229 research outputs found

    Determination of baseflow quantity by using unmanned aerial vehicle (UAV) and Google Earth

    Get PDF
    Baseflow is most important in low-flow hydrological features [1]. It is a function of a large number of variables that include factors such as topography, geology, soil, vegetation, and climate. In many catchments, base flow is an important component of streamflow and, therefore, base flow separations have been widely studied and have a long history in science. Baseflow separation methods can be divided into two main groups: non-tracer-based and tracer- based separation methods of hydrology. Besides, the base flow is determined by fitting a unit hydrograph model with information from the recession limbs of the hydrograph and extrapolating it backward

    A survey of visual preprocessing and shape representation techniques

    Get PDF
    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention)

    Early Human Vocalization Development: A Collection of Studies Utilizing Automated Analysis of Naturalistic Recordings and Neural Network Modeling

    Get PDF
    Understanding early human vocalization development is a key part of understanding the origins of human communication. What are the characteristics of early human vocalizations and how do they change over time? What mechanisms underlie these changes? This dissertation is a collection of three papers that take a computational approach to addressing these questions, using neural network simulation and automated analysis of naturalistic data.The first paper uses a self-organizing neural network to automatically derive holistic acoustic features characteristic of prelinguistic vocalizations. A supervised neural network is used to classify vocalizations into human-judged categories and to predict the age of the child vocalizing. The study represents a first step toward taking a data-driven approach to describing infant vocalizations. Its performance in classification represents progress toward developing automated analysis tools for coding infant vocalization types.The second paper is a computational model of early vocal motor learning. It adapts a popular type of neural network, the self-organizing map, in order to control a vocal tract simulator and in order to have learning be dependent on whether the model\u27s actions are reinforced. The model learns both to control production of sound at the larynx (phonation), an early-developing skill that is a prerequisite for speech, and to produce vowels that gravitate toward the vowels in a target language (either English or Korean) for which it is reinforced. The model provides a computationally-specified explanation for how neuromotor representations might be acquired in infancy through the combination of exploration, reinforcement, and self-organized learning.The third paper utilizes automated analysis to uncover patterns of vocal interaction between child and caregiver that unfold over the course of day-long, totally naturalistic recordings. The participants include 16- to 48-month-old children with and without autism. Results are consistent with the idea that there is a social feedback loop wherein children produce speech-related vocalizations, these are preferentially responded to by adults, and this contingency of adult response shapes future child vocalizations. Differences in components of this feedback loop are observed in autism, as well as with different maternal education levels

    Virtual metrology for semiconductor manufacturing applications

    Get PDF
    Per essere competitive nel mercato, le industrie di semiconduttori devono poter raggiungere elevati standard di produzione a un prezzo ragionevole. Per motivi legati tanto ai costi quanto ai tempi di esecuzione, una strategia di controllo della qualità che preveda la misurazione completa del prodotto non è attuabile; i test sono eettuati su un ristretto campione dei dati originali. Il traguardo del presente lavoro di Tesi è lo studio e l'implementazione, attraverso metodologie di modellistica tipo non lineare, di un algoritmo di metrologia virtuale (Virtual Metrology) d'ausilio al controllo di processo nella produzione di semiconduttori. Infatti, la conoscenza di una stima delle misure non realmente eseguite (misure virtuali) può rappresentare un primo passo verso la costruzione di sistemi di controllo di processo e controllo della qualità sempre più ranati ed ecienti. Da un punto di vista operativo, l'obiettivo è fornire la più accurata stima possibile delle dimensioni critiche a monte della fase di etching, a partire dai dati disponibili (includendo misurazioni da fasi di litograa e deposizione e dati di processo - ove disponibili). Le tecniche statistiche allo stato dell'arte analizzate in questo lavoro comprendono: - multilayer feedforward networks; Confronto e validazione degli algoritmi presi in esame sono stati possibili grazie ai data-set forniti da un'industria manifatturiera di semiconduttori. In conclusione, questo lavoro di Tesi rappresenta un primo passo verso la creazione di un sistema di controllo di processo e controllo della qualità evoluto e essibile, che abbia il ne ultimo di migliorare la qualità della produzione.ope

    Neuromorphic on-chip recognition of saliva samples of COPD and healthy controls using memristive devices

    Get PDF
    Chronic Obstructive Pulmonary Disease (COPD) is a life-threatening lung disease, affecting millions of people worldwide. Implementation of Machine Learning (ML) techniques is crucial for the effective management of COPD in home-care environments. However, shortcomings of cloud-based ML tools in terms of data safety and energy efficiency limit their integration with low-power medical devices. To address this, energy efficient neuromorphic platforms can be used for the hardware-based implementation of ML methods. Therefore, a memristive neuromorphic platform is presented in this paper for the on-chip recognition of saliva samples of COPD patients and healthy controls. Results of its performance evaluations showed that the digital neuromorphic chip is capable of recognizing unseen COPD samples with accuracy and sensitivity values of 89% and 86%, respectively. Integration of this technology into personalized healthcare devices will enable the better management of chronic diseases such as COPD. © 2020, The Author(s)

    Self-Organization of Spiking Neural Networks for Visual Object Recognition

    Get PDF
    On one hand, the visual system has the ability to differentiate between very similar objects. On the other hand, we can also recognize the same object in images that vary drastically, due to different viewing angle, distance, or illumination. The ability to recognize the same object under different viewing conditions is called invariant object recognition. Such object recognition capabilities are not immediately available after birth, but are acquired through learning by experience in the visual world. In many viewing situations different views of the same object are seen in a tem- poral sequence, e.g. when we are moving an object in our hands while watching it. This creates temporal correlations between successive retinal projections that can be used to associate different views of the same object. Theorists have therefore pro- posed a synaptic plasticity rule with a built-in memory trace (trace rule). In this dissertation I present spiking neural network models that offer possible explanations for learning of invariant object representations. These models are based on the following hypotheses: 1. Instead of a synaptic trace rule, persistent firing of recurrently connected groups of neurons can serve as a memory trace for invariance learning. 2. Short-range excitatory lateral connections enable learning of self-organizing topographic maps that represent temporal as well as spatial correlations. 3. When trained with sequences of object views, such a network can learn repre- sentations that enable invariant object recognition by clustering different views of the same object within a local neighborhood. 4. Learning of representations for very similar stimuli can be enabled by adaptive inhibitory feedback connections. The study presented in chapter 3.1 details an implementation of a spiking neural network to test the first three hypotheses. This network was tested with stimulus sets that were designed in two feature dimensions to separate the impact of tempo- ral and spatial correlations on learned topographic maps. The emerging topographic maps showed patterns that were dependent on the temporal order of object views during training. Our results show that pooling over local neighborhoods of the to- pographic map enables invariant recognition. Chapter 3.2 focuses on the fourth hypothesis. There we examine how the adaptive feedback inhibition (AFI) can improve the ability of a network to discriminate between very similar patterns. The results show that with AFI learning is faster, and the network learns selective representations for stimuli with higher levels of overlap than without AFI. Results of chapter 3.1 suggest a functional role for topographic object representa- tions that are known to exist in the inferotemporal cortex, and suggests a mechanism for the development of such representations. The AFI model implements one aspect of predictive coding: subtraction of a prediction from the actual input of a system. The successful implementation in a biologically plausible network of spiking neurons shows that predictive coding can play a role in cortical circuits
    • …
    corecore