637 research outputs found

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Energy-Efficient Wireless Circuits and Systems for Internet of Things

    Full text link
    As the demand of ultra-low power (ULP) systems for internet of thing (IoT) applications has been increasing, large efforts on evolving a new computing class is actively ongoing. The evolution of the new computing class, however, faced challenges due to hard constraints on the RF systems. Significant efforts on reducing power of power-hungry wireless radios have been done. The ULP radios, however, are mostly not standard compliant which poses a challenge to wide spread adoption. Being compliant with the WiFi network protocol can maximize an ULP radio’s potential of utilization, however, this standard demands excessive power consumption of over 10mW, that is hardly compatible with in ULP systems even with heavy duty-cycling. Also, lots of efforts to minimize off-chip components in ULP IoT device have been done, however, still not enough for practical usage without a clean external reference, therefore, this limits scaling on cost and form-factor of the new computer class of IoT applications. This research is motivated by those challenges on the RF systems, and each work focuses on radio designs for IoT applications in various aspects. First, the research covers several endeavors for relieving energy constraints on RF systems by utilizing existing network protocols that eventually meets both low-active power, and widespread adoption. This includes novel approaches on 802.11 communication with articulate iterations on low-power RF systems. The research presents three prototypes as power-efficient WiFi wake-up receivers, which bridges the gap between industry standard radios and ULP IoT radios. The proposed WiFi wake-up receivers operate with low power consumption and remain compatible with the WiFi protocol by using back-channel communication. Back-channel communication embeds a signal into a WiFi compliant transmission changing the firmware in the access point, or more specifically just the data in the payload of the WiFi packet. With a specific sequence of data in the packet, the transmitter can output a signal that mimics a modulation that is more conducive for ULP receivers, such as OOK and FSK. In this work, low power mixer-first receivers, and the first fully integrated ultra-low voltage receiver are presented, that are compatible with WiFi through back-channel communication. Another main contribution of this work is in relieving the integration challenge of IoT devices by removing the need for external, or off-chip crystals and antennas. This enables a small form-factor on the order of mm3-scale, useful for medical research and ubiquitous sensing applications. A crystal-less small form factor fully integrated 60GHz transceiver with on-chip 12-channel frequency reference, and good peak gain dual-mode on-chip antenna is presented.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162975/1/jaeim_1.pd

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    Interpolation based wideband beamforming frontends for 5G millimetre wave communication

    Get PDF

    Ambient RF energy harvesting and efficient DC-load inductive power transfer

    Get PDF
    This thesis analyses in detail the technology required for wireless power transfer via radio frequency (RF) ambient energy harvesting and an inductive power transfer system (IPT). Radio frequency harvesting circuits have been demonstrated for more than fifty years, but only a few have been able to harvest energy from freely available ambient (i.e. non-dedicated) RF sources. To explore the potential for ambient RF energy harvesting, a city-wide RF spectral survey was undertaken in London. Using the results from this survey, various harvesters were designed to cover four frequency bands from the largest RF contributors within the ultra-high frequency (0.3 to 3 GHz) part of the frequency spectrum. Prototypes were designed, fabricated and tested for each band and proved that approximately half of the London Underground stations were found to be suitable locations for harvesting ambient RF energy using the prototypes. Inductive Power Transfer systems for transmitting tens to hundreds of watts have been reported for almost a decade. Most of the work has concentrated on the optimization of the link efficiency and have not taken into account the efficiency of the driver and rectifier. Class-E amplifiers and rectifiers have been identified as ideal drivers for IPT applications, but their power handling capability at tens of MHz has been a crucial limiting factor, since the load and inductor characteristics are set by the requirements of the resonant inductive system. The frequency limitation of the driver restricts the unloaded Q-factor of the coils and thus the link efficiency. The system presented in this work alleviates the use of heavy and expensive field-shaping techniques by presenting an efficient IPT system capable of transmitting energy with high dc-to-load efficiencies at 6 MHz across a distance of 30 cm.Open Acces

    Facilitating wireless coexistence research

    Get PDF

    UWB Technology

    Get PDF
    Ultra Wide Band (UWB) technology has attracted increasing interest and there is a growing demand for UWB for several applications and scenarios. The unlicensed use of the UWB spectrum has been regulated by the Federal Communications Commission (FCC) since the early 2000s. The main concern in designing UWB circuits is to consider the assigned bandwidth and the low power permitted for transmission. This makes UWB circuit design a challenging mission in today's community. Various circuit designs and system implementations are published in this book to give the reader a glimpse of the state-of-the-art examples in this field. The book starts at the circuit level design of major UWB elements such as filters, antennas, and amplifiers; and ends with the complete system implementation using such modules

    Radio-Communications Architectures

    Get PDF
    Wireless communications, i.e. radio-communications, are widely used for our different daily needs. Examples are numerous and standard names like BLUETOOTH, WiFI, WiMAX, UMTS, GSM and, more recently, LTE are well-known [Baudoin et al. 2007]. General applications in the RFID or UWB contexts are the subject of many papers. This chapter presents radio-frequency (RF) communication systems architecture for mobile, wireless local area networks (WLAN) and connectivity terminals. An important aspect of today's applications is the data rate increase, especially in connectivity standards like WiFI and WiMAX, because the user demands high Quality of Service (QoS). To increase the data rate we tend to use wideband or multi-standard architecture. The concept of software radio includes a self-reconfigurable radio link and is described here on its RF aspects. The term multi-radio is preferred. This chapter focuses on the transmitter, yet some considerations about the receiver are given. An important aspect of the architecture is that a transceiver is built with respect to the radio-communications signals. We classify them in section 2 by differentiating Continuous Wave (CW) and Impulse Radio (IR) systems. Section 3 is the technical background one has to consider for actual applications. Section 4 summarizes state-of-the-art high data rate architectures and the latest research in multi-radio systems. In section 5, IR architectures for Ultra Wide Band (UWB) systems complete this overview; we will also underline the coexistence and compatibility challenges between CW and IR systems

    Design methods for 60GHz beamformers in CMOS

    Get PDF
    The 60GHz band is promising for applications such as high-speed short-range wireless personal-area network (WPAN), real-time video streaming at rates of several-Gbps, automotive radar, and mm-Wave imaging, since it provides a large amount of bandwidth that can freely (i.e. without a license) be used worldwide. However, transceivers at 60GHz pose several additional challenges over microwave transceivers. In addition to the circuit design challenges of implementing high performance 60GHz RF circuits in mainstream CMOS technology, the path loss at 60GHz is significantly higher than at microwave frequencies because of the smaller size of isotropic antennas. This can be overcome by using phased array technology. This thesis studies the new concepts and design techniques that can be used for 60GHz phased array systems. It starts with an overview of various applications at mm-wave frequencies, such as multi-Gbps radio at 60GHz, automotive radar and millimeter-wave imaging. System considerations of mm-wave receivers and transmitters are discussed, followed by the selection of a CMOS technology to implement millimeter-wave (60GHz) systems. The link budget of a 60GHz WPAN is analyzed, which leads to the introduction of phased array techniques to improve system performance. Different phased array architectures are studied and compared. The system requirements of phase shifters are discussed. Several types of conventional RF phase shifters are reviewed. A 60GHz 4-bit passive phase shifter is designed and implemented in a 65nm CMOS technology. Measurement results are presented and compared to published prior art. A 60GHz 4-bit active phase shifter is designed and integrated with low noise amplifier and combiner for a phased array receiver. This is implemented in a 65nm CMOS technology, and the measurement results are presented. The design of a 60GHz 4-bit active phase shifter and its integration with power amplifier is also presented for a phased array transmitter. This is implemented in a 65nm CMOS technology. The measurement results are also presented and compared to reported prior art. The integration of a 60GHz CMOS amplifier and an antenna in a printed circuit-board (PCB) package is investigated. Experimental results are presented and discussed

    Receiver Front-Ends in CMOS with Ultra-Low Power Consumption

    Get PDF
    Historically, research on radio communication has focused on improving range and data rate. In the last decade, however, there has been an increasing demand for low power and low cost radios that can provide connectivity with small devices around us. They should be able to offer basic connectivity with a power consumption low enough to function extended periods of time on a single battery charge, or even energy scavenged from the surroundings. This work is focused on the design of ultra-low power receiver front-ends intended for a receiver operating in the 2.4GHz ISM band, having an active power consumption of 1mW and chip area of 1mm². Low power consumption and small size make it hard to achieve good sensitivity and tolerance to interference. This thesis starts with an introduction to the overall receiver specifications, low power radio and radio standards, front-end and LO generation architectures and building blocks, followed by the four included papers. Paper I demonstrates an inductorless front-end operating at 915MHz, including a frequency divider for quadrature LO generation. An LO generator operating at 2.4GHz is shown in Paper II, enabling a front-end operating above 2GHz. Papers III and IV contain circuits with combined front-end and LO generator operating at or above the full 2.45GHz target frequency. They use VCO and frequency divider topologies that offer efficient operation and low quadrature error. An efficient passive-mixer design with improved suppression of interference, enables an LNA-less design in Paper IV capable of operating without a SAW-filter
    corecore