40,081 research outputs found

    Stability evaluation of rotor/bearing system

    Get PDF
    A stability study of rotor/bearing systems is presented. Even though it was limited to study of a fully lubricated bearing subject to oil whirl, and further limited to low eccentricity region for linearity and with only one type of lubricant, it can be seen that the perturbation methodology, together with the sorting of the impedance terms into direct and quadrature with respect to input force can be very useful to the general study of stability. Further, the concept of active feedback should assist to increase knowledge in rotor system stability. While there remains a large amount of study to be accomplished, perhaps some more tools are available to assist this field of analysis

    Thin-Wall Machining of Light Alloys: A Review of Models and Industrial Approaches

    Get PDF
    Thin-wall parts are common in the aeronautical sector. However, their machining presents serious challenges such as vibrations and part deflections. To deal with these challenges, di erent approaches have been followed in recent years. This work presents the state of the art of thin-wall light-alloy machining, analyzing the problems related to each type of thin-wall parts, exposing the causes of both instability and deformation through analytical models, summarizing the computational techniques used, and presenting the solutions proposed by di erent authors from an industrial point of view. Finally, some further research lines are proposed

    Eco-efficient process based on conventional machining as an alternative technology to chemical milling of aeronautical metal skin panels

    Get PDF
    El fresado químico es un proceso diseñado para la reducción de peso de pieles metálicas que, a pesar de los problemas medioambientales asociados, se utiliza en la industria aeronáutica desde los años 50. Entre sus ventajas figuran el cumplimiento de las estrictas tolerancias de diseño de piezas aeroespaciales y que pese a ser un proceso de mecanizado, no induce tensiones residuales. Sin embargo, el fresado químico es una tecnología contaminante y costosa que tiende a ser sustituida. Gracias a los avances realizados en el mecanizado, la tecnología de fresado convencional permite alcanzar las tolerancias requeridas siempre y cuando se consigan evitar las vibraciones y la flexión de la pieza, ambas relacionadas con los parámetros del proceso y con los sistemas de utillaje empleados. Esta tesis analiza las causas de la inestabilidad del corte y la deformación de las piezas a través de una revisión bibliográfica que cubre los modelos analíticos, las técnicas computacionales y las soluciones industriales en estudio actualmente. En ella, se aprecia cómo los modelos analíticos y las soluciones computacionales y de simulación se centran principalmente en la predicción off-line de vibraciones y de posibles flexiones de la pieza. Sin embargo, un enfoque más industrial ha llevado al diseño de sistemas de fijación, utillajes, amortiguadores basados en actuadores, sistemas de rigidez y controles adaptativos apoyados en simulaciones o en la selección estadística de parámetros. Además se han desarrollado distintas soluciones CAM basadas en la aplicación de gemelos virtuales. En la revisión bibliográfica se han encontrado pocos documentos relativos a pieles y suelos delgados por lo que se ha estudiado experimentalmente el efecto de los parámetros de corte en su mecanizado. Este conjunto de experimentos ha demostrado que, pese a usar un sistema que aseguraba la rigidez de la pieza, las pieles se comportaban de forma diferente a un sólido rígido en términos de fuerzas de mecanizado cuando se utilizaban velocidades de corte cercanas a la alta velocidad. También se ha verificado que todas las muestras mecanizadas entraban dentro de tolerancia en cuanto a la rugosidad de la pieza. Paralelamente, se ha comprobado que la correcta selección de parámetros de mecanizado puede reducir las fuerzas de corte y las tolerancias del proceso hasta un 20% y un 40%, respectivamente. Estos datos pueden tener aplicación industrial en la simplificación de los sistemas de amarre o en el incremento de la eficiencia del proceso. Este proceso también puede mejorarse incrementando la vida de la herramienta al utilizar fluidos de corte. Una correcta lubricación puede reducir la temperatura del proceso y las tensiones residuales inducidas a la pieza. Con este objetivo, se han desarrollado diferentes lubricantes, basados en el uso de líquidos iónicos (IL) y se han comparado con el comportamiento tribológico del par de contacto en seco y con una taladrina comercial. Los resultados obtenidos utilizando 1 wt% de los líquidos iónicos en un tribómetro tipo pin-on-disk demuestran que el IL no halogenado reduce significativamente el desgaste y la fricción entre el aluminio, material a mecanizar, y el carburo de tungsteno, material de la herramienta, eliminando casi toda la adhesión del aluminio sobre el pin, lo que puede incrementar considerablemente la vida de la herramienta.Chemical milling is a process designed to reduce the weight of metals skin panels. This process has been used since 1950s in the aerospace industry despite its environmental concern. Among its advantages, chemical milling does not induce residual stress and parts meet the required tolerances. However, this process is a pollutant and costly technology. Thanks to the last advances in conventional milling, machining processes can achieve similar quality results meanwhile vibration and part deflection are avoided. Both problems are usually related to the cutting parameters and the workholding. This thesis analyses the causes of the cutting instability and part deformation through a literature review that covers analytical models, computational techniques and industrial solutions. Analytics and computational solutions are mainly focused on chatter and deflection prediction and industrial approaches are focused on the design of workholdings, fixtures, damping actuators, stiffening devices, adaptive control systems based on simulations and the statistical parameters selection, and CAM solutions combined with the use of virtual twins applications. In this literature review, few research works about thin-plates and thin-floors is found so the effect of the cutting parameters is also studied experimentally. These experiments confirm that even using rigid workholdings, the behavior of the part is different to a rigid body at high speed machining. On the one hand, roughness values meet the required tolerances under every set of the tested parameters. On the other hand, a proper parameter selection reduces the cutting forces and process tolerances by up to 20% and 40%, respectively. This fact can be industrially used to simplify workholding and increase the machine efficiency. Another way to improve the process efficiency is to increase tool life by using cutting fluids. Their use can also decrease the temperature of the process and the induced stresses. For this purpose, different water-based lubricants containing three types of Ionic Liquids (IL) are compared to dry and commercial cutting fluid conditions by studying their tribological behavior. Pin on disk tests prove that just 1wt% of one of the halogen-free ILs significantly reduces wear and friction between both materials, aluminum and tungsten carbide. In fact, no wear scar is noticed on the ball when one of the ILs is used, which, therefore, could considerably increase tool life

    Rotors on Active Magnetic Bearings: Modeling and Control Techniques

    Get PDF
    In the last decades the deeper and more detailed understanding of rotating machinery dynamic behavior facilitated the study and the design of several devices aiming at friction reduction, vibration damping and control, rotational speed increase and mechanical design optimization. Among these devices a promising technology is represented by active magnetic actuators which found a great spread in rotordynamics and in high precision applications due to (a) the absence of all fatigue and tribology issues motivated by the absence of contact, (b) the small sensitivity to the operating conditions, (c) the wide possibility of tuning even during operation, (d) the predictability of the behavior. This technology can be classified as a typical mechatronic product due to its nature which involves mechanical, electrical and control aspects, merging them in a single system. The attractive potential of active magnetic suspensions motivated a considerable research effort for the past decade focused mostly on electrical actuation subsystem and control strategies. Examples of application areas are: (a) Turbomachinery, (b) Vibration isolation, (c) Machine tools and electric drives, (d) Energy storing flywheels, (e) Instruments in space and physics, (f) Non-contacting suspensions for micro-techniques, (g) Identification and test equipment in rotordynamics. This chapter illustrates the design, the modeling, the experimental tests and validation of all the subsystems of a rotors on a five-axes active magnetic suspension. The mechanical, electrical, electronic and control strategies aspects are explained with a mechatronic approach evaluating all the interactions between them. The main goals of the manuscript are: • Illustrate the design and the modeling phases of a five-axes active magnetic suspension; • Discuss the design steps and the practical implementation of a standard suspension control strategy; • Introduce an off-line technique of electrical centering of the actuators; • Illustrate the design steps and the practical implementation of an online rotor selfcentering control technique. The experimental test rig is a shaft (Weight: 5.3 kg. Length: 0.5 m) supported by two radial and one axial cylindrical active magnetic bearings and powered by an asynchronous high frequency electric motor. The chapter starts on an overview of the most common technologies used to support rotors with a deep analysis of their advantages and drawbacks with respect to active magnetic bearings. Furthermore a discussion on magnetic suspensions state of the art is carried out highlighting the research efforts directions and the goals reached in the last years. In the central sections, a detailed description of each subsystem is performed along with the modeling steps. In particular the rotor is modeled with a FE code while the actuators are considered in a linearized model. The last sections of the chapter are focused on the control strategies design and the experimental tests. An off-line technique of actuators electrical centering is explained and its advantages are described in the control design context. This strategy can be summarized as follows. Knowing that: a) each actuation axis is composed by two electromagnets; b) each electromagnet needs a current closed-loop control; c) the bandwidth of this control is depending on the mechanical airgap, then the technique allows to obtain the same value of the closed-loop bandwidth of the current control of both the electromagnets of the same actuation axis. This approach improves performance and gives more steadiness to the control behavior. The decentralized approach of the control strategy allowing the full suspensions on five axes is illustrated from the design steps to the practical implementation on the control unit. Furthermore a selfcentering technique is described and implemented on the experimental test rig: this technique uses a mobile notch filter synchronous with the rotational speed and allows the rotor to spin around its mass center. The actuators are not forced to counteract the unbalance excitation avoiding saturations. Finally, the experimental tests are carried out on the rotor to validate the suspension control, the off-line electrical centering and the selfcentering technique. The numerical and experimental results are superimposed and compared to prove the effectiveness of the modeling approach

    Bayesian changepoint analysis for atomic force microscopy and soft material indentation

    Full text link
    Material indentation studies, in which a probe is brought into controlled physical contact with an experimental sample, have long been a primary means by which scientists characterize the mechanical properties of materials. More recently, the advent of atomic force microscopy, which operates on the same fundamental principle, has in turn revolutionized the nanoscale analysis of soft biomaterials such as cells and tissues. This paper addresses the inferential problems associated with material indentation and atomic force microscopy, through a framework for the changepoint analysis of pre- and post-contact data that is applicable to experiments across a variety of physical scales. A hierarchical Bayesian model is proposed to account for experimentally observed changepoint smoothness constraints and measurement error variability, with efficient Monte Carlo methods developed and employed to realize inference via posterior sampling for parameters such as Young's modulus, a key quantifier of material stiffness. These results are the first to provide the materials science community with rigorous inference procedures and uncertainty quantification, via optimized and fully automated high-throughput algorithms, implemented as the publicly available software package BayesCP. To demonstrate the consistent accuracy and wide applicability of this approach, results are shown for a variety of data sets from both macro- and micro-materials experiments--including silicone, neurons, and red blood cells--conducted by the authors and others.Comment: 20 pages, 6 figures; submitted for publicatio

    Efficient Modal-Based Method for Analyzing Nonlinear Aerostatic Stability of Long-Span Bridges

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] An efficient method for analyzing the nonlinear aerostatic stability of long-span bridges using a modal formulation is proposed. First, a simplified linear version defined as modal-based approach is introduced, which evaluates the bridge displacements using the modal properties of the bridge and speeds up the assessment of the critical velocity by applying a root-finding algorithm. Then, this scheme is further developed to identify the instability limit point in nonlinear structures by combining nonlinear FEM analyses with the linear version of the modal-based approach and a root-finding algorithm in an outer loop. The effects of considering the three components of the wind loads, the stays sag effect, structural nonlinearities, aerodynamic nonlinearities, and the initial wind angle of attack, are analyzed and discussed. The computational advantages of the proposed method and its accuracy are demonstrated through three application examples, including a simplified linear 1 DoF system, and linear and nonlinear FEM models of a full cable-stayed bridge. The collapse mechanism of the cable-stayed bridge is driven by the stiffness degradation of the stays caused by the deck vertical upward displacements. It has been found that the influence of the nonlinear aerodynamic features is very low when the structural nonlinearities control the bridge collapse.Xunta de Galicia; ED481B2018/053Xunta de Galicia; ED431C 2017/72EEUU. National Science Foundation; CMMI #1562244M. Cid Montoya is funded by the Xunta de Galicia (Galician regional government) and the Fulbright Scholar Program with reference ED481B2018/053. S. Hernández, F. Nieto, and M. Cid Montoya have been funded by the Spanish Ministry of Economy and Competitiveness in the frame of the research project with reference PID2019-110786 GB-I00, and the Xunta de Galicia, including FEDER funding, with reference ED431C 2017/72. A. Kareem especially thanks NSF for in part support under grant CMMI #1562244

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Integrated investigation of piston–cylinder impact-induced noise and passive control of the piston’s secondary motion using nonlinear absorbers

    Get PDF
    Although alternative power sources are getting well-established, transportation will remain primarily dependent on IC engines using fossil fuels for at least a few more decades. The IC engines typically employ reciprocating pistons to convert the combustion pressure into mechanical work required by the vehicle. Engine NVH issues make their appearance at the piston-cylinder interface in the form of impulsive vibration signals. The piezo-viscous nature of the lubricant at the piston-cylinder conjunction can change the dynamic response of the impacting structures. Much of the published research to date has excluded the elasto-hydrodynamic effects of the lubricant on piston impact noise. Even when these effects were studied, the research focus has been primarily on the tribology of the contact. Thus, an accurate methodology is required to identify and predict piston impact noise using real in-cylinder conditions, especially at the lubricated piston-cylinder conjunction. [Continues.
    corecore