2,302 research outputs found

    To “Sketch-a-Scratch”

    Get PDF
    A surface can be harsh and raspy, or smooth and silky, and everything in between. We are used to sense these features with our fingertips as well as with our eyes and ears: the exploration of a surface is a multisensory experience. Tools, too, are often employed in the interaction with surfaces, since they augment our manipulation capabilities. “Sketch-a-Scratch” is a tool for the multisensory exploration and sketching of surface textures. The user’s actions drive a physical sound model of real materials’ response to interactions such as scraping, rubbing or rolling. Moreover, different input signals can be converted into 2D visual surface profiles, thus enabling to experience them visually, aurally and haptically

    Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments

    Get PDF
    This paper proposes a pseudo-haptic feedback method conveying simulated soft surface stiffness information through a visual interface. The method exploits a combination of two feedback techniques, namely visual feedback of soft surface deformation and control of the indenter avatar speed, to convey stiffness information of a simulated surface of a soft object in virtual environments. The proposed method was effective in distinguishing different sizes of virtual hard nodules integrated into the simulated soft bodies. To further improve the interactive experience, the approach was extended creating a multi-point pseudo-haptic feedback system. A comparison with regards to (a) nodule detection sensitivity and (b) elapsed time as performance indicators in hard nodule detection experiments to a tablet computer incorporating vibration feedback was conducted. The multi-point pseudo-haptic interaction is shown to be more time-efficient than the single-point pseudo-haptic interaction. It is noted that multi-point pseudo-haptic feedback performs similarly well when compared to a vibration-based feedback method based on both performance measures elapsed time and nodule detection sensitivity. This proves that the proposed method can be used to convey detailed haptic information for virtual environmental tasks, even subtle ones, using either a computer mouse or a pressure sensitive device as an input device. This pseudo-haptic feedback method provides an opportunity for low-cost simulation of objects with soft surfaces and hard inclusions, as, for example, occurring in ever more realistic video games with increasing emphasis on interaction with the physical environment and minimally invasive surgery in the form of soft tissue organs with embedded cancer nodules. Hence, the method can be used in many low-budget applications where haptic sensation is required, such as surgeon training or video games, either using desktop computers or portable devices, showing reasonably high fidelity in conveying stiffness perception to the user

    Evaluation of Pseudo-Haptic Interactions with Soft Objects in Virtual Environments

    Get PDF
    This paper proposes a pseudo-haptic feedback method conveying simulated soft surface stiffness information through a visual interface. The method exploits a combination of two feedback techniques, namely visual feedback of soft surface deformation and control of the indenter avatar speed, to convey stiffness information of a simulated surface of a soft object in virtual environments. The proposed method was effective in distinguishing different sizes of virtual hard nodules integrated into the simulated soft bodies. To further improve the interactive experience, the approach was extended creating a multi-point pseudo-haptic feedback system. A comparison with regards to (a) nodule detection sensitivity and (b) elapsed time as performance indicators in hard nodule detection experiments to a tablet computer incorporating vibration feedback was conducted. The multi-point pseudo-haptic interaction is shown to be more time-efficient than the single-point pseudo-haptic interaction. It is noted that multi-point pseudo-haptic feedback performs similarly well when compared to a vibration-based feedback method based on both performance measures elapsed time and nodule detection sensitivity. This proves that the proposed method can be used to convey detailed haptic information for virtual environmental tasks, even subtle ones, using either a computer mouse or a pressure sensitive device as an input device. This pseudo-haptic feedback method provides an opportunity for low-cost simulation of objects with soft surfaces and hard inclusions, as, for example, occurring in ever more realistic video games with increasing emphasis on interaction with the physical environment and minimally invasive surgery in the form of soft tissue organs with embedded cancer nodules. Hence, the method can be used in many low-budget applications where haptic sensation is required, such as surgeon training or video games, either using desktop computers or portable devices, showing reasonably high fidelity in conveying stiffness perception to the user

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Design and Effect of Continuous Wearable Tactile Displays

    Get PDF
    Our sense of touch is one of our core senses and while not as information rich as sight and hearing, it tethers us to reality. Our skin is the largest sensory organ in our body and we rely on it so much that we don\u27t think about it most of the time. Tactile displays - with the exception of actuators for notifications on smartphones and smartwatches - are currently understudied and underused. Currently tactile cues are mostly used in smartphones and smartwatches to notify the user of an incoming call or text message. Specifically continuous displays - displays that do not just send one notification but stay active for an extended period of time and continuously communicate information - are rarely studied. This thesis aims at exploring the utilization of our vibration perception to create continuous tactile displays. Transmitting a continuous stream of tactile information to a user in a wearable format can help elevate tactile displays from being mostly used for notifications to becoming more like additional senses enabling us to perceive our environment in new ways. This work provides a serious step forward in design, effect and use of continuous tactile displays and their use in human-computer interaction. The main contributions include: Exploration of Continuous Wearable Tactile Interfaces This thesis explores continuous tactile displays in different contexts and with different types of tactile information systems. The use-cases were explored in various domains for tactile displays - Sports, Gaming and Business applications. The different types of continuous tactile displays feature one- or multidimensional tactile patterns, temporal patterns and discrete tactile patterns. Automatic Generation of Personalized Vibration Patterns In this thesis a novel approach of designing vibrotactile patterns without expert knowledge by leveraging evolutionary algorithms to create personalized vibration patterns - is described. This thesis presents the design of an evolutionary algorithm with a human centered design generating abstract vibration patterns. The evolutionary algorithm was tested in a user study which offered evidence that interactive generation of abstract vibration patterns is possible and generates diverse sets of vibration patterns that can be recognized with high accuracy. Passive Haptic Learning for Vibration Patterns Previous studies in passive haptic learning have shown surprisingly strong results for learning Morse Code. If these findings could be confirmed and generalized, it would mean that learning a new tactile alphabet could be made easier and learned in passing. Therefore this claim was investigated in this thesis and needed to be corrected and contextualized. A user study was conducted to study the effects of the interaction design and distraction tasks on the capability to learn stimulus-stimulus-associations with Passive Haptic Learning. This thesis presents evidence that Passive Haptic Learning of vibration patterns induces only a marginal learning effect and is not a feasible and efficient way to learn vibration patterns that include more than two vibrations. Influence of Reference Frames for Spatial Tactile Stimuli Designing wearable tactile stimuli that contain spatial information can be a challenge due to the natural body movement of the wearer. An important consideration therefore is what reference frame to use for spatial cues. This thesis investigated allocentric versus egocentric reference frames on the wrist and compared them for induced cognitive load, reaction time and accuracy in a user study. This thesis presents evidence that using an allocentric reference frame drastically lowers cognitive load and slightly lowers reaction time while keeping the same accuracy as an egocentric reference frame, making a strong case for the utilization of allocentric reference frames in tactile bracelets with several tactile actuators

    To ‘Sketch-a-Scratch’

    Get PDF
    A surface can be harsh and raspy, or smooth and silky, and everything in between. We are used to sense these features with our fingertips as well as with our eyes and ears: the exploration of a surface is a multisensory experience. Tools, too, are often employed in the interaction with surfaces, since they augment our manipulation capabilities. “Sketch-a-Scratch” is a tool for the multisensory exploration and sketching of surface textures. The user’s actions drive a physical sound model of real materials’ response to interactions such as scraping, rubbing or rolling. Moreover, different input signals can be converted into 2D visual surface profiles, thus enabling to experience them visually, aurally and haptically

    Cognitive Reasoning for Compliant Robot Manipulation

    Get PDF
    Physically compliant contact is a major element for many tasks in everyday environments. A universal service robot that is utilized to collect leaves in a park, polish a workpiece, or clean solar panels requires the cognition and manipulation capabilities to facilitate such compliant interaction. Evolution equipped humans with advanced mental abilities to envision physical contact situations and their resulting outcome, dexterous motor skills to perform the actions accordingly, as well as a sense of quality to rate the outcome of the task. In order to achieve human-like performance, a robot must provide the necessary methods to represent, plan, execute, and interpret compliant manipulation tasks. This dissertation covers those four steps of reasoning in the concept of intelligent physical compliance. The contributions advance the capabilities of service robots by combining artificial intelligence reasoning methods and control strategies for compliant manipulation. A classification of manipulation tasks is conducted to identify the central research questions of the addressed topic. Novel representations are derived to describe the properties of physical interaction. Special attention is given to wiping tasks which are predominant in everyday environments. It is investigated how symbolic task descriptions can be translated into meaningful robot commands. A particle distribution model is used to plan goal-oriented wiping actions and predict the quality according to the anticipated result. The planned tool motions are converted into the joint space of the humanoid robot Rollin' Justin to perform the tasks in the real world. In order to execute the motions in a physically compliant fashion, a hierarchical whole-body impedance controller is integrated into the framework. The controller is automatically parameterized with respect to the requirements of the particular task. Haptic feedback is utilized to infer contact and interpret the performance semantically. Finally, the robot is able to compensate for possible disturbances as it plans additional recovery motions while effectively closing the cognitive control loop. Among others, the developed concept is applied in an actual space robotics mission, in which an astronaut aboard the International Space Station (ISS) commands Rollin' Justin to maintain a Martian solar panel farm in a mock-up environment. This application demonstrates the far-reaching impact of the proposed approach and the associated opportunities that emerge with the availability of cognition-enabled service robots
    • 

    corecore