4,697 research outputs found

    MOSDEN: A Scalable Mobile Collaborative Platform for Opportunistic Sensing Applications

    Get PDF
    Mobile smartphones along with embedded sensors have become an efficient enabler for various mobile applications including opportunistic sensing. The hi-tech advances in smartphones are opening up a world of possibilities. This paper proposes a mobile collaborative platform called MOSDEN that enables and supports opportunistic sensing at run time. MOSDEN captures and shares sensor data across multiple apps, smartphones and users. MOSDEN supports the emerging trend of separating sensors from application-specific processing, storing and sharing. MOSDEN promotes reuse and re-purposing of sensor data hence reducing the efforts in developing novel opportunistic sensing applications. MOSDEN has been implemented on Android-based smartphones and tablets. Experimental evaluations validate the scalability and energy efficiency of MOSDEN and its suitability towards real world applications. The results of evaluation and lessons learned are presented and discussed in this paper.Comment: Accepted to be published in Transactions on Collaborative Computing, 2014. arXiv admin note: substantial text overlap with arXiv:1310.405

    Towards new methods for mobility data gathering: content, sources, incentives

    Get PDF
    Over the past decade, huge amounts of work has been done in mobile and opportunistic networking research. Unfortunately, much of this has had little impact as the results have not been applicable to reality, due to incorrect assumptions and models used in the design and evaluation of the systems. In this paper, we outline some of the problems of the assumptions of early research in the field, and provide a survey of some initial work that has started to take place to alleviate this through more realistic modelling and measurements of real systems. We do note that there is still much work to be done in this area, and then go on to identify some important properties of the network that must be studied further. We identify the types of data that are important to measure, and also give some guidelines on finding existing and potentially new sources for such data and incentivizing the holders of the data to share it

    Delay Tolerant Networking over the Metropolitan Public Transportation

    Get PDF
    We discuss MDTN: a delay tolerant application platform built on top of the Public Transportation System (PTS) and able to provide service access while exploiting opportunistic connectivity. Our solution adopts a carrier-based approach where buses act as data collectors for user requests requiring Internet access. Simulations based on real maps and PTS routes with state-of-the-art routing protocols demonstrate that MDTN represents a viable solution for elastic nonreal-time service delivery. Nevertheless, performance indexes of the considered routing policies show that there is no golden rule for optimal performance and a tailored routing strategy is required for each specific case

    Computer-mediated collaboration and the transitioning of intercultural spaces

    Get PDF
    The following implementation of computer-mediated collaboration\ud aims to help international students improve the quality of their intercultural experiences by applying strategies for synthesizing and applying knowledge obtained\ud through cross-cultural interactions. It does this by engaging learners in computermediated collaborative activities that help increase their factual knowledge in\ud areas of individual relevance, develop personally effective retrieval and application frameworks and improve their ability to monitor their own thinking and\ud learning

    Adaptive real-time predictive collaborative content discovery and retrieval in mobile disconnection prone networks

    Get PDF
    Emerging mobile environments motivate the need for the development of new distributed technologies which are able to support dynamic peer to peer content sharing, decrease high operating costs, and handle intermittent disconnections. In this paper, we investigate complex challenges related to the mobile disconnection tolerant discovery of content that may be stored in mobile devices and its delivery to the requesting nodes in mobile resource-constrained heterogeneous environments. We propose a new adaptive real-time predictive multi-layer caching and forwarding approach, CafRepCache, which is collaborative, resource, latency, and content aware. CafRepCache comprises multiple multi-layer complementary real-time distributed predictive heuristics which allow it to respond and adapt to time-varying network topology, dynamically changing resources, and workloads while managing complex dynamic tradeoffs between them in real time. We extensively evaluate our work against three competitive protocols across a range of metrics over three heterogeneous real-world mobility traces in the face of vastly different workloads and content popularity patterns. We show that CafRepCache consistently maintains higher cache availability, efficiency and success ratios while keeping lower delays, packet loss rates, and caching footprint compared to the three competing protocols across three traces when dynamically varying content popularity and dynamic mobility of content publishers and subscribers. We also show that the computational cost and network overheads of CafRepCache are only marginally increased compared with the other competing protocols

    A Content-based Centrality Metric for Collaborative Caching in Information-Centric Fogs

    Get PDF
    Information-Centric Fog Computing enables a multitude of nodes near the end-users to provide storage, communication, and computing, rather than in the cloud. In a fog network, nodes connect with each other directly to get content locally whenever possible. As the topology of the network directly influences the nodes' connectivity, there has been some work to compute the graph centrality of each node within that network topology. The centrality is then used to distinguish nodes in the fog network, or to prioritize some nodes over others to participate in the caching fog. We argue that, for an Information-Centric Fog Computing approach, graph centrality is not an appropriate metric. Indeed, a node with low connectivity that caches a lot of content may provide a very valuable role in the network. To capture this, we introduce acontent-based centrality (CBC) metric which takes into account how well a node is connected to the content the network is delivering, rather than to the other nodes in the network. To illustrate the validity of considering content-based centrality, we use this new metric for a collaborative caching algorithm. We compare the performance of the proposed collaborative caching with typical centrality based, non-centrality based, and non-collaborative caching mechanisms. Our simulation implements CBC on three instances of large scale realistic network topology comprising 2,896 nodes with three content replication levels. Results shows that CBC outperforms benchmark caching schemes and yields a roughly 3x improvement for the average cache hit rate

    Designing Routing Strategy for Underwater WSN

    Get PDF
    Underwater wireless sensor networks (UWSNs) have been showed as a promising technology to monitor and explore the oceans in lieu of traditional undersea wireline instruments. Nevertheless, the data gathering of UWSNs is still severely limited because of the acoustic channel communication characteristics. One way to improve the data collection in UWSNs is through the design of routing protocols considering the unique characteristics of the underwater acoustic communication and the highly dynamic network topology. In this paper, we propose the GEDAR routing protocol for UWSNs. GEDAR is an anycast, geographic and opportunistic routing protocol that routes data packets from sensor nodes to multiple sonobuoys (sinks) at the sea’s surface. When the node is in a communication void region, GEDAR switches to the recovery mode procedure which is based on topology control through the depth adjustment of the void nodes, instead of the traditional approaches using control messages to discover and maintain routing paths along void regions
    • …
    corecore