19 research outputs found

    Novas arquiteturas para transmissores digitais flexíveis e de banda larga

    Get PDF
    Next generation of wireless communication (5G) devices must achieve higher data rates, lower power consumption and better coverage by making a more efficient use of the RF spectrum and adopting highly exible radio architectures. To meet these requirements, the development of new radio devices will be far more complex and challenging than their predecessors. The future of radio communications have a twofold evolution, being one the low power consumption and the other the adaptability and intelligent use of the available resources. Conventional approaches for the radio physical layer are not capable to cope with the new demand for multi-band, multi-standard radio signals and present an inefficient and expensive solution for simultaneous transmission of multiple and heterogeneous radio signals. Digital radio transmitters have been presented as a solution for a newer and more exible architecture for future radios. All-digital transmitters use a completely digital implementation of the entire radio datapath from the baseband processing to the digital RF up-conversion. This concept bene ts from the use of highly integrated hardware together with a strong radio digitalization, motivated by the exibility and high performance from cognitive and software defi ned radio. However, such devices are still far from a massive deployment in most of communication scenarios due to some limiting factors that hinder their use. This PhD thesis aims to the development of novel radio architectures and ideas based on all-digital transmitters capable of improving the adaptability and use intelligently the available resources for software de ned and cognitive radio systems. The focus of this thesis is on the improvement of some of the common limitations for all-digital transmitters such as power efficiency, bandwidth, noise-shaping and exibility while using efficient and adaptable digital architectures. In the initial part of the thesis a review of the state-of-the-art is presented showing the most common digital transmitter architectures as well as their major bene ts and key limitations. A comparative analysis of such architectures is made considering their power and spectral efficiency, exibility, performance and cost. Following this initial analysis, the work developed on the course of this PhD is presented and discussed. The initial focus is on the improvement of all-digital transmitters bandwidth trough the study and use of parallel processing techniques capable of greatly improve common bandwidth values presented in the state-of-the-art. The presented work has resulted in several publications where FPGA-based architectures use parallel digital processing techniques to improve the system's bandwidth by a factor higher than 10. Other fundamental contribution of this thesis is focused on the pulsedtransmitters coding efficiency. In this section of the thesis, a method is presented showing the reduction of the quantization noise created by low amplitude resolution digital transmitters using multiple combined pulsedtransmitters to cancel the noise in speci c frequencies. This work has resulted in two main publications that showed how to increase the coding efficiency of the pulse-transmitters as well as the overall efficiency of the transmission system. Lastly, new-noise shaping methods are presented in order to develop new and more exible architectures for all-digital transmitters. The methods presented use new quantization processes that allow for the shaping of the quantization noise produced in pulsed-transmitters while using very simple and adaptable architectures. With these new techniques, it is possible to adjust the noise frequency distribution and deliberately change the noise shape in order to change some of the transmitter's characteristics such as central frequency or bandwidth. The work presented on this thesis has shown promising improvements to the all-digital transmitters' state-of-the-art, either in simulations and laboratory prototype measurements. It has contributed to advance the state-of-the-art in agile and power efficient all-digital RF transmitters with multi-mode and multi-channel capabilities and the improvement of the transceiver's bandwidth enabling the development of true software de ned and cognitive radio systemsA próxima geração de comunicações sem os (5G) exigirá taxas de transmissão mais elevadas, maior efi ciência energética e uma melhor cobertura fazendo um uso mais efi ciente do espectro de radiofrequência e adotando o uso de arquiteturas rádio mais flexíveis. Para cumprir tais requisitos, o desenvolvimento de novos dispositivos rádio será substancialmente mais complexo do que nas gerações anteriores. O futuro das comunicações rádio depende maioritariamente de dois fatores; o baixo consumo de potência e o uso inteligente dos recursos e tecnologias disponíveis. As abordagens convencionais para a camada física dos sistemas rádio não são as mais adequadas para lidar com a necessidade de dispositivos multi-banda e que usem múltiplos standards, por serem soluções inefi cientes e demasiado caras para esse efeito. Os transmissores rádio completamente digitais têm vindo a ser apresentados na literatura como uma solução inovadora e mais flexível para a implementação dos futuros sistemas de rádio. Os transmissores completamente digitais apresentam uma implementação da cadeia de processamento rádio, desde a banda-base até à conversão para RF, completamente constituída por lógica digital. Este conceito tira partido da vasta integração alcançada nas arquiteturas digitais, juntamente com a flexibilidade proveniente da digitalização das arquiteturas rádio que já se encontra em curso com a evolução dos rádios cognitivos e definidos por software. No entanto, devido a algumas limitações inerentes à tecnologia, este tipo de transmissores ainda não é amplamente utilizado na maioria dos sistemas. Esta tese de doutoramento propõe e avalia novas arquiteturas para transmissores completamente digitais, bem como novas técnicas de processamento de sinal que possam beneficiar das tecnologias de implementação existentes (e.g. FPGAs) por forma a construir novos transmissores digitais de forma eficiente e flexível. O objetivo desta tese é reduzir as limitações atuais ainda presentes neste tipo de transmissores, nomeadamente as relacionadas com a eficiência, largura de banda, cancelamento de ruído e falta de flexibilidade. Na parte inicial desta tese é realizada a revisão do estado da arte das diversas topologias de transmissores digitais bem como as suas principais vantagens e limitações técnicas. É também feita uma análise comparativa das diversas técnicas apresentadas em termos da sua eficiência energética, flexibilidade, desempenho e custo. De seguida, é apresentado o trabalho desenvolvido no contexto desta tese de doutoramento, seguindo-se uma discussão focada na resolução das atuais limitações deste tipo de transmissores. A primeira parte foca-se no uso de técnicas de processamento paralelo de sinal, por forma a suportar sinais de largura de banda mais elevada que os reportados no atual estado da arte. O trabalho desenvolvido e publicado baseia-se no uso de arquiteturas implementadas em FPGA que contribuíram para um aumento da largura de banda num fator de aproximadamente dez vezes. Outra das contribuições fundamentais desta tese consiste no aumento da eficiência do sistema através da melhoria da eficiência de codificação do sinal pulsado produzido. Com base no uso de múltiplos transmissores pulsados, e apresentado um esquema de combinação construtiva e destrutiva de sinais para a redução do ruído de quantização proveniente das técnicas de processamento de sinal pulsado usadas. Este trabalho resultou em duas importantes publicações que mostram que a melhoria da eficiência de codificação do sinal pode ser utilizada de forma a obter uma maior eficiência energética do transmissor. Por ultimo, são apresentadas diversas técnicas para a conversão dos sinais banda-base em sinais RF pulsados. As propostas apresentadas permitem o uso de uma arquitetura de hardware simplista, mas configurável por software, o que a torna bastante flexível. Com o uso desta arquitetura e possível alterar em pleno funcionamento a frequência central bem como a largura de banda e resposta do conversor pulsado. O trabalho apresentado nesta tese demonstra alguns dos melhoramentos no estado da arte para transmissores r adio completamente digitais, baseando os resultados obtidos não apenas em simulações mas também na implementação e medidas realizadas sobre protótipos laboratoriais. O trabalho desenvolvido no âmbito desta tese contribuiu com avanços na implementação de transmissores ageis, eficientes, com maior largura de banda e capazes de transmissão em múltiplas bandas com recurso a múltiplos protocolos, abrindo caminho para o desenvolvimento de novos rádios cognitivos e definidos por softwareFCT, FSEPrograma Doutoral em Engenharia Eletrotécnic

    Modeling and Compensation of Nonlinear Distortion in Multi-Antenna RF Transmitters

    Get PDF
    Multi-antenna systems are utilized as a way to increase spectral efficiency in wireless communications. In a transmitter, the use of several parallel transmit paths and antennas increases system complexity and cost. Cost-efficient solutions, which employ active antenna arrays and avoid expensive isolators, are therefore preferred. However, such solutions are vulnerable to crosstalk due to mutual coupling between the antennas, and impedance mismatches between amplifiers and antennas. Combined with the nonlinear behavior of the power amplifiers, these effects cause nonlinear distortion, which deteriorates the quality of the transmitted signals and can prevent the transmitter from meeting standard requirements and fulfilling spectrum regulations. Analysis, assessment and, if necessary, compensation of nonlinear distortion are therefore essential for the design of multi-antenna transmitters.In this thesis, a technique for modeling and predicting nonlinear distortion in multi-antenna transmitters is presented. With this technique, the output of every individual transmit path, as well as the radiated far-field of the transmitter can be predicted with low computational effort. The technique connects models of the individually characterized transmitter components. It can be used to investigate and compare the effects of different power amplifier and antenna array designs at early design stages without complicated and expensive measurements.Furthermore, a digital predistortion technique for compensating nonlinear distortion in multi-antenna transmitters is presented. Digital predistortion is commonly used in transmitters to compensate for undesired nonlinear hardware effects. The proposed solution combines a linear function block with dual-input predistorters. The complexity is reduced compared to existing techniques, which require highly complex multivariate predistorter functions. Finally, a technique for identifying multi-antenna transmitter models and predistorters from over-the-air measurements using only a small set of observation receivers is presented. Conventional techniques require a dedicated observation receiver in every transmitter path, or one or more observation receivers that are shared by several paths in a time-interleaved manner. With the proposed technique, each receiver is used to observe several transmitter paths simultaneously. Compared to conventional techniques, hardware cost and complexity can be reduced with this approach. In summary, the signal processing techniques presented in this thesis enable a simplified, low-cost design process of multi-antenna transmitters. The proposed algorithms allow for feasible, low-complexity implementations of both digital and analog hardware even for systems with many antennas, thereby facilitating the development of future generations of wireless communication systems

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    TDRSS multimode transponder program. Phase 2: Equipment development

    Get PDF
    This report contains a complete description of the TDRS Multimode Transponder and its associated ground support equipment. The transponder will demonstrate candidate modulation techniques to provide the required information for the design of an eventual VHF/UHF transponder suitable for installation in a user satellite, capable of operating as part of a Tracking and Data Relay Satellite (TDRS) systems. Use of geosynchronous TDRS which can serve both low data rate users at VHF and high data rate users at other frequencies has been considered. The effects of radio frequency interference from the earth and of multipath propagation due to reflections from the earth are expected to pose problems for the TDRS system at VHF. Investigations have suggested several modulation techniques that offer promise to overcome these problems

    Novel power amplifier design using non-linear microwave characterisation and measurement techniques

    Get PDF
    This thesis, addresses some aspects of the well-known, problem, experienced by designer of radio frequency power amplifiers (RFPA): the efficiency/linearity trade-off. The thesis is focused on finding and documenting solution to linearity problem than can be used to advance the performance of radio frequency (RF) and microwave systems used by the wireless communication industry. The research work, this was undertaken by performing a detailed investigation of the behaviour of transistors, under complex modulation, when subjected to time varying baseband signals at their output terminal: This is what in this thesis will be referred to as “baseband injection”. To undertake this study a new approach to the characterisation of non-linear devices (NLD) in the radio frequency (RF) region, such as transistors, designated as device-under-test (DUT), subjected to time varying baseband signals at its output terminal, was implemented. The study was focused on transistors that are used in implementing RF power amplifiers (RFPA) for base station applications. The nonlinear device under test (NL-DUT) is a generalisation to include transistors and other nonlinear devices under test. Throughout this thesis, transistors will be referred to as ‘device’ or ‘radio frequency power amplifier (RFPA) device’. During baseband injection investigations the device is perturbed by multi-tone modulated RF signals of different complexities. The wireless communication industry is very familiar with these kinds of devices and signals. Also familiar to the industry are the effects that arise when these kind of signal perturb these devices, such as inter-modulation distortion and linearity, power consumption/dissipation and efficiency, spectral re-growth and spectral efficiency, memory effects and trapping effects. While the concept of using baseband injection to linearize RFPAs is not new the mathematical framework introduced and applied in this work is novel. This novel approach NOVEL POWER AMPLIFIER DESIGN USING NON-LINEAR MICROWAVE CHARACTERISATION AND MEASUREMENT TECHNIQUES CARDIFF UNIVERISTY - UK ABSTRACT vi has provided new insight to this very complex problem and highlighted solutions to how it could be a usable technique in practical amplifiers. In this thesis a very rigorous and complex investigative mathematical and measurement analysis on RFPA response to applied complex stimulus in a special domain called the envelope domain was conducted. A novel generic formulation that can ‘engineer’ signal waveforms by using special control keys with which to provide solution to some of the problems highlighted above is presented. The formulation is based on specific background principles, identified from the result of both mathematical theoretical analysis and detailed experimental device characterisation

    Inaudible acoustics: Techniques and applications

    Get PDF
    This dissertation is focused on developing a sub-area of acoustics that we call inaudible acoustics. We have developed two core capabilities, (1) BackDoor and (2) Ripple, and demonstrated their use in various mobile and IoT applications. In BackDoor, we synthesize ultrasound signals that are inaudible to humans yet naturally recordable by all microphones. Importantly, the microphone does not require any modification, enabling billions of microphone-enabled devices, including phones, laptops, voice assistants, and IoT devices, to leverage the capability. Example applications include acoustic data beacons, acoustic watermarking, and spy-microphone jamming. In Ripple, we develop modulation and sensing techniques for vibratory signals that traverse through solid surfaces, enabling a new form of secure proximal communication. Applications of the vibratory communication system include on-body communication through imperceptible physical vibrations and device-device secure data transfer through physical contacts. Our prototypes include an inaudible jammer that secures private conversations from electronic eavesdropping, acoustic beacons for location-based information sharing, and vibratory communication in a smart-ring sending password through a finger touch. Our research also uncovers new security threats to acoustic devices. While simple abuse of inaudible jammer can disable hearing aids and cell phones, our work shows that voice interfaces, such as Amazon Echo, Google Home, Siri, etc., can be compromised through carefully designed inaudible voice commands. The contributions of this dissertation can be summarized in three primitives: (1) exploiting inherent hardware nonlinearity for sensing out-of-band signals, (2) developing the vibratory communication system for secure touch-based data exchange, and (3) structured information reconstruction from noisy acoustic signals. In developing these primitives, we draw from principles in wireless networking, digital communications, signal processing, and embedded design and translate them to completely functional systems

    High speed energy efficient incoherent optical wireless communications

    Get PDF
    The growing demand for wireless communication capacity and the overutilisation of the conventional radio frequency (RF) spectrum have inspired research into using alternative spectrum regions for communication. Using optical wireless communications (OWC), for example, offers significant advantages over RF communication in terms of higher bandwidth, lower implementation costs and energy savings. In OWC systems, the information signal has to be real and non-negative. Therefore, modifications to the conventional communication algorithms are required. Multicarrier modulation schemes like orthogonal frequency division multiplexing (OFDM) promise to deliver a more efficient use of the communication capacity through adaptive bit and energy loading techniques. Three OFDM-based schemes – direct-current-biased OFDM (DCO-OFDM), asymmetrically clipped optical OFDM(ACO-OFDM), and pulse-amplitude modulated discrete multitone (PAM-DMT) – have been introduced in the literature. The current work investigates the recently introduced scheme subcarrier-index modulation OFDM as a potential energy-efficient modulation technique with reduced peak-to-average power ratio (PAPR) suitable for applications in OWC. A theoretical model for the analysis of SIM-OFDMin a linear additive white Gaussian noise (AWGN) channel is provided. A closed-form solution for the PAPR in SIM-OFDM is also proposed. Following the work on SIM-OFDM, a novel inherently unipolar modulation scheme, unipolar orthogonal frequency division multiplexing (U-OFDM), is proposed as an alternative to the existing similar schemes: ACO-OFDMand PAM-DMT. Furthermore, an enhanced U-OFDMsignal generation algorithm is introduced which allows the spectral efficiency gap between the inherently unipolar modulation schemes – U-OFDM, ACO-OFDM, PAM-DMT – and the conventionally used DCO-OFDM to be closed. This results in an OFDM-based modulation approach which is electrically and optically more efficient than any other OFDM-based technique proposed so far for intensity modulation and direct detection (IM/DD) communication systems. Non-linear distortion in the optical front-end elements is one of the major limitations for high-speed communication in OWC. This work presents a generalised approach for analysing nonlinear distortion in OFDM-based modulation schemes. The presented technique leads to a closed-form analytical solution for an arbitrary memoryless distortion of the information signal and has been proven to work for the majority of the known unipolar OFDM-based modulation techniques - DCO-OFDM, ACO-OFDM, PAM-DMT and U-OFDM. The high-speed communication capabilities of novel Gallium Nitride based μm-sized light emitting diodes (μLEDs) are investigated, and a record-setting result of 3.5Gb/s using a single 50-μm device is demonstrated. The capabilities of using such devices at practical transmission distances are also investigated, and a 1 Gb/s link using a single device is demonstrated at a distance of up to 10m. Furthermore, a proof-of-concept experiment is realised where a 50-μm LED is successfully modulated using U-OFDM and enhanced U-OFDM to achieve notable energy savings in comparison to DCO-OFDM

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest
    corecore