Material indentation studies, in which a probe is brought into controlled
physical contact with an experimental sample, have long been a primary means by
which scientists characterize the mechanical properties of materials. More
recently, the advent of atomic force microscopy, which operates on the same
fundamental principle, has in turn revolutionized the nanoscale analysis of
soft biomaterials such as cells and tissues. This paper addresses the
inferential problems associated with material indentation and atomic force
microscopy, through a framework for the changepoint analysis of pre- and
post-contact data that is applicable to experiments across a variety of
physical scales. A hierarchical Bayesian model is proposed to account for
experimentally observed changepoint smoothness constraints and measurement
error variability, with efficient Monte Carlo methods developed and employed to
realize inference via posterior sampling for parameters such as Young's
modulus, a key quantifier of material stiffness. These results are the first to
provide the materials science community with rigorous inference procedures and
uncertainty quantification, via optimized and fully automated high-throughput
algorithms, implemented as the publicly available software package BayesCP. To
demonstrate the consistent accuracy and wide applicability of this approach,
results are shown for a variety of data sets from both macro- and
micro-materials experiments--including silicone, neurons, and red blood
cells--conducted by the authors and others.Comment: 20 pages, 6 figures; submitted for publicatio