = |𝑎 − |𝑏𝑒𝑗𝜃||

2

= min
𝜑∈(−𝜋,𝜋]

|𝑎𝑒𝑗𝜑 − 𝑏𝑒𝑗𝜃|
2
 

(2.37) 

 arg 𝑚𝑖𝑛
𝜑∈(−𝜋,𝜋]

|𝑎𝑒𝑗𝜑 − 𝑏𝑒𝑗𝜃| = 𝜃 (2.38) 

This can be proved directly by extending Lemma 2.3. 

Then, we will prove the equivalence between averaged projection method and least square problem. 

Proof: 

First of  all, let us give the least square problem: 

 

min
𝑓(𝑥′,𝑦′)

{∑ ∑| |𝐹𝑘(𝑥
′, 𝑦′)| − |ℱ 𝑘[𝑓](𝑥′, 𝑦′)| |2

𝑥′,𝑦′𝑘

} 

 

(2.39) 

Where 𝐹𝑘(𝑥
′, 𝑦′) is k-th Fourier constraint, operator ℱ 𝑘[𝑓] is the k-th defocused Fourier transform: 

ℱ {exp [−𝑗𝜋
𝑧𝑘(𝑥′′2+𝑦′′2)

𝜆𝑓2 ]  𝑓(𝑥′′, 𝑦′′)} , where 𝑓(𝑥′′, 𝑦′′)  is the pupil mask. Direct solving this 

equation is very hard because the absolute operator is used for Fourier transform. In order to simplify 

if, we can rewriting the above least square problem by using Lemma 2.4: 

min
𝑓(𝑥′,𝑦′)

{∑ ∑| |𝐹𝑘(𝑥
′, 𝑦′)| − |ℱ 𝑘[𝑓](𝑥′, 𝑦′)| |2

𝑥′,𝑦′𝑘

} 

= min
𝑓(𝑥′′,𝑦′′) 

min
𝜑𝑘(𝑥′,𝑦′)

∑ ∑ ||𝐹𝑘(𝑥′, 𝑦′)|𝑒𝑗𝜑𝑘(𝑥′,𝑦′) − ℱ {exp [−𝑗𝜋
𝑧𝑘(𝑥′′2 + 𝑦′′2)

𝜆𝑓2
]  𝑓(𝑥′′, 𝑦′′)}|

2

𝑥′,𝑦′𝑘

 

(2.40) 

Thus, the least square problem has been lifted to alternating minimization problem. Suppose we know 

𝑓(𝑥′′, 𝑦′′), then the problem is to find 𝜑𝑘(𝑥
′, 𝑦′). According to Lemma 2.4, this should be the phase 
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angle of  ℱ {exp [−𝑗𝜋
𝑧𝑘(𝑥′′2+𝑦′′2)

𝜆𝑓2
]  𝑓(𝑥′′, 𝑦′′)}. Then by the updated 𝜑𝑘(𝑥

′, 𝑦′), we can find the 

updated 𝑓(𝑥′′, 𝑦′′) by solving the normal least square problem: 

𝑓∗ = argmin
𝑓(𝑥′′,𝑦′′)

∑ ∑ ||𝐹𝑘(𝑥
′, 𝑦′)|𝑒𝑗𝜑𝑘(𝑥′,𝑦′) − ℱ {exp [−𝑗𝜋

𝑧𝑘(𝑥
′′2 + 𝑦′′2)

𝜆𝑓2
]  𝑓(𝑥′′, 𝑦′′)}|

2

𝑥′,𝑦′𝑘

 

(2.41) 

Writing it as the matrix form and approximate the Fourier transform as the Discrete Fourier 

Transform, then we have: 

 

∑ ∑ ||𝐹𝑘(𝑥
′, 𝑦′)|𝑒𝑗𝜑𝑘(𝑥′,𝑦′) − ℱ {exp [−𝑗𝜋

𝑧𝑘(𝑥
′′2 + 𝑦′′2)

𝜆𝑓2
]  𝑓(𝑥′′, 𝑦′′)}|

2

𝑥′,𝑦′𝑘

= ‖‖

[
 
 
 
𝐹1𝑒

𝑗𝜑1

𝐹2𝑒
𝑗𝜑2

…
𝐹𝐾𝑒𝑗𝜑𝐾]

 
 
 

− [

𝐻𝐷1

𝐻𝐷2

…
𝐻𝐷𝐾

] 𝑓‖‖

2

. 

 

 

 

(2.42) 

Where 𝐹1, 𝐹2, … , 𝐹𝐾 are column vectors reshaped from 𝐹𝑘(𝑥′, 𝑦′) column by column; 𝜑𝑘 and 𝑓 are 

also vectored by the same way. 𝐻 ∈ 𝐶𝑁×𝑁  is the forward matrix that calculate the 2D Fourier 

transform of  𝑓, so it has the property: 

 𝐻+𝐻 = 𝑁𝐼. (2.43) 

Where 𝐻+ is the conjugate transpose of 𝐻, 𝐼 is the identity matrix and 𝑁 is the total number of  pixels 

in the detector plane. 𝐷𝑘 ∈ 𝐶𝑁×𝑁 is the diagonal matrix that account for the defocused propagation 

phase, 

 
𝐷𝑘 = diag (exp [−𝑗𝜋

𝑧𝑘(𝑥
′′2 + 𝑦′′2)

𝜆𝑓2
]) 

(2.44) 
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The solution of  the above least square problem can be easily solved by either using the Orthogonally 

Principle or Error Minimization via Gradients. The solution will be: 

 𝑓∗ = (ℋ+ℋ)−1ℋ+𝔽, (2.45) 

 

where ℋ = [

𝐻𝐷1

𝐻𝐷2

…
𝐻𝐷𝐾

],  𝔽 = 

[
 
 
 
𝐹1𝑒

𝑗𝜑1

𝐹2𝑒
𝑗𝜑2

…
𝐹𝐾𝑒𝑗𝜑𝑘]

 
 
 

. 

And then, 

 

ℋ+ℋ = [(𝐻𝐷1)
+, (𝐻𝐷2)

+, … , (𝐻𝐷𝐾)+] [

𝐻𝐷1

𝐻𝐷2

…
𝐻𝐷𝐾

] 

= 𝐷1
+𝐻+𝐻𝐷1 + 𝐷2

+𝐻+𝐻𝐷2 + ⋯+ 𝐷𝐾
+𝐻+𝐻𝐷𝐾 

= 𝐾𝑁𝐼. 

 

 

 

(2.46) 

The above result is also from the fact that 𝐷𝑖
+𝐷𝑖 = 𝐼, this is because 𝐷𝑖 is a diagonal matrix with all 

elements have unit modulus.  Thus, (ℋ+ℋ)−1 =
1

𝐾𝑁
𝐼. 

Then we have, 

 

ℋ+𝔽 = [(𝐻𝐷1)
+, (𝐻𝐷2)

+, … , (𝐻𝐷𝐾)+]

[
 
 
 
𝐹1𝑒

𝑗𝜑1

𝐹2𝑒
𝑗𝜑2

…
𝐹𝐾𝑒𝑗𝜑𝑘]

 
 
 

 

= 𝐷1
+𝐻+𝐹1𝑒

𝑗𝜑1 + 𝐷2
+𝐻+𝐹2𝑒

𝑗𝜑2 + ⋯+ 𝐷𝐾
+𝐻+𝐹𝐾𝑒𝑗𝜑𝑘 . 

 

 

(2.47) 
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Let 
1

𝑁
𝐷𝑖

+𝐻+𝐹𝑖𝑒
𝑗𝜑𝑖 = 𝑓𝑖  . This is the inverse Fourier transform of  𝐹𝑖𝑒

𝑗𝜑𝑖 and divided by the 

corresponding defocused phase term: exp [−𝑗𝜋
𝑧𝑖(𝑥

′′2+𝑦′′2)

𝜆𝑓2 ].  

Thus, we get the solution for this least square problem: 

 
𝑓∗ = (ℋ+ℋ)−1ℋ+𝔽 =

1

𝐾𝑁
𝐼(𝑁𝑓1 + 𝑁𝑓2 + ⋯+ 𝑁𝑓𝐾) 

=
1

𝐾
(𝑓1 + 𝑓2 + ⋯+ 𝑓𝐾). 

 

(2.48) 

This is the average of  estimated pupil functions from the projection at each defocused Fourier 

constraint. 

From the above proof, we know that the Fienup-style averaged projection in SMLM for phase retrieval 

is equivalent to the specific least square problem solving by alternating minimization. Then we will 

prove the monotonicity decreasing of  this alternating minimization. 

Proof  of  the monotonicity of  averaged projection: 

Suppose at m-th iteration we know 𝑓(𝑚)(𝑥′′, 𝑦′′)  and 

 
𝜑𝑘

(𝑚)(𝑥′, 𝑦′) = arg (ℱ {exp [−𝑗𝜋
𝑧𝑘(𝑥

′′2 + 𝑦′′2)

𝜆𝑓2
] 𝑓(𝑚)(𝑥′′, 𝑦′′)}). 

(2.49) 

By solving least square problem showing above, we have the solution 𝑓(𝑚+1)(𝑥′′, 𝑦′′) that minimizes: 

 

∑ ∑ ||𝐹𝑘(𝑥
′, 𝑦′)|𝑒𝑗𝜑𝑘

(𝑚)(𝑥′,𝑦′) − ℱ {exp [−𝑗𝜋
𝑧𝑘(𝑥

′′2 + 𝑦′′2)

𝜆𝑓2
] 𝑓  (𝑥′′, 𝑦′′)}|

2

.

𝑥′,𝑦′𝑘

 

 

(2.50) 

So we have: 

∑ ∑ ||𝐹𝑘(𝑥
′, 𝑦′)|𝑒𝑗𝜑𝑘

(𝑚)(𝑥′,𝑦′) − ℱ {exp [−𝑗𝜋
𝑧𝑘(𝑥

′′2 + 𝑦′′2)

𝜆𝑓2
] 𝑓(𝑚+1)(𝑥′′, 𝑦′′)}|

2

𝑥′,𝑦′𝑘
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≤ ∑ ∑ ||𝐹𝑘(𝑥
′, 𝑦′)|𝑒𝑗𝜑𝑘

(𝑚)(𝑥′,𝑦′) − ℱ {exp [−𝑗𝜋
𝑧𝑘(𝑥

′′2 + 𝑦′′2)

𝜆𝑓2
] 𝑓(𝑚)(𝑥′′, 𝑦′′)}|

2

𝑥′,𝑦′𝑘

 

 (2.51) 

Then we update 𝜑𝑘
  : 

 
𝜑𝑘

(𝑚+1) = arg (ℱ {exp [−𝑗𝜋
𝑧𝑘(𝑥

′′2 + 𝑦′′2)

𝜆𝑓2
] 𝑓(𝑚+1)(𝑥′′, 𝑦′′)}). 

(2.52) 

From Lemma 2.4: 

∑ ∑ ||𝐹𝑘(𝑥
′, 𝑦′)|𝑒𝑗𝜑𝑘

(𝑚+1)(𝑥′,𝑦′) − ℱ {exp [−𝑗𝜋
𝑧𝑘(𝑥

′′2 + 𝑦′′2)

𝜆𝑓2
] 𝑓(𝑚+1)(𝑥′′, 𝑦′′)}|

2

𝑥′,𝑦′𝑘

 

≤ ∑ ∑ ||𝐹𝑘(𝑥
′, 𝑦′)|𝑒𝑗𝜑𝑘

(𝑚)(𝑥′,𝑦′) − ℱ {exp [−𝑗𝜋
𝑧𝑘(𝑥

′′2 + 𝑦′′2)

𝜆𝑓2
] 𝑓(𝑚+1)(𝑥′′, 𝑦′′)}|

2

𝑥′,𝑦′𝑘

 

(2.53) 

So we will have: 

∑ ∑ ||𝐹𝑘(𝑥
′, 𝑦′)|𝑒𝑗𝜑𝑘

(𝑚+1)(𝑥′,𝑦′) − ℱ {exp [−𝑗𝜋
𝑧𝑘(𝑥

′′2 + 𝑦′′2)

𝜆𝑓2
] 𝑓(𝑚+1)(𝑥′′, 𝑦′′)}|

2

𝑥′,𝑦′𝑘

 

≤ ∑ ∑ ||𝐹𝑘(𝑥
′, 𝑦′)|𝑒𝑗𝜑𝑘

(𝑚)(𝑥′,𝑦′) − ℱ {exp [−𝑗𝜋
𝑧𝑘(𝑥

′′2 + 𝑦′′2)

𝜆𝑓2
] 𝑓(𝑚+1)(𝑥′′, 𝑦′′)}|

2

𝑥′,𝑦′𝑘
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≤ ∑ ∑ ||𝐹𝑘(𝑥
′, 𝑦′)|𝑒𝑗𝜑𝑘

(𝑚)(𝑥′,𝑦′) − ℱ {exp [−𝑗𝜋
𝑧𝑘(𝑥

′′2 + 𝑦′′2)

𝜆𝑓2
] 𝑓(𝑚)(𝑥′′, 𝑦′′)}|

2

𝑥′,𝑦′𝑘

 

Because  

 

∑ ∑ ||𝐹𝑘(𝑥
′, 𝑦′)|𝑒𝑗𝜑𝑘

(𝑚)(𝑥′,𝑦′) − ℱ {exp [−𝑗𝜋
𝑧𝑘(𝑥

′′2 + 𝑦′′2)

𝜆𝑓2
] 𝑓(𝑚)(𝑥′′, 𝑦′′)}|

2

𝑥′,𝑦′𝑘

 

 

 

 
= ∑ ∑| |𝐹𝑘(𝑥

′, 𝑦′)| − |ℱ 𝑘[𝑓
(𝑚)](𝑥′, 𝑦′)| |

2

𝑥′,𝑦′𝑘

 
(2.54) 

We will have: 

 
∑ ∑| |𝐹𝑘(𝑥

′, 𝑦′)| − |ℱ 𝑘[𝑓
(𝑚+1)](𝑥′, 𝑦′)| |

2

𝑥′,𝑦′𝑘

 

≤ ∑ ∑| |𝐹𝑘(𝑥
′, 𝑦′)| − |ℱ 𝑘[𝑓

(𝑚)](𝑥′, 𝑦′)| |
2

𝑥′,𝑦′𝑘

 

 

 

(2.55) 

So we can guarantee that the squared error is monotonically decreased by using averaged projection 

method. The simulated results are consistent with this statement shown in next section. 

2.2 Simulation results for Gerchberg-Saxton algorithm 
and Fienup-style algorithm 

 

In this section, the data simulation process is the same as the process in Section 3.3. To compare these 

two methods, I first simulate the noise-free data from the generated pupil function used in Section 

3.3.1, and then we can see from Figure 2.4 that when no noise is in presence, the convergence rate of  

Gerchberg-Saxton algorithm is faster than Fienup-Style algorithm.  
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Figure 2.3 G-S algorithm and Fienup-style algorithm with no noise. Top line shows the G-S algorithm 
reconstructed modulus and phase with no noise presented; bottom line shows the Fienup-Style reconstructed 
modulus and phase under no noise present. Both of these methods can solve the phase retrieval problem. 
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Figure 2.4 Log of squared error between measurements and reconstructed defocused Fourier modulus: G-S 
algorithm and Fienup-style algorithm. G-S algorithm converges faster than Finup-style algorithm 

 

However, if  we add Poisson noise to the measurements, we can see that the performance of  Fienup-

style algorithm is better than G-S algorithm. The following figure shows the results when one million 

photons are collected. 
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Figure 2.5 G-S algorithm and Fienup style algorithm with Poisson noise. Top line shows the G-S algorithm 
reconstructed modulus and phase when Poisson noise is presented; bottom line shows the Fienup-Style 
reconstructed modulus and phase when Poisson noise is presented 

 

Figure 2.6 Log of squared error for G-S algorithm and Fienup algorithm with Poisson noise. The Fienup-style 
algorithm have lower squared error than G-S algorithm. 
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In Figure 2.6, we observed that the G-S algorithm cannot continue to decrease the squared error after 

some iterations. In comparison, Fienup-style algorithm can guarantee the squared error monotonically 

decreasing for more iterations. This result is consistent with our analysis. 
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Chapter 3 

 

Phase Retrieval by Double Alternating 
Minimization 
 

In Chapter 2 we discussed the phase retrieval problem in SMLM and the popular methods for solving 

it. However, no method discusses the sampling issues in this problem. As we know, cameras sample 

the distribution of intensity of light, which is squared modulus of defocused Fourier transform of the 

effective pupil function. As the sampling theorem indicates [28], we need to sample at a high enough 

rate to avoid aliasing. Thus, if the sampling aperture of detector is too large to sample at high enough 

rates, then it is impossible to reconstruct pupil mask at function domain. This is because the inverse 

Fourier transform of loosely sampled Fourier transform is aliased at function domain. In order to 

solve this problem, we need to interpolate or estimate the missed Fourier modulus. However, if we 

just consider about defocused Fourier modulus, it is obvious that there are infinite many solutions for 

maximum likelihood estimation. This is because that the ideal detector (sample aperture equals to 

sample space and each photon detected by pixel does not affect surrounding pixels) measures integral 

of all light arrived at it and each detector is independent with others. If we only consider the Poisson 

noise, the maximum likelihood can be achieved just when the summation of parameters equals to the 

measurement from the corresponding detector. For example, suppose we have 𝑀 detectors, we want 

to estimate 𝑁 = 4𝑀 number of parameters, so at each detector, we have four unknown parameters 

and just one equation. The problem is underdetermined and thus will have infinite many solutions. 

However, there may not exist such pupil function that generate those estimations of defocused Fourier 

modulus. Then, we estimate the defocused Fourier modulus from measurements by adding a penalty 

that penalize the solutions from which we cannot find an appropriate pupil function. 

In this chapter, we will discuss the pixelation of perfect detectors and sampling issues. Then we will 

build our model of algorithms for solving this phase retrieval problem. 
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3.1 Sampling and Pixelation 
 

Due to the fact that simulations are worked on by computer, the discrete signal processing needs to 

be addressed. In this section, I will discuss the sampling issue on spatial domain for approximating 

our continuous pupil function, and then discuss the sampling issue on Fourier domain in order to 

address the problem of pixelation. 

3.1.1 Sampling on spatial domain 
 

Due to the fact that pupil function is continuous and the aperture size on corresponding spatial plane 

is finite, the Fourier spectrum of it is infinitely spread. Then any sampling process will introduce 

aliasing effect in frequency domain. Besides, the camera size is also finite, so there always information 

about high frequency components lost. However, we can assume that the pupil function is sampled 

at high enough rate such that the aliasing effect can be ignored, and also assume that the camera size 

is large enough to record all data about the Fourier spectrum. Suppose now we want to reconstruct a 

pupil function sampled in separations ∆𝑥 and ∆𝑦 at each direction. We also suppose that the sampling 

rate is high and the Discrete-Time Fourier Transform (DTFT) of sampled pupil function can 

approximate to the Fourier transform of the continuous function. Then the range of frequency 

component in the base period of Fourier transform in frequency domain is [
−1

2∆𝑥
,

1

2∆𝑥
] × [

−1

2∆𝑦
,

1

2∆𝑦
]. 

Assume the camera size is greater or equal to 
1

∆𝑥
×

1

∆𝑦
  and the sampling period of detectors is small 

enough , then all information about the sampled pupil function are known and thus the pupil function 

can be reconstructed by using phase retrieval algorithms. 

3.1.2 Sampling on frequency domain and pixelation 
 

Under the assumptions from Section 3.1.1, we can reconstruct the sampled pupil function. However, 

we still need to sample on the frequency domain by the detectors. The sampling process in the 

frequency domain will result in a summation of periodic displacements on spatial domain, this 
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property is just similar as sampling process on spatial domain. Therefore, in order to avoid aliasing 

effect on spatial domain, we still need to sample at a high enough rate in the frequency domain. 

Suppose the aperture size is 
𝐴

2
×

𝐴

2
 (the shape of aperture is circle and we will use here as rectangular 

for simulation purpose and we can also pad zeros around the aperture to construct a rectangular 

image), if there is no aliasing by the sampling process on frequency domain, then the sampling period 

should be 
1

𝐴
 and 

1

𝐴
 at each direction. Assume the sampled pupil function has size 𝑀 × 𝑁 pixels. Then 

∆𝑥 =
𝐴

𝑀
, ∆𝑦 =

𝐴

𝑁
. Thus, the maximum sampling period on frequency domain is 

1

𝑀∆𝑥
 and 

1

𝑁∆𝑦
 at each 

direction. The number of the samples on frequency domain at each direction is 

1

∆𝑥
1

𝑀∆𝑥

= 𝑀 and 

1

∆𝑦
1

𝑁∆𝑦

=

𝑁. 

The above sampling process can guarantee that the reconstructed pupil function will not be aliased. 

From the above sampling processes on both spatial domain and frequency domain, we can observe 

the approximation of output on frequency domain is Discrete Fourier Transform (DFT). Thus, we 

use DFT in our simulations. 

Suppose we use CMOS camera with perfect detectors, then the measurement read from each detector 

is the summation of photons distributed on this detector. Thus, our sampling process will have 

pixelation effect. If the detector size is small (sample period is small), then the sampling rate is high 

enough and the pixelation effect can be ignored. However, some times the detector size may be too 

large to sample at a high rate on frequency domain for reconstructing large apertures. Thus, the 

pixelation needs to be taken into account. 

3.2 Estimation process for phase retrieval 
 

In order to solve the low sampling rate problem discussed in section 3.1.2, I come up with the method 

to estimate the missed values of defocused Fourier modulus by minimizing the penalized I-divergence, 

which is equivalent to maximizing penalized likelihood. 
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3.2.1 The optimization problem 
 

Let 𝑑 = {𝑑1, 𝑑2, … , 𝑑𝐾} be the measurement, where 𝑑𝑖 is a measured image when the point source is 

placed at i-th position and suppose 𝑑𝑖  is at the coordinate  {(𝑢, 𝑣): 𝑢 = 𝑚∆𝑢, 𝑣 = 𝑛∆𝑣;𝑚 =

1, … , 𝑀; 𝑛 = 1,… ,𝑁}, where ∆𝑢 and ∆𝑣 are height and width of rectangular detectors. We want to 

reconstruct a sampled pupil mask that has 𝑀′ × 𝑁′ samples, where 𝑀′ > 𝑀,𝑁′ > 𝑁  . From the 

discussion in section 3.1.2, we know that the number of points in Fourier domain needs to be at least 

𝑀′ × 𝑁′. Let 𝜇 = {𝜇1, 𝜇2, … , 𝜇𝐾} be our estimation parameter, 𝜇𝑖 is estimation of parameter when 

the point source placed at i-th defocused plane and 𝜇𝑖 is at the coordinate {(𝑢′, 𝑣′): 𝑢′ = 𝑚∆𝑢′, 𝑣 =

𝑛∆𝑣′; 𝑚 = 1,… ,𝑀′; 𝑛 = 1, … , 𝑁′}. Therefore, each detector contains 
𝑀′

𝑀
×

𝑁′

𝑁
 parameters. For the 

pixelation of perfect detector, the measurement of each detector is the summation of squares of all 

these 
𝑀′

𝑀
×

𝑁′

𝑁
 parameters. Then we define the response function of detectors: 

  

 
ℎ(𝑢, 𝑣|𝑢′, 𝑣′) = {

1,            if (𝑢′, 𝑣′) is in the region defined by detectors at (𝑢, 𝑣)

0,         (𝑢′, 𝑣′) is not in the region defined by detectors at (𝑢, 𝑣)
 

 

(3.1) 

Thus, we have the expected value of measurement given parameter 𝜇: 

 
𝑔𝑖(𝑢, 𝑣) = ∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖

2(𝑢′, 𝑣′)

𝑢′,𝑣′

 
(3.2) 

Since the measurement is suffered from shot noise when we use optical detectors, the data received is 

Poisson distributed: 𝑑𝑘(𝑥, 𝑦)~Poisson(𝑔𝑘(𝑥, 𝑦)). The likelihood for each detector is:  

 
𝑙[𝑑𝑖(𝑢, 𝑣)|𝑔𝑖(𝑢, 𝑣)] = 𝑒−𝑔𝑖(𝑢,𝑣) 𝑔𝑖(𝑢, 𝑣)𝑑𝑖(𝑢,𝑣)

𝑑𝑖(𝑢, 𝑣)!
 

(3.3) 

Since all detectors are independent with each other and the measurements from different defocused 

positions are also independent, then the likelihood of all data is [21]: 
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𝑙𝑑(𝑔) = ∏∏𝑒−𝑔𝑖(𝑢,𝑣) 𝑔𝑖(𝑢, 𝑣)𝑑𝑖(𝑢,𝑣)

𝑑𝑖(𝑢, 𝑣)!
𝑢,𝑣𝑖

 
(3.4) 

The log-likelihood is: 

 
𝐿𝑑(𝑔) = ∑∑𝑑𝑘(𝑢, 𝑣)log[𝑔𝑖(𝑢, 𝑣)] − 𝑔𝑖(𝑢, 𝑣) − log𝑑𝑖(𝑢, 𝑣)!

𝑢,𝑣𝑖

 
(3.5) 

Then we want to find 𝜇 = {𝜇1, 𝜇2, … , 𝜇𝐾} , which is estimated defocused Fourier modulus, to 

maximize 𝐿𝑑(𝑔) and also to guarantee that there exists such pupil function that can generate the 

estimated 𝜇. 

If 𝜇 = {𝜇1, 𝜇2, … , 𝜇𝐾}  can be generated from some pupil function 𝑓∗(𝑥, 𝑦) , then the following 

expression must hold: 

 
∑ ∑‖𝜇𝑖(𝑢

′, 𝑣′) − |ℱ 𝑘[𝑓
∗](𝑢′, 𝑣′)|‖2

𝑢′,𝑣′𝑖

= 0 
(3.6) 

Thus, min
𝑓

‖𝜇𝑖(𝑢
′, 𝑣′) − |ℱ 𝑘[𝑓](𝑢′, 𝑣′)|‖2 = 0  is the constraint that must hold for solving the 

maximum likelihood problem. 

We could also change the maximum likelihood to minimum I-divergence problem under the Poisson 

noise condition [25]. The I-divergence is the generalized relative entropy for any two non-negative 

distributions and the expression is given by [25]: 

 
𝐼(𝑑||𝑔) = ∑∑𝑑𝑖(𝑢, 𝑣)log

𝑑𝑖(𝑢, 𝑣)

𝑔𝑖(𝑢, 𝑣)
− 𝑑𝑖(𝑢, 𝑣) + 𝑔𝑖(𝑢, 𝑣)

𝑢,𝑣𝑖

 
(3.7) 

Since 𝑑𝑖(𝑢, 𝑣) does not depend on our estimation parameter, thus: 

 
max

𝜇
∑∑𝑑𝑖(𝑢, 𝑣)log[𝑔𝑖(𝑢, 𝑣)] − 𝑔𝑖(𝑢, 𝑣) − log𝑑𝑖(𝑢, 𝑣)!

𝑢,𝑣𝑖

 

= min
𝜇

∑∑𝑑𝑖(𝑢, 𝑣) log [
𝑑𝑖(𝑢, 𝑣)

𝑔𝑖(𝑢, 𝑣)
] − 𝑑𝑖(𝑢, 𝑣) + 𝑔𝑖(𝑢, 𝑣)

𝑢,𝑣𝑖

 

 

 

(3.8) 
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Where  

 

 
𝑔𝑖(𝑢, 𝑣) = ∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖

2(𝑢′, 𝑣′)

𝑢′,𝑣′

 
(3.9) 

Then we can write our problem as the following: 

 
min

𝜇
∑∑[𝑑𝑖(𝑢, 𝑣)ln

𝑑𝑖(𝑢, 𝑣)

∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖
2(𝑢′, 𝑣′)𝑢′,𝑣′

− 𝑑𝑖(𝑢, 𝑣)

𝑢,𝑣𝑖

+ ∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖
2(𝑢′, 𝑣′)] 

𝑢′,𝑣′

 

      Such that:  

min
𝑓

∑ ∑ ‖|𝜇𝑖(𝑢
′, 𝑣′)| − |ℱ 𝑖[𝑓](𝑢′, 𝑣′)|‖2

𝑢′,𝑣′𝑖 = 0. 

 

 

 

 

(3.10) 

This is a constrained optimization problem with one equality constraint and the feasible region is given 

by {𝜇:min
𝑓

∑ ∑ ‖|𝜇𝑖(𝑢
′, 𝑣′)| − |ℱ 𝑖[𝑓](𝑢′, 𝑣′)|‖2

𝑢′,𝑣′𝑖 = 0} . We see that this problem is very 

difficult to solve if we formulate the Lagrangian and try to find the point that force the gradient to be 

zero. Thus, we use the penalty method to solve it and find the optimal point iteratively by using 

alternating minimizations. 

3.2.2 DAM for Solving Phase Retrieval Problem in SMLM 
 

By using penalty method to approximate the constrained optimization problem, we formulate our 

objective function followed by the penalty term as: 
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 𝐽(𝜇) = {∑∑𝑑𝑖(𝑢, 𝑣)ln

𝑑𝑖(𝑢, 𝑣)

∑ |𝜇𝑖(𝑢′, 𝑢′)|2ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝑢′, 𝑣′
− 𝑑𝑖(𝑢, 𝑣)

𝑢, 𝑣𝑖

+ ∑ 𝜇𝑖(𝑢
′, 𝑣′)2ℎ(𝑢, 𝑣|𝑢′, 𝑣′)

𝑢′, 𝑣′

} + 

𝛽 {min
𝑓

∑ ∑| 𝜇𝑖(𝑢
′, 𝑣′) − |ℱ 𝑖[𝑓](𝑢′, 𝑣′)| |2

𝑥′,𝑦′𝑖

} 

 

 

 

 

(3.11) 

Where 𝛽  is the regularization parameter and ∑ ∑ | |𝜇𝑖(𝑢
′, 𝑣′)| − |ℱ 𝑖[𝑓](𝑢′, 𝑣′)| |2𝑥′,𝑦′𝑖  is the 

penalty term. Thus, we expand our optimization problem constrained in feasible region 

{𝜇:min
𝑓

∑ ∑ ‖𝜇𝑖(𝑢
′, 𝑣′) − |ℱ 𝑖[𝑓](𝑢′, 𝑣′)|‖2

𝑢′,𝑣′𝑖 = 0} to the optimization problem without such 

constraint by adding penalty to the objective function. Thus, our problem becomes just: 

 min
𝜇

𝐽(𝜇)  (3.12) 

It is also impossible to solve our reformulated optimization problem directly. Thus, in order to solve 

it, we need to use alternating minimization algorithm. 

First, we can further rewrite our problem: 

 min
𝜇

𝐽(𝜇) 

= min
𝜇

∑∑[𝑑𝑖(𝑢, 𝑣)ln
𝑑𝑖(𝑢, 𝑣)

∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖
2(𝑢′, 𝑣′)𝑢′,𝑣′

− 𝑑𝑖(𝑢, 𝑣)

𝑢,𝑣𝑖

+ ∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖
2(𝑢′, 𝑣′)] 

𝑢′,𝑣′

+ min
𝑓

∑ ∑| 𝜇𝑖(𝑢
′, 𝑣′) − |ℱ 𝑖[𝑓](𝑢′, 𝑣′)| |2

𝑢′,𝑣′𝑖
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= min
𝜇

min
𝑓

∑∑[𝑑𝑖(𝑢, 𝑣)ln
𝑑𝑖(𝑢, 𝑣)

∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖
2(𝑢′, 𝑣′)𝑢′,𝑣′

− 𝑑𝑖(𝑢, 𝑣)

𝑢,𝑣𝑖

+ ∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖
2(𝑢′, 𝑣′)]

𝑢′,𝑣′

+  𝛽 ∑ ∑| 𝜇𝑖(𝑢
′, 𝑣′) − |ℱ 𝑖[𝑓](𝑢′, 𝑣′)| |2

𝑢′,𝑣′𝑖

 

 

 

(3.13) 

Thus, this problem is naturally lifted to higher dimensions optimization and the alternating 

minimization should be applied.  

Define our new objective function with respect to alternating minimization: 

 
𝑄(𝜇, 𝑓) = ∑∑[𝑑𝑖(𝑢, 𝑣)ln

𝑑𝑖(𝑢, 𝑣)

∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖
2(𝑢′, 𝑣′)𝑢′,𝑣′

− 𝑑𝑖(𝑢, 𝑣)

𝑢,𝑣𝑖

+ ∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖
2(𝑢′, 𝑣′)]

𝑢′,𝑣′

+  𝛽 ∑ ∑| 𝜇𝑖(𝑢
′, 𝑣′) − |ℱ 𝑖[𝑓](𝑢′, 𝑣′)| |2

𝑢′,𝑣′𝑖

 

 

 

 

(3.14) 

The idea of alternating minimization is to minimize 𝑄(𝜇, 𝑓) with respect to one variable at a time by 

fixing the other variable, and then assume that the updated variable is fixed to minimize 𝑄(𝜇, 𝑓) with 

respect to another variable. Updating both two variables iteratively decrease the value of 𝑄(𝜇, 𝑓).  

Suppose at m-th iteration we have known values of 𝜇(𝑚), then by minimizing the 

term:  ∑ ∑ | 𝜇𝑖(𝑢
′, 𝑣′) − |ℱ 𝑖[𝑓](𝑢′, 𝑣′)| |2𝑢′,𝑣′𝑖 ,  we have 𝑓: 𝑓(𝑚) = argmin

𝑓
𝑄(𝜇(𝑚), 𝑓) . 

Then 𝐽(𝜇(𝑚)) = 𝑄(𝜇(𝑚), 𝑓(𝑚)). Based on the updated 𝑓(𝑚), we can find the value of 𝜇: 𝜇(𝑚+1) =

argmin
𝜇

𝑄(𝜇, 𝑓(𝑚)) , and we also have 𝑄(𝜇(𝑚+1), 𝑓(𝑚)) ≤ 𝑄(𝜇(𝑚), 𝑓(𝑚)) . By updating 𝑓  again: 

𝑄(𝜇(𝑚+1), 𝑓(𝑚+1)) ≤ 𝑄(𝜇(𝑚+1), 𝑓(𝑚)). Thus we will have: 

 𝑄(𝜇(𝑚+1), 𝑓(𝑚+1)) ≤ 𝑄(𝜇(𝑚+1), 𝑓(𝑚)) ≤ 𝑄(𝜇(𝑚), 𝑓(𝑚)) (3.15) 
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Since𝑄(𝜇(𝑚+1), 𝑓(𝑚+1)) =  𝐽(𝜇(𝑚+1)) , and  𝑄(𝜇(𝑚), 𝑓(𝑚)) =  𝐽(𝜇(𝑚)) , after each iteration, the 

objective function will be monotonically decreased. 

The remaining problem now is to solve the minimization problems: 𝑓(𝑚) = argmin
𝑓

𝑄(𝜇(𝑚), 𝑓) and 

𝜇(𝑚+1) = argmin
𝜇

𝑄(𝜇, 𝑓(𝑚)). We will see both of these problems need to use iterative algorithm. 

Thus, in each main iteration discussed above, we need two sub-iterations to solve these sub-problems 

respectively, and both of them use alternating minimization. Thus we call this method Double 

Alternating Minimizations (DAM). 

We can also observe that during the process of minimizing 𝑄(𝜇, 𝑓), the effective pupil function can 

also be reconstructed at the same time. Thus, DAM algorithm is also a phase retrieval and pupil 

reconstruction algorithm. In order to compare the results between DAM and other interpolation 

methods, we can just treat DAM as a special interpolation method. However, we need to keep in mind 

that DAM itself is a phase retrieval algorithm since it can reconstruct the effective pupil mask during 

the process of estimating defocused Fourier modulus. 

3.2.2.1 First sub-iteration for updating Pupil function 

 

At this sub-iteration, we suppose 𝜇 is known and then solve the problem: 

 
min

𝑓
∑ ∑| 𝜇𝑖(𝑢

′, 𝑣′) − |ℱ 𝑖[𝑓](𝑢′, 𝑣′)| |2

𝑢′,𝑣′𝑖

 
(3.16) 

From the discussion in Section 2.1.2.4, we know that this problem can be solved by the averaged 

projection algorithm. It is equivalent to the alternating minimization by introduce a new 

variable 𝜑𝑖(𝑢
′, 𝑣′), which is the phase angle of defocused Fourier transforms. 

 
Min

𝑓
∑ ∑| 𝜇𝑖(𝑢

′, 𝑣′) − |ℱ 𝑖[𝑓](𝑢′, 𝑣′)| |2

𝑢′,𝑣′𝑖

 

= min
𝑓

min
𝜑𝑖

∑ ∑| 𝜇𝑖(𝑢
′, 𝑣′)𝑒𝑗𝜑𝑖(𝑢

′,𝑣′) −  ℱ 𝑖[𝑓](𝑢′, 𝑣′)|
2

𝑢′,𝑣′𝑖

 

 

 

(3.17) 
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The phase information is retrieved in this sub-iteration. 

3.2.2.2 Second sub-iteration for updating Fourier Modulus 

 

In second sub-iteration, we consider the pupil function is fixed to be 𝑓(𝑚), then |ℱ 𝑖[𝑓](𝑢′, 𝑣′)| is 

fixed in objective function, we can simply denote it as 𝐹𝑖(𝑢
′, 𝑣′). Then the problem is becoming 

minimize the following function respect to 𝜇𝑖(𝑢
′, 𝑣′): 

 
𝑄(𝜇) = ∑∑[𝑑𝑖(𝑢, 𝑣)ln

𝑑𝑖(𝑢, 𝑣)

∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖
2(𝑢′, 𝑣′)𝑢′,𝑣′

− 𝑑𝑖(𝑢, 𝑣)

𝑢,𝑣𝑖

+ ∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖
2(𝑢′, 𝑣′)]

𝑢′,𝑣′

+  𝛽 ∑ ∑| 𝜇𝑖(𝑢
′, 𝑣′) − 𝐹𝑖(𝑢

′, 𝑣′) |2

𝑢′,𝑣′𝑖

 

 

 

 

(3.18) 

If we take the derivative of 𝑄(𝜇) directively, we will have coupled equations for all 𝜇𝑖(𝑢
′, 𝑣′) since 

the summation operator ∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖
2(𝑢′, 𝑣′)𝑢′,𝑣′  is in the ln function. In order to decouple 

the equations of  𝜇𝑖(𝑢
′, 𝑣′), we need a special case of convex decomposition lemma to put the 

projection operator outside to ln function [25]. 

Lemma 3.1: 

 
ln (∑𝑞𝑖

𝑖

) = −min
𝑝∈𝑃

∑𝑝𝑖ln
𝑝𝑖

𝑞𝑖
𝑖

 
(3.19) 

 

Where 𝑃 = {𝑝:  𝑝𝑖 ≥ 0,  ∑ 𝑝𝑖 = 1𝑖 }. 

Proof: 

Formulate the Lagrangian: L(p,  𝜆) = ∑ 𝑝𝑖ln
𝑝𝑖

𝑞𝑖
𝑖 + 𝜆(∑ 𝑝𝑖 − 1𝑖 ) and solve the following equations: 

 𝛻𝑝𝐿(𝑝,  𝜆) = 0,  
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𝛻𝜆𝐿(𝑝,  𝜆) = 0. (3.20) 

Thus we will have: 

 ln
𝑝𝑖

𝑞𝑖
+ 1 + 𝜆 = 0, 

 (∑𝑝𝑖 − 1

𝑖

) = 0. 

 

 

(3.21) 

So, 𝑝𝑖
∗ = 𝑞𝑖𝑒

−1−𝜆 and ∑ 𝑞𝑖𝑒
−1−𝜆

𝑖 = 1. Thus 𝑒−1−𝜆 =
1

∑ 𝑞𝑖𝑖
, 𝑝𝑖

∗ =
𝑞𝑖

∑ 𝑞𝑖𝑖
. Substitute 𝑝𝑖

∗ into ∑ 𝑝𝑖ln
𝑝𝑖

𝑞𝑖
𝑖  

we get: 

 
∑𝑝𝑖

∗ln
𝑝𝑖

∗

𝑞𝑖
𝑖

= − ln (∑𝑞𝑖

𝑖

). 
(3.22) 

The proof of this lemma is completed. 

Then, by using Lemma 3.1, we can rewrite 𝑄(𝜇) as: 

 
𝑄(𝜇) = 𝑚𝑖𝑛

𝑝𝜖𝑃
∑∑ ∑[𝑑𝑖(𝑢, 𝑣)𝑝𝑖(𝑢, 𝑣|𝑢′, 𝑣′)ln

𝑑𝑖(𝑢, 𝑣)𝑝𝑖(𝑢, 𝑣|𝑢′, 𝑣′)

ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖
2(𝑢′, 𝑣′)

𝑢′,𝑣′𝑢,𝑣𝑖

− 𝑑𝑖(𝑢, 𝑣)

+ ∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖
2(𝑢′, 𝑣′)]

𝑢′,𝑣′

+  𝛽(∑ ∑| 𝜇𝑖(𝑢
′, 𝑣′) − 𝐹𝑖(𝑢

′, 𝑣′) |2

𝑢′,𝑣′𝑖

)  

 

 

 

 

(3.23) 

Thus, the minimization problem respect to 𝜇 becomes alternating minimization between 𝜇 and 𝑝. 

Then we can build alternating minimization algorithm for this sub-iteration: 

(1) Initialize 𝜇(0). 

At m-th iteration: 

(2) Calculate 𝑝𝑖
∗(𝑢, 𝑣|𝑢′, 𝑣′) =

ℎ(𝑢, 𝑣|𝑢′, 𝑣′
)𝜇𝑖

(𝑚)2(𝑢′,𝑣′)

∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′
)𝜇𝑖

(𝑚)2(𝑢′,𝑣′)𝑢′,𝑣′
. 
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(3) Minimizing 𝑄(𝜇, 𝑝∗) by taking derivative: 

 𝜕𝑄(𝜇, 𝑝∗)

𝜕𝜇𝑖(𝑢′, 𝑣′)
= ∑−2𝑑𝑖(𝑢, 𝑣)𝑝𝑖

∗(𝑢, 𝑣|𝑢′, 𝑣′)
1

𝜇𝑖(𝑢′, 𝑣′)
𝑢,𝑣

+ 2ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝜇𝑖(𝑢
′, 𝑣′) + 2𝛽(𝜇𝑖(𝑢

′, 𝑣′) − 𝐹𝑖(𝑢
′, 𝑣′))

= 0 

 

 

(3.24) 

Then we will have the solution: 

𝜇𝑖
(𝑚+1)(𝑢′, 𝑣′)

=
𝛽𝐹𝑖(𝑢

′, 𝑣′) + √(𝛽𝐹𝑖(𝑢′, 𝑣′))
2
+ 4[∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝑢,𝑣 + 𝛽][∑ 𝑑𝑖(𝑢, 𝑣)𝑝𝑖

∗(𝑢, 𝑣|𝑢′, 𝑣′)𝑢,𝑣 ]

2[∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′)𝑢,𝑣 + 𝛽]
 

(3.25) 

(4) If not convergent, go back to (2). 

 

Also, for the calculation efficiency, we do not calculate 𝑝𝑖
∗(𝑢, 𝑣|𝑢′, 𝑣′) explicitly, and the flow-cart 

for calculating the updated 𝜇 is shown in Figure 3.1, where ℎ0(𝑢
′, 𝑣′) = ∑ ℎ(𝑢, 𝑣|𝑢′, 𝑣′).𝑢,𝑣  

 

Figure 3.1 Flow-chart for sub-iteration 2. 
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3.3 Simulations and Results 
 

In this section, I simulate the data by using the effective pupil mask generated by myself, and then I 

use our DAM algorithm to reconstruct it. By comparing the results from our Double Alternating 

Minimization algorithm to the currently used method, we see that our algorithm gives a much better 

result. 

3.3.1 Data simulation 
 

In the simulation, I supposed that the sampled pupil function we want to reconstruct is a complex 

function with size 256 × 256, which has magnitude to be an image of  Newton and the phase angle 

to be an image of  Einstein as shown in Figure 3.2. Then I scaled the magnitude of  the generated pupil 

mask in order to control the number of  collected photons. In the simulations, the collected total 

number of  photons is set to be 108 and 105. Then I multiplied the generated effective pupil function 

with each defocused phase term, and make DFT of  each defocused pupil function and pixelate it to 

generate the noise-free images on detector plane. The range of  defocused position is from −25 ×

10−4 to 25 × 10−4 with sampling distance 5 × 10−4. The reason why I choose the order of  10−4  

is because NA is approximated to be one, thus the term: 
(𝑥′′2+𝑦′′2)

𝑓2  should close to 1. Besides, 𝜆 and 

∆𝑧𝑘  are few hundreds nanometers. Thus, 
𝑧𝑘(𝑥′′2+𝑦′′2)

𝜆𝑓2  should have order 0 . However, in my 

simulation I just set all parameters to be one in order to be convenient to simulate. Since the simulated 

image size is 256 × 256, the order of  max (𝑥′′2 + 𝑦′′2) should be 4. Thus we need to set the order 

𝑧𝑘 approximately to −4. Finally, I added the Poisson noise to each of  the detector pixels. The total 

detector number is 64 × 64. 
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Figure 3.2 Ground-truth pupil to be reconstructed. The modulus is set to be Newton’s image and the phase is 
set to be Einstein’s image. The ranges of pixel values are shown in colorbars (phase is in units of radians). 

 

 3.3.2 Results and discussion 
 

As we discussed in Chapter 2, we cannot reconstruct the image from the lower dimensional frequency 

domain. Thus, if  we want to recover the image, we need to firstly interpolate the data in frequency 

domain. In this simulation, we want to reconstruct the image of  size 256 × 256, but we only have 

64 × 64 measurements. The first condition is that the total number of  collected photons is 108. Then 

I reduced the photon number to be 105. The measured data and measured Fourier modulus at 𝑧 =

−25 × 10−4 from both collected photon numbers are shown in Figure 3.3. 

 

Figure 3.3 Measurements from different SNR. (a) Ideal data; (b) One hundred million photons collected, the 
maximum SNR of pixels is 80 dB; (c) One hundred thousand photons collected, the maximum SNR of pixels is 
50 dB. 

Ideal data

(a)

10 20 30 40 50 60

10

20

30

40

50

60

Poisson noise data: one hundred million photons

(b)

10 20 30 40 50 60

10

20

30

40

50

60

Poisson noise data: one hundred thousand photons

(c)

10 20 30 40 50 60

10

20

30

40

50

60



 

45 

 

 

 

I ran 200 iterations of  the Fienup-style algorithm after I interpolate the image by using nearest 

neighbor interpolation method. It will generate poor results as shown in Figure 3.4. Then, I applied 

our Double Alternating Minimization algorithm and ran 300 main iterations, in which each iteration 

has one sub-iteration 1 and one sub-iteration 2, to interpolate the image. And then I ran 200 iterations 

of  Fienup-style algorithm for reconstructing pupil function. Our Double Alternating Minimization 

algorithm has much better results shown in Figure 3.5. 

 

Figure 3.4 Reconstructed pupil function by using nearest neighbor interpolation. The modulus has severe 
artifacts. The phase cannot be reconstructed. 

 

Figure 3.5 Reconstructed pupil function by using Double Alternating Minimizations. The modulus is clear, the 
shape of the phase image is reconstructed. 
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From Figure 3.5, we can directly observe that the results from DAM is much better than nearest 

neighbor interpolation. By using nearest neighbor interpolation, we observe that the reconstructed 

modulus has some black regions, which are corresponding to phase singularities, and the details are 

almost blurred; the reconstructed phase image shows almost no information about the original phase. 

The color bars in Figure 3.4 and Figure 3.5 are the same as the original image, this is because I changed 

the scale of  the display of  the color bar such that the values below the defined range are displaying 

dark and the values beyond the range are displaying white. The rescaled color bars images are also 

shown in Figure 3.6 and Figure 3.7, and the comparison between these two methods is still obvious. 

 

Figure 3.6 Reconstructed pupil function by using nearest interpolation: unchanged color bar. This is just using 
different colorbar with Figure 3.4. 

 

 

Figure 3.7 Reconstructed pupil function by using DAM: unchanged color bar. This is just using different 
colorbar with Figure 3.5 
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 We can also justify our method by comparing the defocused Fourier modulus, which is shown in 

Figure 3.8. 

 

 

Figure 3.8 Reconstructed defocused Fourier modulus at one axial position. (a) Original defocused Fourier 
modulus at z=20e-4 position; (b) Measured defocused Fourier modulus at z=20e-4; (c) Reconstructed defocused 
Fourier modulus by using nearest neighbor interpolation before Fienup-style algorithm; (d) Reconstructed 
defocused Fourier modulus by using DAM before Fienup-style algorithm. 

 

We can see from Figure 3.8 that the reconstructed defocused Fourier modulus, by using DAM, looks 

more similar to ground-truth than nearest neighbor interpolation reconstruction. Besides, the 

monotonicity of DAM estimation process is shown in Figure 3.9. 
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Figure 3.9 Objective values in DAM estimation process. The objective function is decreased after each sub-
iteration. 

 

In Figure 3.9, the number 600 is from 300 main iterations and each sub-iteration has been just run 

once in each main iteration. The reason why I choose this configuration will be discussed later in this 

section. It can be observed that the objective value is monotonically decreased after each sub-iteration, 

and thus it is monotonically decreasing after each main iteration. 

Also, the quantitative squared error of both reconstruction algorithms is shown in Figure 3.10. 
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Figure 3.10 Log of squared error from Nearest Neighbor Interpolation and DAM on both pupil plane and 
detector plane. Top line shows the squared error on detector plane; bottom line shows the squared error on pupil 
plane. 

 

From Figure 3.10, we can observe that the squared error between the defocused Fourier modulus and 

ideal Fourier modulus by using nearest neighbor interpolation will decrease in the first several 

iterations, and then it will even increase. The Fienup-style algorithm can just guarantee that the squared 

error between the estimation and input parameters is decreased. Thus, if  the interpolated Fourier 

modulus has large deviations from the ground-truth Fourier modulus, the squared error between the 

estimation and the ground-truth Fourier modulus cannot be guaranteed to decrease. By using our 

DAM algorithm, a good estimate of  the ground-truth Fourier modulus can be used as the input of  
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Fienup-style algorithm, so we have a much better result and we can see both of  the squared error on 

detector plane and pupil plane are decreased in Fienup-style algorithm iterations.  

In order to compare the squared error between nearest interpolation and DAM estimation, I plotted 

Figure 3.11: 

 

Figure 3.11 Log of squared error comparison between Nearest Interpolation and DAM 

 

In Figure 3.11, we can observe that both squared errors on spatial domain and frequency domain have 

smaller values by using DAM than using nearest neighbor interpolation. 

For a well-corrected optical imaging systems, we usually have phase ranged from −
1

5
𝜋 to 

1

5
𝜋 [13]. 

Thus, after change the phase range of  original pupil function to this range, we will have the 

reconstructed results showing in Figure 3.12. 
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Figure 3.12 Reconstructed Pupil function by DAM: well-corrected. The phase is scaled to the range in well-
corrected optical systems. 

 

Also, the reconstruction by using nearest neighbor interpolation is shown in Figure 3.13. 

 

Figure 3.13 Reconstructed Pupil function by Nearest Neighbor Interpolation: well-corrected. The phase is 
scaled to the range in well-corrected optical systems. 

 

From the above figures, we observe that DAM has a much better performance than the nearest 

neighbor interpolation when well-corrected optical systems are assumed to be used. 

Suppose we have a circular aperture. To impose this function domain constraint, I just set the values 

of  pupil function that are outside the aperture support domain to be zero. This is the process that 

project the estimated pupil function onto the function constraint set. Firstly, suppose we only know 

the aperture size, and the modulus and phase of  pupil function are unknown. Then the simulated 

results are shown in Figure 3.14 and Figure 3.15. 
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Figure 3.14 Reconstruction by nearest neighbor interpolation: circular aperture. The pupil function cannot be 
well reconstructed in the support domain. 

 

 
Figure 3.15 Reconstruction by DAM: circular aperture. The reconstruction images are clear. 

 

Then, I suppose that both aperture size and pupil modulus are known, the reconstructions are shown 

in Figure 3.16 and Figure 3.17. 

 

 

Figure 3.16 Reconstruction by NNI: uniform known modulus. The phase cannot be reconstructed. 
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Figure 3.17 Reconstruction by DAM: uniform known modulus. The phase is reconstructed clearly. 

 

The selected defocused Fourier modulus of  known uniform modulus pupil function is shown in 

Figure 3.18 and the comparison on the frequency domain is also obvious. 

 

 

Figure 3.18 Reconstructed defocused Fourier modulus: uniform and circular aperture. (a) Original defocused 
Fourier modulus at z=20e-4 position; (b) Measured defocused Fourier modulus at z=20e-4; (c) Reconstructed 
defocused Fourier modulus by using nearest interpolation before Fienup style algorithm; (d) Reconstructed 
defocused Fourier modulus by using DAM before Fienup style algorithm. 
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In Figure 3.19, I also presented the results by using Fienup-style algorithm with the use of  Linear 

Interpolation, Spline Interpolation and Bicubic Interpolation. We see that all these interpolation 

methods perform similar to the Nearest Neighbor Interpolation method, and they cannot generate 

good results. 

 

Figure 3.19 Reconstructions from other interpolation methods. Top line is the reconstructed pupil function by 
using Linear Interpolation; middle line is the reconstructed pupil function by using Spline Interpolation; bottom 
line is reconstructed pupil function by using Bicubic Interpolation. 
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Then, I decreased the total number of  collected photons to be 105 and also run DAM 300 times, in 

which each running time also contains one sub-iteration 1 and one sub-iteration 2. The results are 

shown in Figure 3.20 and Figure 3.21. We can see the performance of  DAM is still promising when 

we decreased SNR.  

 

Figure 3.20 Reconstructed pupil function by DAM and nearest neighbor interpolation under lower SNR. The 
DAM still provides better results. 
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Figure 3.21 Reconstructed pupil function: well-corrected. DAM provides good results for both modulus and 
phase reconstruction. 

 

Let us go back to Figure 3.11, from the blue line we observed that the Fienup-style algorithm, after 

using DAM, decreased the objective function fast just in the first few iterations. Also, since sub-

iteration 1 is just Fienup-style algorithm, and at the first few main iterations, the inputted Fourier 

modulus may not be close enough to the original one, so the squared error may be decreased only in 

the first few iterations and then it will increase. Thus we set sub-iteration 1 running once in each main 

iteration. Then, from the simulation results shown in Figure 3.22 and Figure 3.23, we can directly see 

the advantage of  setting one sub-iteration 1 and one sub-iteration 2 in each main iteration. 
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Figure 3.22 Two main iterations, each has 10 sub1 and 10 sub2. The low convergence rate shown in each sub-
iteration. 

 

I ran main iteration two times and each main iteration contains 10 sub-iteration 1 and 10 sub-iteration 

2. In Figure 3.22, the convergence rate is slow in each sub-iterations and fast at the points where sub-

iterations changed to another, such as at points 10, 20 and 30. By using my own computer with Intel(R) 

Core(TM) i7-4710MQ CPU @ 2.50 GHZ processor, the total running time for this configuration is 

121.5611 seconds. Next, I measured the running time for one main iteration that has one sub-iteration 

1 and one sub-iteration 2 to be around 7 seconds. Thus, in order to obtain almost the same running 

time of 121.5611 seconds, I ran the main iteration 17 times in this altered configuration, resulting in a 

running time of 116.4846 seconds. Then the log of objective function is shown in Figure 3.23 to 

illustrate the convergence performance. 
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Figure 3.23 Main iterations with each has 1 sub-iteration 1 and 1 sub-iteration2. Reduce the number of sub-
iteration to reduce the plateau. 

 

From Figure 3.23, we see that the curve is smoother than the curve in Figure 3.22 and there is no 

plateau as shown in Figure 3.22. Thus, the convergence rate of the second configuration is faster than 

the first configuration. The reconstructed pupil functions from these two configurations are shown in 

Figure 3.24 and Figure 3.25. 

 

Figure 3.24 Reconstruction by 2 main iterations with 10 sub-iteration 1 and 10 sub-iteration 2.  
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Figure 3.25 Reconstruction by 17 main iterations with 1 sub-iteration 1 and 1 sub-iteration 2 

 

By comparing these two results, we observed that Figure 3.25 is more accurate than Figure 3.24. This 

result is consistent with the result that the final objective value of Figure 3.23 is less than Figure 3.22. 

The running time of both configurations is almost the same. Therefore, we prefer to choose the 

configuration in which each main iteration has only one sub-iteration 1 and one sub-iteration 2. 

However, the optimal choice of  penalty parameter 𝛽 is unclear, and we set it equal to one for all of  

the simulations. Although we did not discover the optimal choice of 𝛽, the weighting effect of  it is 

obvious. The larger the 𝛽 is chosen, the more rigorous constraints will be introduced. Thus, by the 

Penalty Convergence Theorem stated in [26], if  the sequence of  solutions of  the penalized problem 

with different penalty parameters ordered from small to large will be convergent, then the convergent 

point is the solution of  solving the constrained problem. Thus, if  𝛽 is chosen sufficiently large, upon 

its convergence, the result will be the constrained problem solution. However, if  we choose large 𝛽, 

the convergence rate becomes low since the update in sub-iteration 2 becomes mainly dependent on 

𝐹𝑖(𝑢
′, 𝑣′) in Equation (3.25). Thus, the balance between more accurate results by using a larger penalty 

parameter and the faster running time by choosing a smaller penalty parameter depends on the user’s 

need. 

 

 

 

 



 

60 

 

 

Chapter 4 

 

Conclusions and future works 
 

Phase retrieval is a classical problem in microscopy. During the photon detection process, the phase 

information of  wavefronts is lost and only the magnitude can be measured. Currently, two methods 

are widely used: the Fienup-style algorithm and the Gerchberg-Saxton algorithm. However, neither of  

these two methods consider the sampling rate at the detector plane. If  the digitized pupil function has 

a higher dimension than the dimension of  the detector arrays, the phase retrieval algorithm must be 

implemented after interpolating the measured images. In order to obtain the most probable pupil 

function, we need to find the most likely defocused Fourier modulus that consistent with the measured 

data. Here we developed a new algorithm that can estimate the defocused Fourier modulus by 

minimizing penalized I-divergence. By simulating the condition in which one hundred million photons 

are collected (ten trials), we show that the DAM-reconstructed effective pupil function has a root-

mean-squared error of  about 43±3% less than the effective pupil function reconstructed by Fienup-

style algorithm with nearest neighbor interpolation. 

In this thesis, I used simulated data. This new algorithm still needs to be tested with real data in order 

to verify its performance in the future. We can also use the reconstructed pupil function in the process 

of  localizing single molecules, and then compare the variances of  the estimated locations from using 

different reconstructed pupil functions in the future. The penalty parameter has been set to one for 

all of  my simulations, so the performance of  using different penalty parameters still need to be 

quantified. In addition, I simulated two phase ranges of  pupil functions in this work, so the 

performance of  this algorithm for other ranges of  phase needs to be quantified in the future.  

Given the promising reconstructed pupil functions estimated by our new algorithm in simulations, I 

believe that DAM has the ability to model imaging systems more accurately, and thus can further 

improve the image quality in microscopy. 
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Appendix A 

 

Proof  of  Monotonicity of  Gerchberg-Saxton 
algorithm 
 

We consider the discrete case and the Fourier transform becomes Discrete Fourier Transform. The 

squared error in the object domain is: 

 

𝐸𝑜
(𝑚)

= ∑( |𝑓(𝑥, 𝑦)| − |𝑓(𝑚)(𝑥, 𝑦)|)2

𝑥,𝑦

 

= ∑| 𝑓(𝑚+1)(𝑥, 𝑦) − 𝑓(𝑚)(𝑥, 𝑦)|2

𝑥,𝑦

 

 

 

 

 

(A.1) 

By Parseval’s theorem, the squared error in the Fourier domain is: 

 

𝐸𝐹
(𝑚)

= 𝑁−2 ∑(|𝐹(𝑢, 𝑣)| − |𝐺(𝑚)(𝑢, 𝑣)|)2

𝑢,𝑣

 

= 𝑁−2 ∑(�̂�(𝑚)(𝑢, 𝑣) − 𝐺(𝑚)(𝑢, 𝑣))2

𝑢,𝑣

 

= ∑| 𝑓(𝑚)(𝑥, 𝑦) − 𝑓(𝑚)(𝑥, 𝑦)|2

𝑥,𝑦

 

 

 

 

 

 

 

(A.2) 

From the definition of  forcing function constraint, it is finding the closest point in the constraint 

defined set to the 𝑓(𝑚)(𝑥, 𝑦) at m-th iteration, we can have: 

 

∑| 𝑓(𝑚+1)(𝑥, 𝑦) − 𝑓𝑚(𝑥, 𝑦)|2

𝑥,𝑦

≤ ∑| 𝑓(𝑚)(𝑥, 𝑦) − 𝑓(𝑚)(𝑥, 𝑦)|2

𝑥,𝑦

 

 

(A.3) 
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And from the definition of  forcing Fourier constraint which is finding the closest point 

to 𝐺(𝑚+1)(𝑢, 𝑣)  in the Fourier constraint set at (m+1)-th iteration, we have: 

 

𝑁−2 ∑(�̂�(𝑚+1)(𝑢, 𝑣) − 𝐺(𝑚+1)(𝑢, 𝑣))2

𝑢,𝑣

≤ 𝑁−2 ∑(�̂�(𝑚)(𝑢, 𝑣) − 𝐺(𝑚+1)(𝑢, 𝑣))2

𝑢,𝑣

 

 

(A.4) 

According to Parseval’s theorem, we have: 

 

∑| 𝑓(𝑚+1)(𝑥, 𝑦) − 𝑓(𝑚+1)(𝑥, 𝑦)|2

𝑥,𝑦

≤ ∑ | 𝑓(𝑚+1)(𝑥, 𝑦) − 𝑓(𝑚)(𝑥, 𝑦)|2

𝑥,𝑦

 

 

(A.5) 

Thus we have: 

 

∑| 𝑓(𝑚+1)(𝑥, 𝑦) − 𝑓(𝑚+1)(𝑥, 𝑦)|2

𝑥,𝑦

≤ ∑ | 𝑓(𝑚+1)(𝑥, 𝑦) − 𝑓(𝑚)(𝑥, 𝑦)|2

𝑥,𝑦

≤ ∑| 𝑓(𝑚)(𝑥, 𝑦) − 𝑓(𝑚)(𝑥, 𝑦)|2

𝑥,𝑦

 

 

 

 

(A.6) 

So ∑ | 𝑓(𝑚+1)(𝑥, 𝑦) − 𝑓(𝑚+1)(𝑥, 𝑦)|2𝑥,𝑦 ≤ ∑ | 𝑓(𝑚)(𝑥, 𝑦) − 𝑓(𝑚)(𝑥, 𝑦)|2𝑥,𝑦  

By Parseval’s theorem again, we can have: 

 

𝑁−2 ∑(�̂�(𝑚+1)(𝑢, 𝑣) − 𝐺(𝑚+1)(𝑢, 𝑣))2

𝑢,𝑣

≤ 𝑁−2 ∑(�̂�(𝑚)(𝑢, 𝑣) − 𝐺(𝑚)(𝑢, 𝑣))2

𝑢,𝑣

 

 

(A.7) 

Thus, 𝐸𝐹
(𝑚+1)

≤ 𝐸𝐹
(𝑚)

, the squared error will either decrease or stay the same after each iteration. 
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