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Abstract

This dissertation is focused on developing a sub-area of acoustics that we call inaudible

acoustics. We have developed two core capabilities, (1) BackDoor and (2) Ripple, and

demonstrated their use in various mobile and IoT applications. In BackDoor, we synthe-

size ultrasound signals that are inaudible to humans yet naturally recordable by all micro-

phones. Importantly, the microphone does not require any modification, enabling billions

of microphone-enabled devices, including phones, laptops, voice assistants, and IoT devices,

to leverage the capability. Example applications include acoustic data beacons, acoustic

watermarking, and spy-microphone jamming. In Ripple, we develop modulation and sensing

techniques for vibratory signals that traverse through solid surfaces, enabling a new form

of secure proximal communication. Applications of the vibratory communication system in-

clude on-body communication through imperceptible physical vibrations and device-device

secure data transfer through physical contacts. Our prototypes include an inaudible jam-

mer that secures private conversations from electronic eavesdropping, acoustic beacons for

location-based information sharing, and vibratory communication in a smart-ring sending

password through a finger touch. Our research also uncovers new security threats to acoustic

devices. While simple abuse of inaudible jammer can disable hearing aids and cell phones,

our work shows that voice interfaces, such as Amazon Echo, Google Home, Siri, etc., can

be compromised through carefully designed inaudible voice commands. The contributions

of this dissertation can be summarized in three primitives: (1) exploiting inherent hardware

nonlinearity for sensing out-of-band signals, (2) developing the vibratory communication

system for secure touch-based data exchange, and (3) structured information reconstruc-

tion from noisy acoustic signals. In developing these primitives, we draw from principles in

wireless networking, digital communications, signal processing, and embedded design and

translate them to completely functional systems.
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Chapter 1

Introduction

This dissertation is focused on developing a sub-area of acoustics that we call inaudible

acoustics. We have developed two core capabilities and demonstrated their use in various

mobile and IoT applications. Briefly, the two capabilities are as follows.

(1) Project BackDoor: We design ultrasound signals that are naturally inaudible to

humans, yet completely recordable by all microphones without any hardware or software

changes to them. This implies that any microphone will be able to decode transmitted

information – data bits or voice commands – even though these transmissions are non-

disturbing to human society. We show how such capabilities translate to new applications,

both useful and malicious. Examples include inaudible data communication in the acoustic

band, acoustic watermarking, spy-microphone jamming, and inaudible voice attacks on home

devices like Amazon Echo and Google Home.

(2) Project Ripple: We develop a vibratory communication stack that transmits and

receives vibration signals through solid surfaces, enabling a new form of secure proximal

communication. The transmitters for such signals are widely practical since any mobile

device’s vibration motor can be carefully programmed to modulate data bits. As receivers,

we show how accelerometer sensors, or even microphones, can be leveraged to sense and

demodulate the data bits. Thus, tomorrow’s smartwatches may have “vibrational radios”

embedded in them, allowing two humans to exchange information by shaking hands.

We briefly sketch these two parts of the dissertation next, followed by how the work

generalizes to beyond today’s applications.

1.1 Techniques in Inaudible Acoustics

(1) Project BackDoor: Consider sounds, say at frequencies above 40 kHz, that are com-

pletely outside the human’s audible range (20 kHz), as well as a microphone’s recordable

range (24 kHz). Our work shows that these high-frequency sounds can be designed to be-

come recordable by unmodified microphones while remaining inaudible to humans. We call
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this system BackDoor. The core idea lies in exploiting fundamental nonlinearities in micro-

phone hardware. Briefly, we design ultrasound signals and play it on a speaker such that,

after passing through the microphone’s nonlinear diaphragm and power-amplifier, the signal

creates a signal component in the audible frequency range. The component can be regulated

to carry data bits, thereby enabling an acoustic (but inaudible) communication channel to

today’s microphone-enabled devices, such as smartphones, smartwatches, laptop, hearing

aids, and voice assistants (Amazon Echo, Google Home).

While nonlinearity presents opportunities, designing ultrasound for a nonlinear channel is

challenging. Regular modulation schemes often result in distorted signals at the receiver as

spurious frequencies overlap the target baseband signals and standard equalization schemes

are not effective. Most importantly the ultrasonic transmitters – a speaker with a diaphragm

– also exhibit nonlinearity similar to the microphones. After interacting with the speaker

nonlinearity, the inaudible ultrasonic signals leak audible sounds. We overcome these chal-

lenges in BackDoor with a custom-made speaker system implementing a novel signal shaping

technique. Our core idea is to use multiple speakers, and divide segments of the input spec-

trum across them such that leakage from each speaker is narrow band, and confined to low

frequencies. These segments, however, align perfectly at the receiving microphone to recon-

struct the target signal. This still does not fully solve the problem and produces a garbled,

audible sound at the transmitter. To achieve true inaudibility, we solve a min-max opti-

mization problem on the length of the input segments. The optimization picks the segment

lengths in a way such that the aggregate leakage function is completely below the human

auditory response curve (i.e., the minimum separation between the leakage and the human

audibility curve is maximized). This ensures, by design, the BackDoor signal is inaudible.

(2) Project Ripple: Smartphones and smartwatches contain a tiny actuator called vi-

bration motor that generates the haptic alert when the device is on silent mode. Just like

diaphragms of speakers oscillate to create sound waves in the air, a movable mass in the

vibration motor generates vibration waves that traverse through solids. We explore this sur-

face vibration as a modality for data communication. We have shown that it is possible to

programmatically control the motion of this vibration motor to generate a band of vibration

signals carrying data bits. The motion sensors in smart devices, like accelerometers, can sense

the vibration signal and receive the data bits. Due to the limited bandwidth of accelerom-

eters and inertia of the actuator, such vibratory communication system is fundamentally

limited to around 10 bits per second of data rate. However, our vibratory communication

system, called Ripple, overcomes these limitations to achieved 32 kbps of data rate.

The major enhancement in data rate was achieved by replacing the accelerometer with
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the microphone as the receiver. While microphones are designed to receive in-air vibrations

of sound, we have shown that its diaphragm responds to physical vibrations as well. We

develop an adaptive filter-based sensing technique that cancels noise from ambient sounds to

recover subtle vibration signals from the microphone. We design an entire communication

stack over these vibratory signals, including an OFDM-based physical layer and a link layer

that detects collisions at the transmitter and performs proactive symbol retransmissions.

We build fully functional prototypes of Ripple for on-body and device-device communication

applications.

1.2 Applications of Inaudible Acoustics

(1) Inaudible Acoustic Communication: BackDoor essentially enables inaudible signals

to be recordable by any regular microphone. We implement this technique in an acoustic

beacon that transmits data bits at ultrasound frequencies above 40 kHz, but these signals

can be received by any microphone-enabled device, like a smartwatch or a smartphone. Ex-

isting ultrasound-based communication systems [1] suffer from limited bandwidth, around

3 kHz, since they must remain above human hearing range (20 kHz) and below the micro-

phone’s cutoff frequency (24 kHz). Our inaudible beacon is free of these limitations. Using

an ultrasound-based transmitter, it can utilize the entire microphone spectrum for communi-

cation. Thus, IoT devices could find an alternative channel for communication, reducing the

growing load on Bluetooth (BLE). Museums and shopping malls could use acoustic beacons

to broadcast information about nearby art pieces or products. Various ultrasound ranging

schemes, that compute time of flight of signals, could benefit from the substantially higher

bandwidth of BackDoor beacons.

(2) Inaudible Jammer for Acoustic Privacy: Hardware miniaturization of micro-

phones has revolutionized mobile acoustic devices. As an unfortunate consequence, acoustic

eavesdropping has become easy and unobtrusive. Apart from portable sound recorders, ev-

ery smartphone is a potential sound recording device. Hidden miniaturized microphones

can record conversations of a sensitive meeting. An apparently disinterested bystander can

capture a conversation using the smartphone without even taking it out of the pocket. In

a different scenario, a live performance can be recorded with a portable microphone and

published without permission. Preventing acoustic eavesdropping is difficult as human ears

and microphones operate at same frequency band. An attempt to jam microphones ends up

playing loud sounds that disrupt the conversation itself. We build on the BackDoor technique

to design an inaudible acoustic jammer that can block all microphones in a region by sending
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jamming signals. The prototype can silently jam spy microphones from recording, leading

to a widespread application in acoustic privacy. Military and government officials can secure

private and confidential meetings from electronic eavesdropping; cinemas and concerts can

prevent unauthorized recording of movies and live performances.

(a) (b)

Figure 1.1: Making microphones hear inaudible sounds: We design ultrasound such
that it becomes recordable after passing through the regular microphone hardware, while still
remains inaudible to humans. This technique, called BackDoor, has applications in acoustic
communication and jamming. However, BackDoor signals can be exploited to launch attacks
on sound- and voice-activated devices. (a) A setup demonstrating inaudible voice command
attack on Amazon Echo, an off-the-shelf voice assistant. (b) The ultrasound speaker system
for long-range applications. This speaker system implements a novel signal shaping technique
to avoid audible leakage. The video demonstration of the BackDoor system is available at:
https://www.youtube.com/watch?v= FrKySibcb8.

(3) Inaudible Voice Command Attack: Our research on inaudible acoustics also

uncovers new kinds of threats to acoustic devices. Denial-of-service (DoS) attacks on sound

devices are typically considered difficult as the jammer can be easily detected. However,

BackDoor shows that inaudible jammers can disable hearing aids and cellphones without

getting detected. For example, during a robbery, the perpetrators can prevent people from

making 911 calls by silently jamming all phones’ microphones. Inaudible voice commands

launched from outside of the house can attack voice assistants, like Amazon Echo and Google

Home, without raising an alarm to the people inside the house. To demonstrate the attack,

we develop a working prototype of a long-range inaudible speaker system capable of sending

inaudible voice signals to any voice-activated devices (Figure 1.1). This system requires an

alternative transmitter design that can maintain inaudibility for this high power long range

speaker system, that otherwise leaks a low-frequency noise.

4
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(4) Protecting Voice Interfaces from Inaudible Attacks: Defending against this

class of nonlinearity based inaudible attacks is not difficult if one were to assume hardware

changes to the receiver (e.g., Amazon Echo or Google Home). An additional ultrasound

microphone will suffice since it can detect the transmitted ultrasound signals in the air.

However, with software changes alone, the problem becomes a question of forensics, i.e.,

can the received low-frequency signal, which is shifted due to the hardware nonlinearity,

be discriminated from the same legitimate voice command transmitted with ultrasound?

Our defense relies on the observation that voice signals exhibit a well-understood structure,

composed of fundamental frequencies and harmonics. When this structure passes through

nonlinearity, part of it remains preserved in the shifted and blended low-frequency signals.

In contrast, legitimate human voice projects almost no energy in these low-frequency bands.

We locate such indelible traces of nonlinearity in the received signal to identify an attack

voice from legitimate commands.

(a) (b)

Figure 1.2: Communicating through physical vibrations: We develop a short-range
communication modality using modulated vibrations in solids. This technique, called Rip-
ple, enables secure data exchange between devices through physical contacts. Imperceptible
vibration signals can carry data bits through the human body for touch-based communica-
tion with IoT devices. (a) An on-body vibratory communication prototype showing data
transmission from a smartwatch. (b) Sending password from a smart-ring using vibrations
that humans cannot feel. The video demonstration of the Ripple system is available at:
https://synrg.csl.illinois.edu/ripple/.

(5) Communication through Touch: Unlike radio frequencies (RF), vibration does

not broadcast the signal in the air. The vibratory communication, Ripple, requires physical

contacts for the signal to traverse from the transmitter to the receiver, making it harder to

eavesdrop. We leverage this property to develop secure applications like touch-based crypto-
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graphic key exchange and seamless authentication through touch. We build two prototypes

on Ripple: (1) wearables (a finger ring and a smartwatch) that transmits vibratory pass-

words through the finger bone to enable touch-based authentication (Figure 1.2). The user

can open a car door by simply touching the handle or activate a two-factor authentication

for money transfer through a finger touch. (2) The second prototype is a surface commu-

nication between devices which are in physical contact or placed on the same table. Users

can exchange contact details by touching each other’s smartphones or start a one-to-many

file transfer by placing them on the table.

1.3 Opportunities Beyond this Dissertation

This dissertation explores ultrasound and vibration for applications in inaudible acoustics.

Principles developed in this work can be generalized for a larger application domain and

can seed novel research directions. In this section, we outline a few of such future research

opportunities.

Linearity is often a partial approximation of the real-world behavior, embraced for the

purposes of simplicity. However, advancement in computing technologies empowers the next

generation systems to explore and leverage the nonlinear behavior of signals. Out-of-band

ultrasound sensing, described in Chapters 2 and 3, builds on the nonlinearities of acoustic

hardware, however, the principles may offer benefits in other dimensions as well. For exam-

ple, there is evidence [2] that air turns into a nonlinear medium for high-frequency sound.

With proper signal design along with beam-forming techniques, ultrasonic sound can inter-

act with air nonlinearity and create virtual signal sources. We can build on this technology

to project sound to a specific location in space like a sound pocket in the air, leading to

applications in device free virtual reality for gaming, navigation, and communication. Non-

linearity in liquid and other objects can also lead to new opportunities in acoustic imaging,

material identification, and fingerprinting. Nonlinear mixing of signals generates baseband

components, which can lead to simplified receiver architecture for communication, active

sonar based motion tracking, and even new forms of acoustic localization. We are exploring

some of these novel and powerful ideas around nonlinear sensing toward cross-disciplinary

systems.

The imperceptible vibration-based signaling method can be further explored in diverse

scenarios. Intra-body vibratory communication through bone conduction can lead to new

applications in implantable medical devices. On the other hand, the primitive for speech

6



recovery from vibration, described in Chapter 6, can be the key technique in a better speech

analysis system. Vibrations induced in facial bones and muscles can serve as an alternative

channel for speech. Although such vibrations carry only a partial information compared to

the airborne sound channel, it is immune to the ambient noise. A careful combination of

vibration and sound can lead to a robust speech recognition system for noisy environments

and also an assistive system for people with speech disabilities.

Inaudible Acoustics

Surface Vibration
( Chapters 4, 5, 6 )

In-air Ultrasound
( Chapters 2, 3 )

Touch-based
Communication
( Chapters 4, 5 )

Voice Recovery
from Vibration

( Chapter 6 )

Inaudible Voice
Commands
( Chapter 3 )

Acoustic Denial
of Service

( Section 2.4.2 )

Communication
( Section 2.4.1 )

Jamming
( Section 2.4.2 )

Security
( Chapters 2, 3 )

Figure 1.3: Organization of the topics in chapters.

1.4 Organization

The subsequent sections elaborate on these ideas of inaudible acoustics, starting with the

basic concept of out-of-band signal sensing through sensor nonlinearity in Chapter 2. Chapter

3 extends this primitive to a long-range inaudible acoustic system. It also analyzes the

security of voice interfaces against inaudible voice attack and presents a defense mechanism.

Chapters 4 and 5 explain the vibratory communication system starting from basic vibration

modulation techniques to a functional prototype of a touch-based data exchange system.

Algorithms for voice signal reconstruction from vibration are presented in Chapter 6. Finally,

we conclude in Chapter 7. Figure 1.3 shows the organization of the topics in the rest of this

dissertation.
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Chapter 2

Out-of-Band Inaudible Sound Sensing

2.1 Overview

This chapter shows the possibility of creating sounds that humans cannot hear but micro-

phones can record. This is not because the sound is too soft or just at the periphery of

human’s frequency range. The sounds we create are actually 40 kHz and above, completely

outside both human’s and microphone’s range of operation. However, given microphones

possess inherent nonlinearities in their diaphragms and power amplifiers, it is possible to

design sounds that exploit this property. To elaborate, we shape the frequency and phase of

sound signals and play them through ultrasound speakers; when these sounds pass through

the nonlinear hardware at the receiver, the high-frequency sounds are expected to create a

low-frequency “shadow”. The “shadow” is within the filtering range of the microphone and

thereby gets recorded as normal sounds. Figure 2.1 illustrates the effect. Importantly, the

microphone does not require any modification, enabling billions of phones, laptops, and IoT

devices to leverage the capability. This chapter presents BackDoor, a system that develops

the technical building blocks for harnessing this opportunity, leading to new applications in

security and communications.

(1) Security: Given that microphones record these inaudible sounds, it should be pos-

sible to silently jam spy microphones from recording. Military and government officials can

secure private and confidential meetings from electronic eavesdropping; cinemas and concerts

can prevent unauthorized recording of movies and live performances. We also realized the

possibility of security threats. Denial-of-service (DoS) attacks on sound devices are typically

considered difficult as the jammer can be easily detected. However, BackDoor shows that

inaudible jammers can disable hearing aids and cellphones without getting detected. For

This chapter revises the publication “BackDoor: Making Microphones Hear Inaudible Sounds,” in Mo-
biSys 2017 [3].
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Figure 2.1: The main idea of frequency translation underlying BackDoor.

example, during a robbery, the perpetrators can prevent people from making 911 calls by

silently jamming the microphones in all phones.

(2) Communications: Ultrasound systems today aim to achieve inaudible data trans-

missions to the microphone [1]. However, they suffer from limited bandwidth, around 3 kHz,

since they must remain above the human hearing range (20 kHz) and below the microphone’s

cutoff frequency (24 kHz). Moreover, FCC imposes strict power restrictions on these bands

since they are partly audible to infants and pets [4]. BackDoor is free of these limitations.

Using an ultrasound-based transmitter, it can utilize the entire microphone spectrum for

communication. Thus, IoT devices could find an alternative channel for communication,

reducing the growing load on Bluetooth (BLE). Museums and shopping malls could use

acoustic beacons to broadcast information about nearby art pieces or products. Various

ultrasound ranging schemes, that compute time of flight of signals, could benefit from the

substantially higher bandwidth in BackDoor.

This chapter focuses on developing the technical primitives that enable these applications.

In the simplest case, BackDoor plays two tones at say 40 kHz and 50 kHz. When these tones

arrive together at the microphone, they are received and amplified as expected, but also

multiplied due to fundamental nonlinearities in the system. Multiplication of frequencies f1

and f2 result in frequency components at (f1 − f2) and (f1 + f2). Given that (f1 − f2) is

10 kHz in this case, well within the microphone’s range, the signal passes unaltered through

the low-pass filter (LPF). Human ears, on the other hand, do not exhibit such nonlinearities

and completely filter out the 40 kHz and 50 kHz sounds.

While the above is a trivial case of sending a tone, BackDoor intends to load data on

transmitted carrier signals and demodulate the “shadow” after receiving through the micro-

phone. This entails challenges. First, the nonlinearities we intend to exploit are not unique

to the microphone; they are also present in speakers that transmit the sounds. As a result,
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the speaker also produces a “shadow” within the audible range, making its output audible

to humans. We address this by using multiple speakers and isolating the signals in frequency

across the speakers. We show, both analytically and empirically, that none of these isolated

sounds create a “shadow” as they pass through the speaker’s diaphragm and amplifier. How-

ever, once these sounds arrive and combine nonlinearly inside the microphone, the “shadow”

emerges within the audible range.

Second, for communication applications, standard modulation and coding schemes cannot

be used directly. Section 2.4.1 shows how appropriate frequency-modulation, combined with

inverse filtering, resonance alignment, and ringing mitigation are needed to boost achievable

data rates. Finally, for security applications, jamming requires transmitting noisy signals

that cover the entire audible frequency range. With audible jammers, this requires speakers

to operate at very high volumes. Section 2.4.2 describes how BackDoor is designed to

achieve equally effective jamming, but in complete silence. We leverage the adaptive gain

control (AGC) in microphones, in conjunction with selective frequency distortion, to improve

jamming at modest power levels.

The final BackDoor prototype is built on customized ultrasound speakers and evaluated

for both communication and security applications across different types of mobile devices.

Our results reveal the following:

• The 100 different sounds played to seven individuals confirmed that BackDoor was com-

pletely inaudible.

• BackDoor attained data rates of 4 kbps at a distance of 1 meter, and 2 kbps at 1.5 meters

– this is 2× higher in throughput and 5× higher in distance than systems that use the

near-ultrasound band.

• BackDoor is able to jam and prevent the recording of any conversation within a radius

of 3.5 meters (and potentially a room-level coverage with higher power [5]). When 2000

English words were played back to seven humans and a speech recognition software [6],

fewer than 15% of the words were decoded correctly. Audible jammers, aiming at compa-

rable performance, would need to play white noise at a loudness of 97 dBSpl, considered

seriously harmful to human ears [7].

In sum, this chapter elaborates on the following contributions:

• Exploits nonlinearities in off-the-shelf microphones to enable a “backdoor” from high to

low frequencies. This backdoor permits playback of high-frequency sounds that are in-

audible to humans and yet recordable through microphones.
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• Builds enabling primitives for applications in acoustic communication and privacy. The

acoustic radio outperforms today’s near-ultrasound systems, while jamming raises the bar

against eavesdropping.

The subsequent sections expand on these contributions. We begin with an acoustic primer,

followed by intuitions, system design, and evaluation.

2.2 Acoustic Systems Primer

2.2.1 Common Microphone Systems

Any sound recording system requires two main modules – a transducer and an analog-

to-digital converter (ADC). The transducer contains a “diaphragm” that vibrates due to

sound pressure, producing a proportional change in voltage. The ADC measures this voltage

variation (at a fixed sampling frequency) and stores the samples in memory. These samples

represent the recorded sound in the digital domain.

A practical microphone needs two more components between the diaphragm and the

ADC, namely a pre-amplifier and a low-pass filter. Figure 2.2 shows the pipeline. The

pre-amplifier’s task is to amplify the output of the transducer by a gain of around 10× so

that the ADC can measure the signal effectively using its predefined quantization levels.

Without this amplification, the signal is too weak (around tens of millivolts).

Mic	 Pre-amp	 Low-pass	 ADC	

Sound	
Voltage	
signal	

Amplified	
signal	

Band-limited	
signal	

Digital	
samples	

Figure 2.2: The sound recording signal flow.

As per Nyquist’s law, if the ADC’s sampling frequency is fs Hz, the sound must be band

limited to fs
2

Hz to avoid aliasing and distortions. Since natural sound can spread over a

wide band of frequencies, it needs to be low pass filtered (i.e., frequencies greater than fs
2

removed) before the A/D conversion. Since ADCs in today’s microphones operate at 48 kHz,

the low-pass filters (LPFs) are designed to cut off signals at 24 kHz. Figure 2.3 shows the

effect of the low-pass (or anti-aliasing) filter on the recorded sound spectrum.
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Figure 2.3: The digital spectrum with and without the (anti-aliasing) low-pass filter.

Sound Playback through Speakers: Sound playback is simply the reverse of recording.

Given a digital signal as input, the digital-to-analog converter (DAC) produces the corre-

sponding analog signal and feeds it to the speaker. The speaker’s diaphragm oscillates to

the applied voltage producing varying sound pressures in the medium, which is then audible

to humans.

2.2.2 Linear and Nonlinear Behavior

Modules inside a microphone are mostly linear systems, meaning that the output signals are

linear combinations of the input. If the input sound is S, then the output can be represented

by

Sout = A1S

Here A1 is a complex gain that can change the phase and/or amplitude of the input fre-

quencies, but does not generate spurious new frequencies. This behavior makes it possible

to record an exact (but higher-power) replica of the input sound and playback without

distortion.

In practice, however, microphone hardware maintain strong linearity only in the audible

frequency range; outside this range, the response exhibits nonlinearity. The diaphragm

also exhibits similar behavior. Thus, for f > 25 kHz, the net recorded sound Sout may be

expressed in terms of the input sound S as follows:

Sout

∣∣∣∣
f>25

=
∞∑
i=1

AiS
i = A1S + A2S

2 + A3S
3 + ...

While in theory the nonlinear output is an infinite power series, the third- and higher-order

terms are extremely weak and can be ignored. BackDoor finds opportunities to exploit the

second-order term, which can be manipulated by designing the input signal S.
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2.3 Core Intuition and Validation

As mentioned earlier, our core idea is to operate the microphone at high (inaudible) fre-

quencies, thereby invoking the nonlinear behavior in the diaphragm and pre-amplifier. This

is counterintuitive because most researchers and engineers strive to avoid nonlinearity. In

our case, however, we intend to create an inlet into the audible frequency range and nonlin-

earity is essentially the “backdoor”. We sketch the basic technique next, followed by some

measurements to validate assumptions.

To operate the microphone in its nonlinear range, we use an off-the-shelf ultrasound

speaker and play a sound S, composed of two inaudible tones S1 = 40 and S2 = 50 kHz.

Mathematically, S = Sin(2π40t) + Sin(2π50t). After passing through the diaphragm and

pre-amplifier of the microphone, the output Sout can be modeled as:

Sout = A1(S1 + S2) + A2(S1 + S2)
2

= A1

{
Sin(ω1t) + Sin(ω2t)

}
+ A2

{
Sin2(ω1t)+

Sin2(ω2t) + 2Sin(ω1t)Sin(ω2t)
}

where ω1 = 2π40 and ω2 = 2π50.

Now, the first-order terms produce frequencies ω1 and ω2, which lie outside the micro-

phone’s cutoff. The second-order terms, however, is a multiplication of signals, resulting in

various frequency components, namely, 2ω1, 2ω2, (ω1 − ω2), and (ω1 + ω2). Mathematically,

A2(S1 + S2)
2 = 1− 1

2
Cos(2ω1t)−

1

2
Cos(2ω2t) +

Cos((ω1 − ω2)t)− Cos((ω1 + ω2)t)

With the microphone’s cutoff at 24 kHz, all of the above frequencies in Sout get filtered

out by the LPF, except Cos((ω1 − ω2)t), which is essentially a 10 kHz tone. The ADC is

oblivious of how this 10 kHz signal was generated and records it like any other sound signal.

We call this the “shadow” signal. The net effect is that a completely inaudible frequency

has been recorded by unmodified off-the-shelf microphones.

2.3.1 Measurements and Validation

For the above idea to work with unmodified off-the-shelf microphones, two assumptions need

validation. (1) The diaphragm of the microphone should exhibit some sensitivity at the high-
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end frequencies (> 30 kHz). If the diaphragm does not vibrate at such frequencies, there

is no opportunity for nonlinear mixing of signals. (2) The second-order coefficient A2 needs

to be adequately high to achieve a meaningful signal-to-noise ratio (SNR) for the shadow

signal, while the third- and fourth-order coefficients (A3, A4) should be negligibly weak. We

verify these next.

(1) Sensitivity to High Frequencies: Figure 2.4 reports the results when a 60 kHz

sound was played through an ultrasonic speaker and recorded with a programmable micro-

phone circuit. To verify the presence of a response at this high frequency, we “hacked”

the circuit using an FPGA kit, and tapped into the signal before it entered the low-pass

filter (LPF). Figure 2.4(a) shows the clear detection of the 60 kHz tone, confirming that

the diaphragm indeed vibrates to ultrasounds. We also measured the channel frequency

response at the output of the pre-amplifier (before the LPF); Figure 2.4(b) illustrates the

results. The take away message is that the analog components indeed operate at a much

wider bandwidth; it is the digital domain that restricts the operating range.
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Figure 2.4: (a) Microphone signals (measured before the LPF) confirm the diaphragm and
pre-amplifier’s sensitivity to ultrasound frequencies. (b) Full frequency response at the
output of the amplifier.

(2) Magnitude of Nonlinear Coefficients: Figure 2.5(a) shows the entire spectrum

after the nonlinear mixing has occurred, but before the LPF. Except for the shadow at (ω1−
ω2), we observe that all other frequency spikes are above the LPF’s 24 kHz cutoff frequency.

Similarly, the nonlinear effect on a single frequency – shown in Figure 2.5(b) – only produces

integer multiples of the original frequency, i.e., ω, 2ω, 3ω, and so on. These two types

of nonlinear distortions are called intermodulation and harmonic distortions, respectively.

Importantly, the shadow signal is still conspicuous above the noise floor, while the third-

order distortion is marginally above noise. This confirms the core opportunity to leverage

the shadow.
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Figure 2.5: (a) The intermodulation distortion of signal. (b) The harmonic distortion of
signal.

2.3.2 Hardware Generalizability

Before concluding this section, we report measurements to confirm that nonlinearities are

present in different kinds of hardware (not just a specific make or model). To this end,

we played high-frequency sounds and recorded them across a variety of devices, including

smartphones (iPhone 5S, Samsung Galaxy S6), smartwatch (Samsung Gear2), video camera

(Canon PowerShot ELPH 300HS), hearing aids (Kirkland Signature 5.0), laptop (MacBook

Pro), etc. Figure 2.6 summarizes the SNR for the shadow signals for each of these devices.

The SNR is uniformly conspicuous across all the devices, suggesting potential for widespread

applicability.
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Figure 2.6: Consistent shadow at 5 kHz (in response to 45 and 50 kHz ultrasound tones)
confirms nonlinearity across various microphone platforms.

2.4 System Design

This section details the two technical modules in BackDoor: communication and jamming.
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2.4.1 Communication

Thus far, the shadow signal is a trivial tone carrying one bit of information (presence of

absence). While this was useful for explanation, our actual goal is to modulate the high-

frequency signals at the speaker and demodulate the shadow at the microphone to achieve

meaningful data rates. We discuss the challenges and opportunities in developing this com-

munication system.

(1) Failure of Amplitude Modulation (AM):

Our first idea was to modulate a single ultrasound tone, a data carrier, with a message signal

m(t). Assuming amplitude modulation [8, 9], this results in m(t)Sin(ωct), where ωc is a high

frequency, ultrasound carrier. Now, if m(t) = a.Sin(ωmt), then the speaker should produce

this signal:

SAM = aSin(ωmt)Sin(ωct)

Now, when this signal arrives at the microphone and passes through the nonlinearities,

the squared components of the amplifier’s output will be:

S2
out,AM = A2

{
aSin(ωmt).Sin(ωct)

}2
= −A2

a2

4

{
Cos(ωct− ωmt)− Cos(ωct+ ωmt)

}2
= −A2

a2

4
Cos(2ωmt) + (terms with frequencies above ωc and DC)

The result is a signal that contains a Cos(2ωmt) component. So long as ωm, the frequency

of the data signal, is less than 10 kHz, the corresponding shadow at 2ωm = 20 kHz is within

the LPF cutoff. Thus, the received sound data can be band-pass filtered in software, and

the data signal correctly demodulated.

Importantly, the above phenomenon is reminiscent of coherent demodulation in conven-

tional radios, where the receiver would have multiplied the modulated signal, which can

be represented as (aSin(ωmt)Sin(ωct)), with the frequency and phase-synchronized carrier

signal Sin(ωct). The result would be the m(t) signal in baseband, i.e., the carrier frequency

ωc eliminated. Our case is somewhat similar – the carrier also gets eliminated, and the

message signal appears at 2ωm (instead of ωm). This is hardly a problem since the signal

can be extracted via band-pass filtering. Thus, the net benefit is that the microphone’s

nonlinearity naturally demodulates the signal and translates to within the LPF cutoff, re-

quiring no changes to the microphone. Put differently, nonlinearity may be a natural form

of self-demodulation and frequency translation, the root of our opportunity.
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Unfortunately, the ultrasound transmitter – a speaker with a diaphragm – also exhibits

nonlinearity. The above property of self-demodulation triggers in the transmitter side as well,

resulting in m(t) becoming audible. Figure 2.7 shows the output of the speaker as visualized

by the oscilloscope; a distinct audible component appears due to amplitude modulation. In

fact, any modulation that generates waveforms with non-constant envelopes [10] is likely to

suffer this problem. This is unacceptable and brings forth the first design question: how to

cope with transmitter-side nonlinearity?

Audible	
component	

AM	signal	

Piezo	sensor	signal	
(7me	domain)	

Signal	FFT	

Figure 2.7: The AM signal produces an audible frequency due to self-demodulation, shown
in this oscilloscope screenshot.

(2) Bypassing Transmitter Nonlinearity:

The design goal at this point is to modulate the carrier signal with data without affecting the

envelope of the transmitted signal. This raises the possibility of angle modulation (i.e, mod-

ulating the phase or frequency but leaving amplitude untouched). However, we recognized

that phase modulation (PM) is also unsuitable in this application because of unpredictable

noise from phone movements. In particular, the smaller wavelength of ultrasonic signals are

easily affected by phase noise and involves complicated receiver-side schemes during demodu-

lation. Therefore, we choose the other alternative of angle modulation: frequency modulation

(FM). Of course, FM modulation is not without tradeoffs; we discuss them and address the

design questions step by step.

(3) FM without Frequency Translation:

FM modulated signals, unlike AM, do not get naturally demodulated or frequency-translated

when pass through nonlinear transmitter. Assuming Cos(ωmt) as the message signal, we have

the input to the speaker as:

Sfm = Sin(ωct+ βSin(ωmt))

Note that the phase of the FM carrier signal should be the integral of the message signal,

hence it is Sin(ωmt). Now when Sfm gets squared due to nonlinearity, the result is of the
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form (1 + Cos(2ωct + otherTerms)) i.e., a DC component and another component at 2ωc.

Hence, along with the original ωc frequency the transmitter output contains frequency at

2ωc, both above the audible cutoff. Thus nothing gets recorded by the microphone. The

advantage, however, is that the output of the speaker is no longer audible. Moreover, as

typically the speaker has a low response at high frequencies near 2ωc, the output signal is

dominated by the data signal at ωc as in original Sfm.

(4) Second Carrier for Frequency Translation:

To get the message signal recorded, we need to frequency-shift the signal at ωc to the micro-

phone’s audible range, without affecting the signal transmitted from the speaker. To achieve

this, BackDoor introduces a second ultra-sound signal transmitted from a second speaker

collocated with the first speaker. Let us assume this second signal is called the secondary

carrier, ωs. Since ωs does not mix with ωc at the transmitter, the signal that arrives at the

microphone diaphragm is simply of the form:

SRxfm =

(
A1Sin(ωct+ βSinωmt) + A1Sin(ωst)

)
Note that the first term from the FM modulated ωc signal, and the second term from the

ωs secondary carrier. Now, upon arriving on the receiver, the microphone’s nonlinearity

essentially squares this whole signal as (SRxfm)2. Expanding this mathematically results in a

set of frequencies centered at (ωc − ωs), and the others at (ωc + ωs), 2ωc, and 2ωs. If we

design ωc and ωs to have a difference less than the LPF cutoff, the microphone can record

the signal.

Choosing ωc and ωs :

As we considered the requirements of the system, the choice of ωc and ωs became clear. First,

note that the FM-modulated signal has a bandwidth of, say 2W , ranging from (ωc −W ) to

(ωc +W ). Thus, assuming that the microphone’s LPF cutoff is 20 kHz, we should translate

the center frequency to 10 kHz; this maximizes W that can be recorded by the microphone.

Immediately, we know that (ωc − ωs) = 10 kHz.

Second, the microphone’s diaphragm exhibits resonance at certain frequencies; ωc and ωs

should leverage this to improve the strength of the recorded signal. Figure 2.8 plots the

normalized power of the translated signal for different values of ωc and ωs. Given (ωc−ωs) =

10 kHz, the resonance effects demonstrate the maximum response when ωc is 40 kHz, and

ωs is 50 kHz.

(5) Coping with the “Ringing” Effect:

The piezo-electric material in the speaker, that actually vibrates to create the sound, behaves
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Figure 2.8: Resonance for various ωc − ωs values.

as an oscillatory inductive-capacitive circuit. This loosely means that the actual vibration

is a weighted sum of input sound samples (from the recent past), and hence, the piezo-

electric material has a heavy-tailed impulse response (shown in Figure 2.9). Mathematically,

the output of the speaker can be computed as a convolution between this impulse response

and the input signal. Unfortunately, the nonlinearity of the speaker impacts this convolution

process as well, and generates low frequency components similar to the natural demodulation

effect discussed earlier. The result is a “ringing effect”, i.e., the transmitted sound becomes

slightly audible even with FM modulation.
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Figure 2.9: (a) The prolonged oscillation in an ultrasonic transmitter following a 40 kHz
sine burst input. (b) The impulse response of the ultrasonic transmitter.

To explain the self-demodulation effect, we assume a simplified impulse response “h”:

h =
∞∑
i=0

kiδ(t− i) ≈ k0δ(t) + k1δ(t− 1)
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When an angle modulated (FM/PM) signal “S” is convolved with “h”, the output “Sout”

is:

Sout = S ∗ h

= sin(ωct+ βsin(ωmt)) ∗ (k0δ(t) + k1δ(t− 1))

= k0sin(ωct+ βsin(ωmt))

+ k1sin(ωc(t− 1) + βsin(ωm(t− 1)))

While Sout contains only high-frequency components (since convolution is linear), the non-

linear counterpart S2
out mixes the frequencies in a way that has lower-frequency components

(or shadows):

S2
out = k0k1cos(ωc + 2βsin(

ωm
2

)sin(ωmt−
ωm
2

))

+ (terms with frequencies over 2ωc and DC)

Figure 2.10 shows the spectrum of Sout and S2
out, with and without the convolution. Ob-

serve the low frequency “shadow” that appear due to the second-order term for the convolved

signal – this shadow causes the ringing and is noticeable to humans.
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Figure 2.10: The spectrogram of Sout and S2
out, with and without the convolution. The

shadow signal appears due to second-order nonlinear effects on the convolved signal.

In most speakers, this “shadow” signal is weak; some expensive speakers even design their

piezo-electric materials to be linear in a wider operating region precluding this possibility.

However, we intend to be functional across all speaker platforms (even the cheapest ones)

and aim to be completely free of any ringing whatsoever. Hence, we adopt an inverse filtering

approach to remove ringing.
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(6) Inverse Filtering to Eliminate Ringing:

Our core idea draws inspiration from pre-coding in wireless communication, i.e., we modify

the input signal Sfm so that it remains the same after convolution. In other words, if

the modified signal Smod = h−1 ∗ Sfm, then the impact of convolution on Smod results in

h ∗ h−1 ∗ Sfm, which is Sfm itself. With Sfm as the output of the speaker, we do not

experience ringing. Of course, we need to compute h−1, i.e., learn the coefficients of the

impulse response. For this, we monitor the current passing through the ultrasonic transmitter

at different frequencies and calculate the (k0, k1, k2, ...). Fortunately, unlike wireless channels,

the response of the transmitter does not vary over time and hence the coefficients of the

inverse filter can be pre-calculated. Figure 2.11(a) shows the frequency response of one of

our ultrasound speakers, while Figure 2.11(b) shows how our inverse filtering scheme curbs

the ringing effect.
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Figure 2.11: (a) Frequency response of the ultrasonic speaker. (b) Inverse filtering method
almost eliminates ringing effect compared to Figure 2.9.

(7) Receiver Design:

This completes the transmitter design and the receiver is now an unmodified microphone

(from off-the-shelf phones, cameras, laptops, etc.). Of course, to extract the data bits, we

need to receive the output signal from the microphone and decode them in software. For

example, in smartphones, we have used the native recording app, and operated on the stored

signal output. The decoding steps are as follows.

We begin by band-pass filtering the signal as per the modulating bandwidth. Then,

we need to convert this signal to its baseband version and calculate the instantaneous fre-

quency to recover the modulating signal m(t). This signal contains the negative-side frequen-

cies that overlap with the spectrum-of-interest during the baseband conversion. To remove

the negative frequencies, we Hilbert transform the signal, producing a complex signal [11].

Now, for baseband conversion, we multiply this complex signal with another complex signal

e−j2π(ωs−ωc)t. Here (ωs − ωc) is 10 kHz, i.e., the shifted carrier frequency. This operation
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brings the modulated spectrum to baseband, centered around DC. The differentiation of its

phase gives the instantaneous frequency [12], which is then simply mapped to data bits.

Section 2.5 will present performance evaluation, but before that, we present the techniques

for inaudible voice jamming.

2.4.2 Jamming

Imagine military applications in which a private conversation needs to be held in an untrusted

environment, potentially bugged with spy microphones. We envision turning on one/few

BackDoor devices in that room. The device will broadcast appropriately designed ultrasound

signals that will not interfere with human conversation, but will jam microphones in the

vicinity. This section targets two jamming techniques toward this goal: (1) passive gain

suppression, and (2) active frequency distortion. Together, the techniques mitigate electronic

eavesdropping.

(1) Passive Gain Suppression:

Our core idea is to leverage the automatic gain control (AGC) circuit [13, 14, 15] in the

microphone to suppress voice conversations. By transmitting a narrowband ultrasound fre-

quency at high amplitude, we expect to force the microphone to alter its dynamic range,

thereby weakening the SNR of the voice signal. We elaborate next, beginning with a brief

primer on AGC.

AGC Primer: Our acoustic environment has large variations in volume levels ranging

from soft whispers to loud bangs. While human ears seamlessly handle this dynamic range,

it poses one of the major difficulties in microphones. Specifically, when a microphone is

configured at a fixed gain level, it fails to record a soft signal below the minimum quantization

limit, while a loud sound above the upper range is clipped, causing severe distortions. To

cope, microphones use an Automatic Gain Control (AGC) (as a part of its amplifier circuit)

that adjusts the signal amplitude to fit well within the ADC’s lower and upper bounds.

As a result, the signal covers the entire range of the ADC, offering the best possible signal

resolution.

Figure 2.12 demonstrates the AGC operation in a common MEMS microphone (ADMP401)

connected to the line-in port of a Linux laptop running the ALSA sound driver. We simul-

taneously play 5 kHz and 10 kHz tones through two different (but collocated) speakers and

display the power spectrum of the received sound. Figure 2.12(a) reports both the signals

at around −20 dB. However, when we increase the power of the 10 kHz signal to reach its

AGC threshold (while keeping the 5 kHz signal unaltered), Figure 2.12(b) shows how the
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microphone reduces the overall gain to accommodate the loud 10 kHz signal. This results

in a 25 dB reduction of the unaltered 5 kHz signal.
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Figure 2.12: Automatic gain control: (a) The 5 kHz tone is at −20 dB when the ampli-
tude of the 10 kHz frequency is at comparable power. (b) The 5 kHz tone reduces to −45
dB when the amplitude of the 10 kHz tone is made to exceed the AGC threshold. Some
spurious frequencies also appear due to nonlinearities.

Voice Suppression via AGC: In line with the above idea, when our ultrasound signal at

ωc passes through the AGC (i.e., before this frequency is removed by the low-pass filter), it

alters the AGC gain configuration and significantly suppresses the voice signals in the audible

frequency. Figure 2.13 shows the reduction in the received sound power in a Samsung Galaxy

S-6 smartphone when ultrasound tones are played at different frequencies from a piezoelectric

speaker. Evident from the plot, the maximum reduction is due to the signal at 40 kHz – this

is because 40 kHz is the resonance frequency of the piezoelectric transducer, and thereby

delivers the highest power. In that sense, using the resonance frequency offers double gains,

one toward increasing the SNR of our communication signal, and the other for jamming.
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Figure 2.13: The reduction in sound power due to the AGC. The reduction is maximum
for the 40 kHz tone due to the speaker’s resonance at this frequency.

This reduction in signal amplitude results in low resolution when sampled with discrete

quantization levels at the ADC. In fact, an adequately loud ultrasonic tone can completely
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prevent the microphone from recording any meaningful voice signal by reducing its amplitude

below the minimum quantization level. However, as the electrical noise level is usually higher

than the minimum quantization level of the ADC, it is sufficient to reduce the signal power

below that noise floor.

Figure 2.14 shows the reduction in the signal power of a recorded voice segment for three

different power levels of the 40 kHz tone. In practice, an absolute amplitude reduction is

difficult unless the speaker uses high power. Importantly, high power speakers are possible

with BackDoor since the jamming signal is inaudible. On the other hand, regular white

noise audio jammers must operate below strict power levels to not interfere with human

conversation/tolerance. This is a key advantage of jamming with BackDoor. Nonetheless,

we still attempt to lower the power requirement by injecting additional frequency distortions

at the eavesdropper’s microphone.
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Figure 2.14: The reduction in signal power of recorded voice segment for three power levels
(darker is lower power).

(2) Injecting Frequency Distortion:

A traditional jamming technique is to add strong white noise to reduce the SNR of the target

signal. We first implement a similar technique, but with inaudible band-limited Gaussian

noise. Specifically, we modulate the ωc carrier with white noise, bandpass filtered to allow

frequencies between 40 kHz to 52 kHz only. The 52 kHz ωs carrier shifts this noise to [0, 12]

kHz, which is sufficient to affect the voice signal.

To improve, we then shape the white noise signal to boost power in frequencies that are

known to be important for voice. Note that these distortions are designed in the ultrasound

bands (to maintain inaudibility), and hence they are played through the ultrasound speakers.

Section 2.5 will report results on word legibility, as a function of the separation between the

jammer and the spy microphone.
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(a) (b) (c)

Figure 2.15: BackDoor experimental setup: (a) Two ultrasonic speakers mounted on a cir-
cuit board for data communication. (b) A 2-watt speaker array system for jamming appli-
cations. (c) The FPGA-based setup for probing into individual components of the micro-
phone.

2.5 Evaluation

BackDoor was evaluated on three main metrics: (1) human audibility, (2) throughput, packet

error rates (PER) and bit error rates (BER) for data communication, and (3) the efficacy of

jamming. We summarize the key results here, followed by details.

• Tables 2.1 and 2.2 report human perception of audibility for BackDoor for various fre-

quencies, modulations, and SNR levels. Except for amplitude modulation (AM), all the

human volunteers reported complete silence.

• Figures 2.17 and 2.18 report the variation of throughput against increasing distance,

different phone orientations, and impact of acoustic interference. The results show through-

put of 4 kbps at 1 meter away which is 2× to 4× higher than today’s mobile ultrasound

communication systems.

• Figure 2.19 compares the jamming radius for BackDoor and audible white noise-based

jammers. To achieve the same jamming effect (say, < 15% words legible by humans), we find

that the audible jammer requires a loudness of 97 dBSpl which is similar to a jackhammer and

can cause severe damage to humans [7]. BackDoor, on the other hand, remains completely

silent. Conversely, when the white noise sound level is made tolerable, the legibility of the

words was 76%.

We elaborate on these results below, starting with details on our implementation platform.
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2.5.1 Implementation

(1) Transmitter Speakers: Figure 2.15(a) and (b) show two different transmitter proto-

types we have developed, the first one for communication and the other for jamming. The

communication transmitter consists of two ultrasonic piezoelectric speakers [16]; each trans-

mits a separate frequency as described in Section 2.4. A programmable waveform generator

(Keysight 33500b series) drives the speakers with frequency modulated signals. The signals

are amplified using an NE5535AP op-amp based non-inverting amplifier, permitting signals

up to 150 kHz. The jamming transmitter in Figure 2.15(b) is composed of two speaker

arrays, each array with nine piezoelectric speakers connected in parallel to generate a 2 watt

jamming signal. The signals driving these arrays are first amplified using an LM380 op-amp

based power amplifier separately powered from a constant DC-voltage source. Figure 2.16

shows the circuit diagram of the speaker array.
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Figure 2.16: The circuit diagram of the jamming transmitter.

(2) Receiver Microphones: We experiment with two types of receivers. The first is

an off-the-shelf Samsung Galaxy S6 smartphone (released in Aug, 2015) running Android

OS 5.1.1. Signals are recorded through a custom Android app using the standard APIs.

The second receiver is shown in Figure 2.15(c) – a more involved setup that was mainly

used for micro-benchmarks reported earlier in Sections 2.3 and 2.4. This allowed us to tap

into different components of the microphone pipeline, and analyze signals in isolation. The

system runs on a high bandwidth data acquisition ZedBoard, a Xilinx Zynq-7000 SoC based

FPGA platform [17], that offers a high-rate internal ADC (up to 1 Msample/sec). A MEMS

microphone (ADMP 401) is externally connected to this ADC, offering undistorted insights

into higher-frequency bands of the spectrum.
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Table 2.1: Perceived loudness of BackDoor in comparison to audible sounds for unmodu-
lated signals.

Reference Mic. 2 kHz Tone 5 kHz Tone

SNR (dB) BackDoor Audible BackDoor Audible

25 0 0.75 0 3.33
30 0 1.5 0 4.08
35 0 2 0 4.91
40 0 2.67 0 5.42
45 0 3.17 0 6.17

Table 2.2: Perceived loudness of BackDoor in comparison to audible sounds for modulated
signals.

Reference Mic. FM AM White Noise

SNR (dB) BackDoor Audible BackDoor Audible BackDoor Audible

25 0 1.2 0 0.46 0 0.1
30 0 2.3 0.1 1.36 0 0.26
35 0 3.5 0.1 1.85 0 0.5
40 0 4.2 0.16 2.4 0 0.8
45 0 4.8 0.68 3.06 0 1.24

2.5.2 Human Audibility Results

We played BackDoor signals to a group of seven users (ages between 27 and 38) seated around

a table 1 to 3 meters away from the speakers. Each user reported the perceived loudness of

the sound on a scale of 0-10, with 0 being perceived silence. As a baseline, we also played

audible sounds and asked the users to report the loudness levels. A reference microphone

is placed at 1m from the speaker to record and compute the SNR (Signal to Noise Ratio)

of all the tested sounds. We varied the SNR and equalized them at the microphone for fair

comparison between audible and inaudible (BackDoor) sounds.

Four types of signals were played: (1) Single Tone Unmodulated Signals: In the simplest

form, we transmitted multiple pairs of ultrasonic tones (〈40, 42〉 and 〈40, 45〉) that generate

a single audible frequency tone in the microphone. As baseline, we separately played a 2 kHz

and 5 kHz audible tone. (2) Frequency Modulated Signals: We modulated the frequency of a

40 kHz primary carrier with a 3 kHz signal. We also transmitted a 45 kHz secondary carrier

on the second speaker, producing 3 kHz FM signal centered at 5 kHz in the microphone. As

baseline, we played the equivalent audible FM signal on the same speakers. (3) Amplitude

Modulated Signals: Similar to FM signals, we created these AM signals by modulating the

amplitude of 40 kHz signal with a 3 kHz tone. (4) White Noise Signals: Finally, we generated

white Gaussian noise with zero mean and variance proportional to the transmitted power,
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Figure 2.17: BackDoor Communication Results: (a) Throughput vs. distance. (b)
Throughput comparison against related P2P communication schemes. (c) Packet error
rate vs. orientation. (d) Phone orientations.

at a bandwidth of 8 kHz, band-limited to [40, 48] kHz. We also transmit a 40 kHz tone on

the second speaker to frequency shift the white noise to the audible range of the speaker. As

baseline, we create audible white noise with the same properties band-limited to [0, 8] kHz

and played it on the speakers.

Audibility vs. SNR: Tables 2.1 and 2.2 summarize the average of perceived loudness that

users reported for both BackDoor and audible signals as a function of the SNR measured

at the reference microphone. For all types of signals except amplitude modulation (AM),

BackDoor is completely inaudible to all the users. AM signals are audible due to speaker

nonlinearity, as described earlier. However, the perceived loudness of BackDoor is signifi-

cantly lower than that of audible signals. Thus, so long we avoid AM, BackDoor signals

remain inaudible to humans but produce audible signals inside microphones with the same

SNR as loud audible signals.

2.5.3 Communication Results

The BackDoor transmitter is the two-speaker system while the receiver is the Samsung smart-

phone. The recorded acoustic signal is extracted and processed in MATLAB; we compute

bit error rate (BER), packet error rate (PER) and throughput under varying parameters.

Overall, 40 hours of acoustic transmission was performed to generate the results.

(1) Throughput:

Figure 2.17(a) reports BackDoor’s net end-to-end throughput for increasing separation be-

tween the transmitter and the receiver. BackDoor can achieve a throughput of 4 kbps at 1

m, 2 kbps at 1.5 m and 1 kbps at 2 m. Figure 2.17(b) compares BackDoor’s performance in
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terms of throughput and range with state-of-the-art mobile acoustic communication systems

(in both commercial products [18, 19] and research [1, 20]). The figure shows that Back-

Door achieve 2× to 80× higher throughput. This because these systems are constrained to

a very narrow communication band whereas BackDoor is able to utilize the entire audible

bandwidth.

(2) Impact of Phone Orientation:

Figure 2.17(c) shows the packet error rate (PER) when data is decoded by the primary

and secondary microphones in the phone, placed in six different orientations (shown in

Figure 2.17(d)). The aim here is to understand how real-world use of the phone impacts data

delivery. To this end, the phone was held at a distance of 1 m away from the transmitter, and

the orientation changed after each transmission session. The plot shows that except Y and

−Y , the other orientations are comparable. This is because the Y/−Y orientation aligns the

two receivers and transmitters in almost a straight line, resulting in maximal SNR difference.

Hand blockage of the further-away microphone makes the SNR gap pronounced. It should

be possible to compare the SNR at the microphones and select the better microphone for

minimized PER (regardless of the orientation).

(3) Impact of Interference:

Figure 2.18(a) reports the bit error rate (BER) variation against three different audible inter-

ference sources. To elaborate, we played audible interference signals – a presidential speech,

an orchestral music, and white noise – from a nearby speaker, while the data transmission

was in progress. The intensity of the interference at the microphone was at 70 dBSpl, equal-

ing the level of volume one hears on average in face-to-face conversations. This is certainly

much louder than average ambient noise, and hence, this serves as a strict test for Back-

Door’s resilience to interference. Also, the smartphone receiver was placed 1m away from

the speaker, and transmissions were at 2 kbps and 4 kbps.

Evident from the graph, voice and music has minimal impact on the communication error.

On the other hand, white noise can severely degrade performance. Figure 2.18(b) plots the

power spectral density of each interference – the decay beyond 4 kHz for voice and music

explains the performance plots. Put differently, since BackDoor operates around 10 kHz

frequency, voice and music signals do not affect the band as much as white noise, that

remains flat over the entire spectrum.
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Figure 2.19: Jamming results: (a) BackDoor jams a radius of 3.5m at 2W power. (b)
White noise power needed to match BackDoor is intolerable. (c) Jamming radius when
BackDoor uses inaudible white noise, showing importance of selectively jamming voice-
centric harmonics. (d) Confidence of speech recognizer.

2.5.4 Jamming Results

Consider the case where Bob is saying a secret to Alice and Eve has planted a microphone in

the vicinity, attempting to record Bob’s voice. In suspicion, Bob places a BackDoor jammer

in front of him on the table. We intend to report the efficacy of jamming in such a situation.

Specifically, we extract the jammed signal from Eve’s microphone and play it to an automatic

speech recognizer (ASR), as well as to a group of seven human users. We define Legibility as

the percentage of words correctly recognized by each. We plot Lasr and Lhuman for increasing

jamming radius, i.e., for increasing distance between Alice and Eve’s microphone.

We still need to specify another parameter for this experiment – the loudness with which

Bob is speaking. Acoustic literature suggests that at social conversations, say between two

people standing at arm’s length at a corridor, the average loudness is 65 dBSpl (dB of sound

pressure level). We design our situation accordingly, i.e., when Bob speaks, his voice at

Alice’s location 1 m away is made to be 70 dBSpl (i.e., Bob is actually speaking louder than

general social conversations).

In the actual experiment, we pretend that a smartphone is a spy microphone. Another

30



smartphone’s speaker is a proxy for Bob, and the words played are derived from Google’s

Trillion Word Corpus [21]; we pick the 2000 most-frequent words, prescribed as a good

benchmark [22]. As mentioned earlier, the volume of this playback is set to 70 dBSpl at

1 m away. Now, the BackDoor prototype plays an inaudible jamming signal through its

ultrasonic speakers to jam these speech signals.

Our baseline comparison is essentially against audible white noise-based jammers in today’s

markets. Assuming BackDoor jams up to a radius of R, we compute the loudness needed by

white noise to jam the same radius. All in all, 14 hours of sound was recorded and a total of

25, 000 words were tested. The ASR software is the open-source Sphinx4 library (pre-alpha

version) published by CMU [6, 23]. We present the results next.

(1) Audible and Inaudible Jamming Radius:

Figure 2.19(a) plots Lasr and Lhuman for increasing the jamming radius. Even with a 1 W

power, a radius of 3.5 m (around 11 feet) can be jammed around Bob. We compare against

audible noise jammers presented in Figure 2.19(b). For jamming at the same radius of 3.5

m, the loudness necessary for the audible white noise is 97 dBSpl which is the same as a

jackhammer and can cause damage to the human ear [7]. Conversely, we find that when the

audible white noise is made tolerable (comparable to a white noise smartphone app playing

at full volume), the legibility becomes 76%. Thus, BackDoor is a clear improvement over

audible jammers. More importantly, increasing the power of BackDoor jammers can increase

the radius proportionally. This can be easily achieved. In fact, current portable Bluetooth

speakers already transmit 10× to 20× higher power than BackDoor [24, 25]. Audible jammers

cannot increase their power to boost the range since they are already intolerable to humans.

(2) Impact of Selective Frequency Distortion:

Figure 2.19(c) shows results when the jamming signal is simply a white noise, without the

deliberate distortions of voice-centric frequencies (fricatives, phonemes, and harmonics). Ev-

idently, the performance is substantially weaker, indicating the importance of signal shaping

and jamming. Finally, Figure 2.19(d) shows the confidence scores from ASR for all correctly

recognized words. Results show quite low confidence on a large fraction of words, implying

that voice fingerprinting and other voice-controlled systems would be easy to DoS-attack

with a BackDoor-like system.
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2.6 Points of Discussion

Needless to say, there is much room for further work and improvement. We discuss a few

points here.

• Jamming Range: BackDoor’s restriction in the jamming range stems from the atten-

uation of ultrasound in air and the limited amplitude at which the ultrasound speakers can

vibrate, producing low power signals. We have demonstrated a proof-of-concept with nine

speakers that boosts the jamming power level – direct materials cost is around $4. It should

be certainly possible to develop a bigger speaker array to significantly increase the power [5].

In some cases (e.g. movie theater) multiple short-range jammers can be used to sufficiently

cover the space. The jammers could be wall powered where necessary, and yet, will remain

inaudible.

• Smarter Spy: We have assumed a fairly simple attacker planting a single microphone in

the vicinity. Multiple microphones, perhaps even with various beamforming capabilities, may

be able to extract out the voice from the jamming signal. However, greater sophistication in

jamming should be feasible too, such as variation in the jamming signal to prevent channel

estimation; even some movements of the speakers. We leave this to future work.

• Interference with Phone Calls: Data communication with BackDoor can interfere

with people talking on the phone nearby. To this end, data communication applications

will inherently need to be proximate and at low power. One possibility is an acoustic NFC,

but at greater ranges of 1 or 2 feet. Alternatively, the communication could be made as a

spread spectrum so that the interference remains below the noise floor. Our ongoing work

is investigating these unresolved issues.

2.7 Related Work

(1) Literature in Acoustic Nonlinearity: The literature in acoustic signal processing

and communication is extremely rich. The notion of exploiting nonlinearity was originally

studied in the 1957 by Westervelt’s seminal theory [26, 27], which later triggered a series of

research. The core vision was that nonlinearities of the air can naturally self-demodulate

signals; when combined with directional propagation of ultrasound signals, it may be possible

to deliver audible information over large distances using relatively low power [28, 29, 30].

Recently, there has been a revival of these efforts with AudioSpotlight [31], SoundLazer

[32, 33], and other projects [34, 35, 36]. Our work, however, is opposite of these efforts –

we are attempting to retain the inaudible nature of ultrasound while making it recordable

inside electronic circuits.
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(2) Medical Devices: Human bones have also been shown to exhibit nonlinearities that

self-modulate signals, resulting in applications in bone conduction ultrasound hearing aids

for severely deaf individuals [37, 38, 39, 40, 41]. Even bone conduction headphones are being

considered that exploit similar nonlinearities [42].

(3) Assorted Topics Related to BackDoor: A set of recent works bear some degree of

relevance to BackDoor. Dhwani [1] explores in-air sound signals as a short range, ad-hoc data

transfer modality. Chirp [18] and Zoosh [43, 19] have rolled out commercial products using

sound for a secure data exchange medium. GhostTalk [44] explores various attack scenarios

on the consumer electronics using high power electromagnetic interference. Another thread of

recent work has looked into watermarking audio-visual media. Dolphin [45] enables speaker-

microphone communication by embedding data bits on the sound. It adapts the signal

parameters in real-time to keep the embedded signal imperceptible to human ears while

achieving the 500 bps data rate. Kaleido [46] proposes a video precoding based solution to

prevent videotaping an on-screen show in a theater or on a website. It precodes distortions

in the video such that it is invisible to humans but severely distorts videotaping (due to

specific limitations of the camera). Finally, sound maskers have also been used for protecting

private conversation, however, these techniques have been limited to audible frequencies

[47, 48, 49, 50]. BackDoor differs from the above in the sense that it exploits discrepancies

between humans and electronics, ultimately enabling a new capability to the best of our

knowledge.

2.8 Chapter Summary

Device nonlinearity has been conventionally viewed as a peril. Concepts presented in this

chapter break away from this point of view and discover various opportunities to harness

nonlinearity. By carefully designing ultrasound signals, we demonstrate that such signals

remain inaudible to humans but are record-able by unmodified off-the-shelf microphones.

This translates to new applications including inaudible data communication, privacy, and

acoustic watermarking. While our ongoing work is focused on deeper understanding of these

capabilities and applications, our longer-term goal is focused on generalization to other

platforms, such as wireless radios and inertial sensors.
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Chapter 3

Inaudible Voice Commands: Attack and Defense

3.1 Overview

A number of recent research studies have focused on the topic of inaudible voice commands

[3, 52, 53]. Backdoor [3], discussed in Chapter 2, showed how hardware nonlinearities in

microphones can be exploited, such that inaudible ultrasound signals can become audible to

any microphone. DolphinAttack [52] developed on Backdoor to demonstrate that no software

is needed at the microphone, i.e., a voice enabled device like Amazon Echo can be made to

respond to inaudible voice commands. A similar research work independently emerged in

arXiv [53], with a video demonstration of such an attack [54]. These attacks are becoming

increasingly relevant, particularly with the proliferation of voice enabled devices including

Amazon Echo, Google Home, Apple Home Pod, Samsung refrigerators, etc.

While creative and exciting, these attacks are still deficient on an important parameter:

range. DolphinAttack can launch from a distance of 5 ft to Amazon Echo [52] while the

attack in [53] achieves 10 ft by becoming partially audible. In attempting to enhance range,

we realized strong tradeoffs with inaudibility, i.e., the output of the speaker no longer remains

silent. This implies that currently known attacks are viable in short ranges, such as Alice’s

friend visiting Alice’s home and silently attacking her Amazon Echo [55, 52]. However, the

general, and perhaps more alarming attack, is the one in which the attacker parks the car on

the road and controls voice-enabled devices in the neighborhood, and even a person standing

next to the attacker does not hear it. This chapter elaborates on the attempt to achieve

such an attack radius, followed by defenses against them. We formulate the core problem

next and outline our intuitions and techniques for solving them.

Briefly, nonlinearity is a hardware property that makes high-frequency signals arriving at

This chapter revises the publication “Inaudible Voice Commands: The Long-Range Attack and Defense,”
in NSDI 2018 [51].
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a microphone, say shi, get shifted to lower frequencies slow (see Figure 3.1). If shi is designed

carefully, then slow can be almost identical to shi but shifted to within the audibility cutoff of

20 kHz inside the microphone. As a result, even though humans do not hear shi, nonlinearity

in microphones produces slow, which then become legitimate voice commands to devices like

Amazon Echo. This is the root opportunity that empowers today’s attacks.
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Figure 3.1: Hardware nonlinearity creates frequency shift. Voice commands transmitted
over inaudible ultrasound frequencies get shifted into the lower audible bands after passing
through the nonlinear microphone hardware.

Two important points need mention at this point. (1) Nonlinearity triggers at high fre-

quencies and at high power – if shi is a soft signal, then the nonlinear effects do not surface.

(2) Nonlinearity is fundamental to acoustic hardware and is equally present in speakers as in

microphones. Thus, when shi is played through speakers, it will also undergo the frequency

shift, producing an audible slow. Dolphin and other attacks sidestep this problem by oper-

ating at low power, thereby forcing the output of the speaker to be almost inaudible. This

inherently limits the range of the attack to 5 ft; any attempt to increase this range will result

in audibility.

This chapter breaks away from the zero-sum game between range and audibility by an al-

ternative transmitter design. Our core idea is to use multiple speakers, and stripe segments

of the voice signal across them such that leakage from each speaker is narrowband, and

confined to low frequencies. This still produces a garbled, audible sound. To achieve true

inaudibility, we solve a min-max optimization problem on the length of the voice segments.

The optimization picks the segment lengths in a way such that the aggregate leakage func-

tion is completely below the human auditory response curve (i.e., the minimum separation

between the leakage and the human audibility curve is maximized). This ensures, by design,

the attack is inaudible.

Defending against this class of nonlinearity attacks is not difficult if one were to assume

hardware changes to the receiver (e.g., Amazon Echo or Google Home). An additional

ultrasound microphone will suffice since it can detect the shi signals in air. However, with

software changes alone, the problem becomes a question of forensics, i.e., can the shifted

signal slow be discriminated from the same legitimate voice command, sleg? In other words,
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does nonlinearity leave an indelible trace on slow that would otherwise not be present in sleg?

Our defense relies on the observation that voice signals exhibit well-understood structure,

composed of fundamental frequencies and harmonics. When this structure passes through

nonlinearity, part of it remains preserved in the shifted and blended low-frequency signals.

In contrast, the legitimate human voice projects almost no energy in these low-frequency

bands. An attacker that injects distortion to hide the traces of voice, either pollutes the

core voice command, or raises the energy floor in these bands. This forces the system into

a zero-sum game, disallowing the attacker from erasing the traces of nonlinearity without

raising suspicion.

Our measurements confirm the possibility to detect voice traces, i.e., even though nonlin-

earity superimposes many harmonics and noise signals on top of each other, and attenuates

them significantly, cross-correlation still reveals the latent voice fingerprint. Of course, vari-

ous intermediate steps of contour tracking, filtering, frequency-selective compensation, and

phoneme correlation are necessary to extract out the evidence. Nonetheless, our final clas-

sifier is transparent and does not require any training at all, but succeeds for voice signals

only, as opposed to the general class of inaudible microphone attacks (such as jamming [3]).

We leave this broader problem to future work.

Our overall system, BackDoor-II, is built on multiple platforms. For the inaudible attack

at long ranges, we have developed an ultrasound speaker array powered by our custom-made

amplifier. The attacker types a command on the laptop, MATLAB converts the command

to a voice signal, and the laptop sends this through our amplifier to the speaker. We demon-

strate controlling Amazon Echo, iPhone Siri, and Samsung devices from a distance of 25 ft,

limited by the power of our amplifier. For defense, we record signals from Android Samsung

S6 phones, as well as from off-the-shelf microphone chips (popular in today’s devices). We

attack the system with various ultrasound commands, both from literature as well as our

own. BackDoor-II demonstrates defense against all attacks with 97% precision and 98%

recall. The performance remains robust across varying parameters, including multipath,

power, attack location, and various signal manipulations.

In sum, our core contributions may be summarized as follows:

• A transmitter design that breaks away from the tradeoff between attack range and au-

dibility. The core ideas pertain to carefully striping frequency bands across an array of

speakers, such that individual speakers are silent but the microphone is activated.

• A defense that identifies human voice traces at very low frequencies (where such traces
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should not be present) and uses them to protect against attacks that attempt to erase or

disturb these traces.

The subsequent sections elaborate on these ideas, beginning with some relevant back-

ground on nonlinearity, followed by threat model, attack design, and defense.

3.2 Background: Acoustic Nonlinearity

Microphones and speakers are in general designed to be linear systems, meaning that the

output signals are linear combinations of the input. In the case of diaphragms and power

amplifiers inside microphones and speakers, if the input sound signal is s(t), then the output

should ideally be:

sout(t) = A1s(t)

where A1 is the amplifier gain. In practice, however, acoustic components in microphones

and speakers (like diaphragms, amplifiers, etc.) are linear only in the audible frequency

range (< 20 kHz). In ultrasound bands (> 25 kHz), the responses exhibit nonlinearity

[56, 57, 58, 59, 60]. Thus, for ultrasound signals, the output of the amplifier becomes:

sout(t) =
∞∑
i=1

Ais
i(t) = A1s(t) + A2s

2(t) + A3s
3(t) + ...

≈ A1s(t) + A2s
2(t)

(3.1)

Higher-order terms are typically extremely weak since A4+ � A3 � A2 and hence can be

ignored.

Chapter 2 has shown ways to exploit this phenomenon, i.e., it is possible to play ultrasound

signals that cannot be heard by humans but can be directly recorded by any microphone.

Specifically, an ultrasound speaker can play two inaudible tones: s1(t) = cos(2πf1t) at

frequency f1 = 38 kHz and s2 = cos(2πf2t) at frequency f2 = 40 kHz. Once the combined

signal shi(t) = s1(t) + s2(t) passes through the microphone’s nonlinear hardware, the output

becomes:
sout(t) = A1shi(t) + A2s

2
hi(t)

= A1(s1(t) + s2(t)) + A2(s1(t) + s2(t))
2

= A1 cos(2πf1t) + A1 cos(2πf2t)

+ A2 cos2(2πf1t) + A2 cos2(2πf2t)

+ 2A2 cos(2πf1t) cos(2πf2t)
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The above signal has frequency components at f1, f2, 2f1, 2f2, f2 + f1, and f2 − f1. This

can be seen by expanding the equation:

sout(t) = A1 cos(2πf1t) + A1 cos(2πf2t)

+ A2 + 0.5A2 cos(2π2f1t) + 0.5A2 cos(2π2f2t)

+ A2 cos(2π(f1 + f2)t) + A2 cos(2π(f2 − f1)t)

Before digitizing and recording the signal, the microphone applies a low-pass filter to remove

frequency components above the microphone’s cutoff of 24 kHz. Observe that f1, f2, 2f1,

2f2, and f1 + f2 are all > 24 kHz. Hence, what remains (as an acceptable signal) is:

slow(t) = A2 + A2 cos(2π(f2 − f1)t) (3.2)

This is essentially an f2 − f1 = 2 kHz tone which will be recorded by the microphone.

However, this demonstrates the core opportunity, i.e., by sending a completely inaudible

signal, we are able to generate an audible “copy” of it inside any unmodified off-the-shelf

microphone.

3.3 Inaudible Voice Attack

We begin by explaining how the above nonlinearity can be exploited to send inaudible

commands to voice enabled devices (VEDs) at a short range. We identify deficiencies in

such an attack and then design the longer range, truly inaudible attack.

3.3.1 Short-Range Attack

Let v(t) be a baseband voice signal that once decoded translates to the command: “Alexa,

mute yourself”. An attacker moves this baseband signal to a high frequency fhi = 40 kHz

(by modulating a carrier signal), and plays it through an ultrasound speaker. The attacker

also plays a tone at fhi = 40 kHz. The played signal is:

shi(t) = cos(2πfhit) + v(t) cos(2πfhit) (3.3)
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After this signal passes through the nonlinear hardware and low-pass filter of the microphone,

the microphone will record:

slow(t) =
A2

2

(
1 + v2(t) + 2v(t)

)
(3.4)

This shifted signal contains a strong component of v(t) (due to more power in the speech

components), and hence, gets decoded correctly by almost all microphones.

What happens to v2(t)?

Figure 3.2 shows the power spectrum V (f) corresponding to the voice command v(t) =“Alexa,

mute yourself”. Here the power spectrum corresponding to v2(t) which is equal to V (f)∗V (f)

where (∗) is the convolution operation. Observe that the spectrum of the human voice is

between [50− 8000] Hz and the relatively weak components of v2(t) line up underneath the

voice frequencies after convolution. A component of v2(t) also falls at DC, however, degrades

sharply. The overall weak presence of v2(t) leaves the v(t) signal mostly unharmed, allowing

VEDs to decode the command correctly.

50Hz 

Non-overlapping V2(t) 

V2(t) overlaps 
with V(t) 

Figure 3.2: Spectrum of V (f) ∗ V (f) which is the nonlinear leakage after passing through
the microphone.

However, to help v(t) enter the microphone through the “nonlinear inlet”, shi(t) must

be transmitted at sufficiently high power. Otherwise, slow(t) will be buried in noise (due to

small A2). Unfortunately, increasing the transmit power at the speaker triggers nonlinearities

at the speaker’s own diaphragm and amplifier, resulting in an audible slow(t) at the output

of the speaker. Since slow(t) contains the voice command v(t), the attack becomes audible.

Past attacks sidestep this problem by operating at low power, thereby forcing the output of

the speaker to be almost inaudible [61]. This inherently limits the radius of attack to a short

range of 5 ft. Attempts to increase this range results in audibility, defeating the purpose of

the attack.

Figure 3.3 confirms this with experiments in our building. Five volunteers visited marked
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locations and recorded their perceived loudness of the speaker’s leakage. Clearly, speaker

nonlinearity produces audibility, a key problem for long-range attacks.

Figure 3.3: Heatmap showing locations at which v(t) leakage from the speaker is audible.

3.3.2 Long-Range Attack

Before developing the long-range attack, we concisely present the assumptions and con-

straints on the attacker.

(1) Threat Model:

We assume that the attack scenario is the following.

• The attacker cannot enter the home to launch the attack, otherwise, the above short-range

attack suffices.

• The attacker cannot leak any audible signals (even in a beamformed manner), otherwise

such inaudible attacks are not needed in the first place.

• The attacker is resourceful in terms of hardware and energy (perhaps the attacking speaker

can be carried in a car or placed at a balcony, pointed at VEDs in surrounding apartments

or pedestrians).

• In case the receiver device (e.g., Google Home) is voice fingerprinted, we assume the

attacker can synthesize the legitimate user’s voice signal using known techniques [62, 63]

to launch the attack.

• The attacker cannot estimate the precise channel impulse response (CIR) from its speaker

to the voice enabled device (VED) that it intends to attack.
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(2) Core Attack Method:

BackDoor-II develops a new speaker design that facilitates a considerably longer attack

range, while eliminating the audible leakage at the speaker. Instead of using one ultrasound

speaker, BackDoor-II uses multiple ultrasound speakers, physically separated in space. Then,

BackDoor-II splices the spectrum of the voice command V (f) into carefully selected segments

and plays each segment on a different speaker, thereby limiting the leakage from each speaker.

(3) The Need for Multiple Speakers:

To better understand the motivation, let us first consider using two ultrasound speakers.

Instead of playing shi(t) = cos(2πfhit)+v(t) cos(2πfhit) on one speaker, we now play s1(t) =

cos(2πfhit) on the first speaker and s2(t) = v(t) cos(2πfhit) on the second speaker where

fhi = 40 kHz. In this case, the two speakers will output:

sout1 = cos(2πfhit) + cos2(2πfhit)

sout2 = v(t) cos(2πfhit) + v2(t) cos2(2πfhit)
(3.5)

For simplicity, we ignore the terms A1 and A2 (since they do not affect our understanding

of frequency components). Thus, when sout1 and sout2 emerge from the two speakers, human

ears filter out all frequencies > 20 kHz. What remains audible is only:

slow1 = 1/2

slow2 = v2(t)/2

Observe that neither slow1 nor slow2 contains the voice signal v(t), hence the actual attack

command is no longer audible with two speakers. However, the microphone under attack

will still receive the aggregate ultrasound signal from the two speakers, shi(t) = s1(t) +s2(t),

and its own nonlinearity will cause a “copy” of v(t) to get shifted into the audible range

(recall Equation 3.4). Thus, this two-speaker attack activates VEDs from greater distances,

while the actual voice command remains inaudible to bystanders.

Although the voice signal v(t) is inaudible, signal v2(t) still leaks and becomes audible

(especially at higher power). This undermines the attack.

(4) Suppressing v2(t) Leakage:

To suppress the audibility of v2(t), BackDoor-II expands to N ultrasound speakers. It first

partitions the audio spectrum V (f) of the command signal v(t), ranging from f0 to fN , intoN

frequency bins: [f0, f1], [f1, f2], · · · , [fN−1, fN ] as shown in Figure 3.4. This can be achieved

by computing an FFT of the signal v(t) to obtain V (f). V (f) is then multiplied with a
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rectangle function rect(fi, fi+1) which gives a filtered V[fi,fi+1](f). An IFFT is then used to

generate v[fi,fi+1](t) which is multiplied by an ultrasound tone cos(2πfhit) and outputted on

the ith ultrasound speaker as shown in Figure 3.4.
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Figure 3.4: Spectrum splicing: optimally segmenting the voice command frequencies and
playing it through separate speakers so that the net speaker-output is silent.

In this case, the audible leakage from ith ultrasound speaker will be slow,i(t) = v2[fi,fi+1]
(t).

In the frequency domain, we can write this leakage as:

Slow,i(f) = V[fi,fi+1](f) ∗ V[fi,fi+1](f)

This leakage has two important properties:

(1) E
[
|Slow,i(f)|2

]
≤ E

[
|V (f) ∗ V (f)|2

]
(2) BW (Slow,i(f)) ≤ BW (V (f) ∗ V (f))

where E[|.|2] is the power of audible leakage and BW (.) is the bandwidth of the audible

leakage due to nonlinearities at each speaker. The above properties imply that splicing the

spectrum into multiple speakers reduces the audible leakage from any given speaker. It also

reduces the bandwidth and hence concentrates the audible leakage in a smaller band below
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50 Hz.

While per-speaker leakage is smaller, they can still add up to become audible. The total

leakage power can be written as:

L(f) =

∣∣∣∣∣
N∑
i=1

V[fi,fi+1](f) ∗ V[fi,fi+1](f)

∣∣∣∣∣
2

To achieve true inaudibility, we need to ensure that the total leakage is not audible. To

address this challenge, we leverage the fact that humans cannot hear the sound if the sound

intensity falls below certain threshold, which is frequency dependent. This is known as the

“Threshold of Hearing Curve”, T (f). Figure 3.5 shows T (f) in dB as function of frequency.

Any sound with intensity below the threshold of hearing will be inaudible.
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Figure 3.5: Threshold of hearing curve.

BackDoor-II aims to push the total leakage spectrum, L(f), below the threshold of hearing

curve T (f). To this end, BackDoor-II finds the best partitioning of the spectrum, such that

the leakage is below the threshold of hearing. If multiple partitions satisfy this constraint,

BackDoor-II picks the one that has the largest gap from the threshold of hearing curve.

Formally, we solve the below optimization problem:

maximize
{f1,f2,··· ,fN−1}

min
f

[T (f)− L(f)]

subject tof0 ≤ f1 ≤ f2 ≤ · · · ≤ fN

(3.6)

The solution partitions the frequency spectrum to ensure that the leakage energy is below

the hearing threshold for every frequency bin. This ensures inaudibility at any human ear.
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(5) Increasing Attack Range:

It should be possible to increase attack range with more speakers, while also limiting audible

leakage below the required hearing threshold. This holds in principle due to the following

reason. For a desired attack range, say r, we can compute the minimum power density (i.e.,

power per frequency) necessary to invoke the VED. This power Pr needs to be high since the

nonlinear channel will strongly attenuate it by the factor A2. Now consider the worst case

where a voice command has equal magnitude in all frequencies. Given each frequency needs

power Pr and each speaker’s output needs to be below threshold of hearing for all frequencies,

we can run our min-max optimization for increasing values of N , where N is the number of

speakers. The minimum N that gives a feasible solution is the answer. Of course, this is the

upper bound; for a specific voice signal, N will be lower.

Increasing speakers can be viewed as beamforming the energy toward the VED. In the

extreme case for example, every speaker will play one frequency tone, resulting in a strong

DC component at the speaker’s output which would still be inaudible. In practice, our

experiments are bottlenecked by ADCs, amplifiers, speakers, etc., hence we will report results

with an array of 61 small ultrasound speakers.

3.4 Defending Inaudible Voice Commands

Recognizing inaudible voice attacks is essentially a problem of acoustic forensics, i.e., detect-

ing evidence of nonlinearity in the signal received at the microphone. Of course, we assume

the attacker knows our defense techniques and hence will try to remove any such evidence.

Thus, the core problem comes down to this question: Is there any trace of nonlinearity that

just cannot be removed or masked?

To quantify this possibility, let v(t) denote a human voice command signal, say “Alexa,

mute yourself”. When a human issues this command, the recorded signal sleg = v(t) + n(t),

where n(t) is noise from the microphone. When an attacker plays this signal over ultrasound

(to launch the nonlinear attack), the recorded signal snl is:

snl =
A2

2
(1 + 2v(t) + v2(t)) + n(t) (3.7)

Figure 3.6 shows an example of sleg and snl. Evidently, both are very similar, and both

invoke the same response in VEDs (i.e., the text-to-speech converter outputs the same text

for both sleg and snl). A defense mechanism would need to examine any incoming signal s

and tell if it is low-frequency legitimate or a shifted copy of the high-frequency attack.
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3.4.1 Failed Defenses

Before we describe BackDoor-II’s defense, we mention a few other possible defenses which

we have explored before converging on our final defense system. We concisely summarize

four of these ideas.
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Figure 3.6: Spectrogram for sleg and snl for voice command “Alexa, mute yourself”.

(1) Decompose Incoming Signal s(t):

One solution is to solve for s(t) = A2

2
(1+2v̂(t)+ v̂2(t)), and test if the resulting v̂(t) produces

the same text-to-speech (T2S) output as s(t). However, this proved to be a fallacious argu-

ment because, if such a v̂(t) exists, it will always produce the same T2S output as s(t). This

is because such a v̂(t) would be a cleaner version of the voice command (without the nonlin-

ear component); if the polluted version s passes the T2S test, the cleaner version obviously

will.

(2) Energy at Low Frequencies from v2(t):

Another solution is to extract portions of s(t) from the lower frequencies – since regular

voice signals do not contain sub-50 Hz components, energy detection should offer evidence.

Unfortunately, environmental noise (e.g., fans, A/C machines, wind) leaves non-marginal

residue in these low bands. Moreover, an attacker could deliberately reduce the power of

its signal so that its leakage into sub-50 Hz is small. Our experiments showed non-marginal

false positives in the presence of environmental sound and soft attack signals.

(3) Amplitude Degradation at Higher Frequencies:

The air absorbs ultrasound frequencies far more than voice (which translates to sharper

reduction in amplitude as the ultrasound signal propagates). Measured across different

microphones separated by ≈ 7.3 cm in Amazon Echo and Google Home, the amplitude

difference should be far greater for ultrasound. We designed a defense that utilized the max-

imum amplitude slope between microphone pairs – this proved to be a robust discriminator

between sleg and snl. However, we were also able to point two (reasonably synchronized)

ultrasound beams from opposite directions. This reduced the amplitude gradient, making
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it comparable to legitimate voice signals (Alexa treated the signals as multipath). In the

real-world, we envisioned two attackers launching this attack by standing at two opposite

sides of a house. Finally, this solution would require an array of microphones on the voice

enabled device. Hence, it is inapplicable to one or two microphone systems (like phones,

wearables, refrigerators).

(4) Phase-Based Separation of Speakers:

Given that long-range attacks need to use at least two speakers (to bypass speaker non-

linearity), we designed an angle-of-arrival (AoA) based technique to estimate the physical

separation of speakers. In comparison to the human voice, the source separation consistently

showed success, so long as the speakers are more than 2 cm apart. While practical attacks

would certainly require multiple speakers, easily making them 2 cm apart, we aimed at solv-

ing the short-range attack as well (i.e., where the attack is launched from a single speaker).

Put differently, the right evidence of nonlinearity should be one that is present regardless of

the number of speakers used.

3.4.2 BackDoor-II Defense Design

Our final defense is to search for traces of v2(t) in sub-50 Hz. However, we now focus

on exploiting the structure of human voice. The core observation is simple: voice signals

exhibit well-understood patterns of fundamental frequencies, added to multiple higher-order

harmonics (see Figure 3.6). We expect this structure to partly reflect in the sub-50 Hz band

of s(t) (that contains v2(t)), and hence correlate with carefully extracted spectrum above-50

Hz (which contains the dominant v(t)). With appropriate signal scrubbing, we expect the

correlation to emerge reliably, however, if the attacker attempts to disrupt correlation by

injecting sub-50 Hz noise, the stronger energy in this low band should give away the attack.

We intend to force the attacker into this zero-sum game.

(1) Key Question: Why Should v2(t) Correlate?

Figure 3.7(a) shows a simplified abstraction of a legitimate voice spectrum, with a narrow

fundamental frequency band around fj and harmonics at integer multiples nfj. The lower

bound on fj is> 50 Hz [64]. Now recall that when this voice spectrum undergoes nonlinearity,

each of fj and nfj will self-convolve to produce “copies” of themselves around DC (Figure

3.7(b)). Of course, the A2 term from nonlinearity strongly attenuates this “copy”.

However, given the fundamental band around fj and the harmonics around nfj are very

similar in structure, each of≈ 20 Hz bandwidth, the energy between [0, 20] kHz superimposes.
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This can be expressed as:

E[0,20] ≈ E

[
A2

N∑
n=1

|V[nfj−20, nfj+20] ∗ V[nfj−20, nfj+20]|2
]

(3.8)

The net result is distinct traces of energy in sub-20 Hz bands, and importantly, this energy

variation (over time) mimics that of fj. For a legitimate attack, on the other hand, the

sub-20 Hz is dominantly uncorrelated hardware and environmental noise.

(a) (b)

Figure 3.7: (a) A simplified voice spectrum showing the structure. (b) Voice spectra after
nonlinear attack.
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Figure 3.8: (a) Spectrogram of the audible voice. (b) Spectrogram of the inaudible attack
voice. The attack signal contains higher power below 50 Hz, indicated by lighter color.

Figure 3.8(a) and (b) zoom into sub-50 Hz and compare the traces of energy for sleg and

snl, respectively. The snl signal clearly shows more energy concentration, particularly when

the actual voice signal is strong. Figure 3.9 plots the power in the sub-50 Hz band with

increasing voice loudness levels for both sleg and snl. Note that loudness level is expressed

in “dBSpl”, where “Spl” denotes “sound pressure level”, the standard metric for measuring

sound. Evidently, nonlinearity shows increasing power due to the self-convolved spectrum
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overlapping in the lower band. Legitimate voice signals generate significantly less energy in

these bands, thereby remaining flat for higher loudness.
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Figure 3.9: The loudness vs. sub-50 Hz band power plot.
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Figure 3.10: The loudness vs. correlation between Pfj and s<B(t), denoting the power
variation of the fundamental frequency and the sub 20 Hz band, respectively.

(2) Correlation Design:

The width of the fundamental frequencies and harmonics are time-varying, however, at any

given time, if it is B Hz, then the self-convolved signal gets shifted into [0, B] Hz as well.

Note that this is independent of the actual values of center frequencies, fj and nfj. Now,

let s<B(t) denote the sub-B Hz signal received by the microphone and s>B(t) be the signal

above B Hz that contains the voice command. BackDoor-II seeks to correlate the energy

variation over time in s<B(t) with the energy variation at the fundamental frequency, fj

in s>B(t). We track the fundamental frequency in s>B(t) using standard acoustic libraries,

but then average the power around B Hz of this frequency. This produces a power profile

over time, Pfj . For s<B(t), we also track the average power over time. However, to avoid

weak signals and disruption from noise, we remove time windows in which the power of fj is
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below its average. We stitch together the remaining windows from both Pfj and s<B(t) and

compute their correlation coefficient. We use an average value of B = 20 Hz.

Figure 3.10 shows the correlation for increasing loudness levels of the recorded signal

(loudness below 60 dBSpl is not audible). The comparison is against a legitimate voice

command. Evidently, we recorded a consistent correlation gap, implying that nonlinearity

is leaving some trace in the low-frequency bands, and this trace preserves some structure of

the actual voice signal. Of course, we have not yet accounted for the possibility that the

attacker can inject noise to disrupt correlation.

(3) Improved Attack via Signal Shaping:

The natural question for the attacker is how to modify/add signals such that the correlation

gap gets narrowed. Several possibilities arise:

(1) Signal −v2(t) can be added to the speaker in the low-frequency band and transmitted

with the high-frequency ultrasound v(t). Given that ultrasound will produce v2(t) after non-

linearity, and −v2(t) will remain as is, the two should interact at the microphone and cancel.

Unfortunately, channels for low frequencies and ultrasound are different and unknown, hence

it is almost impossible to design the precise −v2(t) signal. Of course, we will still attempt

to attack with such a deliberately shaped signal.

(2) Assuming the ultrasound v(t) has been up-converted to [40, 44] kHz, the attacker

could potentially concatenate spurious frequencies from say [44, 46] kHz. These frequencies

would also self-convolve and get “copied” around DC. This certainly affects correlation since

these spurious frequencies would not correlate well (in fact, they can be designed to not

correlate). The attacker’s goal should be to the lower correlation while maintaining a low-

energy footprint below 20 Hz.

The attacker can use the above approaches to try to defeat the zero-sum game. Figure

3.11 plots results from 4000 attempts to achieve low correlation and low energy. Of these,

3500 are random noises injected in legitimate voice commands, while the remaining 500 are

more carefully designed distortions (such as frequency concatenation, phase distortions, low

frequency injection, etc.). Of course, in all these cases, the distorted signal was still correct,

i.e., the VED device responded as it should.

On the other hand, 450 different legitimate words were spoken by different humans (shown

as hollow dots), at various loudness levels, accents, and styles. Clusters emerge suggesting

the promise of separation. However, some commands were still too close, implying the need

for a greater margin of separation.
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Figure 3.11: Zero-sum game between correlation and power at sub-50 Hz bands. Attacker
attempts to reduce correlation by signal shaping or noise injection at sub-50 Hz band.
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Figure 3.12: (a) Sound signals in time domain from sleg. (b) Sound signals in time domain
from snl, demonstrating a case of amplitude skew. (c) Amplitude skew for various attack
and legitimate voice commands.

(4) Leveraging Amplitude Skew from v2(t):

In order to increase the separation margin, BackDoor-II leverages the amplitude skew re-

sulting from v2(t). Specifically, two observations emerge: (1) When the harmonics in voice

signals self-convolve to form v2(t), they fall at the same frequencies of the harmonics (since

the gaps between the harmonics are quite homogeneous). (2) The signal v2(t) is a time

domain signal with only positive amplitude. Combining these together, we postulated that

amplitudes of the harmonics would be positively biased, especially for those that are strong

(since v2(t) will be relatively stronger at that location). In contrast, amplitudes of legitimate

voice signals should be well balanced on the positive and negative sides. Figure 3.12(a,b)

shows one contrast between a legitimate voice sleg and the recorded attack signal snl. In pur-

suit of this opportunity, we extract the ratio of the maximum and minimum amplitude (we

average over the top 10% for robustness against outliers). Using this as the third dimension

for separation, Figure 3.12(c) re-plots the sleg and snl clusters. While the separation margin

is close, combining it with correlation and power, the separation becomes satisfactory.
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(5) BackDoor-II’s Elliptical Classifier:

BackDoor-II leverages three features to detect an attack: power in sub-50 Hz, correlation

coefficient, and amplitude skew. Analyzing the False Acceptance Rate (FAR) and False

Rejection Rate (FRR), as a function of these three parameters, we have converged on a

ellipsoidal-based separation technique. To determine the optimal decision boundary, we

compute FAR and FRR for each candidate ellipsoid. Our aim is to pick the parameters

of the ellipse that minimize both FAR and FRR. Figure 3.13 plots the FAR and FRR as

intersecting planes in a logarithmic scale. (Note that we show only two features since it is not

possible to visualize the 4D graph.) The coordinate with minimum value along the canyon

– indicating the equal error rates – gives the optimal selection of ellipsoid. Since it targets

speech commands, this classifier is designed offline, one time, and need not be trained for

each device or individual.
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R/
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Figure 3.13: The False Acceptance Rate (FAR) plane (dark color) and the False Rejection
Rate (FRR) plane (light color) for different sub-50 Hz power and correlation values.

3.5 Evaluation

We evaluate BackDoor-II on three main metrics: (1) attack range, (2) inaudibility of the

attack, and the recorded sound quality (i.e., whether the attacker’s command sounds human-

like), and (3) accuracy of the defense under various environments. We summarize our findings

as follows:

• We test our attack prototype, shown in Figure 3.14, with 984 commands to Amazon Echo

and 200 commands to smartphones – the attacks are launched from various distances with

130 different background noises. Figure 3.15 shows attack success at 24 ft for Amazon

Echo and 30 ft for smartphones at a power of 6 watt.

• We record 12 hours of microphone data – 5 hours of human voice commands and 7 hours

of attack commands through ultrasound speakers. Figure 3.16(c) shows that attack words
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are recognized by VEDs with equal accuracy as legitimate human words. Figure 3.16(b)

confirms that all attacks are inaudible, i.e., the leakage from our speaker array is 5-10 dB

below the human hearing threshold.

• Figure 3.17(a) shows the precision and recall of our defense technique, as 98% and 99%,

respectively, when the attacker does not manipulate the attack command. Importantly,

precision and recall remain steady even under signal manipulation.

Before elaborating on these results, we first describe our evaluation platforms and method-

ology.

3.5.1 Platform and Methodology

(1) Attack Speakers: Figure 3.14(b) shows our custom-designed speaker system consisting

of 61 ultrasonic piezoelectric speakers arranged as a hexagonal planar array. The elements

of the array are internally connected in two separate clusters. A dual channel waveform gen-

erator (Keysight 33500b series [65]) drives the first cluster with the voice signal, modulated

at the center frequency of 40 kHz. This cluster forms smaller sub-clusters to transmit sep-

arate segments of the spliced spectrum. The second cluster transmits the pure 40 kHz tone

through each speaker. The signals are amplified to 30 volts using a custom-made NE5534AP

op-amp based amplifier circuit. This prototype is limited to a maximum power of 6 watts

because of the power ratings of the operational amplifiers. More powerful amplifiers are

certainly available to a resourceful attacker.

(2) Target VEDs: We test our attack on three different VEDs – Amazon Echo, Samsung

S6 smartphone running Android v7.0, and Siri on an iPhone 5S running iOS v10.3. Unlike

Echo, Samsung S-voice and Siri requires personalization of the wake-word with user’s voice

– adding a layer of security through voice authentication. However, voice synthesis is known

to be possible [62, 63], and we assume that the synthesized wake-word is already available

to the attacker.

(3) Experiment Setup: We run our experiments in a lab space occupied by five members

and also in an open corridor. We place the VEDs and the ultrasonic speaker at various

distances ranging up to 30 ft. During each attack, we play varying degrees of interfering

signals from six speakers scattered across the area, emulating natural home/office noises.

The attack signals were designed by first collecting real human voice commands from ten

different individuals; MATLAB is used to modulate them to ultrasound frequencies. For

speech quality of the attack signals, we used the open-source Sphinx4 speech processing tool

[6].
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(a) (b)

Figure 3.14: BackDoor-II evaluation setup: (a) Ultrasonic speaker and voice enabled
devices. (b) The ultrasonic speaker array for attack.

3.5.2 Attack Performance

(1) Activation Distance: This experiment attempts to activate the VEDs from various

distances. We repeatedly play the inaudible wake-word from the ultrasound speaker system

at regular intervals and count the fraction of successful activation. Figure 3.15(a) shows

the activation hit rate against increasing distance – higher hit-rates indicate success with

less number of attempts. The average distance achieved for 50% hit rate is 24 ft, while the

maximum for Siri and Samsung S-voice are measured to be 27 and 30 ft respectively.

Figure 3.15(b) plots the attack range again, but for the entire voice command. We declare

“success” if the text to speech translation produces every single word in the command. The

range degrades slightly due to the stronger need to decode every word correctly.
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Figure 3.15: (a) The wake-word hit rate. (b) The command detection accuracy against
increasing distances.

Figure 3.16(a) reports the attack range to Echo for increasing input power to the speaker

system. As expected, the range continues to increase, limited by the power of our 6 watts

amplifiers. More powerful amplifiers would certainly enhance the attack range, however, for

the purposes of prototyping, we designed our hardware in the lower power regime.
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Figure 3.16: (a) Maximum activation distance for different input power. (b) Worst-case
audibility of the leakage sound after optimal spectrum partitioning. (c) Word recognition
accuracy with automatic speech recognition software for attack and legitimate voices.

(2) Leakage Audibility: Figure 3.16(b) plots the efficacy of our spectrum splicing opti-

mization, i.e., how effectively does BackDoor-II achieve speaker-side inaudibility for different

ultrasound commands. Observe that without splicing (i.e., “no partition”), the ultrasound

voice signal is almost 5 dB above the human hearing threshold. As the number of segments

increase, audibility falls below the hearing curve. With 60 speakers in our array, we use

six segments, each played through five speakers; the remaining 31 were used for the second

cos(2πfct) signal. Note that the graph plots the minimum gap between the hearing threshold

and the audio playback, implying that this is a conservative worst-case analysis. Finally,

we show results from 20 example attack commands – the other commands are below the

threshold.

(3) Received Speech Quality: Given six speakers were transmitting each spliced segment

of the voice command, we intend to understand if this distorts speech quality. Figure 3.16(c)

plots the word recognition accuracy via Sphinx [6], an automatic speech recognition software.

Evidently, BackDoor-II’s attack quality is comparable to human quality, implying that our

multi-speaker beamforming preserves the speech’s structure. In other words, speech quality

is not the bottleneck for the attack range.

3.5.3 Defense Performance

(1) Metrics: Our defense technique essentially attempts to classify the attack scenarios

distinctly from the legitimate voice commands. We report the “Recall’ and “Precision”

of this classifier for various sound pressure levels (measured in dBSpl), varying degrees of

ambient sounds as interference, and deliberate signal manipulation. Recall that our metrics

refer to: • Precision: What fraction of our detected attacks are correct?

• Recall: What fraction of the attacks did we detect? We now present the graphs beginning
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Figure 3.17: Precision and Recall of defense performance. (a) Basic performance without
external interference. (b) Performance under ambient noise. (c) Performance under injected
noise. (d) Overall accuracy across all experiments.

with the basic classification performance.

(2) Basic Attack Detection: Figure 3.17(a) shows the attack detection performance in a

normal home environment without significant interference. The average precision and recall

of the system is 99% across various loudness of the received voice. This result indicates the

best-case performance of our system with minimum false alarm.

(3) Impact of Ambient Noise: In this section we test our defense system for common

household sounds that can potentially mix with the received voice signal and change its fea-

tures leading to misclassification. To this end, we played 130 noise sounds through multiple

speakers while recording attack and legitimate voice signals with a smartphone. We replayed

the noises at four different sound pressure levels starting from a typical value of 50 dBSpl

to extremely loud 80 dBSpl, while the voice loudness is kept constant at 65 dBSpl. Figure

3.17(b) reports the precision and recall for this experiment. The recall remains close to 1 for

all these noise levels, indicating that we do not miss attacks. However, at higher interference

levels, the precision slightly degrades since the false detection rate increases a bit when noise

levels are extremely high which is not common in practice.

(4) Impact of Injected Noise: Next, we test the defense performance against deliber-

ate attempts to eliminate nonlinearity features from the attack signal. Here the attackers

strategy is to eliminate the v2(t) correlation by injecting noise in the attack signal. We

considered four different categories of noise – white Gaussian noise to raise the noise floor,

band-limited noise on the sub-50 Hz region, water-filling noise power at low frequencies to

mask the correlated power variations, and intermittent frequencies below 50 Hz. As shown,

in Figure 3.17(c), the process does not significantly impact the performance because of the

power-correlation tradeoff exploited by the defense classifier. Figure 3.17(d) shows that the

overall accuracy of the system is also above 99% across all experiments.
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3.6 Points of Discussion

We discuss several dimensions of improvement.

Lack of Formal Guarantee: We have not formally proved our defense. Although

BackDoor-II is systematic and transparent (i.e., we understand why it should succeed) it

still leaves the possibility that an attack may breach the defense. Our attempts to math-

ematically model the self-convolution and correlation did not succeed since frequency and

phase responses for general voice commands were difficult to model, as were real-world noises.

A deeper treatment is necessary, perhaps with help from speech experts who can model the

phase variabilities in speech. We leave this to future work.

Generalizing to Any Signal: Our defense is designed for the class of voice signals,

which applies well to inaudible voice attacks. A better defense should find the true trace of

nonlinearity, not just for the special case of voice. This remains an open problem.

Is Air Nonlinear as Well? There is literature that claims air is also a nonlinear medium

[28, 29, 30]. When excited by adequately powerful ultrasound signals, self-convolution occurs,

ultimately making sounds audible. Authors in [2, 31] are designing acoustic spotlighting

systems where the idea is to make ultrasound signals audible only along a direction. We

have encountered traces of air nonlinearity, although in rare occasions. This certainly call

for a separate treatment in the future.

Through-Wall Attack: Due to the limited maximum power (6 watts) of our amplifiers,

we tested our system in non-blocking scenarios. If the target device is partially blocked (e.g.

furnitures in the room blocking line-of-sight), the SNR reduces and our attack range will

reduce. This level of power has not allowed us to launch through-wall attacks yet. We leave

this to future work.

3.7 Related Work

(1) Attack on Voice Recognition Systems: Recent research [55, 66] shows that spoken

words can be mangled such that they are unrecognizable to humans, yet decodable by voice

recognition (VR) systems. GVS-Attack [67] exploits this by creating a smartphone app that

gives adversarial commands to its voice assistant. More recently, BackDoor [3] has taken

advantage of the microphone’s nonlinearity to design ultrasonic sounds which are inaudible

to humans, but becomes recordable inside the off-the-shelf microphones. The application

includes preventing acoustic eavesdropping with inaudible jamming signals. As follow up,
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[52, 53] show that the principles of BackDoor can be used to send inaudible attack commands

to a VED, but requires physical proximity to remain audible. BackDoor-II demonstrates the

feasibility to increase the inaudible attack range, but more importantly, designs a defense

against the inaudible attacks.

In the past, researchers use near-ultrasound [68, 69, 70, 71, 72, 73] and exploited aliasing

to record inaudible sounds with microphones. A number of techniques use other sounds

to camouflage audible signals in order to make it indistinguishable to human [74, 75, 76].

CovertBand [77] uses music to hide audible harmonic components at the speaker. BackDoor-

II, on the other hand, uses high-frequency ultrasound as inaudible signals and leverages

hardware nonlinearity to make them recordable to microphone.

(2) Speaker Linearization: A number of research [78, 79, 80] studies explore the possibility

of adaptive linearization of general speakers. Through simulations, the authors have shown

that by pre-processing the input signal, they can achieve as much as 27 dB reduction [80] of

the nonlinear distortion in the noise-free case. Their techniques are not yet readily applicable

to real speakers, since they have all assumed very weak nonlinearities, and over-simplified

electrical and mechanical structures of speakers. With real speakers, especially ultrasonic

piezoelectric speakers, it is difficult to fully characterize the parameters of the nonlinear

model. Of course, if future techniques can fully characterize such models, our system can be

made to achieve longer range with fewer speakers.

3.8 Chapter Summary

This chapter builds on the BackDoor signaling concept presented in Chapter 2 to show that

inaudible voice commands are viable from distances of 25+ ft. Of course, careful design

is necessary to ensure the attack is truly inaudible – small leakages from the attacker’s

speakers can raise suspicion, defeating the attack. This chapter also presents a defense

against inaudible voice commands that exploit microphone nonlinearity. We show that

nonlinearity leaves traces in the recorded voice signal, that are difficult to erase even with

deliberate signal manipulation.

57



Chapter 4

Inaudible Communication through Vibrations

4.1 Overview

Data communication has been studied over a wide range of modalities, including radio fre-

quency (RF), in-air and underwater acoustic, visible light, etc. This chapter envisions vibra-

tion as a new mode of communication. We explore the possibility of using vibration motors,

present in all cell phones today, as a transmitter, while accelerometers, also popular in mo-

bile devices, as a receiver. By carefully regulating the vibrations at the transmitter, and

sensing them through accelerometers, two mobile devices should be able to communicate via

physical touch.

We are not the first to recognize this opportunity. Acoustic communication operates on

the same fundamental principles and has been studied for decades (over air [82, 83] and under

water [84]). In recent years, authors in [85] identified the possibility of using vibra-motors and

accelerometers in mobile phones, as an opportunity to exchange information. The benefits

were identified as security and zero-configuration, meaning that the two devices need not

discover each other’s addresses to communicate. The act of physical contact would serve as

the implicit address. However, authors identified the drawbacks of such a system to be low

bit rates (∼ 5 bits/s), based on the “Morse-code” style of ON/OFF communication with

vibrations. Still, researchers conceived creative applications, including secure smartphone

pairing and keyless access control [86].

This chapter is aimed at improving the data rates of vibratory communication, as well as its

security features. We design Ripple, a system that breaks away from the intuitive morse-code

style ON/OFF pulses and engages techniques such as orthogonal multi-carrier modulation,

gray coding, adaptive calibration, vibration braking, side-channel suppression, etc. While

This chapter revises the publication “Ripple: Communicating through Physical Vibrations,” in NSDI
2015 [81].
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some techniques are borrowed from RF/acoustic communication, unique challenges (and

opportunities) emerge from the vibra-motor/accelerometer platform, as well as from solid-

materials on which they rest. For instance, the motor and the materials exhibit resonant

frequencies that need to be adaptively suppressed; accelerometers sense vibration along three

orthogonal axes, offering the opportunity to use them as parallel channels, with some degree

of leakage. In addition to such techniques, we also design a receiver cradle – a wooden

cantilever structure – that amplifies/dampens the vibrations in a desired way. A vibration-

based product in the future, say a point-of-sale equipment for credit card transactions, may

potentially benefit from such a design.

From a security perspective, Ripple recognizes the threat of acoustic leakage due to vibra-

tion, i.e., an eavesdropper could listen to the sound of vibration and decode the transmitted

bits. To thwart such side channel attacks, we design the transmitter to also listen to the

sounds and adaptively play a synchronized acoustic signal (through its speaker) to cancel

the sound. The transmitter also superimposes a jamming sequence, ultimately offering in-

herent protection from acoustic eavesdroppers. We observe that application layer securities

may not apply in all such scenarios – public/symmetric key-based encryption infrastructure

may not scale to billions of phones and other use-cases such as the Internet of Things (IoT).

Blocking access to the signal, at the physical layer itself, is desirable in these spontaneous,

peer-to-peer, and perhaps disconnected situations [1].

It is natural to wonder what kind of applications will use vibratory communication, espe-

cially in light of NFC. We do not have a killer app to propose, and even believe that most

applications would prefer NFC, mainly due to its higher data rates. (NFC uses 1.8 MHz

bandwidth achieving more than 100 kbps, in contrast to 800 Hz with today’s vibra-motors.)

However, we conjecture that bringing the vibratory bit rates to a respectable level – say

credit card transactions in a second – may trigger new ideas and use-cases. In particular,

strict security-sensitive applications may be the candidates. Despite the very short commu-

nication range in NFC, recent results [87, 88] confirm that security threats are real. Authors

decode NFC transmissions from 1 m away [89, 90, 91] and conjecture that high-gain beam-

forming antennas can further increase the separation. With the natural security benefits

of touch-based communication (over RF), and supplemented with acoustic cancellation and

jamming, we attempt to set a higher security bar for Ripple.

Moreover, the ubiquity of vibration motors in every cell phone, even in developing regions,

presents an immediate market for vibratory communication. Peer-to-peer money exchange

with recorded logs is a global problem, recently recognized by the Gates Foundation; hidden

camera attacks on ATM kiosks have been rampant in India and South Asia [92]. Paying
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local cab drivers with phone-vibrations, or using phones as ATM cards can perhaps be of

interest in developing countries. Clandestine operations may benefit where information need

to be exchanged without leaving any trace in the wireless channel or in the Internet. Finally,

if link capacity proves to be the only bottleneck, perhaps improved vibration motors can be

included to mitigate it in the next phone models. While it is difficult to anticipate the needs

of the future, we focus our attention on enabling and pushing forward this new modality

of vibratory communication. To this end, our main contributions may be summarized as

follows:

• Harnessing the vibration motor hardware and its functionalities, from a communication

perspective.

• Developing an orthogonal multi-carrier communication stack using vibra-motor and ac-

celerometer chips, and repeating the same for Samsung smartphones. Design decisions

for the latter are different due to software/API limitations on smartphones, where vibra-

motors were mainly integrated for simple alerts/notifications.

• Identifying acoustic side channel attacks and using signal cancellation and jamming to

offer physical layer protection to eavesdropping.

4.2 Vibration Motors and Accelerometers

We begin with a high-level overview of vibration motors and accelerometers (substantial

details in [93, 94, 95]).

4.2.1 Vibration Motor

A vibration motor (also called “vibra-motor”) is an electro-mechanical device that moves

a metallic mass around a neutral position to generate vibrations. The motion is typically

periodic and causes the center of mass (CoM) of the system to shift rhythmically. There are

mainly two types of vibra-motors depending on their working principle:

(1) Eccentric Rotating Mass (ERM): This type of vibration generators uses a DC

motor to rotate an eccentric mass around an axis as depicted in Figure 4.1. As the mass is

not symmetric with respect to its axis of rotation, it causes the device to vibrate during the

motion. Both the amplitude and frequency of vibration depend on the rotational speed of

the motor, which can in turn be controlled through an input DC voltage. With increasing
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input voltages, both amplitude and frequency increase almost linearly and can be measured

by an accelerometer.

(2) Linear Resonant Actuators (LRA): generate vibration by linear movement of

a magnetic mass, as opposed to rotation in ERM (Figure 4.1). With LRA, the mass is

attached to a permanent magnet which is suspended near a coil, called “voice coil”. Upon

applying AC current to the motor, the coil also behaves like a magnet (due to the generated

electromagnetic field) and causes the mass to be attracted or repelled, depending on the

direction of the current. This generates vibration at the same frequency as the input AC

signal, while the amplitude of vibration is determined by the signal’s peak-to-peak voltage.

Thus LRAs allow for regulating both the magnitude and frequency of vibration separately.

Fortunately, most mobile phones today use LRA vibra-motors.
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Figure 4.1: Basics of ERM and LRA vibra-motors.

(3) PWM-based Motor Control: Ideally, a controller should be able to regulate

the vibra-motor at fine granularities using any analog waveform. Unfortunately, micro-

controllers produce digital voltage values limited to a few discrete levels. A popular technique

to approximate analog signals with binary voltage levels is called Pulse Width Modulation

(PWM) [96]. This technique is useful to drive analog devices with digital data without a

digital-to-analog converter (DAC).

The core idea in PWM is to approximate any given voltage V by rapidly generating square

pulses and configuring the pulse’s duty cycle appropriately. For example, to create a 1 V

signal with binary voltage levels of 5 V and 0 V, the duty cycle needs to be 20%. Now,

if the period of the square pulse is made very small (i.e., high frequency), the effective

output voltage will appear as 1 V. Toward this goal, the PWM frequency is typically set

much higher than the response time of the target device so that the device experiences a

continuous average voltage. Importantly, it is also possible to generate varying voltages with
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PWM, say a sine wave, by gradually changing the duty cycles in a sinusoidal fashion.

4.2.2 Accelerometer

The accelerometer is a micro electro-mechanical (MEMS) device that measures acceleration

caused by motion. While the inner workings of accelerometers can vary [97], the core working

principle pertains to a movable seismic mass that responds to the vibration of the object it

is attached to. Capacitive accelerometers, shown in Figure 4.2, are perhaps most popular

in smartphones today. When vibrated, the seismic mass moves between fixed electrodes,

causing differences in the capacitance c1 and c2, ultimately producing a voltage proportional

to the experienced vibration.

C1 C2 

d1 d2 
• d1 ≠ d2 

• C1 ≠ C2 

(Under Acceleration) 

C1 C2 

d1 d2 

• d1 = d2 

• C1 = C2 

(No Acceleration) 
Structure of MEMS 

Accelerometer 

Accelerometer Chip Anchor 

Tether 
(spring) 

Movable 
Seismic 
Mass 

Differential 
Capacitor Pair 

Fixed 
Electrodes 

Figure 4.2: The internal architecture of MEMS accelerometer chip used in smartphones
[98].

Sensing Acceleration: Modern accelerometers sense the movement of the seismic mass

along three orthogonal axes, and report them as an < X, Y, Z > tuple. The gravitational

acceleration appears as a constant offset along the axis pointed toward the floor. The newest

accelerometer chips support a wide range of adjustable sampling rates, typically from 100

mHz to 3.2 kHz. For the system explained in this chapter, we choose the ADXL345 [99]

capacitive MEMS accelerometer, not only because it is used in most smartphones, but also

because of programmability and frequency range.

4.3 Vibratory Transmission and Reception

Software/API limitations in smartphones prevent fully exploiting the vibra-motors and ac-

celerometers. We design a custom hardware prototype using the same chips that smartphones
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use, and characterize/evaluate the system. We develop the constrained smartphone version

in the next section.

4.3.1 Custom Hardware Setup

We control the vibra-motor and accelerometer through Arduino boards [100], an open source

hardware development platform equipped with a ATmega328 8-bit RISC micro-controller

[101]. Our first step is to precisely control the vibration frequency (and amplitude) through

a time-varying sequence of voltage levels fed to the vibra-motor. Unfortunately, the micro-

controller’s output current fluctuates, leading to errors in the transmitted vibratory signals.

Therefore, we power the vibra-motor with a standalone 6V DC power supply and use the

Arduino micro-controller signal to operate a switch that regulates the voltage to the motor.

We develop a simple circuit shown in Figure 4.3 – a NPN Darlington transistor (TIP122)

serves as the switch and the controller signal goes to its base.

Arduino 
micro- 

controller  
board 

PWM 
signal 

NPN 
Transistor 

6V 

Fly-back 
Diode 

33μF 
LRA 

Vib. Motor 

5 

Part A 

Part B 

Ω!

6 Ω!

Figure 4.3: Transmitter hardware: the micro-controller controls a switch that regulates the
6V DC input.

Assume that we intend to regulate the vibra-motor in a sinusoidal fashion. We pre-load

digital samples of the sine waveform into memory, and PWM uses them to determine the

width of the square waves. When the sine wave frequency needs to be increased, the same

digital samples need to be drawn at a faster rate and at precise timings. The switch uses the

PWM output to regulate the 6V DC signal. We mitigate a number of engineering problems

to run the set up correctly, including harmonic distortions due to the square pulses, spikes

due to back EMF, etc. We move the PWM frequency to a high 32 kHz and use an RC filter

(part B Figure 4.3) to remove the distortions; we use a 1N4001 fly-back diode to smooth out

the spikes. We omit further details in the interest of space.

The accelerometer receiver is also controlled through Arduino via the I2C protocol [102]

at 115200 baud rate. We set the accelerometer’s sampling rate to 1600 Hz and 10-bit output

resolution. While higher sampling rates are possible, we refrain from doing so since the micro-

controller records the accelerometer data at a slower rate. In particular, the chip produces
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a sample per 0.625 ms, but the micro-controller takes around 8− 12 ms to periodically read

and write in memory. We handle this with a FIFO mode of the accelerometer, such that the

queued-up data is read in a burst. We also mount an on-board SD card to store data via

the SPI protocol.

Figure 4.4 shows the accelerometer output when the vibra-motor is driven by the sinusoid

input and made to touch the accelerometer. The final system functions correctly, and the

platform is now ready for design and experimentation.
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Figure 4.4: (a) Accelerometer output in time domain. (b) Accelerometer output in fre-
quency domain. Here the vibra-motor is fed with a 250 Hz sine wave.

4.3.2 Transmitter and Receiver Design

Ripple’s design firmed up after multiple rounds of iterations. In the final version, the trans-

mitter performs amplitude modulation on 10 different carrier signals uniformly spaced from

300 to 800 Hz – each carrier is modulated with a bandwidth of 40 Hz. Further, the vi-

brations are also parallelized on orthogonal motion dimensions (X and Z) with appropriate

signal cancellation. The design details are presented next.

(1) Selecting the Carrier Signal:

To reason about how data bits should be transmitted, we first carry out an analysis of

the available spectrum. This available spectrum is actually bottlenecked by the maximum

sampling rate of the accelerometer receiver – since this rate is 1600 Hz, the highest frequency

the transmitter can use is naturally 800 Hz. Now, to test the system’s frequency response

in the [0, 800] band, we perform a “sine sweep” test. The transmitter, with the help of

a waveform generator, produces continuously increasing frequencies from 1 Hz to 800 Hz

with constant amplitude (the frequency increments are at 1 Hz). Figure 4.5 shows the

corresponding vibration magnitudes recorded by the accelerometer. Evidently, the response

is weak up to 60 Hz (called the “inert band”), followed by improvements until around 200
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Hz, followed by a large spike at around 231 Hz. This spike is near the resonant frequency of

the vibra-motor (confirmed in the data sheet).
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Figure 4.5: The vibra-motor’s frequency response with the resonant frequency at around
231 Hz.

Intuitively, frequencies near the resonant band can serve as good carriers for amplitude

modulated data because of a larger vibration range. However, when we plot the frequency

versus time spectrogram of the sine sweep test (Figure 4.6), we find that the vigorous vibra-

tion around the resonant frequency spills energy in almost the entire spectrum. Therefore,

transmitting on the resonant band can be effective for a single carrier system, but the in-

terference ruins the opportunity to transmit data in parallel carriers. In light of this, we

define a “resonant band” of 100 Hz around the peak, and move the carrier signals outside

this band. We select 10 orthogonal carriers separated by 40 Hz from the non-resonant fre-

quencies between 300 Hz and 800 Hz. The 40 Hz separation ensures the non-overlapping

sidebands for the carriers, allowing reliable symbol recovery with software demodulation.

Figure 4.6: When excited with the resonant frequency, the vibra-motor spills energy across
a wide frequency range.
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(2) Synchronization:

Micro-controllers inject timing errors at various stages – variable delay in fetching digital sam-

ples from memory, during time-stamping the received samples, and due to oscillator/crystal

frequency shifts with temperature. The timing errors manifest as fluctuations in vibration

frequency, causing error in demodulation. To synchronize time between the transmitter and

receiver, we introduce a pilot frequency at 70 Hz and transmit it in parallel to data bits.

We choose 70 Hz to be above the inert band and lower than the resonant band. During

reception, the receiver detects the pilot frequency, measures the offset in sampling rate, and

interpolates the received signal by adjusting for this offset. Of course, this operation also

corrects all other frequencies in the spectrum needed for demodulation.

(3) Modulating and Demodulating the Carrier Signal:

The carrier frequencies are modulated with Amplitude Shift Keying (ASK) in light of its

bandwidth efficiency and simplicity over Frequency Shift Keying (FSK). We modulate each

of the 10 carriers with binary data at a symbol rate of 20 Hz. To prevent inter-carrier

interference, we shape the pulses with a raised cosine filter for each carrier individually;

the modulated carriers are then combined and fed to the vibration motor transmitter. The

receiver senses the energy in the pilot carrier, calibrates and synchronizes appropriately to

identify the beginning of transmission. We again filter the received spectrum with (the same)

raised cosine filter to isolate each carrier, and proceed to demodulate individual carriers

separately. Figures 4.7(a) and (b) show a part of the spectrum before and after filtering,

for an example carrier frequency at 405 Hz. The demodulation is performed with envelope

detection and precise sampling at bit intervals. We will evaluate this custom-designed system

later in Section 4.6 and show ∼200 bits/second data rates through vibration.
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Figure 4.7: (a) The spectrum of the received signal. (b) The spectrum after filtering for a
single carrier frequency at 405 Hz.
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4.3.3 Orthogonal Vibration Dimensions

The above schemes, although adapted for vibra-motors, are grounded in the fundamentals

of radio design. In an attempt to augment the bit rate, we observed that a unique property

of accelerometers is its ability to detect vibration on three orthogonal dimensions (X, Y,

and Z). Although vibra-motors only produce signals on a single dimension, perhaps multiple

vibra-motors could be used in parallel. Unfortunately, due to some rigidity in our custom

setup, accelerometer’s motion along the X-axis is minimal, precluding it for communication.

Therefore, we orient two vibra-motors in the Y and Z dimensions and execute the exact

multi-carrier amplitude modulated transmissions discussed above.

Measurements show that vibration from one dimension spills into the other. However,

rather interestingly, this spilled interference exhibits a 180◦ phase lag with respect to the

original signal, as well as an attenuation in the amplitude. Figure 4.8 shows an example

in which the Z-axis signal (solid black) has a spill on the Y-axis, with a reversed phase

and halved amplitude. The vice versa situation also occurs. Now, to remove Z’s spilled

interference and decode the Y signal, we scale the Y signal so that the interference matches

Z’s actual amplitude, and then add it to the Z signal. The Z signal is removed quite precisely,

leaving an amplified version of Y, which is then decoded through the envelope detector. The

reverse is performed with Z’s signal, resulting in a 2x improvement in data rate, evaluated

later.
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Figure 4.8: Orthogonal vibrations in X- and Z-axes.
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4.4 Smartphone Prototype

This section shifts focus to vibratory communication on Android smartphones. Android is

of interest since it offers APIs to a kernel-level PWM driver for controlling the ON/OFF

timings. We develop a user space module that leverages third-party kernel space APIs [103]

to control the vibration amplitudes as well. However, this still does not match the custom

setup in the previous section. The PWM driver in Samsung smartphones is set to operate on

the resonant band of the LRA vibra-motor, and the vibration frequency cannot be changed.

This is understandable from the manufacturer’s viewpoint, since vibra-motors are embedded

to serve as a 1 bit alert to the user. However, for data communication, the nonlinear response

at the resonant frequencies presents difficulties. Nonetheless, Ripple has to operate under

these constraints and hence is limited to a single carrier frequency, modulated via amplitude

modulation.

4.4.1 Smartphone Tx and Custom Rx

One advantage of the resonant frequency is that it offers a larger amplitude range, permitting

n-ary symbols as opposed to binary (i.e., the amplitude range divided into n levels). To

further amplify this range, we also design a custom smartphone cradle – a cantilever-based

wooden bridge-like framework – that in contact with the phone amplifies specific vibration

frequencies. While we will evaluate performance without this cradle, we were curious if

(deliberately designed) auxiliary objects bring benefits to vibratory communication. Figure

4.9 shows the design – when the transmitter phone is placed on a specific location on this

bridge, and the accelerometer connected to the other end, we indeed observe improved SNR.

The key idea here is to make the “channel” resonate along with the smartphone to improve

transmission capacity. We elaborate on the cantilever-based design next, followed by the

communication techniques.

(1) Cantilever-based Receiver Setup:

Observe that every object has a natural frequency [104] in which it vibrates. If an object is

struck by a rod, say, it will vibrate at its natural frequency no matter how hard it is struck.

The magnitude of the strike will increase the amplitude of vibration, but not its frequency.

However, if a periodic force is applied at the same natural frequency of the object, the object

exhibits amplified vibration – resonance. In our setup, we use a 1 foot long wooden beam

supported at one end, called a cantilever (Figure 4.9). The smartphone transmitter placed

near the supported end, impinges a periodic force on the beam, calculated precisely based on

the beam’s resonant frequency (inversely proportional to
√
weight). We adjust the weight of
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the structure so that its natural frequency matches that of the phone’s vibra-motor (which

lies between 190 Hz to 250 Hz). This creates the desired resonance.

Figure 4.9: Cantilever-based receiver platform for vibration amplification.

The accelerometer is attached at the unsupported end of the beam. Figure 4.10 plots the

measured amplitude variation (over three axes of the accelerometer) as the smartphone is

placed on different positions on the beam. We choose the position located six inches from the

supported end, as it induces maximal amplification on all three axes of the accelerometer.
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Figure 4.10: Vibration highest at a specific phone location.

(2) Symbol Duration and the Ringing Effect:

Ripple communicates through amplitude modulation – pulses of n-ary amplitudes (symbols)

are modulated on the carrier frequency for a symbol duration. Ideally, the effect of a vibration

should be completely limited within this symbol duration to avoid interference with the

subsequent symbol (called inter-symbol interference). In practice, however, the vibration

remains in the medium even after the driver stops the vibrator, known as the ringing effect.

This is an outcome of inertia – the vibra-motor mass continues oscillating or rotating for

some period after the driving voltage is turned off. Until this extended vibration dampens

down substantially, the next symbol may get incorrectly demodulated (due to this heightened

noise floor). Moreover, the free oscillation of the medium also contributes to ringing. Figure

4.11(a) shows a vibratory pulse of the smartphone, where the vibra-motor is activated from

20 to 50 ms. Importantly, the motor consumes 30 ms to overcome static inertia of the

movable mass and reach its maximum vibration level. Once the voltage is turned off (at

50 ms) the vibration dampens slowly and consumes another 70 ms to become negligible.
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This dictates the symbol duration to be around 30 + 70 = 100 ms to avoid inter-symbol

interference.
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Figure 4.11: (a) Ringing effect in the channel. (b) Reduced ringing using a braking voltage.

(3) Vibration Dampening:

To push for greater capacity, we attempt to reduce the symbol duration by dampening the

ringing vibration. The core observation is that the ringing duration is a function of the

amplitude of the signal – a higher amplitude signal rings for a longer duration. If, however,

the amplitude can be deliberately curbed, ringing will still occur but will decay faster. Based

on this intuition, we apply a small braking-voltage to the vibra-motor right after the signal

has been sampled by the demodulator (30 ms). This voltage is deliberately small so that it

does not manifest into large vibrations, and is applied for 10 ms. Once braking is turned

off, we allow another 10 ms for the tail of the ringing to die down, and then transmit the

next symbol. Thus the symbol duration is 50 ms now (half of the original) and there is still

some vibration when we trigger the next symbol. While this adds slightly to the noise floor

of the system, the benefits of a shorter symbol duration out-weighs the losses. Moreover,

an advantage arises in energy consumption – triggering the vibra-motor from a cold start

requires higher power. As we see later, activating it during the vibration tail saves energy.

(4) Modulation and Demodulation:

The modulation-demodulation technique is mostly similar to a single carrier of the custom

hardware prototype. The only difference is that it uses multiple levels of vibration amplitudes

(up to 16), unlike the binary levels earlier. Figure 4.12 shows how we can vary the voltage

levels (as a percentage of maximum input voltage) to achieve different vibration amplitudes.

If adequately stable, the amplitude at each voltage level can serve as separate symbols.

Given the linear amplitude slope from voltage levels 15 to 90%, we divide this range into n-

ary equi-spaced amplitude levels, each corresponding to a symbol. However, due to various

placements and/or orientations of the phone, this slope can vary to some degree. While

this does not affect up to 8-ary communication, 16 symbols are susceptible to this because

of inadequate gaps between adjacent amplitude levels. To cope, we use a preamble of two
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symbols. At the beginning of each packet the transmitter sends two symbols with the

highest and lowest amplitudes (15 and 90). The receiver computes the slope from these two

symbols, and calibrates all the other intermediate amplitude levels from them. The receiver

then decodes the bits with a maximum likelihood-based symbol detector.
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Figure 4.12: The change of vibration amplitude with the percentage of maximum input
voltage.

4.5 Security

Vibrations produce sound and can leak information about the transmitted bits to an acoustic

eavesdropper [105, 106, 107]. This section is aimed at designing techniques that thwart such

side channel attacks. We design this as a real-time operation on the smartphone.

4.5.1 Acoustic Side Channel

The source of noise that actually leaks information is the rattling of the loosely attached parts

of the motor – the unbalanced mass and metals supporting it. Our experiments show that

this sound of vibration (SoV) exhibits correlations of ∼0.7 with the modulated frequency of

the data transmission. Although SoV decays quickly with distance, microphone arrays and

other techniques can be employed to still extract information. Ripple attempts to prevent

such attacks.

4.5.2 Canceling Sounds of Vibration (SoV)

One way to defend against eavesdropping is to jam the acoustic channel with a pseudorandom

noise sequence, thus decreasing the SNR of the SoV. Since this jamming signal will not

interfere with physical vibrations, it does not affect throughput. Upon implementation, we

realized that the jamming signal was audible, and annoying to the ears. The more effective
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approach is perhaps to cancel/suppress the SoV from the source, and then jam faintly, to

camouflage the residue.

Ideally, Ripple should produce an “anti-noise” signal that cancels out the SoV to ultimately

create silence. The transmitter (and not the receiver) should generate this anti-noise since

it knows the exact bit sequence that is the source of the SoV. Of course, acoustic noise

cancellation is a well-studied area – several headphones today use a microphone to capture

ambient sounds and blends a negative version of it through the headphone speakers. The

challenge of course is in detecting the ambient sound in real-time and producing the precise

negative (phase shifted) signals. However, unlike Ripple, headphones need to cancel the

ambient noise only at the human ear, and not at all other locations around the human.

With Ripple, the problem is easier in the sense that the transmitter exactly knows the bit

sequence that is causing the SoV. This can help in modeling the sound waveform ahead in

time, and can potentially be synchronized. The issue, however, is that the SoV varies based

on the material medium on which the phone is placed; also the SoV needs to be cancelled at

all locations in the surrounding area. Further, the phase of the SoV remains unpredictable

as it depends on the starting position of the mass in the vibra-motor and the delay to attain

the full swing. Finally, Android offers little support for real-time audio processing [108],

posing a challenge to develop SoV cancellation on off-the-shelf phones.

4.5.3 Ripple Cancel and Jam

The overall technique is composed of three sub-tasks: anti-noise modeling, phase alignment,

and jamming.

(1) Anti-noise Modeling: The core challenge is to model the analog SoV waveform

corresponding to the data bits that will be transmitted through vibration. Since the motor’s

vibration amplitude and frequency are known (i.e., the carrier frequency), the first approxi-

mation of this model is simple to create. However, as mentioned earlier, the difficulty arises

in not knowing how the unknown material (on which the phone is placed) will impact the

SoV. Apart from the fundamental vibration frequency, the precise SoV signal depends also

on the strength and count of the overtones produced by the material. To estimate this, the

Ripple transmitter first transmits a short “preamble”, listens to its FFT, and picks the top-K

strongest overtones. These overtones are combined in the revised signal model. Finally, the

actual data bits are modeled in the time domain, reversed in sign, and added to create the

final “anti-noise” signal. This is ready to be played on the speaker, except that the phase of

anti-noise needs to precisely match the SoV.
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(2) Phase Alignment with Frequency Switch: Unfortunately, Android introduces a

variable latency of up to 10 ms to dispatch the audio data to the hardware. This is excessive

since a 2.5 ms lag can cause constructive interference between the anti-noise and the SoV.

Fortunately, two observations help in this setting: (1) the audio continues playing at the

specified sample rate without any significant fluctuation, and (2) the sample rate of the

active audio stream can be changed in real-time. Thus, we can now control the frequency of

the online audio by changing the playback sample rate.

We leverage this frequency control to match the phase of anti-noise with the SoV. The

key idea is to start the anti-noise as close as possible to the SoV, but increase the sampling

frequency such that the fundamental frequency of the anti-noise increase by δf . When

this anti-noise combines in the air with the SoV, it creates the amplitude of the sound to

vary because of the small difference in the fundamental frequencies. Obviously, the maximum

suppression of the SoV occurs when the amplitude of this combined signal is at its minimum.

The phase difference between the SoV and anti-noise is almost matched at this point. At

exactly this “phase-lock” time, Ripple switches the fundamental frequency of the anti-noise to

its original value (i.e., lower by δf). It recognizes this time instant by tracking the envelope

of the combined signal and switching frequencies at the minimum point on the envelope.

Figure 4.13 illustrates the various steps leading up to the frequency switch, and the sharp

drop in signal amplitude. The suppressed signal remains at that level thereafter.
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Figure 4.13: The anti-noise partially cancels the SoV, however, some mismatches result in
some residual signal.

(3) Jamming: The cancellation is not perfect because the timing of the operations

are not instantaneous; microphone and speaker noise also pollute the anti-noise waveforms,

leaving a small residue. To prevent attacks on this residue, Ripple superimposes a jamming

signal – the goal is to camouflage the sound residue. Conceptually it is simple, since a
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Figure 4.14: (a) BER as a function of the input signal peak-to-peak voltage (Vpp). Overall
data rate ∼200 b/s. (b) Per-carrier BER across 10 frequencies. (c) BER as a function of
the number of carriers used (each carrier bit rate = 20 bits/s).

pseudorandom noise sequence can be added to the anti-noise waveform once it has phase-

locked with the vibration sound. Unfortunately, Android does not allow loading a second

signal on top of a signal that is already playing. Note that if we load the jamming signal

upfront (along with the modeled anti-noise signal), the precise phase estimation will fail. We

develop an engineering work-around. When modeling the anti-noise waveform, we also add

the jamming noise sequence, but pre-pad the latter with a few zeros. Thus, when the SoV

and anti-noise combine, the zeros still offer opportunities for detecting the time when the

signals precisely cancel. We phase-lock at these times and the outcome is the residual signal

from imperfect cancellation, plus the jamming sequence. We will show in the evaluation how

the SoV’s SNR degrades due to such cancellation and jamming, offering good protection to

eavesdropping. Of course, the tradeoff is that we need a longer preamble now for this phase

alignment process. However, this is only an issue arising from current Android APIs.

4.6 Evaluation

We evaluate Ripple in three phases – the custom hardware, the smartphone prototype, and

security.

4.6.1 Custom Hardware

(1) Bit Error Rate (BER):

Recall that the custom hardware is composed of vibra-motors and accelerometer chips con-

trolled by Arduino boards. We bring the two devices in contact and initiate packet trans-

mission of various lengths (consuming between 1 to 10 seconds). Each packet contains
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pseudo-random binary bits at 20 Hz symbol rate on 10 parallel carriers. The bits are de-

modulated at the receiver and compared against the ground truth. We repeat the experiment

for increasing signal energy (i.e., by varying the peak-to-peak signal voltage, Vpp, from 1V

to 5V). Figure 4.14(a) plots the BER as a function of peak-to-peak input voltage (Vpp) to

the vibra-motor and demonstrates how it diminishes with higher SNR. At the highest SNR,

and aggregated over all carrier frequencies, Ripple achieves the 80th percentile BER of 0.017

translating to an average bit rate of 196.6 bits/s.

(2) Behavior of Carriers:

In evaluating BERs across different carrier frequencies, we observe that not all carriers behave

similarly. Figure 4.14(b) shows that carrier frequencies near the center of the spectrum

perform consistently better than those near the edges. One of the reasons is aliasing noise.

Ideally, the accelerometer should low-pass-filter the signal before sampling, to remove signal

components higher than the Nyquist frequency. However, inexpensive accelerometers do not

employ anti-aliasing filters, causing such undesirable effects. Carriers near the resonant band

also experience higher noise due to the spilled-over energy.

Increasing the number of carriers will enable greater parallelism (bit rate), at the expense

of higher BER per carrier. To characterize this tradeoff, we transmit data on increasing

number of carriers, starting from the middle of our spectrum and activating carriers on both

sides, one at a time. Figure 4.14(c) shows BER variations with increasing number of carriers,

for varying signal energy (peak-to-peak voltage, Vpp). As each carrier operates at fixed 20

Hz symbol rate, this also shows the bit rate vs BER characteristics of our system. Figure

4.15 zooms on the best four carriers.
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Figure 4.15: BER vs. number of carriers (four carriers shown).

(3) Temporal Stability:

Given that vibra-motors and accelerometers are essentially mechanical systems, we intend

to evaluate their properties when they are made to operate continuously for long durations.
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Given the low bit rates, this might be the case when relatively longer packets need to be

transmitted. Toward this end, we continuously transmit data for 50 sessions of 300 seconds

each. Figure 4.16 plots the per-carrier BER (computed in the granularity of 10 second

periods) of a randomly selected session – the Y-axis shows each of the carriers and the X-

axis is time. The BERs vary between 0.02 near the center to 0.2 near the edge. Overall

results, omitted for the interest of space, show no visible degradation in BER even after

running for 300 seconds.
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Figure 4.16: The BER per-carrier does not degrade after the motor is run for long dura-
tions.

(4) Exploiting Vibration Dimensions:

Recall that Ripple used two vibra-motors in parallel to exploit the orthogonality of vibrations

along the Y- and Z-axes of the accelerometer. Figure 4.17(a) and (b) show the distribution

of BER achieved across carrier frequencies on the Y- and Z-axes, respectively. We also

attempt to push the limits by modulating greater than 20 bits/s, however, the BER begins

to degrade. In light of this, Ripple achieves median capacity of around 400 bits/s (i.e., 20

bits/s per carrier x 10 carriers x 2 dimensions). While the tail of the BER distribution still

needs improvement, we believe coding can be employed to mitigate some of it.
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Figure 4.17: BER per carrier for parallel transmissions on orthogonal dimensions: (a)
Y-axis. (b) Z-axis.
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4.6.2 Smartphone Prototype

(1) Calibration:

Vibrations will vary across transactions due to phone orientation, humans holding it, different

vibration medium, etc. As discussed earlier, the demodulator calibrates for these factors, but

pays a penalty whenever the calibration is imperfect. We evaluate accuracy of calibration

using the error between the estimated amplitude for a symbol, and the mean amplitude

computed across all received symbols. Figure 4.18 plots the normalized error for various n-

ary modulations – the normalization denominator is used as the difference between adjacent

amplitudes.
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Figure 4.18: CDF of estimated symbol level error as a fraction of the mean inter-symbol
difference.
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Figure 4.19: (a) This heat-map shows the confusion matrix of the transmitted and received
symbols. (b) Ripple’s BER compared to the Basic, Ideal. (c) Per symbol BER with 16-ary
communication.

(2) BER with Smartphones:

Figure 4.19(a) plots the confusion matrix of transmitted and received (or demodulated)

symbols, for 16-ary modulation. While some errors occur, we observe that they are often

the symbol adjacent to the one transmitted. In light of this, Ripple uses Gray codes to
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minimize such well-behaved errors. With these codes and calibration, Figure 4.19(b) shows

the estimated BER for different bit rates, for each of the four modulation schemes. As

comparison points, the “Basic” symbol detector uses predefined thresholds for each symbol

and maps the received sample to the nearest amplitude. The “Ideal” scheme identifies the

bits using the knowledge of all received symbols. Ripple’s performs well even at higher bit

rates, which is not the case with Basic.

Figure 4.19(c) shows the BER per symbol for 16-ary modulation, showing that symbols

corresponding to the high vibration amplitudes experience higher errors. The reason is that

the consistency of the vibration motor degrades at high amplitudes – we have verified this

carefully by observing the distribution of received vibration amplitudes for large data traces.

(3) Impact of Phone Orientation:

The LRA vibra-motor inside Galaxy S4 generates linear vibration along one dimension – the

teardown of the phone [109] shows the motor’s axis aligned with the Z-axis of the phone.

Thus, an accelerometer should mostly witness vibration along the Z-axis. The other two axes

do not exhibit sufficient vibration at higher bit rates. This is verified in Table 4.1 where the

first four data points are from when the phone is laid flat on top of the cantilever. However,

once the phones are made to stand vertically or on the sides, its X- and Y-axes align with

the accelerometers Z-axis, causing an increase in errors. This suggests that the best contact

points for the phones are their XY planes, mainly due to the orientation the vibration motor.

Table 4.1: BER with 16-ary modulation for various orientations.

Orientation Hor. A Hor. B Hor. C Hor. D Ver. A Ver. B
Mean BER 0.025 0.029 0.002 0.029 0.197 0.178

(4) Phone Held in Hand (No Cantilever):

We experiment a scenario in which the accelerometer-based receiver is on the table, and the

handheld phone is made to touch the top of the receiver. The alignment is crudely along the

Z-axis. This setup adversely affects the system by (1) eliminating the amplitude gain due

to the cantilever, and (2) the dampens vibration due to the hand’s absorption. Figure 4.20

shows the results – unsurprisingly, the total vibration range is now smaller, pushing adjacent

symbol levels to be closer to each other, resulting in higher BER.
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Figure 4.20: The BER with a hand-held phone.

4.6.3 Security

(1) Acoustic Signal Leakage:

To characterize the maximum acoustic leakage from vibrations, we run the vibra-motor at

its highest intensity and record the SoV at various distances, using smartphone microphones

sampled at 16 kHz. This leakage is naturally far higher than a typical vibratory transmission

(composed of various intensity levels), so mitigating the most severe leakage is stronger secu-

rity. We also realize that the material on which the smartphone is placed matters, therefore,

repeated the same experiment by placing the phone on (a) glass plate, (b) metal plate (alu-

minum), (c) on the top of another smartphone, and (d) our custom wooden cantilever setup.

Figure 4.21 shows the contour plots for each scenario. Evidently, glass causes the strongest

side channel leak, and wood is minimum. Following experiments are hence performed on

glass.
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Figure 4.21: Acoustic side channel leakage on: (a) glass, (b) metal, (c) on another phone,
and (d) wood.

Results indicate that the SoV is well below the socially acceptable noise level. At a distance

of 2 ft, SoV is less than 25 dB, comparable to a soft whisper as per human perception of

loudness [110]. We further quantify this by comparing SoV against the ambient noises

recorded in five common locations – departmental store, inside a moving car, coffee shop,

class room, and computer laboratory. Table 4.2 shows that the ratio remains close to 2.
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Table 4.2: Ratio of power of SoV signals to ambient noise at public places.

Location Dep. Store Car Coffee Shop Class Lab
Power ratio 1.57 1.81 2.01 2.10 2.31

(2) Acoustic Leakage Cancellation:

Recall that the Ripple receiver records the sound and produces a synchronized phase-shifted

signal to cancel the sound, and superimposes a jamming sequence to further camouflage

the leakage. Figure 4.22 shows the impact of cancellation using a ratio of the power of

the residual signal to the original signal, measured at different distances. Evidently, the

cancellation is better with increasing distance. This is because the generated “anti-noise”

approximates the first few strong harmonics of the sound. However, the SoV also contains

some other low-energy components that fade with distance making the anti-noise signal more

similar to the vibration’s sounds. Hence the cancellation is better at a distance, until around

4ft, after which residual signal drops below the noise floor and our calculated power becomes

constant. The original signal also decreases but is still above the noise floor past 4 ft, hence,

the ratio increases.
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Figure 4.22: Ratio of residual to original signal power (in dB) at increasing distances from
the source.

(3) Acoustic Jamming:

Ripple applies jamming to further camouflage any acoustic residue after the cancellation. To

evaluate the lower bound of jamming efficiency, we make the experiment more favorable to

the attacker. We transmit only two amplitude levels (binary data bits) at 10 bits per second.

We place the phone on glass, the scenario that creates loudest sound. The eavesdropper

microphone is placed as close as possible to the transmitter, without touching it. To quantify

the efficacy of the jamming, we correlate the actual transmitted signal with the received

jammed signal and plot the correlation coefficient in the Table 4.3. A high correlation

coefficient indicates high probability of correctly decoding the message by the adversary,

and the vice versa. The table shows the correlation values for various ratios of the jamming
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to signal power. Evident from the table, the correlation coefficient sharply decreases when

Ripple increases the jamming power.

Table 4.3: The mean and standard deviation of the correlation coefficient for increasing
jamming to signal power ratio.

Power ratio 0 0.4 0.8 1.2 1.6 2
Corr. mean 0.68 0.55 0.35 0.19 0.18 0.09

Corr. std. dev. 0.027 0.015 0.017 0.008 0.003 0.003

4.7 Points of Discussion

Needless to say, the system presented in this chapter is an early step – some aspects need

deeper treatment, as discussed below.

Bounds and Optimality: We have not derived an upper bound on the capacity of

vibratory communication, nor do we believe that our design decisions are optimal. We

have taken an engineering approach and developed an end-to-end solution using techniques

borrowed from RF/acoustic communication. Further work is needed to “tighten” the design

towards optimality, including gains from coding and cancellation (on X, Y, Z dimensions).

Energy: Given that vibra-motors can be energy consuming, its important to charac-

terize the energy versus throughput tradeoffs. For smartphone applications, vibrations are

likely to be used occasionally for short exchanges, so perhaps energy is not a major hurdle.

Nonetheless, when the phone battery is low, the ability to adapt can be a valuable feature.

Other Side-Channels: An attacker could exploit the visual channel with a high-speed

camera [111] to decode the vibratory bits. Even physical eavesdropping may be a threat,

where the attacker sneakily attaches an accelerometer to the surface on which the Ripple

devices are located. A probable solution to such attacks can be “vibratory jamming”. Essen-

tially, the receiver’s vibra-motor could generate a pseudo-random jamming vibration while

receiving the data from the transmitter. Of course, the transmitter is unaware of this and

performs normal transmission. The net vibration video-recorded by the attacker’s camera is

actually the sum of two vibrations, hiding the actual transmitted bits. However, since the re-

ceiver knows the pseudo-random jamming sequence it has deliberately injected, it can cancel

it out. Of course, this pseudo-random vibration should have enough power to create desir-

able entropy at the transmitter, else the eavesdropper can focus only on the transmitter’s

vibration. We leave the viability of these attacks and mitigations to future work.
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4.8 Related Work

Vibration Generation and Sensing: Applications in haptic HCI for assisted learning,

touch-augmented environments, and haptic learning have used vibrations for communication

to humans [112, 113, 114, 115, 116]. However, the push for high communication data rates be-

tween vibrators and accelerometers is relatively unexplored. Recently, personal/environment

sensing on mobile devices has gained research attention. Applications like (sp)iPhone [117]

and TapPrints [118] demonstrate the ability to infer keystrokes through background motion

sensing. While many more efforts are around activity recognition from vibration signatures,

this chapter aims to modulate vibration for communication.

Vibratory Communication: The systems [119] and [85] are probably closest to Ripple.

They both encode vibrations through ON-OFF keying, with ON/OFF durations in the range

of a second (i.e., around 1 bits/s). This is adequate for applications like secure pairing be-

tween two smartphones, or sending a tiny URL over tens of seconds. However, unlike Ripple,

they do not focus on the wide range of PHY and cross-layer radio design issues and possible

security leaks. Dhwani [1] is an elegant work on acoustic NFC and addresses conceptually

similar problems, however, their acoustic platform are appreciably different from Ripple.

Technologies like Bump [120, 121, 122, 123, 124, 125, 126] use accelerometer/vibrator-

motor response to facilitate secure pairing between devices. However, these techniques are

primarily designed to exchange small signatures, as opposed to the arbitrary data transmis-

sion in Ripple. As indicated by researchers [119, 127], the lack of the dynamic secret message

in Bump-like techniques makes them less secure in the wild. These modes also require In-

ternet connectivity and trusted third-party servers to function, none of which is needed in

Ripple.

4.9 Chapter Summary

This chapter is an attempt to explore a new modality of communication – vibration. Through

multi-carrier modulation, orthogonal vibration division, and leakage cancellation, our system,

Ripple, is able to achieve 200 bits/s alongside a strong level of security against side-channel

attacks. While there is room for improvement, we believe the presented system could serve

as a stepping stone for exciting vibration-based technologies and applications.
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Chapter 5

Faster Communication through Vibrations

5.1 Overview

Motivation: Project Ripple [129], described in Chapter 4, is an attempt to enable com-

munication through physical vibrations. The core idea is to harness the vibration motor

(present in all smartphones and wearable devices) as a transmitter, and a motion sensor

(like an accelerometer) as a receiver. When two smartphones come in physical contact to

each other, the transmitter phone can vibrate to transfer bits of information. Transmission

is even possible through other solid channels, such as between devices placed on a tabletop,

or a finger ring communicating to a smartphone through bone conduction. While the exact

application remains an open question (especially in the presence of NFC-like technologies),

areas such as Internet of Things (IoT), intra-body networks, wearable security, and mobile

payments are calling for new forms for short-range communication. Qualities of a vibratory

radio, including zero RF radiation, contact-only authentication, mass-scale availability, and

intuitive usability, may together fill an emerging business need. This project is motivated

by this “bottom up” thinking and focuses on pushing forward the vibratory capabilities.

Prior Work: Of course, the fundamental idea of utilizing vibration as a communication

modality dates back to acoustics – speakers modulate bits of information into air vibrations

that are picked up by microphones. Air vibrations were later extended to water, enabling

under water communication [130, 131, 132] and various applications, such as SONAR [133].

In recent years, vibration through solids has been of interest, motivated primarily by the

need for proximal communication. Authors in [85, 119] used Morse-style communication

at 5 bit/s to exchange security keys between two mobile phones in contact. Ripple [129],

presented in Chapter 4, broke away from ON/OFF communication, and developed a viable

This chapter revises the publication “Ripple II: Faster Communication through Physical Vibration,” in
NSDI 2016 [128].
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radio through techniques such as multi-carrier amplitude modulation, vibration braking, and

simultaneous transmission over the three axes of the accelerometer. A self-sound cancella-

tion technique also prevented acoustic eavesdroppers from decoding the sounds of vibration,

offering improved security over RF-based approaches. As a first attempt to vibratory radio

design, Ripple achieved data rates of ≈ 200 bits/s, but left various challenges and opportu-

nities unaddressed. This chapter presents a subsequent work – Ripple-II – aimed at a far

more mature radio stack and two example applications.

Technical Core: Ripple-II’s core redesign entails the following: (1) Replacing the ac-

celerometer with the microphone as a receiver of vibrations. The key challenge pertains

to separating vibrations from ambient sounds “picked up” by the microphone. While the

availability of a second microphone offers the opportunity for sound cancellation, vibrations

partly pollute the second microphone as well. Moreover, techniques such as active noise can-

cellation are inadequate since residual phase mismatches – often tolerable in human hearing

applications [134] – seriously affect demodulation. We develop variants of adaptive filtering

schemes, enhanced with an understanding of the interference conditions. (2) We also discover

an opportunity that allows the vibra-motor to partially sense ambient sound interference,

through a phenomenon called back-EMF in electronic circuits. The transmitter extrapolates

from this partial information, using curve fitting techniques, and develops a proactive symbol

retransmission scheme. The problem is new to the best of our knowledge – unlike existing

wireless systems, here the transmitter is aware of the receiver’s interference conditions and

can adapt at the granularity of symbols. This opens both challenges and opportunities.

System and Applications: We engineer a completely functional prototype, which entails

a full OFDM stack, coping with ADC saturation, synchronization, error coding, interleaving,

etc. toward real applications, we develop a (clunky) wearable finger ring and demonstrate

the viability of transmitting vibratory signals through finger bones. While signals attenuate

through human tissues and muscles, effective bit rates of 7.41 Kbps is still possible, adequate

for applications like two-factor authentication (i.e., when the user unlocks the phone, the

vibratory password decoded by the phone serves as a second channel of authentication). We

also explore a second application where devices are placed on tabletops, allowing for one-

to-many multicast communication (e.g., a presenter sharing slides with all members in the

meeting). Lastly, we include a video demo on our project website [135] – the demo shows

the transmitter streaming music through OFDM packets over vibrations and the receiver’s

speaker playing it in real-time.

Platform and Evaluation: Our evaluation platform is composed of laptops, signal

generators, vibra-motor chips, microphone chips, and home-grown circuits that interconnect
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them. In the basic scenario, the vibra-motor is attached to a short pencil to emulate a

“stylus” like device, which then touches a microphone chip to transfer information. We

generate various ambient sounds in the lab, including soft and loud music, people talking,

machine hums, loud thuds and vibrations, and their combinations. Our PHY and MAC

layer schemes are evaluated in these settings, against metrics such as SNR gain, bit error

rate (BER), throughput, etc. At the application layer, we compute end-to-end data rate

under modestly realistic settings, such as the human wearing the (vibra-motor embedded)

ring and touching the microphone chip. We emulate wrist watches as well (2.23 Kbps), and

perform an informal user study to understand if they feel the vibrations. We also explore

achievable bit rates for tabletop communication, with devices placed at increasing distances

on wooden surfaces.

Next Steps: There is much room for continued research and improvement. First, we have

little understanding of PHY capacity and MAC layer optimality; intuitively, we believe that

modeling the devices and the channel can yield reasonable performance bounds. Second, the

sound cancellation techniques can perhaps benefit from deeper signal processing expertise

– we have initiated collaboration toward this goal. Third, microphones and accelerometers

may together present new opportunities that remain untapped in this chapter. Fourth, while

the Chapter 4 discussed techniques to mitigate attacks on vibratory sounds, visual attacks

still remain a threat – a high-speed camera, with line of sight to the device, may be able to

decode vibrations. Finally, we need guidance on other possible use-cases and applications

[136] of vibratory radios. Our ongoing work is focused on all these aspects.

In summary, the contributions of this chapter are:

• An OFDM-based vibratory radio with microphones as the receiver. The PHY layer

uses variants of adaptive filtering to isolate vibrations from ambient sounds at the

microphone; the MAC layer develops a transmitter side carrier sensing mechanism and

uses it for proactive symbol retransmission.

• A completely functional system borne out of significant engineering effort. The effort

includes hardware circuits on bread boards, to drivers for the vibra-motor, to bone con-

duction and real-time music streaming. Instantiation of the system in two applications:

touch-based authentication and surface communication.

The overall architecture of Ripple-II is illustrated in Figure 5.1. The rest of the chapter

expands on the main modules (shaded in gray) and briefly touches upon the techniques

borrowed from the literature, and the engineering effort in building the prototype.
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Figure 5.1: Ripple-II’s system architecture.

5.2 Development Platform

5.2.1 Vibratory Transmitter

As described in Chapter 4, an LRA vibration motor (or “vibra-motor”) is an electro-

mechanical device that moves a metallic mass rhythmically around a neutral position to

generate vibrations. We control this vibra-motor through an Agilent 33500B waveform gen-

erator, which is indirectly controlled by MATLAB running on a laptop. The laptop generates

the desired digital samples; the waveform generator converts the samples to an analog wave

and transmits to the vibra-motor. The peak-to-peak output voltage is stabilized at 5V,

the maximum supported by the vibra-motor chip. We generate OFDM symbols through

MATLAB and drive the motor as desired.

5.2.2 Microphone as a Receiver

Our prior work [129] used a vibra-motor as the transmitter and an accelerometer as the

receiver.1 The accelerometer demodulated vibratory QPSK symbols and corrected for errors

using simple gray coding techniques. The low bandwidth of accelerometer chips (800 Hz)

proved to be the main bottleneck to link capacity, resulting in ≈ 200 bits/s. This chapter

breaks away from accelerometers and identifies the possibility of using microphones as a

vibration receiver.

Like accelerometers, microphones also transduce physical motion to electrical signals using

a diaphragm that responds to changes in (acoustic) air pressure. Figure 5.2 shows a micro-

1Accelerometers are MEMS devices that transduce physical motion into electrical signals by measuring
the extent to which a tiny seismic mass moves inside fixed electrodes (see [93] for details).
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phone chip and the basic internal architecture – as the diaphragm vibrates inside a magnetic

field, the produced electrical signals are amplified and sampled by an ADC. Unsurprisingly,

the diaphragm can also be made to vibrate by physically touching a vibra-motor to the mi-

crophone chip. Since microphones are designed for greater sensitivity and operate over a

wider frequency range, they can serve as a better receiver (an alternative to accelerometers).

The tradeoff, however, is that the vibration measured at the ADC is actually an aggregate

of the physical vibration and the air vibration from ambient sounds (e.g., people talking).

Ripple-II needs to isolate physical from acoustic vibrations to accomplish high-bandwidth

vibratory communication.

(a) (b)

Figure 5.2: (a) MEMS microphone chip, the diaphragm hole near bottom left. (b) Micro-
phone circuit sketch.

Figure 5.3 shows our overall hardware setup. The vibra-motor is taped to the back of a

short pencil and the tip of the pencil now acts like a stylus, touching the microphone chip.

Transmission bits produced by the laptop are converted to a signal waveform by the signal

generator, which then drives the transmitter; the microphone decodes these bits through

real-time processing on a laptop. The following subsections detail the technical modules in

the PHY, MAC, and application layers.

Figure 5.3: Ripple-II’s experimentation setup (three vibra-motors attached to a pencil, ring,
and watch). The stylus touching a microphone, the second microphone nearby.
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5.3 PHY: Vibratory Radio

We begin with the design of the microphone-receiver, followed by our implementation of

OFDM.

5.3.1 Separating Vibration from Sound

While the microphone offers a larger bandwidth compared to the accelerometer, its sensitivity

to ambient sound is a disadvantage. Unless filtered out, the vibration SINR will be low,

especially in loud environments. We attempted various techniques (algorithms and hacks);

we detail the ones that worked and touch upon the failures.

(1) Covering the Sound Hole:

The microphone chip has a circular opening (like a small hole) that exposes the diaphragm

to air pressure. To prevent ambient sounds from polluting Ripple-II’s vibratory signals, we

covered the hole with a stiff synthetic rubber sheet (somewhat like a stethoscope). However,

when a vibrating object comes in contact with this rubber sheet, the air trapped inside

the hole still oscillates, causing the diaphragm to produce the desired signals. Figure 5.4

compares the frequency responses of the altered and the standard microphones for vibration

and sound, respectively. Figure 5.4(a) shows an average 18.2 dB gain for vibration signals

over the standard microphone; at some frequencies the difference is 43.8 dB. On the other

hand, Figure 5.4(b) shows that the average sound attenuation at the altered microphone is

around 12.3 dB. For both the signal (i.e., vibration) and the noise (i.e., ambient sounds),

the higher frequency proves better (useful later in Section 5.5).
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Figure 5.4: (a) Covering the sound hole offers improved vibration signal. (b) Covered
sound hole attenuates sound signals in comparison to the standard microphone.

(2) Canceling Ambient Sound:

Let us denote the vibration signal from the stylus as V (t) and the ambient sound signal as

S(t). Ripple-II aims to subtract S(t) from the aggregate signal (A(t) = V (t)+S(t))) received
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through the microphone. A second microphone present in many devices today is a natural

opportunity. In an ideal case, the second microphone should only receive the ambient sound

S(t) and none of the physical vibration V (t) since the stylus is not in direct contact with

it. In reality, however, physical vibrations also leak into the second microphone. Also, both

microphones are affected by a high-intensity electrical noise, E(t), caused by their common

supply voltage. Frequencies of this noise range from 300 Hz to 2500 Hz and its amplitude

is comparable to V (t). Finally, the microphone output also includes a native hardware

noise, typically assumed to be uncorrelated additive Gaussian, denoted N1 and N2 for the

respective microphones.

Based on the above factors, the overall system can be modeled as shown in Figure 5.5.

The signal output from the ith microphone, Yi can thus be expressed as:

Yi = HviV +HsiS +HeE +Ni

Mic 1 

Mic 2 

N1 

N2 He 

HS2 

HV1 

HS1 

HV2 

Figure 5.5: Modeling the signals and interferences at each of the microphones; H denotes
the channel matrix and V , S, E, denote vibration, sound, and electrical noise, respectively.

We note that extraneous physical vibrations may occur when Ripple-II is transmitting

information (for example, in a moving vehicle). Such vibrations are included in S since it is

likely to affect both the microphones similarly. We also note that the electrical noise E is

highly correlated and synchronized at both microphones, since they share a common power

source. Under this model, our goal is to extract V from Y1 and decode the content.

(3) Failed Attempts (MIMO, NC, rPCA):

We discovered early that electrical noise E can be removed effectively by low-pass filtering Y2

and subtracting from Y1. Since E dominates and is phase matched across both microphones,

the residue after subtraction minimally impacts V . Thus, we can rewrite Yi = HviV +

HsiS + Ni. This appears to be in the form of MIMO and hence solvable without difficulty.

Unfortunately, the channel matrix for ambient sound, Hsi , cannot be easily measured since

Ripple-II has no control over the sound sources. Also, due to the time-varying nature,

statistical estimates are difficult.
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Classical noise cancellation seems applicable [137], however, the statistical nature of this

algorithm does not mitigate phase mismatches. The result after subtraction does preserve

the amplitude of the desired signal, which is often adequate for human perception [134]. In

Ripple-II, however, we need phase alignment too, or else, QAM-based demodulation falters.

Put differently, requirements to improve human hearing experience is less stringent than the

requirements for data communication.

Robust PCA is an algorithm from 2009 used for background separation [138]. The tech-

nique builds on the result that, under certain conditions, a given matrix can be factorized

into a sparse and low-rank matrix. For instance, in a talk show video, static background

walls could serve as the low-rank matrix (due to high similarity across video frames) and

the talking people could make up the sparse matrix. In our case, we envisioned the ambient

sound to be sparse and the vibration to be low-rank (since the cyclic prefix of OFDM sym-

bols can be organized to look identical across time).2 Unfortunately, we could not design the

matrices to attain adequate amount of both sparsity and low-rank-ness. During the short

time shifts for which the OFDM vibration symbols were identical, the sound signal changed

enough that they were not sparse. When sound proved to be sparse over longer time frames,

the low-rank-ness disappeared. The outcomes of factorization yielded marginal gain.

(4) Symbol Selective Adaptive Noise Filtering:

Adaptive filtering (AF) is an established technique that can accept the two microphones’

signals as inputs, say (Y1 = V1 + S1) and (Y2 = V2 + S2), and can attempt to adapt the

filter coefficients for Y2 such that the Y1 − Y2 is V1. Conceptually, AF bolsters Y2 in the

regions where it correlates well with S1, and then subtracts from Y1. This works best when

S1 and Y2 are somewhat correlated to each other, but neither is correlated to V1. However,

in our system, when ambient interference is low (i.e., V dominates S), then Y2 correlates

well with V1 – this is why AF subtracts away the vibratory signals from Y1, defeating the

purpose. However, we observe that if we could identify OFDM symbols that are in error

(i.e., S dominates V ), then perhaps only the erroneous symbols could be subjected to AF.

Since S1 and Y2 would correlate well in such cases, the result of Y1−Y2 could converge to V1.

Using this intuition, we design Symbol Selective Adaptive Noise Filtering (SANF), sketched

in Figure 5.6.

Erroneous Symbol Detection: The main opportunity emerges from measurements that

revealed that the vibratory channel responses at the primary and secondary microphones –

2Without too many details, note that time domain signals can be shifted by several samples and yet,
by OFDM design, they will map to the same frequency domain symbol – this is why we could generate
low-rank-ness

90



9 8 9 8 9 

9 8 9 8 9 

8 8 

Primary symbols 

Deconv./Threshold 

8 8 

8 8 

IFFT 
Adaptive 

Filter 

9 9 

9 9 9 9 9 

IFFT 

Secondary symbols Erroneous symbols 

Corrected symbols 

Figure 5.6: SANF infers erroneous symbols and only feeds these to the AF module.

Hv1 and Hv2 – maintain a constant ratio under light or no interference. This is likely due

to the same solid channel between the two microphones. In the presence of sound, however,

the same ratio gets polluted and thereby loses the constancy property (since sound varies

over time). Thus, we first perform channel estimation for pilot subcarriers scattered across

the OFDM symbol. We synchronize the secondary microphone and estimate the channel for

that same pilot (the slight time offset does not affect due to the protection from the cyclic

prefix). Now, deconvolution of the primary and secondary signal in the frequency domain

yields the complex gain, αp for each pilot p.

Recall, the goal is to estimate the pristine ratio of Hv1 and Hv2 in the presence of sound

interference; the αp we have is still polluted by sound interferences. Thus, we perform a least

square estimation of the ratio and compute α∗ for each subcarrier. Now, for any non-pilot

symbol to be erroneous, the computed complex gain between the primary and secondary

must be far from α∗ for that sub-carrier. Once the erroneous symbols are identified, we

convert only those to the time domain, leaving the error-free subcarriers untouched. We

obtain the time domain signals from both of the primary and secondary microphone and

feed them to an adaptive filter for noise cancellation. The output of the adaptive filter is

then demodulated to recover the vibratory symbols.

(5) Amplifier Gain and Clipping:

To maximize the power of the vibratory signal, we operate the receiver signal amplifier at

near-maximum gain and leave just enough headroom for typical ambient sound (measured

empirically). Of course, sometimes the ambient sound exceeds the headroom and drives the

amplifier to saturation [139]. Figure 5.7(a) shows the output of the unsaturated amplifier;

Figure 5.7(b) shows the saturated case – a truncated waveform. Unsurprisingly, this “clip-

ping” effect spills energy into other frequencies, causing interference in an OFDM system.

We alleviate such frequency distortion effects by replacing the flat saturation region with a

cubic spline interpolation of the signal – Figure 5.7(c).

Our measurements also recorded consistent interference at lower frequencies (< 500 Hz),

caused by a combination of winds from air vents, thermal noise from electrical equipment,
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Figure 5.7: The waveform (first row) and spectrogram (second row) of the signal at various
stages: (a) actual signal, (b) distorted signal after clipping, (c) corrected signal after spline
interpolation.

as well as vibrations of the human hand while holding the transmitter. The vibra-motor

also exhibits resonance frequency at around 232 Hz, causing the system to destabilize due

to the high power gain. We deemed it suitable to sidestep these problems and moved the

transmission band to begin from 500 Hz.

5.3.2 OFDM over Vibration

We implement OFDM [140] over the vibra-motor and microphone link. Although an en-

gineering effort, we briefly summarize the parameter selection process, particularly those

influenced by the vibratory channel.

(1) Channel Impulse Response:

Although the vibratory channel is dominantly time-invariant and frequency selective, human

factors such as hand movements and varying angle of contact inject variability. Measurements

suggest similarity to a Rician fading model [141], with a strong line of sight path. The weaker

multipath components are caused by the inertial movement of the motor mass – reverberation

of the medium distorts the signal and multiple reflected/delayed replicas combine to create

an elongated decaying response at the output. We measure the impulse response of our

system using the exponential sine-sweep method [142] during which sinusoids of exponentially

increasing frequency drives the motor. The output from the microphone is de-convolved

with the weighted reverse sine-sweep to obtain the impulse response (the technique offers

robustness against noise and nonlinear distortions). Figure 5.8(a) and (b) show the measured

impulse response and the corresponding power delay profile (PDP).
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Figure 5.8: (a) Channel impulse response of the vibratory channel. (b) Power delay profile
of the vibratory channel.

(2) Parameter Selection:

Cyclic Prefix: The PDP shows 0.4 ms before the multipath energy falls below 10 dB of the

highest peak, called “10 dB maximum excess delay”. This should be the separation between

symbols to avoid inter symbol interference (ISI). We set the guard interval conservatively

to 1ms, however, instead of leaving the channel idle during this interval, we insert 1 ms of

the last part of the symbol. This is called the cyclic prefix (CP) which helps cope with time

synchronization errors without affecting the orthogonality of sub-carriers.

Subcarrier Bandwidth: The vibratory channel, as mentioned earlier, offers long channel

coherence time, allowing for small subcarrier spacing. In practice, however, due to unpre-

dictable phase noise, the inter carrier interference (ICI) becomes severe with small subcarrier

spacing. On the other hand, the subcarriers become frequency selective for bandwidths larger

than the coherence bandwidth of the channel. In such cases, the channel is no longer flat

and hence equalization techniques falter [143, 144]. We measure the coherence bandwidth

to be 480 Hz (see Figure 5.9) – this is the width of the frequency-correlation function using

a threshold of 0.95. We then choose the subcarrier bandwidth conservatively to 40 Hz, less

than the 1
10

th
of the coherence bandwidth.

Total Bandwidth: We choose the total bandwidth to be 12 kHz, equal to the coherence

bandwidth at correlation threshold of 0.7.

With this PHY layer in place, we now focus on a vibratory MAC layer, with the goal of

reliably delivering packets to the receiver even under interference.
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Figure 5.9: (a) Temporal stability of the channel. (b) The frequency-correlation function
indicates the coherence bandwidth of 480 Hz for the width threshold of 0.95.
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Figure 5.10: (a) Vibra-motor driven by a 3 kHz voltage and no interference in the environ-
ment. (b) Interference introduced in the environment raises the noise floor, especially at
lower-frequency bands. (c) Clear detection of 7 kHz interference caused by a nearby vibra-
tor. (d) Spectrogram of acoustic chirp detected through back-EMF – the chirp was played
through a speaker placed 4 ft away.

5.4 MAC Layer Design

Reliable packet delivery entails retransmitting a packet when it is received in error. In

wireless systems, since the transmitter is unaware of the receiver’s channel conditions, the

error detection happens reactively, through an ACK from the receiver. Vibra-motors offer

a new opportunity – we find that the receiver’s interference conditions can be sensed at

the transmitter through what is known as back-EMF. Thus, the transmitter could poten-

tially transmit and listen at the same time, infer symbol collisions, and retransmit symbols

proactively. Efficiency can improve but some issues need mitigation.

5.4.1 Sensing Interference from Back-EMF

Back-EMF is an electro-magnetic effect observed in magnet-based motors where relative

motion occurs between the current carrying armature/coil and the magnetic field. In our

vibra-motor, when the permanent magnet oscillates near the coil, the flux linkage with the
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coil changes due to the driving voltage and/or vibration noise. According to the Faraday’s

law of electromagnetic induction [145], this changing flux induces an electromotive force in

the coil. Lenz’s law [146] says this electromotive force acts in the reverse direction of the

driving voltage, called back-EMF of the motor. As the rate of change of the magnetic flux is

proportional to the speed of the magnetic mass, the back-EMF serves as an indicator of the

extraneous vibration experienced by the mass.

Unsurprisingly, the interfering vibrations generate subtle movements of the vibra-motor

mass, causing the voltage changes around a small resistor to be in milli-volts (below the ADC

noise floor).3 We design a low noise amplifier, limiting the parasitic inductance/capacitance,

to amplify this voltage 100x before feeding it to the ADC sampling circuit. Figures 5.10(a,b)

show the difference between interference-free and interfered transmissions, as sensed through

back-EMF. The noise floor increases, especially at lower frequencies where the interference is

dominant. Figure 5.10(c) shows another case where a 7 kHz interferer – a second interfering

vibra-motor – is placed on the same table as our experiment; the transmitting vibra-motor

detects the corresponding spike at 7 kHz. We also played an acoustic chirp on a speaker

4 feet away from our devices – Figure 5.10(d) shows the chirp spectrogram, a reasonable

reproduction of the actual. The findings extend hope that back-EMF can be useful to

designing transmitter-side collision inference protocols.

5.4.2 Vibratory Interference

Before moving into protocol design, we characterize the nature of vibratory interference

experienced by the microphone. Interferences are broadly of two kinds. (1) Ambient acoustic

sounds, such as people talking, background music, machine hums, etc. and (2) physical

vibrations caused by objects such as running table fans, taps and thuds on tabletops, and

even natural vibration of human hands when they are holding the devices. Figure 5.11

shows the spectral graph of several example interferences, measured in isolation. The key

observation is that interferences are heavily biased to the lower-frequency bands; frequencies

higher than 6 kHz are rarely impacted.

Figure 5.12 shows the 3D contour of acoustic interference across frequency and time –

the interference stems from loud human voices. The key observation is that for any given

frequency, the signal amplitude of the interference rises with time, reaches a peak, and

decays again. This characteristic is highly common in a wide range of interferences, primarily

3The measuring circuit samples the induced current as a voltage drop across a series resistor. We keep
this resistor value below 0.02% of the motor’s coil resistance so that the electrical property of the system
remains unaffected.
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Figure 5.11: Spectral properties of various interferences occurring in the natural environ-
ment.

because instantaneously starting or stopping strong signals is difficult. Occasionally, we find

certain machines capable of producing a sudden spike, however, their decay is still slow. We

leverage back-EMF along with these properties of the interference to design a MAC protocol,

called Proactive Symbol Recovery (PSR).
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Figure 5.12: 3D contour of acoustic interference across frequency and time.

5.4.3 PSR Protocol: The Problem Definition

The protocol problem can be abstracted as follows. Consider a packet P composed of many

OFDM symbols, [S1, S2, S3, ...], each symbol composed of n subcarriers [f1, f2, f3, ...fn]. Fig-

ure 5.13 shows the pictorial representation of such a packet, in the form of a time-frequency

grid. Assume that the gray region denotes the incidence of interference, essentially the top

view of Figure 5.12. Now, with back-EMF, the transmitter is able to sense receiver-side

interference, however, the sensing is not accurate. To be able to reliably detect interference

(i.e., reduce false positives), the transmitter can increase the sensing threshold – interference

96



detected above this threshold is strongly indicative of actual interference. Assume that the

interference above a given threshold is the black region in Figure 5.13.

f1 f2 f3 f4             …                                        fn 
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…
 

…
 

…
 

Figure 5.13: A packet represented in terms of OFDM symbol, each symbol to be transmit-
ted over time.

The protocol question is: Which symbols should the transmitter retransmit, and when?

Transmitting only the symbols that are affected by the black color may still leave too many

erroneous symbols – the coding scheme at the receiver may not be able to recover the packet.

The transmitter essentially needs to estimate the symbols affected by the gray region too,

and retransmit a subset of those symbols [147, 148]. Clearly, not all the gray-color affected

symbols need to be transmitted since the coding scheme can indeed correct for some errors.

A second question pertains to interference adaptation. Once interference is detected at

time t4, the transmitter must adjust the subsequent transmissions to cope with the inter-

ference. Any adjustments – such as rate control – would need to be communicated to the

receiver through some control information. However, unlike packets, symbols are not prefaced

with headers; dedicating some subcarriers to a control channel will be wasteful in general.

Under this constraint, the protocol needs to adapt to interference and concisely convey its

adaptations to the receiver. The basic problem is new to the best of our knowledge, since

existing protocols assume that the receiver has better estimates of error than the transmitter

[147, 148]. In our case, the transmitter is better aware of the interference but has no control

bits to convey its adaptations.
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5.4.4 Proactive Symbol Recovery Protocol

The PSR protocol develops two heuristics – interference extrapolation and implicit control

signaling – described next.

(1) Interference Extrapolation: Only the contour of the interference within the black

region (in Figure 5.13) is visible to the transmitter – one could metaphorically envision it

as the “part of the iceberg above water”. Based on the visible shape, the transmitter may

be able to extrapolate the “submerged” shape, generating an estimate of the gray region.

Our measurements have consistently indicated that the interference decay is well-behaved,

of course with some jitter. Hence, we model this as a curve fitting problem, and use a third-

order cubic spline (the high-frequency jitters are not captured). Given multiple silhouettes,

one per-subcarrier, we pick the silhouette whose peak is at 80th percentile among all peaks.

Using this we develop an estimate of the gray region.

(2) Implicit Control Signaling: As mentioned earlier, the transmitter needs some

control bits for signaling its actions to the receiver. To this end, we use a simple interleaving

idea from the basics of signal processing. Specifically, when alternate subcarriers are loaded

with data (and the ones in-between left empty), the time domain representation of the

OFDM signal exhibits two identical copies (Figure 5.14). We call this the 2x interleaving

mode. When every fourth subcarrier is loaded, the time domain signal shows four identical

copies of the same signal. The receiver recognizes these identical copies in time domain and

decodes the control information. In frequency domain, it extracts the data from every second

(or fourth) subcarrier and ignores the others. Of course, we are aware that the control bits

are not free – the 2x and 4x interleaving modes reduce the bandwidth. However, we also

note that energy on the loaded subcarriers increases – a 2x mode exhibits a 3 dB gain (nearly

double), lowering chances of demodulation error.

0 10 20 300

2

4

6

Frequency bin # 

M
ag

ni
tu

de
 

0 10 20 30

0

0.5

1

1.5

2

Time 

Am
pl

itu
de

 

(a) (b)

Figure 5.14: (a) The 2x interleaving in frequency. (b) Identical signal parts in time domain.

(3) Protocol Design: We now describe the basic operation of the PSR protocol (we

continue to refer to the toy example in Figure 5.13). When no interference is detected by
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the transmitter’s back-EMF sensor (i.e., until time t4), symbols are sent as usual. Upon

detecting interference at t4, the transmitter records the symbol that was affected (namely,

S4), and performs the subsequent symbol transmissions (S5) at 2x interleaving mode. This

continues until the interference has subsided below the transmitter’s threshold. At this

point, the transmitter performs the extrapolation using the interference decay data, starting

from the last-observed interference peak. The interpolation suggests that the receiver may

continue to experience interference until some time in the future, say until t7. Therefore,

the transmitter continues symbol transmissions in 2x mode, after which it falls back to no-

interleaving. Observe that this interleaving mechanism is akin to halving the rate, except

that it helps inform the receiver about the rate reduction.

Ideally, the interference extrapolation may help recover the symbols S6 and S7, how-

ever, symbols S2 and S3 could also be heavily interfered. To this end, the transmitter also

extrapolates the front portion of the interference, and remembers the symbols that need

retransmission. Once all the symbols have been transmitted, it now retransmits these sym-

bols (S2, S3, and S4 in this toy case), at the appropriate interleaving mode permissible by

the then channel conditions. Importantly, the receiver must identify that these symbols are

actually duplicates of prior symbols. Hence, the transmitter marks the start of these re-

transmissions with a 4x interleaved packet – the packet includes indices of all symbols that

are being retransmitted. The encoding of indices is efficiently done to utilize the fewest bits

possible, telling the receiver how many retransmissions to expect and which prior symbols to

replace. The receiver demodulates all the symbols, performs the appropriate replacements,

and feeds them through the decoder.

(4) Coding for Error Correction: Needless to say, extrapolation will incur errors, and

back-EMF sensing will experience false negatives. This will leave erroneous symbols at the

receiver even after retransmissions. In fact, it would be inefficient for the transmitter to

recover all symbols since the decoder at the receiver would be able to correct for some of

them anyway. We implement a standard 2/3 convolutional code, with constrain length 7, to

cope with inherent symbol errors in the transmission. We implement a hard decision Viterbi

decoder with trace back depth of 30 to recover the bits. To cope with heavy bursts in error,

we use an interleaver to spread out the bursts.
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5.5 Evaluation

5.5.1 Complete Hardware Prototype

Figure 5.15 shows the complete interconnection of the hardware elements in Ripple-II. Very

briefly, the receiver (on the left side) draws power from the USB port of a Dell laptop (or any

mobile device or raspberry-pi/arduino) serving as the controller. Instead of using a separate

ADC, we abuse the line-in audio input port of the laptop, which comes equipped with a

high-speed ADC and a driver to push samples to user space. We connect signals from each

microphone to one of the channels in the line-in port with the help of a three-conductor

(TRS) audio jack. We run the appropriate driver to sample the signal at 48 kHz, 16-bit

stereo mode.

The transmitter (shown on the right side) also uses a similar approach. The software

controller generates digital samples that are converted to analog via the DAC of the audio

port. This output signal (with appropriate amplification and shaping) feeds into the vibra-

motor, which is in turn attached to the stylus or ring. We sample this line-in port at 48

kHz to collect the back-EMF signal along with the reference voltage. Offline processing is

performed in MATLAB; real-time music streaming is performed on GNURadio.
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Figure 5.15: The complete hardware internals of Ripple-II.

5.5.2 Performance Results

We present end-to-end results first, followed by zoomed-in results from acoustic noise can-

cellation (SANF) and proactive symbol retransmission (PSR). Our final results are drawn

from 100+ sessions of experiments, each session either 1−3 min. long, and entails vibratory

100



transmission against diverse ambient sounds, ambient vibrations, modulations, etc. We col-

lected 800 samples of ambient sound (e.g., supermarket ambience, in classroom noise, music

nearby, etc.) and 15 ambient vibrations (e.g., walking, moving in a car, tapping on table).

Half of sessions were against the natural lab sound conditions; for the other half, we played

external ambience sounds through a speaker and generated vibrational noise through an ex-

ternal vibra-motor placed on the table. As a baseline we use the basic OFDM microphone

receiver running on our hardware platform (including the covered sound hole). We compare

this baseline against (1) baseline + coding, (2) baseline + coding + SANF, and (3) baseline

+ coding + SANF + PSR.

(1) Ripple-II Results:

Figure 5.16(a) shows the CDF of throughput gain computed from all the experimentation

data, across all possible noise environments. The communication link operates in a high

bit error rate (BER) regime and coding schemes perform worse than expected. The median

gain with SANF is around 10%, with a small fraction of cases leading to negative gain.

However, PSR brings appreciable benefits, mainly from retransmitting erroneous symbols

and bringing the errors below the tolerable threshold. Median throughput gain with PSR is

26.6%. Figure 5.16(b) reports the breakup of raw throughput under various ambient sound

categories. Under mechanical sound spikes alone, the performances of SANF and PSR are

weak – the interpolation in PSR falters, while SANF’s symbol error detection scheme is not

sensitive enough. However, in other categories of noises, throughput improves – the median

throughput in the “All” noise category is ≈ 27 Kbps.
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Figure 5.16: (a) Throughput gain across all experiments. (b) Median throughput across
different ambient sound categories.

(2) SANF Results:

Figure 5.17(a) zooms into symbol selective aspect of SANF, and shows the fraction of symbols

corrected over normal adaptive noise filtering. The correction gain improves with higher
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SNR, but falls beyond 15dB. This is because at > 15dB SNR, SANF is unable to detect the

symbol errors correctly since the interference is less pronounced – the inability to identify

the erroneous symbols derails adaptive noise filtering. The sensitivity curve captures this

behavior, suggesting that the symbol correction efficacy is both a function of SNR and

sensitivity. Figure 5.17(b) shows the gain across each subcarrier – the graph is for the best

SNR, 15 dB.
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Figure 5.17: (a) Variation of SANF’s cancellation gain and sensitivity against increasing
SNR; sensitivity is the fraction of erroneous symbols detected by SANF. (b) The noise
cancellation gain as the percentage of erroneous symbol per subcarrier.

(3) PSR Results:

The core design elements in PSR pertains to (1) back-EMF-based sensing and extrapolation

of the interference, and (2) reducing symbol errors via 2x/4x interleaving (expected to in-

crease energy). To evaluate extrapolation, we first identify the set of truly erroneous symbols

that should have been retransmitted by the transmitter. We know the set of symbols that

PSR actually retransmitted. From these two sets, we compute the precision and recall of

PSR, reflecting the combined efficacy of back-EMF sensing and interpolation. Figure 5.18(a)

shows the results – the precision is strong but the recall is weak, indicating that PSR is con-

servative. This is expected/desirable since we intend to not retransmit excessively, which

reduces inflation of the packet and also allows the decoder to correct for the residual errors.

Of course, there is room to tune the interpolation scheme and the back-EMF sensitivity –

we leave this to future work.

Figure 5.18(b) shows the reduction in symbol error rate when half and one-forth subcarriers

are loaded with data (recall we denoted this as 2x and 4x modes of transmission). Under

heavy channel interference, 2x mode substantially reduces symbol errors, offering effects

similar to rate control. However, the 2x mode also implicitly includes a control bit that

the receiver can recognize. Measurements show that the control signaling was near perfect,

meaning the receiver almost always extracted the correct data from 2x and 4x transmissions.
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Figure 5.18: (a) Precision and recall to evaluate the back-EMF sensing and interference
extrapolation scheme. (b) The per subcarrier symbol error rates using all, 1/2, and 1/4 of
the subcarriers, while the noise power is constant.

5.5.3 Applications and Capabilities

We explore potential applications of Ripple-II, namely a vibratory ring and watch; tabletop

communication; and device-to-device transfers.

(1) Finger Ring for Authentication:

We envision touch-based two-factor authentication – a user wearing a Ripple-II ring or watch

could touch the smartphone screen and the vibratory password can be conducted through

the bones. The core notion generalizes to other scenarios, including unlocking car doors,

door knobs, etc. While a usable system would need maturity in interfaces, energy, etc.,

this section only discusses the communication aspects of through-bone transmission. Figure

5.19(a) shows the crude finger ring prototype, placed on the index finger of the user. For our

prototype, the ring is powered by a battery located outside the ring and connected via long

wires. The cylindrical vibra-motor is placed horizontally on the finger to maximize area of

contact, however, placement influences communication.
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Figure 5.19: (a) Finger ring operated at 8 kHz. (b) Incidence angles affect lower frequen-
cies less. (c) Higher frequencies in a piston oscillator become directional and hence delivers
less energy in unaligned directions.
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Figure 5.19(b,c) shows the variation of signal power for three different incidence angles

between the vibra-motor and the finger – incidence angle defined as the angle between the

finger bone and the direction along which the vibrator mass oscillates (which is perpendicular

to the base of the cylinder). Evidently, at lower frequencies, the incidence angle does not

impact the signal, however, at higher frequencies the higher incidence angles reduce SNR.

Moreover, higher frequencies are also less effective for signal propagation through the human

body. Thus, we decide to operate the ring at 90◦ incidence but focus the power budget to

within 8 kHz.

We also performed similar experiments with a watch – pasting the vibra-motor on the wrist

bone below the watch. Performance degrades as expected, due to a longer conduction path

from the wrist to the microphone. Table 5.1 summarizes results. Five student volunteers

experimented with our prototype and none of them were able to feel or hear the vibrations

at all.

Table 5.1: Performance of the vibratory communication prototype with wearable devices.

Bandwidth Modu. Code Tput:Kbps

Ring 8 kHz QPSK 1/2 7.41
Watch 3 kHz QPSK 1/2 2.23

(2) Tabletop Communication:

Multicast communication is often useful – a group picture at a restaurant needs to be shared

with everyone in the group; presentation slides need to be shared in a meeting. We envision

placing all phones on the table, near each other, and performing one vibratory multicast.

Figure 5.20 shows the outcome of such an experiment – we used the stylus to touch different

locations on a table, while two microphone receivers were at fixed locations on this otherwise

empty table. Even at nearly 2 feet away, the throughput is around 4 kbps (the X-axis has

duplicate values since there were multiple distinct locations at the same distance from the

microphone).

(3) P2P Money Transfer:

In developing regions, mobile payments may be viable with basic phones with vibra-motor

and microphones. Perhaps a USB stick can transfer data to phones/tablets on physical con-

tact. Such apps obviously need higher data rates and some may require real-time operation.

Table 5.2 shows possibilities when vibra-motor on a stylus and a smartphones are touched

to microphones. We have also built a demonstration of a real-time music streaming system

over vibrations.
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Figure 5.20: Throughput against varying tabletop range.

Table 5.2: Performance of the vibratory communication prototype with stylus and mobile
phone.

Bandwidth Modu. Code Tput:Kbps

Stylus 12 kHz 16 QAM 2/3 29.19
Phone 12 kHz 16 QAM 2/3 26.13

5.6 Related Work

(1) Vibratory Communication: Authors in [119] and [85] were the first to conceive the

idea of communicating through physical vibrations. They both encode vibrations through

(ON/OFF) Morse code, with pulse durations of around one second (i.e., 1 bits/s). This is

adequate for applications like secure pairing between two smartphones, or sending a tiny

URL over tens of seconds. Our prior work in NSDI 2015 [129] developed a fuller vibratory

radio through multi-frequency modulation, self-jamming-based security, and resonance brak-

ing, ultimately translating to 200 bits/s. Ripple-II is a push-forward of the Ripple project,

but with microphone as the receiver, and augmented with a new PHY/MAC layer offering

150x throughput gain. Ripple-II still preserves Ripple’s security properties via self-sound

cancellation.

Dhwani [1] and Chirp [149] address conceptually similar problems, although on the acoustic

platform; vibra-motors bring about new set of challenges and opportunities. Technologies

like Bump [120, 121, 122, 123, 124, 125, 126] use accelerometer/vibrator-motor responses

to facilitate secure pairing between devices. TagTile [150] uses high-frequency sound to

achieve association between phones and point-of-sale devices. However, these techniques are

primarily designed for few bits of exchange; Ripple-II aims high bitrate transmission with

the same ease as Bump and Tagtile. Further, as indicated by researchers [119, 127], the lack

of the dynamic secret message in Bump-like techniques makes them less secure in the wild.

These modes also require Internet connectivity and trusted third party servers to function,

none of which is needed in Ripple-II.
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(2) Vibration Generation and Sensing: Creative research in the domain of haptic

feedback has investigated the state-of-the-art in electro-mechanical vibrations [115, 116].

Applications in assisted learning, touch-augmented environments, and haptic learning have

used vibrations for communication to humans [112, 113, 114, 115, 116]. However, the push

for high communication data rates between vibrators and microphones/accelerometers is

unexplored to the best of our knowledge. Off late, personal/environment sensing on mobile

devices has gained research attention. Applications like (sp)iPhone [117] and TapPrints [118]

demonstrate the ability to infer keystrokes through background motion sensing. While many

more efforts are around activity recognition from vibration signatures, this chapter aims to

modulate vibration for communication.

5.7 Chapter Summary

Ripple-II is an attempt to enable touch-based vibratory communication between a vibra-

motor and a microphone. We develop a vibratory radio at the PHY and MAC layer, and

explore a few possible applications in authentication, device to device streaming, and tabletop

communication. While additional work is needed to attain maturity, we believe this chapter is

a concrete step toward demonstrating an alternative communication mode, that has remained

relatively unexplored in the past.
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Chapter 6

Recovering Voice from Vibrations

6.1 Overview

Vibration motors, also called “vibra-motors”, are small actuators embedded in all types of

phones and wearables. These actuators have been classically used to provide tactile alerts to

human users. This chapter identifies the possibility of using vibra-motors as a sound sensor,

based on the observation that the same movable mass that causes the pulsation, should also

respond to changes in air pressure. Even though the vibra-motor is likely to be far less

sensitive compared to the (much lighter) diaphragm of an actual microphone, the question

we ask is: To what fidelity can the sound be reproduced?

Even modest reproduction could prompt new applications and threats. On the one hand,

wearable devices like fitbits, that otherwise do not have a microphone, could now respond

to voice commands. Further, in devices that already have microphones, perhaps better

SNR could be achieved by combining the uncorrelated (noise) properties of the vibra-motor

and microphone. On the other hand, leaking sound through vibra-motors opens new side-

channels – a malware that has default access to a phone’s vibra-motor may now be able

to eavesdrop into every phone conversation. Toys that have vibra-motors embedded could

potentially listen into the ambience. This chapter is an investigation into the vibra-motor’s

efficacy as a sound sensor, speech in particular.

Our work follows a recent line of work in which motion sensors in smartphones have been

shown to detect sound. Authors of Gyrophone [152] first demonstrated the feasibility of

detecting sound signals from the rotational motions of smartphone gyroscopes. A recent work

[153] reported how accelerometers may also be able to detect sound, in fact, classify spoken

keywords such as “OK Google” or “Hello Siri”. Authors rightly identified the applicability

to continuous sound sensing – the energy-efficient accelerometer could always stay active,

This chapter revises the publication “Listening through a Vibration Motor,” in MobiSys 2016 [151].
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and turn on the energy-hungry microphone only upon detecting a keyword. While certainly

useful, we observe that these systems run pattern recognition algorithms on the features

of the signals. The vocabulary is naturally limited to less than three keywords, trained by

a specific speaker. VibraPhone is attempting a different problem altogether – instead of

learning a motion signature, it attempts to reconstruct the inherent speech content from the

low-bandwidth, highly distorted output of the vibra-motor. Hence, there are no vocabulary

restrictions, and the output of VibraPhone should be decodable by speech-to-text softwares.

As a first step toward converting a vibra-motor into a sound sensor, VibraPhone exploits

the notion of reverse electromotive force (back-EMF) in electronic circuits. Briefly, the

A/C current in the vibra-motor creates a changing magnetic field around a coil, which in

turn causes the vibra-motor mass to vibrate. However, when an external force impinges on

the same mass – say due to the pressure of ambient sound – it causes additional motion,

translating into a current in the opposite direction. This current, called back-EMF, can be

detected through an ADC after sufficient amplification. Of course, the signal extracted from

the back-EMF is noisy and at a lower bandwidth than human speech. However, given that

human speech obeys an “acoustic grammar”, we find an opportunity to recover the spoken

words even from the back-EMF’s signal traces. VibraPhone focuses on exactly this problem,

and develops a sequence of techniques, including spectral subtraction, energy localization,

formant extrapolation, and harmonic reconstruction, to ultimately distill out legible speech.

Our experimentation platform is both a Samsung smartphone and a custom circuit that

uses vibra-motor chips purchased online (these chips are exactly the ones used in today’s

phones and wearables). We characterize the extent of signal reconstruction as a function

of the loudness of the sound source. Performance metrics are defined by the accuracy with

which the reconstructed signals are intelligible to humans and to (open-source) automatic

speech recognition softwares. We use the smartphone microphone as an upper bound, and

for fairness, record the speech at the same sound pressure level (SPL) [154, 155, 156] across

all the devices. We experiment across a range of scenarios within our university building,

and observe that results are robust/useful when the speaker is less than 2 meters from the

vibra-motor.

Finally, we emphasize that smartphone vibra-motors cannot be used as microphones today,

primarily because the actuator is simply not connected to an ADC. To this end, launching

side-channel attacks is not immediate. However, as discussed later, we find that enabling

the listening capability requires almost trivial rewiring (just soldering at four clearly visible
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junctions). This chapter sidesteps these immediacy questions and concentrates on the core

nature of the information leakage. One intent is for this work to draw attention to the

permission policies on vibra-motors, which today are open to all apps by default. We have

made various audio demos of VibraPhone available on our website [157] – we request the

readers to listen to them to better experience the audio effects and reconstructions. In

closing, the main contributions in this chapter may be summarized as:

• Recognizing that ambient sound manifests itself as back-EMF inside vibra-motor chips.

This leads to an actuator becoming a sound sensor with minimal changes to the current

mobile device hardware.

• Designing techniques that exploit constraints and structure of human speech to decode

words from a noisy, low-bandwidth signal. Building the system on a smartphone and

custom hardware platform, and demonstrating decoding accuracy of up to 88% when a

male user is speaking in normal voice near his phone.

The rest of the chapter expands on these contributions. We begin with a brief introduction

to vibra-motors and our hardware platform.

6.2 Understanding Vibra-Motors

As explained in Chapter 4, a vibra-motor is an electro-mechanical device that moves a

magnetic mass rhythmically around a neutral position to generate vibrations [129]. While

there are various kinds of vibra-motors, a popular one is called Linear Resonant Actuators

(LRA) shown in Figure 6.1. With LRA, vibration is generated by the linear movement of

the magnetic mass suspended near a coil, called the “voice coil”. Upon applying AC current

to the motor, the coil also behaves like a magnet (due to the generated electromagnetic field)

and causes the mass to be attracted or repelled, depending on the direction of the current.

This generates vibration at the same frequency as the input AC signal, while the amplitude

of vibration is dictated by the signal’s peak-to-peak voltage. Thus LRAs offer control on

both the magnitude and frequency of vibration. Most smartphones today use LRA-based

vibra-motors.

6.2.1 Sound Sensing through Back-EMF

Back-EMF is an electro-magnetic effect observed in magnet-based motors when relative

motion occurs between the current carrying armature/coil and the magnetic mass’s own
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Figure 6.1: Basic sketch of an LRA vibra-motor.

field. According to Faraday’s law of electromagnetic induction [145], this changing magnetic

flux induces an electromotive force in the coil. Lenz’s law [146] says this electromotive force

acts in the reverse direction of the driving voltage, called back-EMF of the motor. As the

rate of change of the magnetic flux is proportional to the speed of the magnetic mass, the

back-EMF serves as an indicator of the extraneous vibration experienced by the mass.

Since sound is a source of external vibration, the movable mass in the vibra-motor is

expected to exhibit a (subtle) response to it. Our experiments show that, when the vibra-

motor is connected to an ADC, the back-EMF generated by the ambient sound can be

recorded. This is possible even when the vibra-motor is passive (i.e., not pulsating to produce

tactile alerts). We call this ADC output vibra-signal to distinguish it from the microphone

signal that we will later use as a baseline for comparison. We now describe our platform to

record and process the vibra-signal.

6.2.2 Experiment Platform

Custom hardware setup: Today’s smartphones offer limited exposure/API to vibra-motor

capabilities and other hardware components (e.g., amplifiers). To bypass these restrictions,

we have designed a custom hardware setup using off-the-shelf LRA vibra-motor chips con-

nected to our own ADC and amplifier. Figure 6.2 shows our setup – we mount this vibration

motor adjacent to a standard microphone that serves as a comparative baseline. The vibra-

signal is amplified and sampled at 16 kHz. Test sounds include live speech from humans at

varying distances, as well as sound playbacks through speakers at varying loudness levels.

Smartphones: While the custom hardware offers better programmability, we also use a

smartphone setup to understand the possibilities with today’s systems. Figure 6.3 shows

our prototype – terminals of the built-in vibra-motor of a Samsung Galaxy S-III smartphone

is connected to the audio line-in input port with a simple wire. The rewiring is trivial –

for someone familiar with the process, it can be completed in less than 10 minutes. Once

rewired, we collect the samples of the vibra-signal from the output channels of the earphone

jack, using our custom Android application.
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Figure 6.2: The custom hardware setup with collocated vibration motor and microphone.
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Figure 6.3: The smartphone setup with a simple wire connected between the vibra-motor’s
output to the audio line-in port.

Electromagnetic Coupling: We conduct a microbenchmark test to verify that the vi-

bration motor signal is not influenced by the electromagnetic coupling from the nearby

microphone or speakers in our test setup. We remove the speakers and microphones from

the test environment and directly record human speech with a vibration motor (find sample

clips at project website [157]). Later we compare them with the recordings of the standard

test setup to find no noticeable difference in signal quality.

6.3 Sounds and Human Speech

This section is a high-level introduction to speech production in humans, followed by a

discussion on the structure of speech signals.

111



6.3.1 Human Speech Production

Human speech can be viewed as periodic air waves produced by the lungs, modulated through

a sequence of steps in the throat, nose, and mouth. More specifically, the air from the lungs

first passes through the vocal cords – a pair of membranous tissue – that constricts or dilates

to block or allow the air flow (Figure 6.4). When the vocal cords are constricted, the

vibrations induced in the air-flow are called voiced signals. The voiced signals generate high

energy pulses – in the frequency domain, the signal contains a fundamental frequency and its

harmonics. All vowels and some consonants like “b” and “g” are sourced in voiced signals.

Figure 6.4: The vocal cords constricted in (a) and dilated in (b), creating voiced and un-
voiced air vibrations, that are then shaped by the glottis and epiglottis.

On the other hand, when the vocal cords dilate and allow the air to flow through without

heavy vibrations, the outcome is called unvoiced signals. This generates sounds similar to

noise, and is the origin of certain consonants, such as “s”, “f”, “p”, “k”, “t”. Both voiced and

unvoiced signals then pass through a flap of tissue, called glottis, which further pulsates to add

power to the signal as well as distinctiveness to an individual’s voice. These glottal pulses

travel further and are finally modulated by the oral/nasal cavities to produce fine-tuned

speech [158]. The overall speech production process is often modeled as a “source-filter” in

literature, essentially implying that the human trachea/mouth applies a series of filters to

the source sound signal. This source-filter model will later prove useful, when VibraPhone

attempts to reconstruct the original speech signal.

6.3.2 Structure in Speech Signals

While the above discussions present a biological/linguistics point of view, we now discuss

how they relate to the recorded speech signals and their structures. Figure 6.5 shows the

spectrogram when a human user pronounces the alphabets “sa” – the signal was recorded
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Figure 6.5: The spectrogram of the spoken consonant “s” followed by the vowel “a”
recorded with microphone.

through a smartphone microphone (not a vibra-motor).1 Although a toy case, the spectro-

gram captures the key building blocks of speech structure. We make a few observations that

will underpin the challenges and the designs in the rest of the chapter.

• The first visible signal (between 0.6 and 0.75 seconds) corresponds to the unvoiced com-

ponent, the consonant “s”. This signal is similar to noise with energy spread out rather

uniformly across the frequency band. The energy content in this signal is low to moderate.

• The second visible signal corresponds to the vowel “a” and is an example of the voiced

component. The signal shows a low fundamental frequency and many harmonics all the

way to 4 kHz. Fundamental frequencies are around 85–180Hz for males and 165–255

Hz for females [159]. The energy content of this signal is far stronger than the unvoiced

counterpart.

• Within the voiced signal, the energy content is higher in the lower frequencies. These

strong low-frequency components determine the intelligibility of the spoken phonemes

(i.e. the perceptually distinct units of sound [160]), and are referred to as formants [161].

The first two formants (say, F1, F2) remain between 300–2500 Hz and completely form

the sound of the vowels, while some consonants have another significant formant, F3, at

a higher frequency. Figure 6.6 shows examples of two vowel formants – “i” and “a” –

recorded by the microphone.

In extracting human speech from the vibra-motor’s back-EMF signal, VibraPhone will

need to identify, construct, and bolster these formants through signal processing.

1The Y-axis shows up to 4 kHz, since normal human conversation in non-tonal languages like English is
dominantly confined to this band.
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Figure 6.6: The locations of the first two formants (F1 and F2) for (left) the vowel sound
“i” and (right) the vowel sound “a”, both recorded with a microphone.

6.4 Challenges

Figure 6.7(a,b) compares the spectrogram of the microphone and the vibra-motor for the

same spoken phoneme, “sa”. Figure 6.7(c,d) shows the same comparison for a full word,

namely, “entertainment”. The reader is encouraged to listen to these sound clips at our

project website [157]. Evidently, the vibra-motor’s response is weak and incomplete, and

on careful analysis, exhibits various kinds of distortions even where the signal is apparently

strong. The goal in this chapter is to reconstruct, to the extent possible, the left columns of

Figure 6.7 from the right columns. We face four key challenges discussed next.

(a) (b) (c) (d)

Figure 6.7: The spectrogram for “sa” as recorded by: (a) the microphone and (b) the
vibra-motor. The spectrogram for the full word “entertainment” as recorded by: (c) the
microphone and (d) the vibra-motor. The vibra-motor’s response is weak and partially
missing.
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6.4.1 Over-Sensitivity at Resonance Frequency

All rigid objects tend to oscillate at a fixed natural frequency when struck by an external

force. When the force is periodically repeated at a frequency close to the object’s natural

frequency, the object shows exaggerated amplitude of oscillation – called resonance [162].

Resonance is often an undesirable phenomenon, destabilizing the operation of an electro-

mechanical device. Microphones, for example, carefully avoid resonance by designing its

diaphragm at a specific material, tension, and stiffness – that way, the resonance frequencies

lie outside the operating region [163, 164]. In some cases, additional hardware is embedded

to damp the vibration at the resonant frequencies [164].

Unfortunately, vibra-motors used in today’s smartphones exhibit sharp resonance between

216 to 232 Hz, depending on the mounting structure. Some weak components of speech

formants are often present in these bands – these components get amplified, appearing as a

pseudo-formant. The pseudo-formants manifest as unexpected sounds within uttered words,

affecting intelligibility. The impact is exacerbated when the fundamental frequency of the

voiced signal is itself close to the resonant band – in such cases, the sound itself gets garbled.

Figure 6.8 shows the effect of resonance when the vibration motor is sounded with different

frequency tones in succession (called a Sine Sweep [165, 142]. Observe that for all tones

in the Sine Sweep, the vibra-motor exhibited appreciable response in the resonance band.

This is because the tones have some frequency tail around the 225 Hz, and this always gets

magnified. The microphone exhibits no such phenomenon. VibraPhone will certainly need

to cope with resonance.

(a) (b)

Figure 6.8: The spectrogram of (a) the microphone and (b) the vibra-motor, in response
to a Sine Sweep (i.e., tones played at increasing narrow band frequencies). The vibration
motor signal shows an over-sensitive resonance frequency band near 220 Hz.
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6.4.2 High-Frequency Deafness

The vibra-motor’s effective diaphragm – the area amenable to the impinging sound – is

around 10mm, almost 20x larger than that of a typical MEMS microphone (0.5 mm). This

makes the vibration motor directional for the high-frequency sounds, i.e., the high frequen-

cies arriving from other directions are suppressed, somewhat like a directional antenna.

Unfortunately, human voices contain lesser energy at frequencies higher than 2 kHz, thereby

making the vibra-motor even less effective in “picking up” these sounds. Some consonants

and some vowels – such as “i” and “e” – have formants close to or higher than 2 kHz, and are

severely affected. Figure 6.9 compares the spectrogram when just the vowel “a” was spoken

– evidently, the vibra-motor is almost “deaf” to higher frequencies.

(a) (b)

Figure 6.9: The spectrogram of the spoken vowel “a” recorded with (a) a microphone and
(b) a vibration motor. The vibra-motor exhibits near-deafness for frequencies > 2 kHz.

6.4.3 Higher Energy Threshold

A microphone’s sensitivity, i.e., the voltage produced for a given sound pressure level, heavily

depends on the weight and stiffness of its diaphragm. The spring-mass arrangement of the

vibra-motor is considerably more stiff, mainly due to the heavier mass and high spring

constant. While this is desirable for a vibration actuator, it is unfavorable to sound sensing.

Thus, using the actuator as a sensor yields low sensitivity in general, and particularly to

certain kinds of low-energy consonants (like f, s, v, z), called fricatives [166]. The effect is

visible in Figure 6.7 (a,b) – the fricative consonant “s” goes almost undetected with vibra-

motors.

6.4.4 Low Signal-to-Noise Ratio (SNR)

In any electrical circuit, thermal noise is an unavoidable phenomenon arising from the Brow-

nian motion of electrons in resistive components. Fortunately, the low 26 ohm terminal
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resistance in vibra-motors leads to 10 dB lower thermal noise than the reference MEMS

microphone. However, due to low sensitivity, the strength of the vibra-signal is significantly

lower, resulting in poor SNR across most of the spectrum. Figure 6.10 compares the SNR

at different sound pressure levels – except around the resonance frequencies, the SNR of the

vibra-signal is significantly less compared to the microphone.

Sound Pressure Level (SPL) is a metric to measure the effective pressure caused by

sound waves with respect to a reference value, and is typically expressed in dBSpl [155].

This gives a standard estimate of the sound field at the receiver, irrespective of the location

of the sound source.
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Figure 6.10: The SNR of (a) the microphone and (b) the vibra-motor at various frequen-
cies for varying sound pressure levels (dB SPL). Note the unequal Y-axis range.

6.5 System Design

Our system design is modeled as a source-filter, i.e., we treat the final output of the vibra-

motor as a result of many filters applied serially to the original air-flow from the lungs. Figure

6.11 illustrates this view, suggesting that an ideal solution should perform two broad tasks:

(1) “undo” the vibra-motor’s distortions for signal components that have been detected,

and (2) reconstruct the undetected signals by leveraging the predictable speech structure in

conjunction with the slight “signal hints” picked up by the vibra-motor. VibraPhone realizes

these tasks through two corresponding modules, namely, signal pre-processing and partial

speech synthesis. We describe them next.

6.5.1 Signal Pre-Processing

All of our algorithms operate on the frequency domain representation of the signal. There-

fore, we first convert the amplified signal to the time-frequency domain using the Short Time
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Figure 6.11: The source-filter model of the speech generation and recording.

Fourier Transform (STFT), which basically computes the complex FFT coefficients from 100

millisecond segments (80% overlapped, Hanning windowed) of the input time signal. The

result is a 2D matrix that we call time-frequency signal and illustrated in Figure 6.12 – each

column is a time slice and each row is a positive frequency bin. We will refer to this matrix

for various explanations.

Figure 6.12: 2D time-frequency matrix.

(1) Frequency Domain Equalization:

When a microphone is subject to a Sine Sweep test, the frequency response is typically

flat, meaning that the microphone responds almost uniformly to each frequency component.

The vibra-motor’s response, on the other hand, is considerably jagged, and thereby induces

distortions into the arriving signal. Figure 6.13 shows a case where the vowel “u” is recorded

by both the microphone and vibra-motor. The vibra-motor distortions on “u” are quite

dramatic, altering the original formants at 266 and 600 Hz to new formants at 300 Hz and

1.06 kHz. In fact, the altered formants bear resemblance to the vowel “aa” (as in “father”),

and in reality, do sound like it. More generally, the vibra-motor’s frequency response exhibits

this rough shape, thereby biasing all the vowels to the sound of “aa” or “o”.
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Figure 6.13: Formants of vowel “u” recorded through (left) microphone and (right)
vibra-motor. The vibra-motor introduces a spurious formant near 1 kHz.

Fortunately, the frequency response of the vibra-motor is only a function of the device and

does not change with time (at least until there is wear and tear of the device). We tested this

by computing the correlation of the Sine Sweep frequency response at various sound pressure

levels – the correlation proved strong, except for a slight dip at the resonant frequencies due

to the nonlinearities. Knowing the frequency response, we apply an equalization technique,

similar to channel equalization in communication. We estimate the inverse gain by computing

the ratio of the coefficients from the microphone and the vibra-motor, and multiply the

inverse gain with the frequency coefficients of the output signal.

(2) Background Noise Removal:

Deafness in vibra-motors implies that the motor’s response to high-frequency signals (i.e.,

> 2 kHz) is indistinguishable from noise. If this noise exhibits a statistical structure, a

family of spectral subtraction algorithms can be employed to improve SNR. However, two

issues need attention. (1) The pure noise segments in the signal needs to be recognized, so

that its statistical properties are modeled accurately. This means that noise segments must

be discriminated from speech. (2) Within the speech segments, voiced and unvoiced segments

must also be separated so that spectral subtraction is only applied on the voiced components.

This is because unvoiced signals bear noise-like properties and spectral subtraction can be

detrimental.

To reliably discriminate the presence of speech segments, we exploit the exaggerated be-

havior in the resonance frequency band. We consistently observed that speech brings out

heavy resonance behavior in vibra-motors, while noise elicits a muted response. Thus, reso-

nance proved to be an opportunity. Once speech is segregated from noise, the next step is

to isolate the voiced components in speech. For this, we leverage its well-defined harmonic

structure. Recall the 2D matrix in Figure 6.12. We consider a time window and slide it

up/down to compute an autocorrelation coefficient across different frequencies. Due to the

repetition of the harmonics, the autocorrelation spikes periodically, yielding robust detection
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accuracy. When autocorrelation does not detect such periodic spikes, they are deemed as

the unvoiced segments.

The final task of spectral subtraction is performed on the voiced signal alone. For a given

voiced signal (i.e., a set of columns in the matrix), the closest noise segments in time are

selected – these noise segments are averaged over a modest time window. Put differently,

for every frequency bin, the mean noise floor is computed, and then subtracted from the

corresponding bin in the voiced signal. For zero-mean Gaussian noise, this does not offer

any benefit, however, the noise is often not zero-mean. In such cases, the SNR improves and

alleviates the deafness. Figure 6.14 shows the beneficial effect of spectral subtraction when

“yes” is spoken.

(a) (b)

Figure 6.14: The spectrogram of the spoken word “yes” (a) before and (b) after the spec-
tral subtraction.

(3) Speech Energy Localization:

Observe that noise removal described above brings the mean noise to zero, however, noise

still exists and the SNR is still not adequate. In other words, deafness is still a problem.

However, now that noise is zero-mean and Gaussian, there is an opportunity to exploit its

diversity to further suppress it. Even localizing the speech signal energy in the spectrogram

would be valuable, even if the exact signal is not recovered in this step.

Our core idea is to average the signals from within a frequency window, and slide the

frequency window all the way to 10 kHz. Referring to the 2D matrix, we compute the average

of W elements in each column (W being the window size), and slide the window vertically;

the same operation is performed for each column. Each element is a complex frequency

coefficient, containing both the signal and the noise. With sufficiently large W , the average

converges to the average of the signal content in these elements since the (average) noise

sum up to zero. Mathematically, if Ci denotes the signal at frequency fi, and Ci = Si +Ni,
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where Si is the speech signal and Ni the noise, then the averaged C∗i is computed as:

C∗i =
1

W

i+W
2∑

f=i−W
2

Ci =
1

W

i+W
2∑

f=i−W
2

Si +
1

W

i+W
2∑

f=i−W
2

Ni (6.1)

Since the term
∑
Ni is zero-mean Gaussian, it approaches zero for larger W , while the

1
W

∑
Si term is simple smoothing. For every frequency bin, we normalize the C∗i values over

a time window so that they range between [0, 1]. The result is a 3D contour map, where

the locations of higher elevations, i.e., hills, indicate the presence of speech signals. We

identify the dominant hills and zero force all areas outside them. This is because speech

signals always exhibit a large time-frequency footprint, since human voice is not capable of

producing sounds that are narrow in frequency and time. Figure 6.15 illustrates the effect of

this scheme – the dominant hills are demarcated as the location of speech energy. Evidently,

the improvement is conspicuous after this energy localization step.
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Figure 6.15: Readers are requested to view this figure in color: (left) Raw vibra-motor sig-
nal. (center) The output of the speech energy localization makes the signal energy visible
through a heat-map like contour. (right) The corresponding microphone signal bearing
good resemblance to the energy locations.

6.5.2 Partial Speech Synthesis

Once the vibra-motor output has been pre-processed, the structure of speech can now be

leveraged for signal recovery – we describe our approach next.

(1) Voice Source Expansion:

After the localization step above, we know the location of speech energy (in time-frequency

domain), but we do not know the speech signal. In attempting to recover this signal, we
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exploit the opportunity that the fundamental frequencies in speech actually manifest in

higher-frequency harmonics [167, 168]. Therefore, knowledge of the lower-fundamental fre-

quencies can be expanded to reconstruct the higher frequencies. Unfortunately, the actual

fundamental frequency often gets distorted by the resonant bands.

As a workaround, we use the relatively high SNR signals in the range [250, 2000 Hz] to

synthesize the voice source signal at higher frequencies. Synthesis is essentially achieved

through careful replication. Specifically, the algorithm copies the coefficient Ct,f , where t is

the time segment and f is the frequency bin of the time-frequency signal, and adds it to Ct,kf

for all integer k, such that kf is less than the Nyquist frequency. Here integer k indicates

the harmonic number for the frequency f . Intuitively, we are copying the harmonics from

the reliable range, and replicating them at the higher frequencies. As shown in Figure 6.16,

this only synthesizes the voiced components (recall the harmonics are only present in the

voiced signals). For unvoiced signals, we blindly fill in the deaf frequencies with copies of the

lower-frequency signals.
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Figure 6.16: Result of source expansion for the voiced signal components: (a) Raw vibra-
signal and (b) after harmonic replication. Readers are requested to view this figure in
color.

(2) Speech Reconstruction:

Recall that the mouth and nasal cavities finally modulate the air vibrations – this can be

modeled as weights multiplied to the fundamental frequencies and their harmonics. While

we do not know the values of these weights, the location of the energies – computed from the

3D contour hills – is indeed an estimate. We now utilize this location estimate as an energy

mask. As a first step, we apply an exponential decay function along the frequency axis to

model the low intensity of natural speech at the higher frequencies. Then the energy mask is

multiplied with this modified signal, emulating an adaptive gain filter. As this also improves

the SNR of the unvoiced section of the speech, we apply a deferred spectral subtraction

method on these segments to further remove the background noise. Finally, we convert this
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resultant time-frequency signal to time domain using inverse short time Fourier transform

(ISTFT). Figure 6.17 compares the output against the microphone and the raw vibra-motor

signal.
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Figure 6.17: Word “often” as manifested in the (top) raw vibra-motor signal, (middle)
after VibraPhone’s processing, and (bottom) microphone signal.

6.6 Evaluation

Section 6.2.2 described the two experimentation platforms for our system, namely the custom

hardware and the Samsung Galaxy smartphone. In both cases, we evaluate VibraPhone’s

speech intelligibility against the performance of the corresponding microphone. In the cus-

tom hardware, the microphone is positioned right next to the vibra-motor, while in the

smartphone, their locations are modestly separated. We generate the speech signals using

a text-to-speech (TTS) utility available in OS X 10.9, and play them at different volumes

through a loudspeaker. The position/volume of the loudspeaker is adjusted such that the

sound pressure levels at the vibra-motor and the microphone are equal. The accent and

intonation of the TTS utility also does not affect the experiment since both VibraPhone

and the microphone hear the same TTS speech. The content of the speech is drawn from

Google’s Trillion Word Corpus [21] – we pick 2000 most frequent words, which is prescribed

as a good benchmark [22].

6.6.1 Methodology and Metrics

We perform automatic and manual speech recognition experiments as follows.
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(1) Automatic Speech Recognition (ASR):

In ASR, a software programmatically converts the time domain speech signal to text. ASR

tools typically have three distinct components: (a) an acoustic model, (b) a pronunciation

dictionary, and (c) a language model. The acoustic model is a trained statistical model (e.g.,

HMM, neural networks, etc. [169, 170]) that maps segments of the input waveform to a

sequence of phonemes. These phonemes are then looked up in the pronunciation dictionary,

which lists the candidate words (along with their possible pronunciations) based on the

matching phoneme sequence. Among these candidates, the most likely output is selected

using a grammar or a language model.

Our ASR tools is the open-source Sphinx4 (pre-alpha version) library published by CMU

[6, 23]. The acoustic model is sensitive to the recording parameters, including the bandwidth

and the features of the microphone. Such parameters do not apply to vibra-motors, so

we used a generic acoustic model trained with standard microphone data. This is not

ideal for VibraPhone, and hence, the reported results are perhaps a slight underestimate

of VibraPhone’s capabilities.

(2) Manual Speech Recognition (MSR):

We recruited a group of six volunteers from our department building – one native English

speaker, one Indian faculty with English as first language, two Indian PhD students, and

two Chinese PhD students. We played the vibra-motor and microphone outputs to all the

participants simultaneously and collected their responses. In some experiments, volunteers

were asked to guess the word or phrase from the playback; in other experiments, the volunteers

were given a list of phrases and asked to pick the most likely one, including the option of

“none of the above”. All human responses were accompanied by a subjective clarity score –

every volunteer expressed how intelligible the word was, even when he/she could not guess

with confidence. Finally, in some experiments, volunteers were asked to guess first, and then

guess again based on a group discussion. Such discussions served as a “prior” for speech

recognition, and often the group consensus was different from the first individual guess.

(3) Metrics:

Across all experiments, 9 hours of sound was recorded and a total of 20,000 words were

tested with ASR at various sound pressure levels (measured in dBSpl). For MSR, a total of

300 words and 40 phrases were played, resulting in more than 2000 total human responses.

We report “Accuracy” as the percentage of words/phrases that were correctly guessed, and

show its variation across different loudness levels (measured in dBSpl). We report “Perceived

Clarity” as a subjective score reported by individuals, even when they did not decode the

word with confidence. Finally, we report “Precision”, “Recall”, and “Fallout” for experi-
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ments in which the users were asked to select from a list. Recall that precision intuitively

refers to “what fraction of your guesses were correct”, and recall intuitively means “what

fraction of the correct answers did you guess”. We now present the graphs, beginning with

ASR.

6.6.2 Performance Results with ASR

(1) Accuracy vs. Loudness:

Custom Hardware: Figure 6.18(a) reports the accuracy with ASR as a function of the

sound pressure level (dBSpl), a standard metric proportionally related to the loudness of the

sound. VibraPhone’s accuracy is around 88% at 80 dBSpl, which is equivalent to the sound

pressure experienced by the smartphone’s microphone during typical (against the ear) phone

call. The microphone’s accuracy is obviously better at 95%, while the raw vibra-motor signal

performs poorly at 43% (almost half of VibraPhone). Importantly, the pre-processing and

the synthesis gains are individually small, but since intelligibility is defined as binary metric

here, the improvement jumps up when applied together.

Once the loudness decreases at 60 dBSpl – comparable to a normal conversation 1 meter

away from the microphone [171] – VibraPhone’s accuracy drops to ≈ 60%. At lower sound

pressure level, the accuracy drops faster since the vibra-motor’s sensitivity is inadequate for

“picking up” the air vibrations. However, the accuracy can be improved with training the

acoustic model with vibra-motors (recall that with ASR, the training is performed through

microphones, which is unfavorable to VibraPhone).
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Figure 6.18: Automatic recognition accuracy as a function of loudness for (a) the custom
hardware, and (b) the Samsung smartphone.

Samsung Smartphone: Figure 6.18(b) plots the accuracy with ASR for the smartphone-

based platform. VibraPhone’s performance is weaker compared to the custom hardware

setup, although the difference is marginal – ASR output is still at 80% at 80 dBSpl. Ad-

mittedly, we are not exactly sure of the reason for this difference – we conjecture that the
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smartphone signal processing pipeline may not be exactly tuned to the vibra-motor like we

have done in the custom case.

(2) Rank of the Words:

The accuracy results above counts only perfect matches between ASR’s output and the actual

spoken word. In certain applications, a list of possible words may also be useful, particularly

when the quality of the speech is poor. We record the list of all predictions from ASR for

each spoken word, played at 50 dBSpl. Figure 6.19 plots the CDF of the rank of the correct

word in this list. At this relatively softer 50 dBSpl experiment, only ≈ 20% of the words are

ranked at 1, implying exact match. In 41% of the cases, the words were within the top-5 of

the list, and top-10 presents a 58% accuracy.
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Figure 6.19: The CDF of word rank from ASR’s prediction at 50 dBSpl for custom hard-
ware.

(3) Phoneme Similarity:

The acoustic model we used with ASR is not ideal for VibraPhone – the impact is pronounced

for distorted phonemes. Training ASR’s acoustic model with the vibra-motor response is

expected to offer improvements, but in the absence of that, we report a subjective overview

of the entropy in different phonemes recorded by VibraPhone. In other words, we ask whether

autocorrelation between the same phonemes is high and cross correlation across phonemes is

low. We extract the STFT coefficients of the 100 phonemes (28 vowels and 72 consonants)

from the International Phoneme Alphabet [172, 173] and use these coefficients as the features.

We then calculate correlation coefficient of all pairs of phonemes in the list – Figure 6.20

presents the heat map. In case of raw vibra-signal in Figure 6.20(a), the (distorted) phonemes

bear substantial similarity between each other, indicated by the multiple dark off-diagonal

blocks. The two large darker squares in the figure represents the pulmonic (58 phonemes) and

non-pulmonic (14 phonemes) consonant groups [174, 166]. However, with VibraPhone, Figure

6.20(b) shows substantial improvements. The autocorrelation is strong across the diagonal
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of the matrix, while the off-diagonal elements are much less correlated. This extends the

possibility that a vibra-motor trained acoustic model could appreciably boost VibraPhone’s

performance.
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Figure 6.20: The heat-map shows the correlation of the frequency domain features of the
phoneme sounds, recorded with custom vibration motor: (a) before processing and (b) af-
ter processing.

6.6.3 Performance Results with MSR

(1) Accuracy vs. Loudness:

Figure 6.21 shows the accuracy with manual speech recognition (MSR) in comparison to

automatic (ASR). Unsurprisingly, the accuracy is around 20% more than ASR at higher

loudness regimes (60 dBSpl or more) – the individuals guessed the words individually in

these experiments. Using consensus from group discussion, the accuracy increases to 88% at

60 dBSpl. When the loudness is stronger, VibraPhone is comparable to microphones, both

for custom hardware and smartphones.
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Figure 6.21: This plot compares the accuracy of human decoding with ASR. It shows the
performance of the human decoders while working individually and as a collaborative
team.
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(2) Hot-Phrase Detection:

Figure 6.22 shows manual performance with “hot phrases”, i.e., where the volunteer was

asked to pick a phrase from the list that best matched the spoken phrase (the volunteer

could also select none of the phrases). We provided a list of 10 written phrases before play-

ing the positive and negative samples in arbitrary sequence. Example phrases were “turn

left”, “happy birthday”, “start the computer”, etc., and the negative samples were chosen

with a comparable number of words and characters.

Figure 6.22(a) reports results from the custom hardware – volunteers almost perfectly

identified the phrases and rejected the negative samples. However, when using the smart-

phone vibra-motor, VibraPhone failed to identify some positive samples – Figure 6.22(b)

shows the outcome in relatively higher false negative values. Of course, the degradation is

relative – the absolute detection performance is still quite high, with accuracy and precision

at 0.83 and 0.90, respectively, for the processed vibra-signal.

Metric 
Acc. Prec. Recall Fallout

Va
lu

e 

0

0.2

0.4

0.6

0.8

1

Raw vib
Processed

Metric 
Acc. Prec. Recall Fallout

Va
lu

e 

0

0.2

0.4

0.6

0.8

1
Raw vib
Processed

(a) (b)

Figure 6.22: The accuracy, precision, recall, and fallout values for manual hot-phrase de-
tection. The recording device is (a) the custom hardware and (b) the smartphone.

(3) Perceived Clarity:

Human volunteers also assigned a “clarity score” on a range of [0, 10] to every word/phrase

he/she listened to (a score of 10 indicated a perfectly intelligible word). Figure 6.23 plots the

average clarity score of the correctly decoded samples and compares it between the vibration

motor and the microphone. The subjective perception of clarity does not change for the

microphone for sound pressure levels 50 dBSpl and above. While VibraPhone’s clarity is

lower than the microphone’s clarity in general, the gap reduces at higher loudness levels.

At 80 dBSpl, the perceived clarity scores for microphones and VibraPhone are 9.1 and 7.6,

respectively.

(4) Kinds of Words:

Figure 6.24 shows the top-10 and bottom-10 intelligible words from the ASR experiments.

The font size is proportional to the decoding accuracy, indicating that “international” was
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Figure 6.23: The perceived clarity of the correctly decoded speech recorded with micro-
phone and vibration motor.

decoded correctly most frequently, while prepositions like “a”, “and”, “or” were consistently

missed. Unsurprisingly, longer words are decoded with higher accuracy because of better

interpolation between the partially decoded phonemes. Figure 6.25 quantifies this with

ASR and MSR, respectively – words with 5+ characters are mostly multi-syllable, yielding

improved recognition.
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Figure 6.24: (a) The top-10 words that are correctly decoded by ASR. (b) The top-10
words that are incorrectly decoded by ASR.

(5) Electromagnetic Coupling:

Table 6.1 summarizes the manual speech recognition performance for the electromagnetic

coupling test mentioned in Section 6.2.2. In this microbenchmark we remove the equipment

(microphone, speaker etc.) from the test environment that can potentially create electromag-

netic coupling with the vibration motor. The signal recorded in this microbenchmark does

not show any quantitative difference from that of our standard test environment. However,

we run a manual speech recognition test on these recordings to identify possible perceptual

differences in manual speech recognition. Here the volunteers transcribe the voice of a male

non-native speaker recorded with a vibration motor during the microbenchmark test. In
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Figure 6.25: (a) ASR and (b) MSR accuracy for long (> 6 chars) and short (≤ 6 chars)
words, as a function of loudness.

this test the volunteers individually listen to the recordings at sound levels according to

their personal preferences. The percentage of the incorrect words in the transcription and

the perceived quality score given by each user are shown in the Table 6.1. The perceived

sound quality is consistent with our previous results at 60 dBSpl, the natural loudness of

the speaker’s voice at 3 ft from the recording device.

Table 6.1: Manual speech recognition performance for the coupling sensitivity experiment.

User A B C D E F G H

Error(%) 8 0 0 8 0 0 17 25
Score 8 8 6 6 4 3 3 3

6.7 Points of Discussion

We discuss a few limitations of the system presented in this chapter, and a few other kinds

of applications using VibraPhone.

What Is the Best Possible? We have not been able to comment on the best possible

performance possible with VibraPhone. Such an analysis will certainly need a deeper signal

processing treatment, as well as detailed domain knowledge from speech recognition. This

work is more of a lower bound on feasibility, drawing on a diverse set of established techniques

from literature, and modifying them to suit the needs of this specific problem. We have

initiated collaboration with signal processing researchers to push the envelope of this side-

channel leak.

Energy: We have side-stepped energy considerations in this chapter. However, we intu-

itively believe that VibraPhone is not likely to be energy hungry (even though the vibra-

motor consumes considerable energy while pulsating). This is because VibraPhone picks up
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the ambient sounds while it is in the inactive/passive mode, i.e., when it is not serving as

an actuator. We plan to characterize the sensitivity and energy profile in future.

Applications: We observed that when vibra-motors are pasted to walls and floors, and

music is being played in the adjacent rooms, VibraPhone is able to detect these sounds better

than the microphone. We also observed that by placing the vibra-motor on the throat,

various speech components can be detected, and in some cases, compliments the response of

the microphone. Finally, we find that noise properties of vibra-motors and microphones are

uncorrelated, enabling the possibility of diversity combining (i.e., they could together behave

like a MIMO system, improving the capacity of acoustic channels). All these observations

are preliminary, and hence, not reported in this chapter – we plan to investigate them further

as a continuation of VibraPhone.

6.8 Related Work

Past work on acoustic side-channels and speech recovery are most relevant to this chapter.

Given both are reasonably mature areas, we sample a subset of them.

(1) Passive Speech Recording: Gyrophone and AccelWord [152, 153] are perhaps the

closest to our work. In Gyrophone [152], authors identify the MEMS sensors’ capability

to capture sound. The chapter presents a range of signal processing and machine learning

techniques to recover traces of ambient sounds from the gyroscope data [175]. AccelWord

[153] takes a step forward and uses speech information from the accelerometer [176] to im-

plemented a low-energy voice control application for a limited vocabulary of commands.

However, these techniques recover only a low-bandwidth of the spectrum (< 200 Hz), which

does not even cover the full range of fundamental frequencies in female speech (165 − 255

Hz). Therefore, these techniques mainly focus on extracting the reliable features of sound

for consistent pattern classification. In contrast, VibraPhone concentrates on recovering a

telephone-quality speech (bandwidth 4 kHz [177, 178]) from the vibration motor signal, mak-

ing the output amenable to manual or automatic decoding. Both Gyrophone and AccelWord

are unable to produce (actually not designed for) machine understandable speech.

A family of techniques [179, 180, 181, 182] targets a light/LASER beam on an object

exposed to the speech signal and records its vibration by measuring the fluctuation of the

reflected beam. Visual microphone [183] is also a similar technique that uses high-speed

video of the target object to recover the vibration proportional to the speech signal. Camera-

based techniques are devoid of the noisy data that pollute motion sensors/actuators, while
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they must tackle other difficult challenges in computer vision. A number of solutions have

monitored the change in received signal strength (RSS) and phase of the wireless radio signal

reflected off the loudspeaker to capture the traces of sound. The projects [184] and [185]

demonstrate successful sound recovery using reflected radio signal even when the receiver is

not in the line-of-sight of the vibrating object.

(2) Speech Recovery: We borrowed building blocks from the vast literature of speech

processing. A body of research [186, 187, 188] explores artificial bandwidth expansion prob-

lems primarily to aid high-quality voice transfer over band-limited telephonic channel. Some

solutions attempt to identify the phonemes from the low-bandwidth signal and then replace

them with high-bandwidth phonemes from a library. These solutions do not solve Vibra-

Phone’s problems as majority of them consider 4 kHz signal as the input providing enough

diversity for correct phoneme identification. VibraPhone attempts to extend the effective

bandwidth from 2 kHz to 4 kHz – a challenge because the features up to 2 kHz provide

limited exposure to phonemes.

Data imputation techniques [134, 189] attempt to predict erasures in audio signals. When

these signals exhibit a consistent statistical model, the erasures can be predicted well, en-

abling successful imputation. However, vibra-signals often lack such properties, and more-

over, the location of erasures cannot be confidently demarcated.

6.9 Chapter Summary

This chapter demonstrates that the vibration motor, present in almost all mobile devices

today, can be used as a listening sensor, similar to a microphone. While this is not fun-

damentally surprising (since vibrating objects should respond to ambient air vibrations),

the ease and extent to which the actuator has “picked up” sounds has been somewhat un-

expected for us. Importantly, the decoded sounds are not merely vibration patterns that

correlates to some spoken words. Rather, they actually contain the phonemes and structure

of human voice, thereby requiring no machine learning or pattern recognition to extract

them. We show that with basic signal processing techniques, combined with the structure

of human speech, the vibra-motor’s output can be quite intelligible to most human listen-

ers. Even automatic speech recognizers were able to decode the majority of the detected

words and phrases, especially at higher loudness. The application space of such systems

remains open, and could range from malware eavesdropping into human phone conversation,

to voice-controlled wearables, to better microphones that use the vibra-motor as a second

MIMO-antenna. Our ongoing work is in pursuit of a few such applications.
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Chapter 7

Conclusion

This dissertation presents methods for sensing, communication, and jamming with inaudible

acoustics. We develop signal processing techniques that enable common microphones to

sense ultrasonic signals and physical vibrations. These technical primitives serve as the

building blocks of new kinds of applications where the signals remain inaudible to humans

but become recordable to all microphone-enabled devices. Contributions of this dissertation

can be summarized as follows:

(1) Out-of-Band Sensing through Nonlinearity: We leverage channel nonlinearity

to develop a signaling-sensing primitive where high-frequency transmitted signals are de-

signed to produce desirable low-frequency components after passing through the channel.

Given that microphones exhibit nonlinearity, Chapters 2 and 3 apply this concept to make

inaudible ultrasound signals to be recordable my microphones. This leads to new appli-

cations in IoT, including an in-air acoustic communication system for beacons. This also

uncovers a loophole in voice assistants making them vulnerable to the inaudible voice com-

mand attacks. We develop a defense mechanism against such attacks by detecting indelible

traces of nonlinearity in the signal through signal forensics.

(2) Touch-based Communication through Modulated Vibration: We explore

physical vibration as an alternative modality to communicate with acoustic devices without

generating audible sounds. This vibratory communication primitive leads to applications

like the secure data transfer through physical contacts. In Chapters 4 and 5, we describe

the design of the entire communication stack, including physical layer vibration modulation

and sensing techniques, link layer algorithms, and a number of different applications. The

prototype of the vibratory communication system is capable of sending data from wearables,

like smartwatches, through the human body and enables seamless communication to IoT

devices upon physical touch.

(3) Structured Information Reconstruction from Noisy Acoustic Signals: In

our work, we design algorithms targeting reconstruction of information which are known to

have specific structures. Specifically, in Chapter 5 we develop adaptive denoising method to
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recover communication data exploiting known structures of the OFDM symbols. Algorithms

in Chapter 6 show how harmonic structures of the human voice signal can be exploited to

recover speech from weak ambient vibration signals. On the other hand, in Chapter 3, we

use the voice signal structure to infer traces of nonlinearity in recorded voice signal leading

to a defense technique against inaudible voice command attacks.

Impacts and Future Directions:

In this dissertation, we aim to develop new capabilities in sensing and communication that

not only open up new application but also inspire future research. We continuously work

toward this vision through collaborations with research groups and reaching out to the com-

munity. Various parts of this research have appeared in leading conferences on networking

systems (NSDI’15, NSDI’16, NSDI’18) and mobile computing (MobiSys’16, MobiSys’17).

The nonlinearity-based sensing technique has received the MobiSys’17 best paper award and

it has been selected for the SIGMOBILE’17 research highlights. Principles developed in this

dissertation have led to several patented techniques [190, 191, 192] and spurred a diverse set

of research both in academia and industry.

We leverage hardware nonlinearity for out-of-band ultrasound recording. However, the

acoustic nonlinearity can be generalized to a broader area of research. Nonlinear behavior

of air can change the audibility of sound signals leading to techniques in augmented reality.

Different liquids and solids exhibit different degrees of nonlinearity for acoustic signals. This

can serve as new methods for material identification. On the other hand, vibration of the

facial muscles and tissue contains partial information about the spoken words. Therefore,

the primitives for structured information recovery from vibration can help speech recognition

in a noisy environment.

In closing, we envision a stronger convergence of acoustics in sensing, communication, and

computing in tomorrow’s cyber-physical systems. Multi-modal sensing-signaling methods are

forming the foundation for such systems, ultimately influencing the way in which technology

continues to permeate into human society. We believe the inaudible acoustic primitives

developed in this dissertation will trigger new opportunities for this foreseeable future.
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