1,040 research outputs found

    Service-oriented agent architecture for autonomous maritime vehicles

    Get PDF
    Advanced ocean systems are increasing their capabilities and the degree of autonomy more and more in order to perform more sophisticated maritime missions. Remotely operated vehicles are no longer cost-effective since they are limited by economic support costs, and the presence and skills of the human operator. Alternatively, autonomous surface and underwater vehicles have the potential to operate with greatly reduced overhead costs and level of operator intervention. This Thesis proposes an Intelligent Control Architecture (ICA) to enable multiple collaborating marine vehicles to autonomously carry out underwater intervention missions. The ICA is generic in nature but aimed at a case study where a marine surface craft and an underwater vehicle are required to work cooperatively. They are capable of cooperating autonomously towards the execution of complex activities since they have different but complementary capabilities. The architectural foundation to achieve the ICA lays on the flexibility of service-oriented computing and agent technology. An ontological database captures the operator skills, platform capabilities and, changes in the environment. The information captured, stored as knowledge, enables reasoning agents to plan missions based on the current situation. The ICA implementation is verified in simulation, and validated in trials by means of a team of autonomous marine robots. This Thesis also presents architectural details and evaluation scenarios of the ICA, results of simulations and trials from different maritime operations, and future research directions

    Collaborative Unmanned Vehicles for Inspection, Maintenance, and Repairs of Offshore Wind Turbines

    Get PDF
    Operations and maintenance of Offshore Wind Turbines (OWTs) are challenging, with manual operators constantly exposed to hazardous environments. Due to the high task complexity associated with the OWT, the transition to unmanned solutions remains stagnant. Efforts toward unmanned operations have been observed using Unmanned Aerial Vehicles (UAVs) and Unmanned Underwater Vehicles (UUVs) but are limited mostly to visual inspections only. Collaboration strategies between unmanned vehicles have introduced several opportunities that would enable unmanned operations for the OWT maintenance and repair activities. There have been many papers and reviews on collaborative UVs. However, most of the past papers reviewed collaborative UVs for surveillance purposes, search and rescue missions, and agricultural activities. This review aims to present the current capabilities of Unmanned Vehicles (UVs) used in OWT for Inspection, Maintenance, and Repair (IMR) operations. Strategies to implement collaborative UVs for complex tasks and their associated challenges are discussed together with the strategies to solve localization and navigation issues, prolong operation time, and establish effective communication within the OWT IMR operations. This paper also briefly discusses the potential failure modes for collaborative approaches and possible redundancy strategies to manage them. The collaborative strategies discussed herein will be of use to researchers and technology providers in identifying significant gaps that have hindered the implementation of full unmanned systems which have significant impacts towards the net zero strategy.</jats:p

    Signals and Images in Sea Technologies

    Get PDF
    Life below water is the 14th Sustainable Development Goal (SDG) envisaged by the United Nations and is aimed at conserving and sustainably using the oceans, seas, and marine resources for sustainable development. It is not difficult to argue that signals and image technologies may play an essential role in achieving the foreseen targets linked to SDG 14. Besides increasing the general knowledge of ocean health by means of data analysis, methodologies based on signal and image processing can be helpful in environmental monitoring, in protecting and restoring ecosystems, in finding new sensor technologies for green routing and eco-friendly ships, in providing tools for implementing best practices for sustainable fishing, as well as in defining frameworks and intelligent systems for enforcing sea law and making the sea a safer and more secure place. Imaging is also a key element for the exploration of the underwater world for various scopes, ranging from the predictive maintenance of sub-sea pipelines and other infrastructure projects, to the discovery, documentation, and protection of sunken cultural heritage. The scope of this Special Issue encompasses investigations into techniques and ICT approaches and, in particular, the study and application of signal- and image-based methods and, in turn, exploration of the advantages of their application in the previously mentioned areas

    Characterization and Optimization of Control System and Extreme Value Analysis of a Wind Turbine

    Get PDF
    The global hunger for energy has only been rising every day as we progress more into adopting superior and better technology to make lives better and easier. As more countries tread the path of industrialization, the need for cleaner and greener energy is imperative to reduce damage to an already deteriorating environment. Wind energy accounts for about 15% of renewable energy and is one of the fastest-growing renewable technologies. The energy produced by wind has doubled in the past decade. The wind industry is only expected to grow with an infinite supply of natural wind. Wind turbines in the 1980s had a capacity of 0.1MW, but today they average at around 10MW, with the largest wind turbines having a capacity of 15MW. Due to a surge in demand and potential for growth, it has become more critical than ever to find newer strategies to maximize turbine efficiency. Numerous approaches can be adopted to improve a turbine's efficiency, including design, material, or control system changes. Other options include using novel or better prediction models to estimate extreme values that can be useful in fine-tuning designs of wind turbines. In this thesis, two main strategies are adopted in an attempt to optimize the efficiency of wind turbines. Firstly, in Paper-I, a novel change to the pitch controller is adopted by adding and optimizing the bending moments to reduce the bending moment in the low-speed shaft. A reduction in the bending moment will reduce the internal drive train loads within the gearbox, thus extending its lifespan. A reduction of bending moment with minimal loss in shaft rotational speed was observed through this optimization. While in, Paper-II and -III, the novel ACER1D and 2D (univariate and bivariant analysis) models were used to estimate extreme load values. Paper-II presented the ACER1D results but focused on the ACER2D as it fitted it against other models, such as the optimized Asymmetric and Gumbel logistic models. This paper showed that ACER2D was advantageous since it could produce very accurate results compared to the other models with very little data set. While in Paper-III, extreme values estimate from ACER2D were compared against the Gumbel model, and the results obtained were positive, showing that ACER1D was better at estimating extreme values with a small data set. Optimizing the extreme values is critical when designing wind turbines as proper values enable better and more reliable turbine designs. Thus, both the strategies adopted in this thesis showed that through proper optimization, a reduction of load or a better design could be achieved, resulting in better efficiency in wind turbines

    Intelligent adaptive underwater sensor networks

    Get PDF
    Autonomous Underwater Vehicle (AUV) technology has reached a sufficient maturity level to be considered a suitable alternative to conventional Mine Countermeasures (MCM). Advantages of using a network of AUVs include time and cost efficiency, no personnel in the minefield, and better data collection. A major limitation for underwater robotic networks is the poor communication channel. Currently, acoustics provides the only means to send messages beyond a few metres in shallow water, however the bandwidth and data rate are low, and there are disturbances, such as multipath and variable channel delays, making the communication non-reliable. The solution this thesis proposes using a network of AUVs for MCM is the Synchronous Rendezvous (SR) method --- dynamically scheduling meeting points during the mission so the vehicles can share data and adapt their future actions according to the newly acquired information. Bringing the vehicles together provides a robust way of exchanging messages, as well as means for regular system monitoring by an operator. The gains and losses of the SR approach are evaluated against a benchmark scenario of vehicles having their tasks fixed. The numerical simulation results show the advantage of the SR method in handling emerging workload by adaptively retasking vehicles. The SR method is then further extended into a non-myopic setting, where the vehicles can make a decision taking into account how the future goals will change, given the available resource and estimation of expected workload. Simulation results show that the SR setting provides a way to tackle the high computational complexity load, common for non-myopic solutions. Validation of the SR method is based on trial data and experiments performed using a robotics framework, MOOS-IvP. This thesis develops and evaluates the SR method, a mission planning approach for underwater robotic cooperation in communication and resource constraint environment

    Applications, Evolutions, and Challenges of Drones in Maritime Transport

    Get PDF
    The widespread interest in using drones in maritime transport has rapidly grown alongside the development of unmanned ships and drones. To stimulate growth and address the associated technical challenges, this paper systematically reviews the relevant research progress, classification, applications, technical challenges, and possible solutions related to the use of drones in the maritime sector. The findings provide an overview of the state of the art of the applications of drones in the maritime industry over the past 20 years and identify the existing problems and bottlenecks in this field. A new classification scheme is established based on their flight characteristics to aid in distinguishing drones’ applications in maritime transport. Further, this paper discusses the specific use cases and technical aspects of drones in maritime rescue, safety, navigation, environment, communication, and other aspects, providing in-depth guidance on the future development of different mainstream applications. Lastly, the challenges facing drones in these applications are identified, and the corresponding solutions are proposed to address them. This research offers pivotal insights and pertinent knowledge beneficial to various entities such as maritime regulatory bodies, shipping firms, academic institutions, and enterprises engaged in drone production. This paper makes new contributions in terms of the comprehensive analysis and discussion of the application of drones in maritime transport and the provision of guidance and support for promoting their further development and integration with intelligent transport

    MODELLING VIRTUAL ENVIRONMENT FOR ADVANCED NAVAL SIMULATION

    Get PDF
    This thesis proposes a new virtual simulation environment designed as element of an interoperable federation of simulator to support the investigation of complex scenarios over the Extended Maritime Framework (EMF). Extended Maritime Framework is six spaces environment (Underwater, Water surface, Ground, Air, Space, and Cyberspace) where parties involved in Joint Naval Operations act. The amount of unmanned vehicles involved in the simulation arise the importance of the Communication modelling, thus the relevance of Cyberspace. The research is applied to complex cases (one applied to deep waters and one to coast and littoral protection) as examples to validate this approach; these cases involve different kind of traditional assets (e.g. satellites, helicopters, ships, submarines, underwater sensor infrastructure, etc.) interact dynamically and collaborate with new autonomous systems (i.e. AUV, Gliders, USV and UAV). The use of virtual simulation is devoted to support validation of new concepts and investigation of collaborative engineering solutions by providing a virtual representation of the current situation; this approach support the creation of dynamic interoperable immersive framework that could support training for Man in the Loop, education and tactical decision introducing the Man on the Loop concepts. The research and development of the Autonomous Underwater Vehicles requires continuous testing so a time effective approach can result a very useful tool. In this context the simulation can be useful to better understand the behaviour of Unmanned Vehicles and to avoid useless experimentations and their costs finding problems before doing them. This research project proposes the creation of a virtual environment with the aim to see and understand a Joint Naval Scenario. The study will be focusing especially on the integration of Autonomous Systems with traditional assets; the proposed simulation deals especially with collaborative operation involving different types of Autonomous Underwater Vehicles (AUV), Unmanned Surface Vehicles (USV) and UAV (Unmanned Aerial Vehicle). The author develops an interoperable virtual simulation devoted to present the overall situation for supervision considering also the sensor capabilities, communications and mission effectiveness that results dependent of the different asset interaction over a complex heterogeneous network. The aim of this research is to develop a flexible virtual simulation solution as crucial element of an HLA federation able to address the complexity of Extended Maritime Framework (EMF). Indeed this new generation of marine interoperable simulation is a strategic advantage for investigating the problems related to the operational use of autonomous systems and to finding new ways to use them respect to different scenarios. The research deal with the creation of two scenarios, one related to military operations and another one on coastal and littoral protection where the virtual simulation propose the overall situation and allows to navigate into the virtual world considering the complex physics affecting movement, perception, interaction and communication. By this approach, it becomes evident the capability to identify, by experimental analysis within the virtual world, the new solutions in terms of engineering and technological configuration of the different systems and vehicles as well as new operational models and tactics to address the specific mission environment. The case of study is a maritime scenario with a representation of heterogeneous network frameworks that involves multiple vehicles both naval and aerial including AUVs, USVs, gliders, helicopter, ships, submarines, satellite, buoys and sensors. For the sake of clarity aerial communications will be represented divided from underwater ones. A connection point for the latter will be set on the keel line of surface vessels representing communication happening via acoustic modem. To represent limits in underwater communications, underwater signals have been considerably slowed down in order to have a more realistic comparison with aerial ones. A maximum communication distance is set, beyond which no communication can take place. To ensure interoperability the HLA Standard (IEEE 1516 evolved) is adopted to federate other simulators so to allow its extensibility for other case studies. Two different scenarios are modelled in 3D visualization: Open Water and Port Protection. The first one aims to simulate interactions between traditional assets in Extended Maritime Framework (EMF) such as satellite, navy ships, submarines, NATO Research Vessels (NRVs), helicopters, with new generation unmanned assets as AUV, Gliders, UAV, USV and the mutual advantage the subjects involved in the scenario can have; in other word, the increase in persistence, interoperability and efficacy. The second scenario models the behaviour of unmanned assets, an AUV and an USV, patrolling a harbour to find possible threats. This aims to develop an algorithm to lead patrolling path toward an optimum, guaranteeing a high probability of success in the safest way reducing human involvement in the scenario. End users of the simulation face a graphical 3D representation of the scenario where assets would be represented. He can moves in the scenario through a Free Camera in Graphic User Interface (GUI) configured to entitle users to move around the scene and observe the 3D sea scenario. In this way, players are able to move freely in the synthetic environment in order to choose the best perspective of the scene. The work is intended to provide a valid tool to evaluate the defencelessness of on-shore and offshore critical infrastructures that could includes the use of new technologies to take care of security best and preserve themselves against disasters both on economical and environmental ones

    Disruptive Technologies with Applications in Airline & Marine and Defense Industries

    Get PDF
    Disruptive Technologies With Applications in Airline, Marine, Defense Industries is our fifth textbook in a series covering the world of Unmanned Vehicle Systems Applications & Operations On Air, Sea, and Land. The authors have expanded their purview beyond UAS / CUAS / UUV systems that we have written extensively about in our previous four textbooks. Our new title shows our concern for the emergence of Disruptive Technologies and how they apply to the Airline, Marine and Defense industries. Emerging technologies are technologies whose development, practical applications, or both are still largely unrealized, such that they are figuratively emerging into prominence from a background of nonexistence or obscurity. A Disruptive technology is one that displaces an established technology and shakes up the industry or a ground-breaking product that creates a completely new industry.That is what our book is about. The authors think we have found technology trends that will replace the status quo or disrupt the conventional technology paradigms.The authors have collaborated to write some explosive chapters in Book 5:Advances in Automation & Human Machine Interface; Social Media as a Battleground in Information Warfare (IW); Robust cyber-security alterative / replacement for the popular Blockchain Algorithm and a clean solution for Ransomware; Advanced sensor technologies that are used by UUVs for munitions characterization, assessment, and classification and counter hostile use of UUVs against U.S. capital assets in the South China Seas. Challenged the status quo and debunked the climate change fraud with verifiable facts; Explodes our minds with nightmare technologies that if they come to fruition may do more harm than good; Propulsion and Fuels: Disruptive Technologies for Submersible Craft Including UUVs; Challenge the ammunition industry by grassroots use of recycled metals; Changing landscape of UAS regulations and drone privacy; and finally, Detailing Bioterrorism Risks, Biodefense, Biological Threat Agents, and the need for advanced sensors to detect these attacks.https://newprairiepress.org/ebooks/1038/thumbnail.jp
    corecore