662 research outputs found

    Feasibility study of a hand guided robotic drill for cochleostomy

    Get PDF
    The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design

    A sensory-guided surgical micro-drill

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 The Authors.This article describes a surgical robotic device that is able to discriminate tissue interfaces and other controlling parameters ahead of the drill tip. The advantage in such a surgery is that the tissues at the interfaces can be preserved. A smart tool detects ahead of the tool point and is able to control the interaction with respect to the flexing tissue, to avoid penetration or to control the extent of protrusion with respect to the position of the tissue. For surgical procedures, where precision is required, the tool offers significant benefit. To interpret the drilling conditions and the conditions leading up to breakthrough at a tissue interface, a sensing scheme is used that discriminates between the variety of conditions posed in the drilling environment. The result is a fully autonomous system, which is able to respond to the tissue type, behaviour, and deflection in real-time. The system is also robust in terms of disturbances encountered in the operating theatre. The device is pragmatic. It is intuitive to use, efficient to set up, and uses standard drill bits. The micro-drill, which has been used to prepare cochleostomies in the theatre, was used to remove the bone tissue leaving the endosteal membrane intact. This has enabled the preservation of sterility and the drilling debris to be removed prior to the insertion of the electrode. It is expected that this technique will promote the preservation of hearing and reduce the possibility of complications. The article describes the device (including simulated drill progress and hardware set-up) and the stages leading up to its use in the theatre.Queen Elizabeth Hospital, Birmingham, U

    Compensation of Vestibular Function and Plasticity of Vestibular Nucleus after Unilateral Cochleostomy

    Get PDF

    The topographical anatomy of the round window and related structures for the purpose of cochlear implant surgery

    Get PDF
    The treatment of total deafness using a cochlear implant has now become a routine medical procedure. The tendency to expand the audiological indications for cochlear stimulation and to preserve the remnants of hearing has brought new problems. The authors have studied the topographical anatomy of the internal structures of the ear in the area where cochleostomy is usually performed and an implant electrode inserted. Ten human temporal bones were obtained from cadavers and prepared in a formalin stain. After dissection of the bone in the area of round and oval windows, the following diameters were measured using a microscope with a scale: the transverse diameters of the cochlear and vestibular scalae at the level of the centre of the round window and 0.5 mm anteriorly to the round window, the distance between the windows and the distances from the end of the spiral lamina to the centre of the round window and to its anterior margin. The width of the cochlear scala at the level of the round window was 1.23 mm, and 0.5 mm anteriorly to the round window membrane it was 1.24 mm. The corresponding diameters for the vestibular scala are 1.34 and 1.27 mm. The distances from the end of the spiral lamina to the centre of the round window and to its anterior margin are 1.26 and 2.06 respectively. The authors noted that the two methods of electrode insertion show a difference of 2 mm in the length of the stimulated spiral lamina. The average total length of the unstimulated lamina is 2.06 and 4.06 in the two situations respectively

    Immune Response After Cochlear Implantation

    Get PDF
    A cochlear implant (CI) is an electronic device that enables hearing recovery in patients with severe to profound hearing loss. Although CIs are a successful treatment for profound hearing impairment, their effectivity may be improved by reducing damages associated with insertion of electrodes in the cochlea, thus preserving residual hearing ability. Inner ear trauma leads to inflammatory reactions altering cochlear homeostasis and reducing post-operative audiological performances and electroacoustic stimulation. Strategies to preserve residual hearing ability led to the development of medicated devices to minimize CI-induced cochlear injury. Dexamethasone-eluting electrodes recently showed positive outcomes. In previous studies by our research group, intratympanic release of dexamethasone for 14 days was able to preserve residual hearing from CI insertion trauma in a Guinea pig model. Long-term effects of dexamethasone-eluting electrodes were therefore evaluated in the same animal model. Seven Guinea pigs were bilaterally implanted with medicated rods and four were implanted with non-eluting ones. Hearing threshold audiograms were acquired prior to implantation and up to 60 days by recording compound action potentials. For each sample, we examined the amount of bone and fibrous connective tissue grown within the scala tympani in the basal turn of the cochlea, the cochleostomy healing, the neuronal density, and the correlation between electrophysiological parameters and histological results. Detection of tumor necrosis factor alpha, interleukin-6, and foreign body giant cells showed that long-term electrode implantation was not associated with an ongoing inflammation. Growth of bone and fibrous connective tissue around rods induced by CI was reduced in the scala tympani by dexamethasone release. For cochleostomy sealing, dexamethasone-treated animals showed less bone tissue growth than negative. Dexamethasone did not affect cell density in the spiral ganglion. Overall, these results support the use of dexamethasone as anti-inflammatory additive for eluting electrodes able to protect the cochlea from CI insertion trauma

    Optical Coherence Tomography Guided Laser Cochleostomy: Towards the Accuracy on Tens of Micrometer Scale

    Get PDF
    Lasers have been proven to be precise tools for bone ablation. Applying no mechanical stress to the patient, they are potentially very suitable for microsurgery on fragile structures such as the inner ear. However, it remains challenging to control the laser-bone ablation without injuring embedded soft tissue. In this work, we demonstrate a closed-loop control of a short-pulsed CO2 laser to perform laser cochleostomy under the monitoring of an optical coherence tomography (OCT) system. A foresighted detection of the bone-endosteum-perilymph boundary several hundred micrometers before its exposure has been realized. Position and duration of the laser pulses are planned based on the residual bone thickness distribution. OCT itself is also used as a highly accurate tracking system for motion compensation between the target area and the optics. During ex vivo experimental evaluation on fresh porcine cochleae, the ablation process terminated automatically when the thickness of the residual tissue layer uniformly reached a predefined value. The shape of the resulting channel bottom converged to the natural curvature of the endosteal layer without injuring the critical structure. Preliminary measurements in OCT scans indicated that the mean absolute accuracy of the shape approximation was only around 20 mu m

    Optical coherence tomography guided laser cochleostomy: towards the accuracy on tens of micrometer scale

    Get PDF
    Lasers have been proven to be precise tools for bone ablation. Applying no mechanical stress to the patient, they are potentially very suitable for microsurgery on fragile structures such as the inner ear. However, it remains challenging to control the laser-bone ablation without injuring embedded soft tissue. In this work, we demonstrate a closed-loop control of a short-pulsed CO2 laser to perform laser cochleostomy under the monitoring of an optical coherence tomography (OCT) system. A foresighted detection of the bone-endosteum-perilymph boundary several hundred micrometers before its exposure has been realized. Position and duration of the laser pulses are planned based on the residual bone thickness distribution. OCT itself is also used as a highly accurate tracking system for motion compensation between the target area and the optics. During ex vivo experimental evaluation on fresh porcine cochleae, the ablation process terminated automatically when the thickness of the residual tissue layer uniformly reached a predefined value. The shape of the resulting channel bottom converged to the natural curvature of the endosteal layer without injuring the critical structure. Preliminary measurements in OCT scans indicated that the mean absolute accuracy of the shape approximation was only around 20 Όm

    Hearing preservation and cochlear implants according to inner ear approach: multicentric evaluation

    Get PDF
    AbstractIntroductionElectroacoustic stimulation is an excellent option for people with residual hearing in the low frequencies, who obtain insufficient benefit with hearing aids. To be effective, the subject's residual hearing should be preserved during cochlear implant surgery.ObjectivesTo evaluate the hearing preservation in patients that underwent implant placement and to compare the results in accordance with the approach to the inner ear.Methods19 subjects underwent a soft surgical technique, and the electrode MED-EL FLEXℱ EAS, designed to be atraumatic, was used. We evaluated pre- and postoperative tonal audiometric tests with an average of 18.4 months after implantation, to measure the rate of hearing preservation.Results17 patients had total or partial preservation of residual hearing; 5 had total hearing preservation and two individuals had no preservation of hearing. The insertion of the electrode occurred through a cochleostomy in 3 patients, and in 2 of these there was no hearing preservation; the other 16 patients experienced electrode insertion through a round window approach. All patients benefited from the cochlear implant, even those who are only using electrical stimulation.ConclusionThe hearing preservation occurred in 89.4% of cases. There was no significant difference between the forms of inner ear approach

    Achievement of hearing preservation in the presence of an electrode covering the residual hearing region

    Get PDF
    Conclusions: With full insertion with a long electrode, hearing preservation can be achieved even in the presence of a long electrode covering the residual hearing region. Objectives: Advances in developing new atraumatic concepts of electrode design as well as surgical technique have enabled hearing preservation after cochlear implantation surgery, and EAS (electric acoustic stimulation) accompanied with hearing preservation is a new trend for patients with residual hearing at the lower frequencies. However, full insertion with a long/medium electrode and hearing preservation is still a challenging field that calls for discussion. Method: In this study, round window insertion, an atraumatic electrode, and dexamethasone administration were used and atraumaticity (hearing preservation and conservation of vestibular function) was evaluated with full insertion of the electrode. Results: Postoperative evaluation after full insertion of the electrodes showed that hearing at low frequencies was well preserved in all five cases. Combined postoperative imaging with the referential tonotopic map confirmed achievement of full insertion and indicated the corresponding frequencies and the depth of the electrode. Achievement of atraumaticity of round window insertion in the present cases was confirmed from the viewpoint of the minimal drilling time as well as the preserved vestibular function.ArticleACTA OTO-LARYNGOLOGICA. 131(4):405-412 (2011)journal articl
    • 

    corecore