1,176,249 research outputs found

    Information Processing, Computation and Cognition

    Get PDF
    Computation and information processing are among the most fundamental notions in cognitive science. They are also among the most imprecisely discussed. Many cognitive scientists take it for granted that cognition involves computation, information processing, or both – although others disagree vehemently. Yet different cognitive scientists use ‘computation’ and ‘information processing’ to mean different things, sometimes without realizing that they do. In addition, computation and information processing are surrounded by several myths; first and foremost, that they are the same thing. In this paper, we address this unsatisfactory state of affairs by presenting a general and theory-neutral account of computation and information processing. We also apply our framework by analyzing the relations between computation and information processing on one hand and classicism and connectionism/computational neuroscience on the other. We defend the relevance to cognitive science of both computation, at least in a generic sense, and information processing, in three important senses of the term. Our account advances several foundational debates in cognitive science by untangling some of their conceptual knots in a theory-neutral way. By leveling the playing field, we pave the way for the future resolution of the debates’ empirical aspects

    A new way of linking information theory with cognitive science

    Get PDF
    The relationship between the notion of *information* in information theory, and the notion of *information processing* in cognitive science, has long been controversial. But as the present paper shows, part of the disagreement arises from conflating different formulations of measurement. Clarifying distinctions reveals it is the context-free nature of Shannon's information average that is particular problematic from the cognitive point of view. Context-sensitive evaluation is then shown to be a way of addressing the problems that arise

    Is Consciousness Computable? Quantifying Integrated Information Using Algorithmic Information Theory

    Get PDF
    In this article we review Tononi's (2008) theory of consciousness as integrated information. We argue that previous formalizations of integrated information (e.g. Griffith, 2014) depend on information loss. Since lossy integration would necessitate continuous damage to existing memories, we propose it is more natural to frame consciousness as a lossless integrative process and provide a formalization of this idea using algorithmic information theory. We prove that complete lossless integration requires noncomputable functions. This result implies that if unitary consciousness exists, it cannot be modelled computationally.Comment: Maguire, P., Moser, P., Maguire, R. & Griffith, V. (2014). Is consciousness computable? Quantifying integrated information using algorithmic information theory. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings of the 36th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Societ

    Evidence for Information Processing in the Brain

    Get PDF
    Many cognitive and neuroscientists attempt to assign biological functions to brain structures. To achieve this end, scientists perform experiments that relate the physical properties of brain structures to organism-level abilities, behaviors, and environmental stimuli. Researchers make use of various measuring instruments and methodological techniques to obtain this kind of relational evidence, ranging from single-unit electrophysiology and optogenetics to whole brain functional MRI. Each experiment is intended to identify brain function. However, seemingly independent of experimental evidence, many cognitive scientists, neuroscientists, and philosophers of science assume that the brain processes information as a scientific fact. In this work we analyze categories of relational evidence and find that although physical features of specific brain areas selectively covary with external stimuli and abilities, and that the brain shows reliable causal organization, there is no direct evidence supporting the claim that information processing is a natural function of the brain. We conclude that the belief in brain information processing adds little to the science of cognitive science and functions primarily as a metaphor for efficient communication of neuroscientific data

    Computation vs. Information Processing: Why Their Difference Matters to Cognitive Science

    Get PDF
    Since the cognitive revolution, it’s become commonplace that cognition involves both computation and information processing. Is this one claim or two? Is computation the same as information processing? The two terms are often used interchangeably, but this usage masks important differences. In this paper, we distinguish information processing from computation and examine some of their mutual relations, shedding light on the role each can play in a theory of cognition. We recommend that theorists of cognition be explicit and careful in choosing\ud notions of computation and information and connecting them together. Much confusion can be avoided by doing so

    Renewing the link between cognitive archeology and cognitive science

    Get PDF
    In cognitive archeology, theories of cognition are used to guide interpretation of archeological evidence. This process provides useful feedback on the theories themselves. The attempt to accommodate archeological data helps shape ideas about how human cognition has evolved and thus—by extension—how the modern form functions. But the implications that archeology has for cognitive science particularly relate to traditional proposals from the field involving modular decomposition, symbolic thought and the mediating role of language. There is a need to make a connection with more recent approaches, which more strongly emphasize information, probabilistic reasoning and exploitation of embodiment. Proposals from cognitive archeology, in which evolution of cognition is seen to involve a transition to symbolic thought need to be realigned with theories from cognitive science that no longer give symbolic reasoning a central role. The present paper develops an informational approach, in which the transition is understood to involve cumulative development of information-rich generalizations

    Linguistics and LIS: A Research Agenda

    Get PDF
    Linguistics and Library and Information Science (LIS) are both interdisciplinary fields that draws from areas such as languages, psychology, sociology, cognitive science, computer science, anthropology, education, and management. The theories and methods of linguistic research can have significant explanatory power for LIS. This article presents a research agenda for LIS that proposes the use of linguistic analysis methods, including discourse analysis, typology, and genre theory

    Mapping dynamic interactions among cognitive biases in depression

    Get PDF
    Depression is theorized to be caused in part by biased cognitive processing of emotional information. Yet, prior research has adopted a reductionist approach that does not characterize how biases in cognitive processes such as attention and memory work together to confer risk for this complex multifactorial disorder. Grounded in affective and cognitive science, we highlight four mechanisms to understand how attention biases, working memory difficulties, and long-term memory biases interact and contribute to depression. We review evidence for each mechanism and highlight time- and context-dependent dynamics. We outline methodological considerations and recommendations for research in this area. We conclude with directions to advance the understanding of depression risk, cognitive training interventions, and transdiagnostic properties of cognitive biases and their interactions

    Revisiting the Importance of Cognition in Information Science

    Get PDF
    DOI: 10.1177/016555150000000For a considerable amount of time the field of information science has employed its own, as well as the knowledge bases and methods of other fields (with productive results). One field that has been appropriated from has been cognitive science. Cognitive science, however, has been in flux over the last few decades, with different conceptual frameworks assuming ascendance at various times. That dynamic implies that information science should pay close attention to what is occurring in cognitive science in order to investigate the most complex of challenges in information retrieval use, behaviour, and other phenomena. This paper includes a review of the frameworks of cognitive science and suggests that some of the most recent work in that field holds promise for development of thought and inquiry in information science. Understanding of the complex individual processes within human brains, the relationships among thinking communicators, and the relationship of brain and mind, is one of the areas where particular attention should be paid
    corecore