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Abstract. This survey summarizes many recent theories and methods proposed for 
visual preprocessing and shape representation. The survey brings together research from the 
fields of biology, psychology, computer science, electrical engineering, and most recently, 
neural networks. This report was motivated by the need to preprocess images for a sparse 
distributed memory (SDM), but the techniques presented herein may also prove useful for 
applying other associative memories to visual pattern recognition. The material of this survey 
is divided into three sections 1) an overview of biological visual processing. 2) methods of 
preprocessing (extracting parts of shape, texture, motion, and depth), and 3) shape 
representation and recognition (form invariance, primitives and structural descriptions, and 
theories of attention). 
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1. Introduction 

Consider for a moment how vision is used by a few living things: The sand wasp 
(Philanrhur triangulum) is able to recognize its nest by the pattern of objects lying around it; 
the kingfisher can target a fish underwater while hovering in the air; and humans can read 
text in many fonts and sizes. Each of these tasks seems to be performed almost effortlessly, 
yet any one of them would certainly stump the most powerful of modern digital computers. 

How is it that images are processed and understood in biological systems? What is 
the nature of computation involved in vision, and how might we build machines that “see?’ 
Partial answers to these questions have been offered over the past several decades by 
researchers in fields of biology, psychology, computer science, and most recently in the bur- 
geoning field of neural networks. This survey is offered as a humble attempt to bring 
together and summarize many of the recent approaches to visual preprocessing and shape 
representation that have been proposed. 

- 

1.1. The problems of vision 

In a sense, vision could be considered the inverse problem of computer graphics. That 
is, in computer graphics one is given an object with a specified shape, reflectance, illumina- 
tion, viewing transformation, etc., and then asked to compute the projection onto a 2-D 
image plane. In vision, one is given only the 2-D image and then asked to compute what cre- 
ated it. This latter problem is underdetermined and hence creates enormous difficulties for 
machine vision. 

Humans are aided to a great extent in visually reconstructing the world by making 
assumptions about the shape of objects: surfaces are smooth, boundaries are continuous, 
objects are rigid, etc. When these assumptions fail us we perceive an optical illusion, but 
most of the time we are unaware of such assumptions and we appear to see everything per- 
fectly. Thus, the apparent ease with which we see can tend to veil the real problems of 
vision, as Marr (1 982) has astutely observed: 

...in the 1960s almost no one realized that machine vision was difficult. The field 
had to go through the same experience as the machine translation field did in its fiascoes of 
the 1950s before it was at last realized that here were some problems that had to be taken 
seriously. The reason for this misperception is that we humans are ourselves so good at 
vision. The notion of a f ea tw  detector was well established by Barlow and by Hubel and 
Wiesel, and the idea that extracting edges and lines from images might be at all difficult 
simply did not occur to those who had not tried to do it. It turned out to be an elusive prob- 
lem Edges that are of critical importance from a three-dimensional point of view often 
cannot be found at all by looking at the intensity changes in an image. Any kind of textured 
image gives a multitude of noisy edge segments; variations in reflectance and illumination 
cause no end of trouble; and even if an edge has a clear existence at one point, it is as likely 
as not to fa& out quite soon, appearing only in patches along its length in the image. (p. 16) 

In order to begin to understand vision, it is helpful to divide it into two parts: prepro- 
cessing and recognition. The preprocessing part consists of extracting useful features from 
the image, such as parts of shape, texture, motion, and depth. Such features are used to form 
a rich description of the visual scene (i.e., something better than simply which pixels are on 
and which are off) to be fed to the recognition process. Many studies have been done on pre- 
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processing in biological systems - or so-called early vision - and it has been found that this 
type of processing usually involves many local operations on an image performed almost 
totally in parallel. 

The recognition part consists of the formation of an internal representation of objects 
and a process for matching or classification based on the description obtained from the pre- 
processing stage. Somehow, the brain must be capable of representing visual forms 
independent of such particulars as perspective, illumination, and size. Then, there has to be 
a process for matching objects from what must be an enormous library of visual forms. Very 
little is known about how the recognition part is accomplished in biological systems. 

The parts of vision may interact, but the problems associated with them may be con- 
sidered separately, hence simplifying our task in attempting to understand vision. 

1.2. Scope of this survey 

This survey was motivated by the need to preprocess images for sparse distributed 
memory (SDM). Briefly, SDM provides a simple, massively parallel architecture for an 
associative memory. Long bit vectors (256-1000 bits, for example) serve as both data and 
addresses to the memory, and patterns are grouped or classified according to similarity in 
Hamming distance. (See Kanerva, 1988, for details on SDM, and Keeler, 1988, for a compari- 
son to Hopfield nets.) 

In order for SDM to serve as a visual memory, some correspondence must be estab- 
lished between the bits in SDM and the image. Hence, the emphasis of this survey is on 
preprocessing and representation, with little attention given to classification or matching. In 
the realm of preprocessing, the emphasis is on extraction of shape, especially 2-D shape, 
rather than features such as color, motion, 3-D surface orientation, or depth. Also, this sur- 
vey emphasizes many of the recent applications of neural networks, or biological-type 
approaches, to visual processing. 

Prerequisites. It is assumed that the reader is familiar with neural-networks and 
also has some background in mathematics. Knowledge of neuroanatomy and neurophysiolo- 
gy is not necessary but would be helpful. 

Should the reader be unfamiliar with some of the terminology used in this report, a 
glossary of technical terms is provided in the Appendix. All terms appearing in italic font are 
defined in the glossary. 

Other surveys, books, and collections. Brady (1982) and Binford (1982) have pub- 
lished surveys on the more conventional techniques used in image understanding and 
machine vision; Horn (1986) and Ballard and Brown (1982) serve as good texts in this area. 
Arbib and Hanson (1987a) have published a broad overview of theories and techniques used 
in vision, both in AI and in biological systems, tracing their development from past to pre- 
sent; Fischler and Firschein (1987a) provide a similar perspective. Marr’s Vision (Marr, 
1982) provides an excellent and insightful analysis of human visual processing from a compu- 
tational point of view; Pinker (1985a) provides an overview of theories on visual cognition; 
and a short review by Ballard et al. (1983) discusses some parallel methods for visual com- 
putation. Collections edited by Rosenfeld (1986b), Arbib and Hanson (1987b), Fischler and 
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Firschein (1987b), Schwab and Nusbaum (1986), Pinker (1985b), and Tenenbaum and Bar- 
row (1988) provide a broad assortment of papers covering topics in human and machine 
vision. As an indication of the vast amount of research going on the computer vision commu- 
nity, Rosenfeld (1988) has compiled a list of over 1400 references to papers on computer 
vision and image analysis published during 1987. 

1.3. Organization of this survey 

This survey is organized according to both function and methodology. Section 2, 
which gives an overview of the current state of knowledge in biological visual processing, is 
devoted largely to methodology. Section 3 (preprocessing) and section 4 (shape representa- 
tion and recognition) are organized according to function (edge-detection or form invariance, 
for example), with particular methods discussed within each functional sub-section. 

The bibliography provided at the end of this report is mostly annotated. Some papers 
are without a summary, which means either that they could not be obtained or that they were 
not thoroughly read; these papers were included in the bibliography anyway because they 
may be of interest in the future, or they may be of importance to others. 

1.4. Acknowledgments 

Pentti Kanerva and Mike Raugh were generous in allotting me the time to thoroughly 
review the literature necessary for producing this report. Conversations with David Rogers, 
Jim Keeler, Louis Jaeckel, and David Li were very helpful for providing insight and keeping 
me going in the right direction. Thanks are also due to A1 Ahumada and Mike Raugh for help- 
ful comments on the draft. 
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2. An Overview of Biological Visual Processing 

It is the purpose of this section to summarize the current state of knowledge in biolog- 
ical visual processing. Since many of the techniques and theories discussed in later sections 
are based on biological models, the terms defined here will become useful later on. 

The overall visual processing scheme for most mammals is shown in Figure 1. Visual 
patterns are captured by the retina, and then sent to the visual cortex via the lateral genicu- 
fate nucleus. It should be noted that while much of the knowledge about these areas has 
been gained from studies on the visual systems in the cat and macaque monkey, most 
aspects of the organization and function of these areas apply to the human visual system as 

The material in this section has been extracted largely from Kuffler et al. (1984), Bay- 
lor and Shatz (1988), Hubel and Wiesel (1979), Nauta and Feirtag (1979), Van Essen and 

I 

I well. 

I 
I Maunsell(1983), and Van Essen (1985). 

Nucleus (LGN) 

Receptive Field of ganglion a 

Figure 1: The mammalian visual system 

2.1. Retina 

. 

Light is focused by the lens of the eye onto the retina, which is a vast m y  of pho- 
toreceptors, interconnecting neurons, and associated wiring (axons and dendrites). Note 
that light must pass through the wiring and other neurons in order to reach the photorecep- 
tors. In a sense, then, the retina has been wired backwards. 

The photoreceptors come in two varieties: rods and cones. The great majority of pho- 
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toreceptors are rods, of which there are approximately 120 million packed at an average 
density of 160,000 per mm2. Rods are extremely sensitive to light intensity (in fact, one rod 
can detect a single photon!), but they do not differentiate among the various wavelengths of 
light (color). Cones, on the other hand, are much fewer in number (6.8 million), require a 
higher light intensity for activation, and are tuned to respond to different colors. Cones are 
classified as “red” (561 nm), “green” (531 nm), or “blue” (430 nm) according to the wave- 
length of light which yields the maximal response. In addition, cones are found mainly at the 
center of the retina, or fovea, packed at an average density of 150,000 per m2. 

The other neurons in the retina consist of bipolar cells, horizontal and amacrine cells, 
and ganglion cells. Bipolar cells establish conduction lines from the rods and cones to the 
ganglion cells, while horizontal and amacrine cells establish inhibitory crosslinks among 
these conduction lines. The net result of all this interconnectivity is that a ganglion cell effec- 
tively collects the outputs from many photoreceptors. (Actually, interactions among neurons 
in the retina are quite complex; see Loebner, 1987, for example.) 

The local group of photoreceptors from which a ganglion cell receives its input is 
known as a receptive field. Ganglion cell receptive fields tend to have centerlsurround pro- 
files, such that uniform illumination on the receptive field elicits no response from a ganglion, 
but some form of contrast does (see Fig. 2). Receptive fields tend to cover very small areas 
in the fovea and very large areas in the periphery, making the fovea the area of highest visu- 
al acuity. 

I 

or -- ganglion cell 
fires 

no response from 
ganglion cell - or 

Figure 2: Receptive field profde of a ganglion cell and its response to various spatial patterns. 
+ signs indicate excitory part of the field; - signs indicate inhibitory part of the field. 

Retinal ganglion cells may be subdivided into two classes, X cells and Y cells, on the 
basis of physical attributes and function. X cells are responsive to maintained contrast, have 
a slow response time, provide high resolution, and they are sensitive to color. Y cells, on the 
other hand, have a transient response to contrast, fast response, but low resolution. It is 
believed that X cells are especially well suited for the analysis of shape, and Y cells for the 
analysis of motion. 

The long axons from all the ganglion cells are bundled together to form the optic 
nerve, which exits the eye at the blind spot. (Since there are approximately 1.2 million gan- 
glion cells in the retina, there is an average fan-in of’about 1OO:l from input to output.) The 
optic nerve follows two separate paths to the brain. One path leads to the superior collicu- 
lus in the midbrain, presumably for the purpose of controlling eye movements (see Sparks 
and Jay, 1987, for a model of this system). The other path, termed the thalamo-cortical path- 
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way, leads to the visual cortex via the later- 
al geniculate nucleus (LGN) of the 
thalamus. The latter path is the one we will 
follow here. 

2.2. Lateral geniculate nucleus (LGN) 

Just as there are two eyes, there are 
also two LGN’s, one in each hemisphere of 
the brain. Each LGN receives mons from 
the left and right eyes, and the mons termi- 
nate in six distinct layers alternating 
according to left or right eye, as shown in 
Figure 3. Moreover, the mapping from retina 
to LGN is topographic, so that neighboring 
cells ;.n the LGN correspond to neigh5oring 
receptive fields in the retina. 

The layers of the LGN can be 

T 
parvocellular 
layers 

magnocellular c 
layers 
L 

Figure 3: Cross-section of the left LGN. Each 
layer receives mons from either the left or right 
eye. Parvocellular layers contain X-type cells; 
magnocellular layers contain Y-type cells. 

grouped into two parts. Layers 1 and 2, termed the magnocellular layers, contain cells that 
respond like Y cells in the retina. Layers 3-6 are termed the parvocellular layers and contain 
X-like cells. 

It is interesting to note thslt all sensory input (with the exception of olfaction) passes 
through the thalamus before being processed in the cerebral cortex. Presumably this is done 
to modify or improve the raw sensory input before being processed by the cerebral cortex. In 
this case, the LGBJ (just one part of the thalamus) is 
biinging together signals from both eyes and grouping 
signals according to X or Y channels. 

2.3. Visual cortex 

The visual cortex resides in both hemispheres 
of the brain at the rear of the cerebral cortex. In 
humans, it is estimated to occupy 150-250 cm2, or 
about 12% of the entire cerebral cortex. 

The visual cortex has been subdivided into 
many different areas, delineated by function andfor 
neural structure. Each area, as with all of the cerebral 
cortex, is essentially a two-dimensional layered 
sheet of neurons. Figure 4 shows how various areas 
of the visual cortex are interconnected in the macaque 
monkey. (Many other areas and interconnections are 
known to exist; this chart is shown here for the sake 
of simplicity). Interconnections are. almost always 
two-way, such that if area A projects to area B, then 

L 

Figure 4: Various areas of the visual 
cortex and their interconnectivity. 
Connections between areas are usually 
two-way. See text for definitions. 
(Modified from Van Essen and Maunsell, 
1983). 
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area B also projects back to area A. Unnikrishnan et al. (1987) and hliyake and Fukushima 
(1986) have proposed models to explain this feedback. 

Discussed below are several of the more functionally significant areas of the visual 
cortex. 

V1 (area 17, or striate cortex). V1, which receives most of the input from the 
LGN, comprises approximately 26 cm2, or 4% of the human cerebral cortex. Like the LGN, 
V1 contains a more or less topographic map of the visual field. But here, the functional orga- 
nization is much more complex and the receptive fields are dramatically different. 

Essentially three types of cells can be found in V1: simple cells, complex cells, and 
hypercomplex cells. A simple cell will fire at maximum frequency in response to a small line 
or edge with a specific angular orientation and position in the visual field. If the orientation is 
changed by even 20°, the response of the cell will drop by more than 50%; and if the line is 
not positioned precisely within the receptive field, the response will also drop dramatically. 
Complex cells are also orientation selective, but exhibit more tolerance to position changes. 
Hypercomplex cells are responsive to line terminations and comers (also called endstopped 
neurons). It is thought that these three types of cells are connected together in a roughly 
hierarchical fashion, with simple cells receiving their input from several LGN cells lying along 
the same line, complex cells receiving their input from several neighboring simple cells of the 
same orientation preference, and hypercomplex cells receiving excitory input from some com- 
plex cells and inhibitory input from others. 

The cells of V1 are organized in a columnar fashion according to two parameters: ori- 
entation preference and eye preference. That is, cells lying in a column perpendicular to the 
surface of the cortex are found to respond preferentially to the same orientation and the same 
eye. All the cells in an orientation column are selective to the same angular orientation of a 
small line or edge in the visual field. Similarly, all the cells in an ocular dominance column 

columns 

orientation columns 

right 9 
Figure 5:  A block of primary visual cortex (Vl), showing the columnar organization. 
Orientation preference changes about 10' every 2 5 - 5 0 ~  and eye preference alternates regularly 
between left and right eye. A hypercolumn is shown in bold outline (horizontal dimension is 
exaggerated). 
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are biased toward the same eye. Moving from one column to the next across the surface of 
the cortex, one finds that orientation preference changes continuously, about 10" every 25- 
SOpm, and eye preference alternates regularly between left and right eye (Fig. 5) .  About 
one square millimeter of cortex is needed to contain an entire 180' worth of orientation 
columns covering both eyes. Hubel and Wiesel have termed each such lmm2 portion a hyper- 
column, of which there are over 4000 in the striate cortex of the monkey. 

Although the mapping from retina to V1 is topographic, the map is highly distorted in 
order to devote more resources to the fovea. For example, close to the fovea, each degree of 
visual field might have 10 hypercolumns devoted to it, while in the periphery, a degree might 

I be assigned to only a fraction of a hypercolumn. 

I MT (middle temporal area) and MST (medial superior temporal area). MT neu- 
rons are found to be highly selective for direction of motion, speed, binocular disparity, as 
well as motion in depth. Cells in this area exhibit little or no selectivity to shape or color. 
Thus, this area seems very well suited for analyzing the three-dimensional trajectories of 
objects moving in visual space, irrespective of their particular form. 

One of the most interesting properties of cells in MST is that some cells respond dif- 
ferently to a moving object when the eyes are stationary than to the equivalent retinal 
stimulation produced by a stationary object when the eyes are moving. Also, cells in this 
area tend to have very large receptive fields. 

I 

I 

In both areas, the same columnar organization as in V1 is found, except that cells 
here are grouped according to direction of motion. 

V4. V4, along with VP and V2, seems to contain a large fraction of color selective 
cells. Again, cells are arranged in columns, in this case according to color. 

IT (inferotemporal cortex). IT is thought to be heavily involved in visual pattern 
processing. The cells of IT tend to have very large receptive fields, and so-called grandmoth- 
er cells (cells selective for complex shapes, such as the face of one's grandmother) have 
been found in this area. Gross (1972) has reported the existence of cells that respond selec- 

superior temporal cortex, which receives inputs from IT, that are selectively responsive to 
faces, or to parts of faces. 

I tively to the silhouette of a monkey's hand, and Perrett (19-82) has found neurons in the 
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3. Preprocessing the Image 

The purpose of preprocessing is to extract useful features from the image in order to 
provide the recognition process with a rich description of a scene. This section discusses 
how features may be extracted from the raw image - or pixel map - and how they may be 
used in segmenting the image, or separating figure from ground. 

3.1. Edge detection 

Since an image is essentially a 2-D distribution of intensity values, one useful opera- 
tion is to find where, and to what extent, intensity changes occur. From a recognition 
standpoint, edges are useful because they help define the border or boundary of a shape; and 
as discussed in Section 2, the retina, LGN, and visual cortex all seem to be actively involved 
in some form of contrast enhancement or edge detection. Thus, edges are important, and 
they seem to be detected in biological systems, but what is the computation that underlies 
the detection of edges? 

The Marr-Hildreth edge detector. One of the problems with detecting edges in 
natural images is that edges generally occur over a wide variety of scales or resolutions. An 
intensity change may take place over one or two pixels, or it may take place over many pix- 
els. For this reason, Marr and Hildreth (1980) have proposed filtering an image in order to: 

1) restrict the range of resolutions over which intensity changes occur in an 
image, 

and 

2) maintain the spatial locality of discontinuities (i.e., even though an intensity 
change may take place over many pixels, you still want to determine its exact 
location as best as possible). 

Marr and Hildreth have found that the filter that best optimizes constraints (1) and (2) is the 
Gaussian. 

Once an image has been Gaussianfilrered at several resolutions (by adjusting Q, the 
spread of the Gaussian function), the Laplacian operator is then applied to find points of max- 
imum intensity change. The Gaussian function and Laplacian operator can be combined into 
a single filter, called the Laplacian of Gaussian, or LOG filter, as illustrated in Figure 6e. 
Marr and Hildreth have found it useful to plot the zero-crossings of an LOG-filtered image, 
as these points indicate maxima in the first derivative, which in turn indicate points of maxi- 
mum intensity change in the image (Fig. 6b-d). When the zero-crossing images from 
several resolutions are considered together, an edge is indicated by a segment of zero-cross- 
ings occurring at the same place for two or more resolutions. 

In relating their theory to biological systems, Marr and Hildreth have proposed that 
the LGN computes the zero-crossings of an LOG filter, and that simple cells compute edge 
segments (a line of zero crossings). It is interesting to note that Marr and Hildreth’s edge 
detector agrees very nicely with a quantitative model of human spatial vision proposed by 
Wilson and Bergen (1979). This model predicts that human receptive fields come in four dif- 
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Figure 6: The image (a) is convolved with an LOG fitter (e) at several different scales. The zero- 
crossings of the resulting images are. shown in (b-d); the central part of the LOG filter was set at a 
width of 6 pixels (b), 12 pixels (c), and 24 pixels (d). (a-d copied from Marr and Hildreth, 1980, with 
permission.) 

24' (40 photoreceptors) 4 

T 
i 

(4 
Figure 7: Edge detector resolution at the fovea. 

21' 

(b) 

(a) The letter A (12 ut. Times font) as 
it would appear at the fovea when read at a distance of 18 inches from the eye. Each pixel 
represents a single photoreceptor (on average). (b) The sizes, to scale, of the central 
parts of the four receptive fields predicted by Wilson and Bergen (1979). (Actually, 
neuroanatomical evidence points to tfie existence of a smaller receptive field center 
measuring approximately 1.3'.) 
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ferent sizes at any point in the visual field (see Fig. 7) and that each receptive field has a 
profile similar to the LOG fdter. (Wilson and Bergen used the difference of two Gaussian 
functions, which happens to match the LOG almost perfectly.) 

In a similar vein to Marr and Hildreth, Canny (1986) has derived a set of optimal fil- 
ters for detecting various sorts of intensity changes. For detecting step-edges, Canny has 
defined a 2D operator based on the gradient of a 2D Gaussian. This operator turns out to be 
an oriented edge-detector, as opposed to Marr and Hildreth's omnidirectional edge detector. 

Nalwa and Binford (1986) have developed a much more complicated method of edge 
detection based upon fitting a series of surfaces (e.g., cubic spline, tanh) to a window. They 
are able to obtain better accuracy with this method than with the Mm-Hildreth detector. 

I 

The Gabor filter. Watson (1983), Daugman (1985), and Caelli et al. (1987), among 
others, have used the 2D Gabor function to model the early stages of human visual process- 
ing. Basically, the 2D Gabor function is formed from the product of a 2D sine and Gaussian. 
By changing the phase, frequency, and direction of the sine, as well as the aspect ratio of the 
Gaussian, a family of 2D Gabor functions can be generated. A few of these are shown in Fig- 
ure 8. One can readily see how these functions are well suited to serve as image filters for 
detecting small, linear edges or lines in an image. Daugman (1985) has confirmed this fact, 
showing that the 2D Gabor function is actually the optimal filter for simultaneously detecting 
the position, angular orientation, and spatial frequency (or more appropriately, scale) of 
edges or lines with maximum certainty. 

Figure 8: 
ratio. 
selectivity is easily changed by a simple rotation in the plane. (From Daugman, 1985) 

Some 2D Gabor filters, with various settings of phase, spatial frequency, and aspect 
Although all of the filters shown here are oriented in the same direction, the orientation 

Cooperative processes. Edges generally do not occur in isolation. Rather, they 
usually form part of a global line or boundary. Cooperative processes are a way of incorporat- 
ing such assumptions, much as humans do, in order to aid the edge detection process. 

Zucker et d. (1977) have shown how one type of cooperative process called relax- 
ation labeling can be used to enhance lines and curves in an image. According this method, 
a series of filters designed to detect small lines at several angular orientations are convolved 
with an image in order to generate an array of line-orientation labels. This may is then con- 
sidered a partially connected graph, with each node connected to its neighbors. Each node 'in 
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the graph corresponds a location in the image, and each node has an line-orientation label 
assigned to it. In the relaxation process, each node updates its label to be more compatible 
with its neighbors, as determined by a set of compatibility weights between line labels. The 
compatibility weights are chosen such that lines of similar orientation support one another, 
while lines of perpendicular orientation antagonize one another. “No-line” labels are sup- 
ported positively by surrounding “no-line” labels and negatively by line labels oriented 
toward them. The relaxation labeling process converges in only a few iterations so that 
global lines or curves are enhanced and noisy elements are suppressed. Hummel and Zucker 
(1983) have refined the relaxation-labeling algorithm and have given conditions and proof of 
convergence. 

Grossberg and Mingolla (1987) have proposed a scheme somewhat similar to Zuck- 
er’s, called the boundary contour system. They use this theory to explain how edges are 
filled in where part of a boundary is missing, or how an illusory contour is formed from appro- 
priately positioned line- terminations. 

Kass et al. (1987) have introduced the concept of “snakes” for finding contours in 
natural images. A snake is an energy-minimizing spline whose shape is determined by con- 
straint forces. Internal forces act to regularize the spline so that it remains smooth, and 
image forces pull the snake toward lines and edges in the image. External forces can be 
used interactively (such as with a mouse) to nudge a snake toward certain image features. 
This method works remarkably well for latching onto smooth, continuous contours, as well as 
subjective contours. 

Lee and Pavlidis (1987) also use a cooperative process for relaxing a spline along a 
contour, but their method also allows for important discontinuities such as comers. In this 
way, comers and vertices are not smoothed over, but are allowed as valid (and important) 
features. (See also Terzopoulos, 1986.) 

. Other types of cooperative processes have been proposed by Walters (1987) (see 
section 3.2), and Canning (1987). 

Self-organizing processes. Several researchers have used self-organizing neural 
networks to model the development of simple cells, or edge or bar detectors, in the visual cor- 
tex. 

Von der Malsburg (1973) devised a model using Hebbian learning and on-center/off- 
surround interactions to show how the orientation selectivity of simple cells in the visual cor- 
tex could be developed through experience, rather than being predetermined genetically. In 
this model, a retina of 19 units is stimulated with lines at 9 different angular orientations. A 
“cortex” consisting of 338 units is connected to the retina such that each retinal cell excites 
all the cortical cells through a set of weights. These weights are then modified according to a 
Hebbian-type rule over repeated presentations of the retinal stimuli. Within the cortex, 
there is an on-centerloff-surround interaction such that the firing of one cell helps to excite 
its neighbors but inhibits its more distant neighbors. After 100 trials, the cortex exhibits the 
same type of orientation selectivity found in the visual cortex of mammals, as shown in Fig- 
ure 9. 

Barrow (1987) has taken the work of Von der Malsburg one step further using a 
slightly different scheme. In Barrow’s model, an entire image is used as the test stimulus. 
Each cell in the “cortex” is connected to a receptive field in the image in a topographic man- 



13 

ner, and the weights from retina to cortex are 
modified according to a competitive learning 
ruZe devised by Rumelhart and Zipser (1985). 
After many trials, the cells of the cortex even- 
tually develop to be oriented bar or edge 
detectors. 

An experiment by Wiesel (1982) would 
seem to lend support to the models of Von der 
Malsburg and Barrow. In this experiment, a 
young monkey was exposed exclusively to ver- 
tical stimuli for 57 hours. It was then found 
that cortical cells were much more responsive 
to vertical stimuli than horizontal stimuli, sug- 
gesting that some competition among neurons 
takes place during early development. 

A completely different and enlightening 
approach to self-organization has been pro- 
posed by Linsker (1986). Linsker’s model 
demonstrates that experience is not necessary 
to develop the edge-detection function of either 
LGN-type cells or simple cells. In this model, 
random noise is used as the input to a multilay- 
er network, the architecture of which is shown 
in Figure 10. The weights of the network are 
modified according to a Hebbian rule, and after 
many trials, spatial opponent cells 
(center/surround type) develop in the third lay- 
er. Orientation-selec tive cells begin to emerge 
in the seventh layer; and if lateral interactions 
are allowed at the seventh layer, then a colum- 
nar-type organization such as in V1 (primary 
visual cortex) occurs. Linsker (1988) has 
shown that the Hebbian learning rule acts to 
maximize the variance in a layer’s response to 

~ 

Figure 9: Von der Malsburg’s “cortex” after 
lo0 learning. trials. The small lines denote the 
xientation selectivity of neurons in the cortex. 
[Copied from von der Malsburg, 1973. with 
?emission.) 

Figure 10: Linsker’s network architecture. 
Each unit within a layer receives inputs from 
a local area of units (receptive field) in the 
previous layer (only a few connections are 
drawn here. 

input patterns, and that each layer in the network actually preserves maximum information 
about its input from the previous layer. 

Sanger (1988) has also shown that a Hebbian learning rule can act to maximize infor- 
mation preservation. In particular, he has shown that a single-layer network operating with 
a Hebb-type rule will learn to compute the Karhunen-Loeve transform (i.e., it will compute 
the eigenvectors of the input auto-correlation matrix). When trained on 8x8 sub-images 
from natural scenery, the output units tend to develop center/surround and Gabor-like recep- 
tive fields. 

Other self-organizing approaches to feature detection have been discussed by Koho- 
nen (1982, 1986) and Grossberg (1976). 
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3.2. Extracting more complicated shapes 

It is not hard to imagine shape features 
more complicated than edges or lines that would 
be worthwhile to extract from the image. For 
instance, Biederman (1986) has demonstrated 
that such parts as comers and vertices play a 
critical role in object recognition, as shown in 
Figure 11. How might such shape features be 
extracted or inferred from the image? 

Curvature detection. Much attention 
has been paid to the question of how, or if, we 
detect curvature in an image. Lettvin (1959) has 
reported finding “net convexity detectors,” or 
neurons that selectively respond to angles of a 
certain size, in the frog’s rehna; and Hubel and 
Wiesel (1965) have reported that hypercomplex 
and so-called “higher-order hypercomplex cells” 
appear to respond selectively to line-termina- 
tions and comers. Blakemore and Over (1974), 
T h e y  and Macdonald (1978), and Wilson 
(1985) have carried out perceptual experiments 
to determine how well we detect curvature, but 
remain inconclusive as to whether we have spe- 
cific mechanisms for detecting curvature. 

Recently, Koenderink and Richards 

€3 
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Figure 11: 
importance of 

A demonstration of the 
vertices (or regions of 

concavity) in recognizing visual objects. 
Objects in the right column are not 
recognizable (without first seeing the objects 
in the left column) because the contour has 
been deleted or altered at regions of 
concavity. Objects in the middle column are 
recognizable because the contour is deleted 
only at regions of smooth curvature or 
straight lines. (From Biederman, 1986.) 

(1988), Koenderink and van Doom (1987), and Dobbins et al. (1987) have pointed out that 
endstopped neurons, previously thought to be devoted to detecting line-terminations, may 
also be used to calculate curvature. Figure 12 shows some 2D operators proposed by Koen- 
derink and Richards for detecting curvature. These operators have receptive fields similar to 
those of endstopped neurons in the visual cortex. Furthermore, the derivation of these oper- 
ators can be related to other 1D methods of finding curvature. 

Dobbins et al. (1987) hypothesize that an endstopped neuron receives its input from 
two simple cells: one provides excitory input and has a small receptive field, and the other 

High Medium 
C W a t W  CUrVatUre 

Low Curvature 

Figure 12: Some 2D curvature operators proposed by Koenderink and Richards (1988). + signs indicate 
excitory areas; - signs indicate inhibitory areas. These operators have receptive fields similar to 
endstopped neurons in the visual cortex, but the various aspect ratios allow for selectivity to different 
radii of curvature. 
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provides inhibitory input and has a large receptive field. Such an arrangement would provide 
a measure of curvature, as the radii of curvature in a curve would determine. what parts of the 
excitory or inhibitory fields are activated, and hence the net response of the endstopped neu- 
ron. Predictions of this model agree well with the actual response of cortical neurons (in the 
cat) to semi-circular arcs spanning a wide range of radii. 

Schwartz (1980) has suggested that neurons in the inferotemporal cortex (IT) may 
detect boundary curvature by receiving excitory input from a “line” of neurons in the striate 
cortex. That is, since orientation preference changes gradually across the surface of striate 
cortex, a line of active cells across the surface would indicate the presence of a contour of 
some particular curvature on the retina. Thus, cells in IT that detect oriented lines on the 
striate cortex would be acting as curvature detectors with respect to the retina. 

Hartmann (1985, 1987) has proposed that the visual cortex may employ curve detec- 
tors as part of a hierarchical scheme for encoding continuous contours. It is hypothesized 
that neurons at the lowest level of the hierarchy have receptive fields that are tuned to detect 
a specific contour element. These elements are then pieced together by neurons at higher 
levels in order to form a unique representation for an entire contour. 

The Neocognitron. Fukushima’s Neocognitron (Fukushima, 1980) uses a self- 
organizing process to develop detectors for more complicated shapes, such as those illustrat- 
ed in Figure 13. (See section 4.1 for details on the Neocognitron.) 

Cooperative Processes. Parent and 
Zucker (1985) describe a method for infemng 
the trace of a curve &e., the points through 
which a curve passes) based on a relaxation 
labeling process for refining tangent and curva- 
ture estimates. According to this method, 
estimated tangents are initially obtained by 
convolving an image with several oriented line- 
detectors. The estimated tangents are then 
constrained by a “co-circularity” relationship 
between neighboring tangents (two tangents 
are said to be co-circular if a single circle pass- 
es through both tangents). Curvature 
estimates, obtained from multiple tangents in a 
local area, are constrained by a consistency 
relationship among neighbors. The result of the 
relaxation labeling process is a good estimation 
of the tangents and local curvatures along a 
curve, and hence a good recovery of the trace of 
a curve. This method has been tested with suc- 
cess on both artificial and natural images. Link 
and Zucker (1988) have performed some per- 
ceptual experiments that suggest that such 
local interactions among tangent and curvature 
estimates are necessary for detecting comers 

’ 

a 

n. ?igure 13: The feature detectors in 
7ukushima’s Neocognitron (see section 4.1 for 
ktails). (Copied from Fukushima, 1980, with 
rrmission.) 
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in dotted line drawings. 
Walters (1987, 1988a) has done a number of psychological studies to determine what 

features in an image are perceptually significant; and she has developed a cooperative algo- 
rithm for enhancing such features in an image. For example, it is shown that line- 
terminations become perceptually more significant when placed in certain proximal relation- 
ships with other line-terminations. Such features can then be enhanced by interactions 
among edge-elements in the p-space representation. Basically, the p-space representation 
is a three-dimensional discretized space, with two dimensions representing spatial position 
in the image and one dimension representing angular orientation of edges; relationships 
among neighboring contour elements within this space can act to enhance or suppress certain 
parts of a contour. 

'"on-accidental" patterns. Vistnes (1987) and Lowe and Binford (1982) have dis- 
cussed methods for detecting "non-accidental" patterns in an image. Basically, non- 
accidental patterns are those that are more likely to have arisen from underlying physical 
relationships between constituent features (say, due to the boundary of an object), rather 
than from some coincidence of viewpoint or location. Vistnes has shown how the principle of 
non-accidentalness can be applied to the problem of detecting dotted lines and curves amidst 
a random-dot background. 

3.3 Texture 

Visual textures are defined as aggre- 
gates of many small elements, such as 
simple spatial patterns or dots of certain col- 
ors. The visual world is full of different 
textures, and indeed, it appears important 
that all living things be able to discriminate 
textures: grass, fur, foliage, and water sur- 
faces are just a few. Unlike most visual 
patterns, textures are not characterized by 
any one global shape, but rather by some 
statistical property of the many fine ele- 
ments that compose them. 

Julesz and Bergen (1983) have pro- 
posed that so-called tentons serve as the 
fundamental elements, or primitives, of tex- 
ture perception. Textons have specific 
properties, such as color, angular orientation, 
width, and length, that enable them to be 
immediately detected among a group of other 
textons, such as illustrated in Figure 14. 
Julesz and Bergen have been able to define 
quite concisely the properties of textons, but 
they have not ventured to say how textons 

Figure 14: Demonstration that crossing of line 
segments is a texton. A region of crossing line 
segments can be immediately differentiated from a 
background of non-crossing line segments (upper 
left), but other combinations require much longer 
serial search. (Copied from Julesz and Bergen, 1983, 
rHith permission; Copyright 0 AT&T Bell Labs.) 
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may actually be detected in an image. 
Voorhees and Poggio (1987) have expanded on the work of Julesz and Bergen by 

proposing a method for texton detection. They use a Gaussian filter to estimate the amount 
of background noise in an image, which is then used to determine the threshold for an edge- 
detection operator (Marr-Hildreth LOG filter). The result is that edges are found along tex- 
ture boundaries instead of intensity boundaries. 

Schwartz (1980b) has proposed a method for texture discrimination in the visual cor- 
tex. He has shown that the representation of certain textures in the striate cortex is 
sufficiently distinct to allow them to be easily differentiated by some higher-level cell. 

Other methods of dealing with texture are presented in Lowe and Binford (1982), 
Kass and Witkin (1985), Zucker (1976, 1986), Vilnrotter et al. (1986), Mesrobian and 
Skrzypek (1987), and Walters (1988b). 

3.4. Motion 

Poggio and Koch (1985) have shown how the direction of motion of an object, or opti- 
calflow, can be computed by using regularization techniques. That is, since any one local 
measurement of motion in an image is incapable of fully specifying the direction of motion of a 
global object (since a finite aperture can measure only the velocity component perpendicular 
to the edge moving through it), many local measurements must be combined in order’to col- 
lectively compute the true direction of motion. By assuming that objects are generally 

m .. . .  . .  .. .. .. .. 

...... . . .  

Figure 15: Computing optical flow. The two squares in the upper left of image (a) are displaced in 
opposite diagonal directions (b) in order to create a motion sequence. The initial computed velocities, 
based upon locally measured edge movements, are shown in (c) (note that they are perpendicular to the 
edges). (Copied from 
Hutchinson et al., 1988, with permission.) 

The optical flow field (d) is obtained by applying regularization techniques. 
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smooth and also undergoing smooth movements, it is possible to constrain the direction of 
motion to vary smoothly across an image. This constraint can be formulated as an energy 
functiond that governs the many local motion vectors over an image. Variational principles 
can then be applied to find the overall direction of motion that minimizes the functional. The 
result is an optic-flow pattern, such as in Figure 15, that reveals the direction of motion of an 
object. Hutchinson et al. (1988) have shown how this computation can be implemented in a 
simple resistive network (using analog VLSI) such that the equations are solved via Kir- 
choff‘s current law. 

In the visual cortex, Koch (1988) has suggested that local measurements of motion 
direction are represented in V1, and that MT computes optical flow. 

3.5. Depth 

It is well known that humans use stereo disparity information to infer depth in a 
scene. Given the distance between the two eyes and the disparity, or relative offset, 
between the two images produced by an object, the dista,,ce to the object can be computed. 
Julesz (1971) has shown that humans are capable of fusing random-dot stereograms to give 
the impression of depth, suggesting that the computation of disparity can be based on local 
comparisons among pixels rather than global comparisons of shape. How, then, are the 
images being compared at such a fine-grain level to compute disparity? 

Marr and Poggio (1976) devised a highly parallel algorithm to compute depth from 
stereo image pairs. Two constraints are used in the computation: 1) Each pixel niay be 
assigned only one disparity value, and 2) disparity values should vary smoothly almost 
everywhere, since objects generally have smooth surfaces. After many iterations over all 
the pixels, a depth map is computed. Marr himself has since criticized this algorithm 
because ‘the number of iterations required for a solution would make it biologically implausi- 
ble. He has suggested a second algorithm (Marr, 1982) in which images are first matched at 
a coarse resolution and then progressively at finer resolutions, thereby reducing the number 
of iterations required. 

In the visual cortex, Schwartz and Yeshurun (1987) have demonstrated that the 
columnar interlacing of two slightly different images, as provided by the ocular-dominance 
column system, provides a simple means for extracting disparity. 

3.6. Other features 

Many other features can be extracted from an image besides those discussed above. 
Several methods have been proposed for inferring 3-D shape from the image, including shape 
from stereo, shape from shading, shape from motion, and shape from contour. (Such tech- 
niques are generally referred to as “shape from X.”) These subjects are covered 
extensively by Brady (1982) and Horn (1986). Marr (1982) has proposed the 2’12-0 sketch 
as a way of organizing and representing such 3-D information as it is extracted from the 2-D 
image, as shown in Figure 16. 

Recently, Lehky and Sejnowski (198.8) applied a neural network to the shape from 
shading problem. Using the backpropagation algorithm, they were able to train the network 
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Figure 16: An example of a 2V2-D sketch. The arrows symbolically represent the 
3D orientation of surfaces in the image (a full 2*/2-D sketch would include rough 
distances to the surfaces as well). Dotted contours show where surface orientations 
change sharply; solid contours show where depth is discontinuous. The key idea here 
is that three-dimensional information is indexed relative to the image (i.e., in a viewer 
centered coordinate frame). Man hypothesizes that this information is stored relative 
to an internal reference frame at a later stage. prom Mar. 1982) 

to compute the magnitude and orientation of the two principle surface curvatures at the ten- 
ter of an input surface. After 40,000 learning trials, the hidden units in the network happened 
to develop receptive field profiles much like those of simple cells in the visual cortex. More- 
over, the arrangement of weights in the “projective field” of a hidden unit (Le., the weights 
from a hidden unit to an output unit) seem to provide information about surface orientation, 
convexitykoncavity, and relative magnitudes of curvature. 

3.7. Pyramidal techniques 

One of the great difficulties with extracting any kind of features from natural imagery 
is that they tend to occur at a variety of scales or resolutions. Pyramidal rechniques offer a 
method for dealing with this problem by representing an image, or image features, at various 
resolutions (Fig. 17). At each level in the pyramid the resolution is band-limited, thereby 
simplifying analysis of the image. (See also section 3.1, The Marr-Hildreth edge detector.) 

Witkin (1983) has devised the method of scale-space filtering for describing signals 
over a range of different resolutions. As illustrated in Figure 18, a signal is first filtered with 
a Gaussian mask at several different widths in order to remove progressive amounts of 
detail. Then, a “scale-space image” is formed by laying-out the progressively fine-to- 
coarse filtered signals side by side. In this way, points of maximum change in the signal 
(zero-crossings of the second derivative) can easily be identified at coarse scales and then 
traced to finer scales for localization. This provides a convenient way of determining whether 
changes at the finest scale are due to noise or more global processes. Witkin et al. (1987) 
have shown the applicability of the scale-space image for matching signals, and Mokhtarian 
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Figure 17: An image pyramid. Each level of the 
pyramid shows progressively less detail than the one 
below it (the numbers beside each level denote the 
image resolution). . Representing an image in such a 
way can be of great use to the feature detection 
process, and also to recognition (see section 4.1). 

Figure 18: Scale-spacejiltering. (a) A sequence of Gaussian smoothings of a signal f lx) ,  achieved by 
convolving a Gaussian function withflx) at various scales. a, the spread of the Gaussian filter, increases 
from bottom to top. Each smoothed signal is a constant-cT profile from the scale-space image, which has 
x and cr as its two spatial dimensions. (b) The contours formed from the zerocrossings o f f  "(x) in the 
scale-space image. Again, x is the horizontal dimension, and a increases from bottom to top. With this 
representation, points of maximum change in f l x )  can be reliably followed from coarse to fine 
resolutions. If the original signal were two-dimensional (;.e., an image), then the scale-space image 
would occupy three dimensions (two for spatial pbsition, one for a). (Copied from Witkin, 1983, with 
permission.) 
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and Mackworth (1986) have used the scale-space image to match shapes in an image. 
Zucker and Parent (1984) have used a type of pyramidal technique.to augment a 

relaxation labeling process for enhancing lines and curves in an image. In this scheme, edges 
detected by large-scale operators provide contextual constraint for edges detected by small- 
er scale operators. 

Watson (1987) has used a type of pyramidal technique in mdeling the function of 
simple cells in the striate cortex. By filtering an image at various spatial bandwidths and ori- 
entation selectivities, several image pyramids are formed. Images within a pyramid vary 
according to scale, and orientation varies from one pyramid to the next. This new representa- 
tion of the image contains just as many pixels as the original image, and the transformation is 
invertible. 

3.8. Segmentation 

Segmentation is the process of separating figure from ground, or determining what 
belongs to the object and what belongs to the background. This process may not necessarily 
involve recognition; the goal here is to delineate an object within a surrounding field, not to 
identify it. 

Much of the segmentation process has already been discussed in previous sections. 
For example, some of the cooperative techniques described for detecting lines and curves are 
essential to delineate the border of an object. Also, segmentation may be readily achieved 
from textons (Fig. 14) and optical flow (Fig. 15). Discussed below are some methods specif- 
ically intended to assemble parts of shape that belong to the same object. 

Sejnowski and Hinton (1987) have demonstrated how a neural network may be used 
to separate figure from ground. In this scheme, each edge extracted from an image is consid- 
ered to be part of a figurelground boundary, with one side pointing toward figure and the other 
toward ground. Then, by interacting with their neighbors lying along the same line, the edges 
try to find a consistent state so they agree on where the figure is and where the ground is. 
This method has been shown to successfully segment simple areas, such as rectangles. 

Walters (1987) discusses how interactions within the p-space representation can be 
used to segment a boundary contour into sets that have a high probability of depicting a sin- 
gle object. 

Other methods of figure/ground separation are discussed in Horn (1986), Ballad and 
Brown (1982), Rosenfeld (1986), and Weisstein (1986). 
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4. Shape Representation and Recognition 

Assuming that a set of features has been extracted from the image, or that an object 
has been segmented, how may the object then be recognized? How should shapes be repre- 
sented, and how is the matching accomplished? This section discusses some theories and 
methods that address these problems. 

4.1. Form invariance 

One of the more challenging visual recognition problems in any realistic situation is 
form invariance. Since the representation of an object on the retina, or image plane, depends 
critically on the vantage point, there must be some means of re-representing or transforming 
an object such that its stored representation is independent of the viewing perspective. Oth- 
erwise an infinite multitude of object representations would have to be stored. 

Presented bdow are several theories and methods for dealing with the various trans- 
formations that can affect an object's representation on the image. 

The Hough transform. Ballad (1981) has used the Hough transform to detect ana- 
lytical shapes (e.g., lines and circles) and arbitrary, non-analytical shapes in an image. 
Figure 19 illustrates a simple application of the Hough transform for detecting lines. Further 
work by Ballard and others has shown how the Hough transform can be implemented in a 
neural-network for recognizing both 2-D and 3-D shapes independent of viewing perspec- 
tive (Ballard and Sabbah, 1983; Hrechanyk and Ballard, 1982; Sabbah, 1982; Ballard, 1984; 
Ballard and Tanaka, 1985; Ballard, 1986). 

One particularly interesting implementation of a Hough transform (actually, a Hough- 

V (a) image (b) parameter space 

Figure 19: The Hough transform for finding lines. Small line segments in the image (a) are mapped 
many-to-one to points in parameter space (b). That is, a line segment in the image that falls along a line 
with slant 8 to the x-axis and perpendicular distance p from the origin conmbutes to a sum in parameter- 
space at coordinates (p,B). Thus, the presence of a'line in the image would be indicated by a peak in 
parameter space. 
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type transform) in a neural network has been 
done by Hinton (1981a,b, 1985). As shown in 
Figure 20, shape features are defined in a model 
frame (object-based units), and those shape 
features that comprise an object provide activa- 
tion to a grandmother node that represents the 
object. Consequently, an activated grandmother 
node provides top-down support to those shape 
features of which it is composed. Shape fea- 
tures, transformation units, and retinal feature 
units (retina-based units) have a three-way 
interaction: a retinal feature unit activates a 
model-frame feature unit gated by a transforma- 
tion unit, and a transformation unit is activated 
by simultaneous activity from a retinal feature 
unit and a model-frame feature unit. The gener- 
al idea here is that the network eventually 
settles into a stable state that simultaneously 
specifies the identification of the object and its 
transformation from the image to the model 
frame. 

Prazdny (1987a,b) and Tucker (1988) 
have used a similar technique for recognizing 2D 
shapes. In their schemes, corners or vertices 
are extracted from the image and then matched 
in parallel to all possible model instances 

c I {input 

p o s i t i o n  A p o s i t i o n  B 

:igure 20: Hinton’s implementation of a 
Iough-type transform in a neural network 
see text). (pos. = Position, Ori. = Orienta- 
ion.) (Copied from Hinton, 1981, with permis- 
ion.) 

through a set of transformation parameters. Each match to a model instance generates a 
“hypothesis,” or a vote for a particular model and a set of viewing-transform parameters. 
Each hypothesis then projects its model instance back onto the image for verification, and the 
hypothesis with the highest confidence and the strongest verification yields the identification 
and transformation of the object. Tucker has programmed this scheme on the Connection 
Machine, and Prazdny has devised a neural-network implementation. 

Fourier/log-polar transform. The Fourier transform, used in combination with the 
log-polar transform, can be utilized to achieve a representation of an image invariant to shift, 
scale, and rotation in 2-D. This method is illustrated in Figure 21. First, the 2-D Fourier 
transform of an image flx,y) is computed in order to achieve translation invariance. The 
resulting power spectrum llF(u,v)[[* is then converted to log-polar coordinates and re-repre- 
sented as Flp(log p, e). Thus, rotations of the image will produce shifts on the 8-axis, and 

expansions or contractions in the image will produce shifts on the (log p)-axis (since log amp 
= log a + log p). These variations can then be eliminated by doing another 2-D Fourier 
transform on the (log p,€I)-plane. Casasent and Psaltis (1976) have applied this technique 
to the optical correlation of images, except that they used the Fourier-Mellin transform 
(Altes, 1978) to combine the log and Fourier-transform computations on the p-axis. Brousil 
(1967) used a similar technique for recognition with a single-layer neural network. Carpen- 
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Figure 21: The Fouriedlog-polar transform. The shapes A and B are identical, except that shape B is a 
translated, rotated, and scaled version of shape A in the imageflx,~). The power spectrum of the Fourier 
transform IIF(u,v)l12 removes translation; the log-polar transform converts differences in rotation and 
scale into simple translations in F,!; and a final Fourier transform removes the translations in Flp so 
that the two shapes A and B have identical representations. 

ter and Grossberg (1987b) and Wechsler and Zimmerman (1988) have used the log-polar 
transform as the front end to an associative memory. 

The Fourier/log-polar transform has also been used in modeling the visual cortex. 
Schwartz (1980a, 1981, 1985) has proposed that the retinal image is converted to log-polar 
coordinates on the striate cortex as a by-product of the distorted topographic mapping in that 
area. Thus, rotations and scale changes on the retina would appear as simple shifts on the 
surface of the cortex. Cavanagh (1978, 1985) has proposed that a global Fourier/log-polar 
transform of the retina is formed in inferotemporal cortex from many piecewise Fouriedlog- 
polar transforms in striate cortex. Baron (1987) and Pollen (1971) propose still other 
schemes. 

Fourier descriptors. Zahn and Roskies (1972) invented the technique of using 
Fourier descriptors to form an invariant description of an arbitrary plane closed curve. In this 
method, a closed curve is represented parametrically as a function of arc length by the accu- 
mulated change in direction of the curve along the perimeter. Then, the Fourier coefficients of 
this function can be used to uniquely describe the curve invariant to changes in rotation, 
translation, or scale (the perimeter is normalized to 2n). 

Schwartz et al. (1983) have suggested that Fourier descriptors may be used to 
encode shape information in the inferotemporal cortex. In an experiment on inferotemporal 
neurons in the macaque monkey, it was found that many neurons (54% of 234 visually 
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Figure 22: 
across rows and amplitude down columns. (Fmm Schwartz et al., 1983.) 

Some examples of Fourier descriptor stimuli, varying in frequency 

responsive units) were selective to the frequency of Fourier descriptor stimuli, mostly inde- 
pendent of size and position (Fig. 22). These results suggest that inferotemporal cortex may 
code for boundary curvature, much as striate cortex codes for local edge orientation. 

Representing a11 transformations. Several methods for achieving form invariance 
are based on re-representing the visual input at a multitude of possible transformations. 

Pitts and McCulloch (1947) have proposed that the brain accounts for size changes 
by computing magnified and reduced versions of the retinal image, and then performs a sort of 
averaging operation over all these patterns in order to create an invariant representation. 

Crettez and Tanimoto (1985) have proposed using a pyramidal-type scheme for re- 
representing visual patterns at several different resolutions, and hence several different 
sizes. As shown in Figure 23, this model assumes that neurons in the visual cortex are 
organized into layers according to receptive field size. Thus, changes in size on the retina 
would result in a somewhat invariant pattern simply being shifted up or down the layers. 
One of the layers would contain a representation of the visual input that matches the size of 
its internal, stored representation. 

Trehub (1987) has proposed a neural-network model that accounts for size and rota- 
tion invariance by re-representing the input at various sizes and rotations, and then 
selecting one that matches. 

Copying weights en masse within a neural network. Fukushima’s Neocognitron 
(Fukushima, 1980) achieves translation invariance by copying receptive-field weights en 
masse over a “cell plane.” As shown in Figure 24, the Neocognitron is composed of several 
alternating S-layers and C-layers. Each layer is composed of several cell planes, and each 
cell within a plane receives its input from a receptive field in the previous layer. Upon pre- 
sentation of a stimulus, the responses of all the S-cells within a layer are compared, and the 
cell with the highest response adjusts its weights to match the stimulus in the receptive 
field. This new set of weights is then copied en masse to all the other cells in that cell 
plane. The C-plane behind each S-plane gathers its input (with fired weights) from a recep- 
tive field in the previous S-plane, so that as patterns are shifted around on the input plane, 
the responses of C-cells remain somewhat constant. At the output, a unique (grandmother 
node) representation is formed for each pattern, regardless of translation. The output also 
exhibits some degree of invariance to changes in size and small distortions in the shape of a 
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Figure 23: Demonstration of how a pattern shifts through layers as it changes in size, 
according to the model of Crettez and TanimotG (1985). Each pixel represents a neuroii in the 
visual cortex with a corresponding receptive field on the retina. Within a layer (i.e., a circle), 
each neuron has a receptive field of the same size, and the retina is sampled at evenly spaced 
locations. As the resolution decreases from one layer to the next @e., circle to circle from 
right to left), the receptive fields become larger and the retina is sampled more sparsely. Thus, 
if one boat is viewed up close (a) and the other at a distance (b), each would still be 
represented at a variety of scales or resolutions in the visual cortex. Double-arrow lines are 
drawn between representations of the object at the same scale that could easily be matched to 
one another on a pixel to pixel basis. 

Figure 24: Fukushima’s Neocogniaon. (a) Interconnections between layers. (b) The learned input 
interconnections to the cells within a single cell-plane. (Copied from Fukushima, 1980, with permission.) 



27 

character. 
Rumelhart et al. (1985) have shown how the back-propagation learning algorithm can 

be applied to the problem of distinguishing a “T” pattern from a “C” pattern in all transla- 
tions and rotations. In this scheme, a single output unit gathers its input from a layer of 
hidden units, and each hidden unit gathers its input from a 3x3 receptive field in the input. All 
the hidden units are constrained to learn the exact same set of weights, so that the whole 
field of hidden units consists of replications of a single feature detector centered on different 
regions of the input. This network has arrived at a variety of solutions for the feature detec- 
tor. 

Widrow (1987) has shown how a multilayer network of ADALINE’S (ADAptive LIn- 
ear NEurons) can be constructed as an “invariance net,” such that 2-D patterns are 
transformed into patterns invariant to translation, rotation, and size. The network is com- 
posed of a number of “slabs” of neurons, and within each slab, weights are copied (shifted) 
en masse to achieve invariance to up-down and left-right translation. A translation-rotation- 
scale-invariant net could then be assembled by copying slabs with rotated or scaled weights 
and putting them together into a single network. This method is currently being tested in 
simulation experiments. 

Training-in associations with a neural network. Yang and Guest (1987) have 
used the back-propagation algorithm to train a two-layer neural network to recognize 2-D 
shapes invariant to rotation. They presented four patterns, A, T, H, and R, on a 16x16 array 
at all rotations in 15’ intervals. The number of hidden units was arbitrarily set at 64, and the 
output consisted of one grandmother node for each pattern. With some modification to the 
sigmoid threshold function, all four patterns could eventually be recognized at any rotation. 

Reference frames. Palmer (1983) has proposed that transformations are dealt with 
by imposing an intrinsic frame of reference on an object. That is, some salient, geometric 
characteristic of an object’s shape (e.g., elongation, symmetry, or motion) is used to define a 
coordinate system around the object. (Marr, 1982, has proposed a similar scheme, calling it 
a “natural coordinate system.”) Thus, while absolute orientation, position, and size may 
vary over the retina, relative orientation, position, and size will remain fixed with respect to 
the intrinsic reference frame. In a sense, then, the intrinsic reference frame factors out the 
effect of transformations. Palmer suggests that recognition is accomplished by an attentional 
mechanism that matches the intrinsic reference frame of an object in the image to the refer- 
ence frame of a stored object. 

A number of psychophysical experiments support this hypothesis. For example, f i n -  
ton (1979b) has shown that when people are asked to imagine a cube in an “un-natural” 
reference frame, such as in Figure 25b, they have an extremely difficult time describing the 
shape accurately. In fact, they usually describe the shape of Figure 25c, which fits much 
more naturally in the frame. This would seem to indicate that our internal representation of 
an object is extremely dependent on a reference frame defined with respect to the object. 
Also, Shepard and Metzler (1971) have demonstrated that the time required to match two 
objects that have been rotated with respect to one another is linearly proportional to the 
amount of rotation. Their results seem to indicate that reference frames are being rotated (at 
60 degrees per second) in order to obtain a match. 
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Figure 25: A demonstration of the effect of reference frames in mental imagery (see text). 

4.2. Theories of Attention 

~ 

Attention might be thought of as the executive module in cognition. It is the mecha- 
nism that dynamically and serially controls how the various features and parts of a scene are 
brought together to form an object. This section discusses various theories about the role 
attention plays in visual perception and cognition. 

Feature integration. Treisman and Gelade (1980) have proposed that the visual 
scene is initially coded along a number of separable dimensions, such as color, orientation, 
spatial frequency, movement, size, etc., and that these features are registered early, auto- 
matically, and in parallel across the visual field. Objects are identified separately at a later 
stage, which requires focused attention. Treisman and Gelade suggest that attention is 
directed serially to each stimulus in a display whenever conjunctions of more than one sepa- 
rable feature are needed to characterize or distinguish the possible objects presented. The 
results of their experiments provide compelling evidence for such a theory, showing a dramat- 
ic rise in the time required to identify objects based on a conjunction of features. Their theory 
would also seem to be supported by the fact that the visual cortex contains parallel paths for 
processing form, color, and motion (Van Essen, 1985; Barlow, 1980). 

Treisman and Schmidt (1982) have shown that when attention is overloaded or 
diverted, features may be wrongly combined, giving rise to illusory conjunctions. For exam- 
ple, brief presentation of a red T and a blue S may be incorrectly registered as a blue T and a 
red S. Hinton (1985) has duplicated such errors in a neural-network model. 

Julesz and Bergen (1983) have shown that while differences in textons can be detect- 
ed immediately, or preattentively, the positional relationship between neighboring textons 
passes unnoticed. This kind of positional information is extracted only by a time-consuming 
and spatially restricted process which Julesz calls “focal attention.” The aperture of focal 
attention can be very narrow, and shifting its locus requires about 50ms. 

Integrating parts of a scene, accounting for eye movements. Because the fovea 
covers only 1-2” of the central visual field, some attentional mechanism must be responsible 
for directing eye movements and integrating the various pieces of a scene captured through 
the fovea. 

Hinton (1981~) has proposed what he calls “spatial working memory” as a means of 
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putting together the various parts of a scene. It is based on three frames of reference: retina- 
frame, object-frame, and scene-frame. Various shape features and their relationship to each 
other are represented in the retina-frame. These features then activate a gestalt in the 
object-frame, which is integrated into some larger whole or scene in the scene-frame. 

Other methods for dealing with eye movements are discussed in Ballard (1987b), 
Baron (1987), Breitmeyer (1986), and Fukushima (1986). 

Matching reference frames. Palmer (1983) has suggested that an attentional 
mechanism functions as the “minds eye,” effectively decoupling the internal representation 
of an object from the stimulus input. The attentional mechanism is capable of scaling, rotat- 
ing, or translating the input in order to obtain a match between an object’s intrinsic frame in 
the image and its stored, internal reference frame (see section 4.1, Reference frames). 
Anderson & Van Essen (1987) have proposed a neural shifter circuit that may serve such a 
purpose (for translation). 

4.3. Shape primitives, structural descrigtions 

A number of researchers have proposed using shape primitives, or some basic set of 
“shape building blocks,” for defining a wide variety of objects. 

Asada and Brady (1986) have devised the “curvature primal sketch” for representing 
the significant changes in curvature along a two-dimensional object boundary. This method 
assumes that an object’s boundary has already been extracted, and that the curvature along 
its path is represented as a l-D signal. Then, the zero-crossings of this function are found 
at various resolutions, or levels of detail, and groups of curvature extrema are partitioned 
into primitives. An object’s boundary can then be described as a composition of such primi- 
tives. (See also Fischler and Bolles, 1986, for a discussion of perceptual curve partitioning.) 

Richards and Hoffman (1986) have defined a set of six codons for describing plane 
curves, as shown in Figure 26. Because of the strong constraints imposed by the bounding 
contour projected by 3D objects, only a small set of realistic curves may be generated from 
any set of codons, thus making the codon representation highly redundant (good for error- 
correction). 

Jaeckel (1988) has proposed that characters could be encoded for a sparse distributed 
memory (SDM) by decomposing them into lines and arcs of circles. Then, the parameters of 
location, length, and angular extent (for arcs) for each piece are encoded into bit strings and 

Figure 26: The six codons of Richards and Hoffman (1986). A curve is broken into 
parts a concave cusps (or minima of negative curvature, when traversing the curve with 
the figure, or the object delineated by the curve, on the left), and each part is classified 
as one of six codons according to the number and arrangement of zeroes and maxima of 
curvature within it. Here, zeros of curvature are indicated by dots, minima by slashes. 
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fed to an SDM for writing (training) or reading (recognition). Krishnan and Walters (1988) 
have proposed a similar scheme for recognizing line drawings. Their method is based on 
decomposing a drawing into “perceptually significant features,” such as orientation of edge 
elements, angular separation of corners, and ratio of chord length to arc length. These fea- 
tures are then encoded into bit strings and fed to an associative memory. 

Marr (1982) mentions the use of a hierarchical organization of volumetric primitives, 
such as generalized cones or cylinders, for defining objects at varying levels of detail. For 
example, at a come  scale a hand would be represented as a single cylinder, but at a finer 
level it would be composed of one cylinder for the palm or wrist part and five cylinders for the 
fingers and thumb. 

In the visual cortex, Schwartz et al. (1983) have proposed that the inferotemporal cor- 
tex may use Fourier descriptors to code for shape, as discussed in section 4.1. By 
combining Fourier descriptors of various frequency and amplitude, it would then be possible 
to synthesize many closed 2-D shapes with a smooth boundary. 

Also, experiments by Perrett et al. (1982) on the superior temporal sulcus in the mon- 
key suggest that the brain may use face primitives, such as the eyes, nose, and mouth, in 
recognizing faces. 

4.4. Other theories of shape representation and recognition 

Lowe (1985a,b) describes a framework for preprocessing, representation, and recog- 
nition in a vision system for recognizing 3D objects from arbitrary viewpoints. The system is 
based on three separate mechanisms: 1) a process for finding groupings and structures in 
image (such as line segments) that are likely to be invariant over a wide range of view- 
points; 2) a process for reducing the size of the search space for object matching, and 3) a 
method of spatial ‘correspondence for projecting the best-fit model back onto the image for 
verification and refinement. 

Biederman (1986) has proposed using a set of primitive 3D solids, called “geons,” 
for describing 3D objects. He claims that if an arrangement of two or three geons can be 
recovered from the input, that objects can be quickly recognized even when they are occlud- 
ed, rotated in depth, novel, or extensively degraded. 

Ponce and Chelberg (1987) discuss the use of generalized cylinders for modeling 3D 
solid shapes. (A generalized cylinder is the solid obtained by sweeping the cross-section of 
a surface along a curve or the axis of the solid.) They present a fast algorithm for computing 
set operations (unions, intersections) between different types of generalized cylinders to 
form compound shapes. 

For a good overview of various theories on visual cognition, see Pinker (1985a); Ull- 
man (1986) discusses “visual routines” involved in recognition. 

Feldman (1985) presents a general framework for using connectionist networks in 
visual recognition. 

Koffka (1935) and Kohler (1947) are good references for a review of classical gestalt 
psychology theories of recognition. 
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Appendix: Glossary of Technical Terms 

2%-D sketch: A way of organizing and representing 3-D information as it is extracted from the 2-D image. 
(See Fig. 16) 

ADALINE (ADAptive LInear NEuron): A device that can be trained to map a set of input patterns to a set 
of desired nsponses. Each bit in the input is multiplied by a weight and summed into the output. On each 
learning trial, the weights arc adjusted according to the LMS rule (see Widrow, 1962) to reduce the mean 
square e m  between the desired response and the actual response for a particular pattern presentation. The 
mean square error is eventually minimized after multiple trials. 

Amacrine cell: An interconnecting neuron in the retina; establishes inhibitory crosslinks among the 
bipolarlganglion cell connections. (See Fig. 1.) 

Attention: 
brought together to form a unified percept. 
constructing an entire scene from the many detailed parts captured in the fovea. (See text p. 28.) 

Axon: The fiber extending from a neuron cell body that carries the output signal of the neuron. 

The part of cognition that serially controls how the various features or parts of a scene are 
For example, eye movements are an attentional process for 

Back-propagation learning algorithm: A method for adjusting the weights in a multilayer neural-network 
so that a desired mapping from input patterns to output patterns may be learned by example. Essentially 
extends the ADALINE learning rule to a multiple layer network. (See Rumelhart et al, 1985.) 

Bipolar cell: An interconnecting neuron in the retina: establishes conduction lines from photoreceptor cells 
to ganglion cells. (See Fig. 1.) 

Boundary contour system: 
finding the edges of an object. 
boundary. (See text p. 12.) 

A method developed by Grossberg and Mingolla (1987) for cooperatively 
Interactions among edge-detectors help to complete missing parts of a 

Centerlsurround profile: The concentric arrangement of excitory and inhibitory areas within a receptive 
field. An on-center/off-surround field has an excitory center and inhibitory periphery (see Fig. 2), while an 
off-centerion-surround field has an inhibitory center and excitory periphery. 

Cerebral cortex: The extensive outer layer of gray tissue (densely packed neurons) of the cerebrum, largely 
responsible for higher nervous functions. (See Fig. 1) 

Codon: A 2-D shape primitive used for describing planar curves. (See Fig. 26.) 

Competitive learning: A method of unsupervised learning in a neural network (as opposed to learning with 
a "teacher," or a set of desired responses, as with ADALINE and back-propagation). Units in the network 
compete with one another for the highest response to an input pattern presented to the network. The unit 
with the highest response "wins" and adjusts its input weights so that those inputs with the highest 
activation are given more weight and those inputs with the lowest activation are given less weight. If m 
patterns are presented to m competing units, then after many trials, each unit will respond optimally to one 
pattern. (See Rumelhart and Zipser, 1985.) 

Complex cell: A neuron in the visual.cortex that selectively responds to a bar or edge with a specific angular 
orientation over a range of positions in the visual field. (See text p. 7.) 

Cone: A photoreceptor cell selectively tuned for certain wavelengths of light (color). (See text p. 4.) 

Convolution: The process of sliding one function over another function and integrating the product of the 
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two functions at each step. Defined in one dimension as: 

cftg)(x) = I f(u)g(x-u)du. 

Cooperative process: The process of dynamically combining many local computations or operations to yield 
a global result. Each local computation may influence or interact with other computations in accordance with 
some desired goal. For example, many noisy edge detectors in an image may cooperatively interact with each 
other so they align in the same direction. (See text p. 11 and 15.) 

Dendrites: The fibers extending from a neuron cell body that carry input signals to the neuron. 

Disparity: The slight spatial offset that is evident when comparing two images of the same object, where the 
object taken from slightly different viewing angles. Disparity is an important cue for recovering depth in a 
scene. (See text p. 18.) 

Endstopped neuron: 
to a hypercomplex cell. 

A neuron in the visual cortex that selectively responds to line-terminations; similar 

Energy functional: 
constraint. 
minimize the energy of the system. 
problems in vision, where there are fewer equations than there are unknowns. (See text p. 17.) 

Excitory connection: 
increases the potential for activation in the receiving neuron. 

A way of describing the "energy" in a dynamical system subject to some cost or 
Variationul principles (in mechanical systems, the Eulet-Lagrange equation) provide a way to 

This technique is useful for solving many of the under-determined 

A connection from one neuron to.another such that activation of the input neuron 

Filter: In image processing: A mechanism for rejecting or enhancing certain spatial frequencies or features in 
an image. Filtering is accomplished by convolving a mark with an image. 

Fourier descriptors: A set of numbers that can be used to uniquely describe a closed curve; these numbers 
are the Fourier coefficients of the function formed by plotting the accumulated change in direction of a curve 
along the length of its perimeter. (See text p. 24 and Fig. 22.) 

Fourier transform: 
frequency domain. 
weak in Ax). Defined in one-dimension as: 

Transforms a function A x )  in the time or space domain into a function F(s) in the 
Thus, the function F(s) reveals which temporal or spatial frequencies are dominant or 

Fovea: The central 1-2' of the retina; the area of highest visual acuity. (See text p. 5.) 

Gabor function (2D): A function formed from the product of a 2D sine and Gaussian. The aspect ratio of 
the Gaussian and the angular orientation, frequency, and phase of the 2D sine can take on various values in 
order to form a family of spatial functions. (See Fig. 8.) 

Ganglion cell: A neuron in the retina that effectively collects the outputs of multiple photoreceptors. 
Ganglion cells form the last processing stage of the retina, and their long axons comprise the optic nerve, or 
output of the retina. (See Fig. 1.) 

Gaussian filter: The filter formed by using the Gaussian function as the mask in a convolution. 
1 ,-(xz+r3/2$ Gaussian function: In two dimensions: G(x,y) = - G a  

Grandmother cell: A neuron that is tuned to respond to one p&icular pattern. This term stems from the 
old notion that neurons in the brain are somehow directly related to specific environmental stimuli; for 
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example, one neuron might be responsible for recognizing the face of one's grandmother, and it would fire 
only when one is looking at, or perhaps imagining, one's grandmother. 

Hebbian learning: A form of learning in a neural-network devised by D. 0. Hebb (1949). States that the 
connection strength from neuron B to neuron A is increased in proportion to the amount of correlated activity 
between A and B (i.e., the more the firing of B seems to conmbute to the firing of A, the more weight the 
connection is given). 

Hidden Unit: A unit in the hidden layer of a mural network. The hidden layer in a neural network lies 
between the input layer and the output layer, hence a unit in the hidden layer is "hidden" from both the input 
and output. (See Rumelhart et al., 1985.) 

Horizontal cell: An interconnecting neuron in the retina; establishes inhibitory crosslinks among 
photoreceptor cells. (See Fig. 1.) 

Hough transform: A parameter-space clustering technique (many-to-one mapping) for finding lines, circles, 
or arbitrary shapes in a scene. (See Fig. 19.) 

Hypercolumn: 
co:ilmns for both eyes. (See text p. 8 and Fig. 5.)  

A small block of visual cortex, approximately lmm', containing 180' worth of orientation 

Hypercomplex cell: A neuron in the visual cortex that selectively responds to line terminations and 
comers. (See text p. 7.) 

Illusory conjunction: 
attention being overloaded (See text p. 28.) 

A false combination of features that creates an illusory percept; usually caused by 

Illusory contour: 
example, the entire shape of a triangle may be strongly perceived even though only its vertices are drawn. 

Inhibitory connection: 
decreases the potential for activation in the receiving neuron. 

A contour or boundary that is perceived even though it is not explicitly drawn. For 

A connection from one neuron to another such that activation of the input neuron 

Intrinsic reference frame: A reference frame that is defined with respect to an object in an image. The axes 
of an intrinsic reference frame are aligned with natural features of the object (e.g., elongation, symmetry, or 
motion). For example, the intrinsic reference frame of a human head might be defined by the major and minor 
axes of its oval-like shape. (See text p. 27.) 

IT (inferotemporal cortex): The part of the visual cortex believed to be involved in shape recognition. (See 
text p. 8.) 

a2 a2 
ax2 ay2 

Laplacian operator: In two dimensions, the operator: v;? = - + - 
Laplacian of Gaussian (LOG) filter: The filter formed by using v2C(x,y) as the mask in a convolution 
(where G(x,y) is the Gaussian function). (See text p. 9 and Fig. 6e.) 

Lateral geniculate nucleus (LGN): The part of the thalamus that serves as an intermediate connecting point 
for signals coming from the retina (optic nerve) on their way to the visual cortex. (See text p. 6 and Figs. 1 
and 3.) 

Log-polar coordinates: 
coordinates [x,y] by p = d w  and e-tan-'(ylx). (See text p. 23 and Fig. 21.) 

Magnocellular layers: The layers of the LGN containing Y-type cells. (See Fig. 3.) 

The coordinate system [log p, 83, where p and 8 are related to Cartesian 
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Mask: The function that is to be convolved with an image in order to accomplish a desired filtering operation. 

MST (medial superior temporal area): 
motion. (See text p. 8.) 

A part of the visual cortex believed to specialize in processing 

MT (middle temporal area): A part of the visual cortex believed to specialize in processing motion. (See 
text p. 8.) 

Neocognitron: 
principle. (See text p. 25 and Figs. 13 and 24.) 

Neural network: A network formed from neuron-like elements. Each node, or unit, in the network sums 
together the outputs of other units in the network through a set of weights. The weights are usually 
automatically adjusted over many pattern presentations in order to train the network to perform some desired 
mapping from input patterns to output patterns. A neural network might be used to model the function of 
networks of neurons in the brain, or it may be totally unrelated to the brain and devised mainly as a tool for 
studying learning algorithms or massively parallel computation. 

Ocular dominance column: A column of neurons in the visual cortex, perpendicular to the surface of the 
cortex; each neuron in the column responds pr2ferentially to the same eye (left or right). (See Fig. 5.) 

A multilayer neural network that learns to classify visual patterns using a self-organizing 

Optic nerve: 
conduction path from the retina to the lateral geniculate nucleus (LGN). (See Fig. 1.) 

Optical flow field: A way of representing motion in the visual field Each point or local area in the image is 
assigned a direction of motion based upon a local computation (time comparison) in its immediately 
surrounding neighborhood. (See Fig. 15.) 

The bundle of nerve fibers (long mons of the retinal ganglion cells) that serves as the 

Orientation column: A column of neurons in the visual cortex, perpendicular to the surface of the cortex; 
each neuron in the column is selectively tuned to the same angular orientation (of a small line or edge in the 
visual field). (See Fig. 5.)  

Parvocellular layers: The layers of the LGN containing X-type cells. (See Fig. 3.) 

Photoreceptor: A cell (rod or cone) in the back of the retina that detects light intensity. (See Fig. 1.) 

Pyramid: A series of images (usually of the same scene) that span over a range of scales or resolutions. (See 
Fig. 17.) 

p-space representation: Two 
dimensions are for spatial position, and the other is for orientation of edges. Excitory and inhibitory 
interactions among neighboring points in the space allow for certain parts of a contour in an image to be 
enhanced or suppressed. (See text p. 16.) 

Receptive field: The local group of retinal photoreceptors from which a neuron receives its input (either 
directly or indirectly). Usually a neuron fires at its maximum frequency in response to a specific pattern of 
illumination on its receptive field. (See text p. 5 and Figs. 1 and 2.) 

Regularization: A way of constraining the solution of a dynamical system to adhere to a sub-space of all 
possible solutions (see Energy functional). 

Relaxation labeling: An iterative process for assigning labels to the nodes in a graph. Upon each iteration, 
the graph is incrementally “relaxed” into a state that best suits the compatibilities between labels at various 
nodes. (See text p. 11.) 

Retina: 

A three-dimensional discretized space for representing a boundary contour. 

The array of photoreceptors on the back wall of the eye. Light is focused onto the retina by the 
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lens. (SeeFig. 1.) 

Rod: 
or color, of light (See text p. 4.) 

A photoreceptor cell that is extremely sensitive to light intensity, but indifferent to the wavelength, 

Segmentation: The process of delineating an object from its background. (See text p. 21.) 

Self-organizing process: A way of adjusting the weights or synaptic strengths 
without the aid of a teacher, or a set of known, desired responses. A self-organizing neural network learns to 
categorize patterns based on the statistics and properties of the input (See text p. 12.) 

Scale-space fdtering: A way of representing the changes in a signal or an image over a range of resolutions. 
(See Fig. 18.) 

In a neural network: 

Simple cell: A neuron in the visual cortex that selectively responds to a small bar or edge with a specific 
position and angular orientation in the visual field. (See text p. 7.) 

Sparse Distributed Memory (SDM): A massively parallel associative memory algorithdarchitecture. (See 
Kanerva, 1988.) 

Spline: 
various ways by adjusting parameters in its equation. 

Superior colticulus: The part of the midbrain that receives a portion of the axons from the optic nerve (the 
rest of the mons go to the LGN). The superior colliculus plays an important role in controlling eye 
movements. (See text p. 5.) 

A curve for data-fitting that is described by a parametric equation. A spline can be reshaped in 

Superior temporal sulcus (STS): A part of the cerebral cortex that receivcs inputs from the inferoternporal 
cortex. The STS has been shown to be involved in face recognition. (See text p. 8 and 30.) 

Texton: A primitive texture element, with elementary properties such as color, angular orientation, width, 
and length. When a group of textons are viewed among a background of other textons, the boundary between 
the two groups can be perceived immediately. (See Fig. 14.) 

Topographic mapping: In cortical neurophysiology: A projection of axons from one cortical area to another 
such that neighborhood relationships are preserved (i.e., neighboring neurons in one area send their signals to 
neighboring neurons in another area). 

V1 (area 17, or striate cortex): The part of the visual cortex that first receives input from the LGN. (See 
text p. 7.) 

V4: The part of the visual cortex thought to specialize in processing color information. (See text p. 8.) 

Variance: A measure of the variation, or spread, of a random variable X about its mean p. Defined as: 

VAR(X) = E[(X - ~121, ~-E[x]. (EO = expected value, or mean) 

Visual cortex: The part the cerebral cortex devoted to processing visual information. (See text p. 6 and Fig. 
1 J 

X cell: One of two classes of retinal ganglion cells; well-suited for shape analysis. (See text p. 5)  

Y cell: One of two classes of retinal ganglion cells; well-suited for motion analysis. (See text p. 5) 

Zero-crossing: The point at which a function crosses zero. The zero-crossings a LOG-filtered image indicate 
the points of maximum intensity change in the image. 
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ously specified, pp. 683-685 of these proceedings). Discusses how this model can be worked into a struc- 
tural description by forming a hierarchy of feature based units. Also discusses how parts of a scene can 
be pieced together by “spatial working memory”. Shows how coarse coding can be used to reduce the 
number of units in the network. 
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Hinton, G., “The role of spatial working memory in shape perception,” in Proceedings of the 3rd Annual 
Conference of the Cognitive Science S o c i e ~ ,  pp. 56-60, 1981~. 

Presents some demonstrations of visual perceptiodcognition tasks which illustrate various aspects of our 
internal representations of spatial structures. A particular mechanism for spatial representations is pro- 
posed It is based on three frames of reference: retina frame, object frame, and scene frame. Various 
shape features and their relationship to each other are represented in the retina frame. These features ac- 
tivate some gestalt in the object frame, which is integrated into some larger whole or scene in the scene 
frame. 

Hinton, G. and K. Lang, “Shape recognition and illusory conjunctions,” in Proceedings of the 9th International 
Joint Conference on Artificial Intelligence, 1985. 

Shows how the phenomenon of illusory conjunctions, as described by Treisman and Schmidt (1982). can 
be explained with the model described in Hinton’s 1981 IJCAI paper. Provides details of the algorithm 
used for relaxing the network (this was left out in the previous paper). 

Horn, B.K.P., Robot Vision, MIT Press, Cambridge, Mass., 1986. 

This textbook describes conventional techniques used in machine vision: edge detection, regior, growing, 
shape from X, motion, and pattern classification. 

Hrechanyk, Lydia M. and D. Ballard, “A connectionist model of form perception,” in Proceedings of the IEEE 
Workshop on Computer Vision, 1982. 

In addition to using coarse coding to reduce the number of units, Hrechanyk proposes splitting the parame- 
ter space, so that rotation and scale are considered apart from translation. Hrechanyk also discusses how 
different parts of shape might be hierarchically organized. 

Hubel, D.H. and TN. Wiesel, Jownul of Neurophysiology, vol. 28, pp. 229-289, 1965. discusses “higher-order 
complex cells” 

Hubel, D.H. and TN. Wiesel, “Brain mechanisms of vision,” in The Bruin. pp. 84-96, W.H. Freeman and Com- 
pany, New York, 1979. 

Provides a clear description of the discoveries of Hubel and Wiesel. Explains the circularly symmetric re- 
ceptive fields of LGN cells, the orientation selectivity of simple, complex, and hypercomplex cells, ocular 
dominance, and the columnar organization of the visual cortex. 

Hummel, R.A. and S.W. Zucker, “On the foundations of relaxation labeling processes,” IEEE Transuctiom on 
Pattern Analysis and Machine Intelligence, vol. PAMI-5, pp. 267-287, 1983. 

The purpose of this paper is to present a formal treatment of relaxation labeling processes described earlier 
(Zucker, 1977). A labeling problem can generally be described as one of assigning labels to nodes in a 
graph. Given some set of possible labels for each object and a constraint relation over labels at pairs (or 
n-tuples) of neighboring objects, certain labelings are defined as being consistent. It is shown that a func- 
tional exists which can be maximized in the search for consistent labelings. This functional is used to 
derive an algorithm for “relaxing” the graph into a consistent state. 

Hutchinson, James, Christof Koch, Jin Luo, and Carver Mead, “Computing motion using analog and binary 
resistive networks,’’ IEEE Computer, pp. 52-63, March 1988. 

Shows how regularization theory can be applied to the computation of motion, as in Poggio et al (1983, 
and demonstrates how this computation can be implemented in a simple resistive network. The linear 
equations resulting from the minimization of the cost functional (Euler-Lagrange equations) are solved via 
Kirchoff s current law. Segmentation of a moving object (separation of figure from ground) can be ac- 
counted for by allowing discontinuities in the optic flow. In the network, these discontinuities are formed 
by putting binary switches between pixel nodes. The network is being implemented using analog VLSI. 
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Jaeckel, Louis A., Character recognition using a sparse distributed memory system, 1988. to be published as a 
series of RIACS Technical Reports 

Describes a method for encoding characters for SDM (Sparse Distributed Memory). Assumes that a char- 
acter has been properly centered and scaled in the upright position, and that a pre-processor has already 
broken up the character into line segments or arcs. The parameters of locatio.1, length, and angular extent 
(for arcs) far each piece are encoded into bit strings so that the distance between parameters is related by 
Hamming distance. Two schemes are presented for addressing SDM with the pieces of a character. One 
imposes no ordering on the pieces and uses very long bit strings. The other uses shorter bit strings, but 
requires an ordering of the pieces. Some preliminary results are presented. 

Julesz, B., Foundations of Cyclopean Perception, University of Chicago Press, Chicago, Ill, 1971. 

Julesz, B. and JR.  Bergen, “Textons, the fundamental elements in preattentive vision and perception of tex- 
tms,”  The Bell System Technical Journal, vol. 62, no. 6, pp. 1619-1645, July-August 1983. 

Introduces the notion of “textons,” elongated blobs with properties such as color, angular orientation, 
width, length, etc., as being the fundamental elements detected by the preattentive visual system. Only 
differences in textons can be preattentively detected; Further processing involving “focal attention” is 
necessary to determine positional information. 

Julesz, B., “Toward an axiomatic theory of preattentive vision,” in Dynamic Aspects of Neocortical Function, 
ed G. Edelman and W.M. Cowan, John Wiley and Sons, New York, 1984. 

Kahan, Simon, The0 Pavlidis, and Henry S. Baird, “On the recognition of printed characters of any font and 
size,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 2, pp. 274-288, 
March 1987. 

Kandel, E. and J. Schwartz, Principles of Neuroscience, Elsevier Publishing, New York, 1985. 

Kanerva, P., Sparse Distributed Memory, MIT Press, Cambridge, Mass., 1988. 

Discusses the theory and principles of sparse distributed memory (SDM). Basically, SDM provides a mas- 
sively parallel algorithmlarchitemre for for an associative memory. Long bit vectors serve as both data 
and addresses to the memory, and patterns grouped or classified according to similarity in Hamming dis- 
tance. 

Kass, Michael and Andrew Witkin, “Analyzing oriented patterns,” in Proceedings of the International Joint 
Conference on Artificial Intelligence, pp. 944-952, Los Angeles, 1985. 

Oriented patterns produced by natural processes (such as wood grain) are analyzed in terms of flow fields. 
First, oriented spatial filters are convolved with a pattern in order to determine the direction of flow. The 
flow field is then used to form a coordinate system in which to view the pattern. Viewing the pattern in 
flow coordinates can be advantageous for providing preferred directions for edge detection. 

Kass, Michael, Andrew Witkin, and Demetri Terzopoulos, “Snakes: Active contour models,” in International 
Conference on Computer Vision, pp. 259-268, London, 1987. 

Introduces the concept of “snakes” for finding contours in natural images. A snake is an energy- 
minimizing spline, whose shape is determined by constraint forces. Internal forces act to regularize the 
spline so that it remains smooth. Image forces push the snake toward lines, edges, and subjective contours 
in the image. External forces can be used to interactively (such as with a mouse) nudge a snake toward 
certain image features. This method works remarkably well for latching onto smooth, continuous con- 
tours. 

Keeler, J., “Comparison between Kanerva’s SDM and Hopfield-type neural network models,” Cognitive Sci- 
ence, vol. 12, pp. 299-329, 1988. 

Develops a mathematical framework for comparing SDM and Hopfield-type neural nets. Limits of capaci- 
ty and ability to store’sequences for both modelsare discussed and compared. 
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Kersten, D., A. O’Toole, M. Sereno, D. h i l l ,  and J. Anderson, “Associative learning of scene parameters form 
images,” Applied Optics. in review 

Koch, C., J. Mmoquin, and A. Yuille, “Analog “neuronal“ networks in early vision,” Proceedings of the Na- 
tional Academy of Sciences USA, vol. 83, pp. 42634267, June 1986. 

Koch, C., “Computing optical flow in man and machine,” in Proceedings AAAI Symposium on Physical and 
Biological Approaches to Computer Vision, pp. 119-123, 1988. 

Koenderink, J.J. and AJ. van Doom, “Representation of local geometry in the visual system,” Biological Cy- 
bernetics, vol. 55, pp. 367-375, 1987. 

Koenderink, J.J. and W. Richards, “Two-dimensional curvature operators,” Journal of the Optical Society of 
America, Series A, vol. 5, no. 7, pp. 1136-1141, July 1988. 

Presents some methods for detecting planar curvature using two-dimensional operators. One way is to use 
receptive field profiles similar those of end-stopped line detectors in the visual cortex. The aspect ratio of 
these receptive fields could be varied in order to detect varying degrees of curvature. Another way is to 
use co-circularity. According to this method, two tangents (e.g., simple cell responses) at different spatial 
locations are defined as co-circular if they are both tangent to the same circle. This sort of primitive 
grouping operation would help to avoid an explosion of receptive fields of increasingly higher order. 

Koffka, K., Principles of Gestalt Psychology, Harcourt, Brace, and World, New York, 1935. 

Kohler, W., Gestalt Psychology, Liverright Press, 1947. 

Kohonen, T., “Clustering, taxonomy, and topological maps of patterns,” in Proceedings of the 6th International 
Conference on Pattern Recognition, pp. 114-125, 1982. 

Uses Hebbian learning to form a “topographic” feature map of patterns. Mathematical formulation and 
proofs of convergence are given. Several examples of topological maps formed in computer simulations 
are described. 

Kohonen, T. and K. Makisara, “Representation of sensory information in self-organizing feature maps,” in AIP 
Conference Proceedings 151: Neural Networks for Computing, ed. J. Denker, pp. 271-276, American Insti- 
tute of Physics, New York, 1986. 

Similar to the work of von der Malsburg, except more general. Uses lateral inhibition and Hebbian learn- 
ing to form a feature map. Associative memory can then be used to deal with incomplete information. An 
example is given for phonemes. 

Krishnan, G. and D. Walters, “Psychologically plausible features for shape recognition in a neural-network,” in 
Proc. International Conference on Neural Networks, vol. 11, pp. 127-134, San Diego, 1988. 

Shows how shapes (line drawings) can be classified by a neural network using psychologically plausible 
features. Shapes are encoded into bit smngs based on properties such as orientation of edge elements, an- 
gular separation of comers, and ratio of chord length to arc length. These bit strings are then concatenat- 
ed to form a one-dimensional feature vector to be stored in an associative memory (with grandmother cells 
at the output). The associative memory learns shape categories based on a novel learning rule (modified 
Hebb and Anderson rules). 

Kuffler, Stephen W., John G. Nicholls, and A. Robert Martin, From Neuron to Brain, Sinauer Associates Inc., 
Sunderland, Mass., 1984. chapters 2,3, & 20 

Covers the anatomy, physiology, and development of the mammalian visual system Good reference for 
defining terms and illustrations. 

Lee, David and The0 Pavlidis, “One-dimensional regularization with discontinuities,” in International Confer- 
ence on Computer Vision, pp. 572-577, London, 1987. 

Presents a method for regularizing splines (smoothness constraint) which allows for important discontinui- 
ties such as comers without smoothing over them. 
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Lehky, S.R. and T.J. Sejnowski, “Network model of shape-from-shading: neural function arises from both recep 
tive and projective fields,” Nature, vol. 333, no. 6172, pp. 452-454, June 1988. 

Shows how a backpropagation network can learn to compute shape from shading. The input consists of 
122 units, each of which calculate a LOG weighted sum of a local area in an image. These units are fully 
connected to 27 units in the hidden layer; and each unit in the hidden layer is fully connected to 24 units 
in the output layer. It is desired that each unit in the output layer be maximally responsive for a certain 
combination of curvature and surface orientation in the input surface. After 40,000 presentations, the net- 
work settles on a solution. Interestingly, the hidden units develop receptive field profiles much like those 
of bar or edge detectors in V1. Even more interesting is the arrangement of weights in the ’projective 
field‘ (from the hidden units to the output units), which seem to provide information about surface orienta- 
tion, convexity/concavity, and relative magnitudes of curvature. 

Lettvin, J.Y., H. Maturana, W. McCulloch, and W. Pitts, “What the frog’s eye tells the frog’s brain,” Proceed- 
ings of the IRE, vol. 47, pp. 1940-1951, 1959. 

This was one of the first papers on receptive fields. Reveals four major functions of ganglion cells in the 
retina of the frog: 1) sustained contrast detectors 2) net convexity detectors 3) moving edge detectors and 
4) net dimming detectors. 

Link, N.K. and S.W. Zucker, “Comer detection in curvilinear dot grouping,” Biological Cybernetics, vol. 59, 

Attempts to determine how sensitive we (humans) are to corners, and offers a model to explain how 
comers are detected. Dotted curves are used as the stimuli; and it is shown how sensitivity to orientation 
discontinuities varies as a function of dot phase (i.e., placement of the dots). Concludes that simple cells 
must interact to compute curvature. 

Linsker, Ralph, “From basic network principles to neural architecture,” Proceedings of the National Academy of 
Sciences USA, vol. 83, pp. 7508-7512, 8390-8394, 8779-8783, 1986. three part article series 

Demonstrates that a multiple-layer network is capable of developing spatial-opponent cells 
(center/smound type), orientation selective cells, and hypercolumns as in visual cortex. Connections from 
layer to layer are localized, like receptive fields, and a Hebb rule is used to modify the synapses. The spa- 
tial distribution of synapses for any given cell is gaussian distributed Spatial-opponent cells develop in the 
third layer, and orientation selective cells develop in the seventh layer. If lateral connections are added to 
the seventh layer, then hypercolumns emerge. 

pp. 247-256, 1988. 

Linsker, Ralph, “Self-organization in a perceptual network,” IEEE Computer, pp. 105-1 17, March 1988. 

Nicely explains the results obtained by Linsker’s (1986) multiple-layer network in terms of information 
theory. Shows how a simple Hebb rule can be used to achieve maximum variance in a cell’s output; This 
corresponds to Principal Component Analysis, a widely used statistical method for feature extraction. Us- 
ing concepts from information theory, it is then shown that each layer of cells in the network preserves 
maximum information about its input from the previous layer. In this sense, the cells within a layer be- 
come optimal feature analyzers. 

Livingstone, Margaret and David Hubel, “Segregation of Form, Color, Movement, and Depth: Anatomy, Phy- 
siology, and Perception,” Science, May 6, 1988. 

Loebner, Egon E., “Concurrency Assurance in vertebrate retinas,” in Proceedings of the IEEE First Internafion- 
a1 Conference on Neural Networks, vol. IV, pp. 147-159, 1987. 

Lowe, D.G. and T.O. Binford, “Segmentation and aggregation: an approach to figure-ground phenomena,” in 
Proc. DARPA Image Understanding Workshop, pp. 168-178, 1982. 

Describes an approach to low-level vision that is based on measurements that can be computed directly 
from the image, rather than on prior world knowledge. It is noted that humans are easily capable of 
detecting patterns in an otherwise random field of dots; how may computer vision systems emulate such 
an ability? Groupings of image elements are said to be “meaningful” if it is more likely that they arose 
from underlying physical relationships between constituent features (say, due to the b o u n d q  of an ob- 
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ject), rather than from some coincidence of viewpoint or location. Describes the implementation of a 
“meaningfulness” algorithm for finding lines. 

Lowe, D.G., “Visual recognition from spatial correspondence and perceptual organization,” in IJCAI-85 
Proceedings, pp. 953-959, 1985a. 

Describes a vision system called SCERPO (Spatial Correspondence, Evidential Reasoning, and Perceptual 
Organization) for recognizing 3-D objects from arbitrary viewpoints. The system is based on three 
separate mechanisms: 1) a process of perceptual organization finds groupings and structures in the image 
(such as lines segments) that are likely to be invariant over a wide range of viewpoints; 2) evidential rea- 
soning is used to reduce the size of the search space for object matching; and 3) spatial correspondence is 
used to project the model object (Le., the previously stored object believed to be present in the image) 
onto the image for refinement and verification. 

Lowe, D.G., Perceptual Organization and Visual Recognition, Kluwer Academic Publishers, Boston, Mass., 
1985b. 

Provides depth and details of the UCAI-85 paper. 

Marr, D. and T Poggio, “Cooperative computation of cere0 disparity,” Science, vol. 194, pp. 283-287, October 
1976. 

Presents a cooperative algorithm for computing disparity from stereo image pairs. Two constraints are 
used in the computation: 1) Each pixel may be assigned only one disparity value, and 2) disparity values 
vary smoothly almost everywhere, since in general objects have smooth surfaces. Illustrations are provid- 
ed showing results of the computation. 

Marr, D. and H.K. Nishihara, “Representation and recognition of the spatial organization of three-dimensional 
shapes,” Proceedings of the Royal Society of London, vol. B 200, pp. 269-294, 1978. 

Marr, D. and E. Hildreth, “Theory of edge detection,” Proceedings of the Royal Society of London, vol. B 207, 

Marr’s classic paper on edge detection. Describes a method for 1) detecting intensity changes in images 
(Laplacian of Gaussian operator) and 2) interpreting intensity changes to form a description of the image, 
called the raw primal sketch. The method serves as a physiological model of simple cell function. 

pp. 187-217, 1980. 

Marr, D., Vision, Freeman, San Francisco, 1982. 

A comprehensive presentation of Marr’s work on vision. Discusses the primal sketch, 2&1/2-D sketch, 
stereopsis, motion, 3-D shape extraction, and 3-D model representation. The primal sketch is a hierarchi- 
cal representation of the intensity discontinuities in an image, showing raw intensity changes at the lowest 
level and groupings and alignments at the highest level. Then, the 2&1/2-D sketch incorporates clues 
from stereo disparity, shading, motion (optical flow), and shape contours to infer depth and surface orien- 
tation. Both the primal sketch and 2&1/2-D sketch are done in a viewer-centered coordinate system. For 
purposes of recognition, 3-D objects are represented in an object-centered coordinate system. The 
definition of a shape’s object-centered coordinate system is based on axes determined by some salient, 
geomemc characteristic of the object (e.g. elongation, symmetry, or motion). Moreover, the representation 
of shape is modular, so that a shape may be described at varying levels of detail. Objects are thus stored 
in a “Catalogue of 3-D Models,” which is indexed by 3-D shape primitives derived from the 2-D image. 
Man considers there to be three levels of understanding for all theories on vision: Computational theory, 
Representation and algorithm, and Hardware implementation. 

Mesrobian, Edmond and Josef Slazypek, “Discrimination of natural textures: a neural network architecture,” in 
Proceedings of the IEEE First International Conference on Neural Network, vol. IV, pp. 247-258, 1987. 

Describes a neural network architecture for discriminating textures. At the lowest level, orientation- 
specific edge detectors (i.e. simple cells), are used for feature extraction. Higher level units aggregate re- 
gions based on similarity, such as complex cells. At a next higher level, boundaries are determined by 
differentiating aggregated regions. 
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l 
Miller, B. K. and R. A. Jones, “Reliable formation of feature vectors for 2-D shape representation,” in Proceed- 

ings of the SPIE: Computer Vision for Robotics, vol. 595, pp. 109-118, 1985. 

Describes a method for generating a feature vector for describing 2-D shapes with invariance to transla- 
tion, rotation, and scale. The method is based upon creating a concavity tree from the closed curve which 
describes a 2-D shape. Invariants of the curve are derived from the tree and they are used as the com- 
ponents of the feature vector. Successful results are demonstrated for three shapes under rotation, transla- 
tion, scaling, and occlusion. 

Minsky, Marvin and Seymour Papert, Perceptrons (expanded edition), MIT Press, Cambridge, Mass., 1988. 

Miyake, S. and K. Fukushima, “A neural network for the mechanism of feature-extraction: A self-organizing 
network with feedback inhibition,” in AIP Conference Proceedings I51 : Neural Networks for Computing, 
ed. J. Denker, pp. 305-308, American Institute of Physics, New York, 1986. 

This model is like the Neocognitron, except that it uses feedback inhibition. Learned features are 
suppressed in the input layer by feedback inhibition. Novel features remain excited so that they may be 
lemed by self-organization. This method seems to encourage the differentiation of features while 
preserving stability (Le. old features don’t tend to get wiped out by new features). 

Mokhtarian, Farzin and Alan Mackworth, “Scale-based description and recognition of planar curves and two- 
dimensional shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 
1, pp. 3443, January 1986. 

Presents a method for describing and matching planar curves. A “scale-space image” (see Witkin, 1983) 
of a curve is fomed by finding the zero’s of curvature at several levels of detail along its path. The curve 
is then matched to other curves by comparing their scale space images. 

Nagahashi, Hiroshi and Mikio Nakatsuyama, “A pattern description and generation method of structural charac- 
ters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 1, pp. 112-118, 
January 1986. 

Nalwa, V.S. and T.O. Binford, “On Detecting Edges,” IEEE Transactions on Pattern Analysis and Machine In- 
telligence, vol. PAMI-8, no. 6, pp. 699-714, Nov. 1986. 

Proposes an approach to edge-detection based upon fitting a series of “one-dimensional“ surfaces to each 
window. A least-squares method is used choose the surface that best fits an edge (plane, cubic spline, 
tanh), and hence best identifies the position and angular orientation of the edge. 

Nalwa, V.S., “Edge-detector resolution improvement by image interpolation,” in Image Understanding 
Workhop, pp. 981-987, 1987. 

Nauta, W.J.H. and M. Feirtag, “The organization of the brain,” in The Brain, pp. 40-55, W.H. Freeman and 
Company, New York, 1979. 

Provides a very clear description of the organization of the brain. Very useful for getting a feel for what 
the retina, LGN and visual cortex have to do with other parts of the brain, such as hippocampus, amygda- 
la, and superior colliculus. 

Nauta, WJX. and M. Feirtag, Fundamental Neuroanatomy, pp. 280-315, W.H. Freeman and Company, New 
York, 1986. Cerebellar cortex, Neocortex, Prospects 
Excellent descriptions, diagrams, and electron micrographs of the “circuitry” of cerebellar and cerebral 
cortex. 

Nishihara, H.K., “Practical real-time imaging stereo matcher,” Optical Engineering, vol. 23, no. 5, pp. 536-545, 
1984. 

Okajima, K., “A mathematical model of the primary visual cortex and hypercolumn,” Biological Cybernetics, 
vol. 54, no. 2, pp. 107-114, 1986. 

Proposes a model for visual cortex (not very novel) in which each hypercolumn performs a local spatial 
Fourier analysis. This is seen as a sort of tomographic representation. Advantages: The hypercolumns are 
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I invariant to lateral shift, which is consistent with the Fourier transform, and spatial filtering operations can 
easily be performed. 

Oyster, J.M., F. Vicuna, and W. Broadwell, “Associative network applications to robot vision,” IBM Los 
Angeles Scientific Center Report No. 6320-2777, Jan. 1986. 

Oyster, J.M. and Josef Sknypek, “Computing shape with neural networks: A proposal,” in Proceedings of the 
IEEE First International Co@erence on Neural Networks, vol. IV, pp. 335-344, 1987. 

Proposes a neural structure for the recognition of arbitrary 2-D curves. At the lowest level, local edge, 
orientation, curvature, comer, and end features are extracted. The features are aggregated by higher levels 
for detection of more complex features and eventually recognition of overall shape. This paper is greatly 
lacking in specifics. 

Palm, G. and A. Aertsen (eds.), Brain Theory: Proceedings of the First Trieste Meeting on Brain Theory, Oc- 
tober 1-5, 1984, Springer-Verlag, 1986. neural modeling, plus a good collection of classic papers 

Palmer, SE., “The psychology of perceptual organization: A transformational approach,” in Human and 
Machine Vision, ed. Jacob Beck, Barbara Hope and Azriel Rosenfeld, pp. 269-339, Academic Press, Or- 
lando, 1983. 

A theoretical framework is presented for understanding the phenomena of shape constancy, motion percep 
tion, figural goodness, perceptual grouping, and reference frame effects. It is argued that these phenomena 
can be understood in terms of invariance transformations. For example, shape constancy can be accom- 
plished through a transformation in scale, rotation, and translation from the retinal frame to the model 
frame. 

Parent, P. and S. Zucker, “Curvature, consistency and curve detection,” Technical Report CIM-86-3, Computer 
Vision and Robotics Lab, McGill University, Montreal, June 1985. 

Describes a method for infemng the trace of a curve based on relaxation labeling. Estimated tangents are 
constrained by a neighborhood relationship called co-circularity, and curvature estimates are constrained 
by a curvature consistency relation. The result is an optimal estimation of tangent and curvature informa- 
tion along the path of a curve, and hence a good recovery of the trace. 

Pavlidis, T., Structural Pattern Recognition, Springer-Verlag, Berlin, 1977. 

Perona, Pietro, “Anisotropic diffusion: A scale space technique for edge detection in digital images,” in IEEE 
Computer Society Worhhop on Computational Vision, Miami, NovIDec. 1987. more comprehensive re- 
port from this author (at U.C. Berkeley) available by end of summer 1988 

Perrett, D.I., E.T. Rolls, and W. Caan, “Visual neurones responsive to faces in the monkey temporal cortex,” 
Experimental Brain Research, vol. 47, pp. 329-342, 1982. 

Reports that out of a population of 497 neurons recorded in the superior temporal sulcus (STS), at least 
48 neurons were selectively responsive to faces. 28 neurons exhibited relatively constant responses despite 
transformations such as size and rotation (2-D), or other changes such as color or distance. Some neurons 
showed a bias to particular facial features, such as the mouth or eyes. It is hypothesized that the STS, 
which receives inputs from the inferior temporal cortex and sends efferents to the amygdala, parietal cor- 
tex and frontal cortex, may be specialized to code for faces. 

Pinker, Steven, “Visual cognition: An introduction,” in Visual Cognition, ed. Steven Pinker, pp. 1-64, MIT 
Press, Cambridge, Mass., 198%. 
Gives an overview of the issues and problems of visual cognition. Discusses theories of shape recogni- 
tion, such as template matching, feature models, Fourier models, structural descriptions, the Marr- 
Nishihara theory, reference frames, and massively parallel models (Hinton). Also discusses theories of 
mental imagery. 

~ 



I Pinker, Steven, ed., Visual Cognition, MIT Press, Cambridge, Mass., 1985b. collection of papers 

Pitts, W. and W. McCulloch, “How we know universals: The perception of auditory and visual forms,” Bulletin 
of Mathematical Biophysics, vol. 9, pp. 127-147, 1947. 

Proposes some interesting neural mechanisms for the recognition of invariants. Auditory patterns are 
scanned sequentially in all translations and visual patterns are scanned in all sizes. Translation in visual 
patterns is accounted for by an automatic centering mechanism in the superior colliculus which keeps all 
targets in the fovea centralis. 

Plaut, D.C., “Visual recognition of simple objects by a connection network,” University of Rochester Computer 
Science Dept. Technical Report, vol. TR143, August 1984. 

Plyshyn, Z.W., “What the mind’s eye tells the mind‘s brain: a critique of mental imagery,” Psychological Bul- 
letin, vol. 80, pp. 1-24, 1973. 

Poggio, T., V. Torre, and C. Koch, “Computational vision and regularization theory,” Nature, vol. 317, 1985. 

Shows how regularization theory can be applied to certain “ill-posed problems in early vision. For exam- 
ple, to compute the direction of motion from many local measurements, the assumption of smoothness (i.e. 
hat  the direction of motion probably wi i  not change from one pixel to the next, since most moving ob- 
jects are rigid) constrains the problem in such a way that it is no longer ill-posed. Such a constraint can 
be mathematically formulated as part of a cost functional. Variational principles can then be applied to 
find the solution, such as direction of motion (optic flow), which minimizes the the functional. 

Poggio, T. and K. Koch, “Ill-posed problems in early vision: From computational theory to analog networks,” 
Proceedings of the Royal Society of London, vol. B 226, pp. 303-323, 1985. 

Poggio, T., ‘‘Making machines (and artificial intelligence) see,” Daedalus, vol. 117, no. 1, pp. 213-240, 1988. 

Pollen, D.A., J.R. Lee, and J.H. Taylor, “How does the striate cortex begin the construction of the visual 
world?,” Science, vol. 173, pp. 74-77, 1971. 

Proposes that the complex cells in striate cortex compute local Fourier transforms. Such a representation 
would conserve information and also produce invariant descriptions of visual objects with respect to trans- 
lation. 

Ponce, J. and D. Chelberg, “Localized intersections computation for solid modelling with straight homogeneous 
generalized cylinders,’’ in Proc. Image Undersrana‘ing Workshop, pp. 933-941, 1987. 

Discusses a method for modelling solids based on using generalized cylinders (GC’s) as primitives. 
Presents a fast algorithm for computing set operations (unions, intersections) between different types of 
GC’s to form compound shapes. 

Pratt, William K., Digital Zmage Processing, John Wiley & Sons, New York, 1978. 

This textbook describes many of the commonly used techniques in digital image processing. 

Prazdny, K., “Similitude-invariant pattern recognition using parallel distributed processing,” in Proceedings 
Sixth National Conference on Artificial Intelligence, Seattle, WA, 1987a. 

Presents a method for position-, rotation-, and scale-invariant pattern recognition of 2-D objects. The ap- 
proach is similar to Tucker et al. (1988). First, image features such as intersecting lines or vertices are ex- 
tracted. Every correspondence between an image feature and a model feature is a “vote” for a particular 
model. Every such correspondence instantiates the model in the image frame for verification; the model 
broadcasts what features it expects and in what area it expects them (“attention beams”). In the en4 the 
model with the most votes and the best verification score wins. 

Prazdny, K., “Position-, rotation-, and scale invariant pattern recognition using parallel distributed processing,” 
in Proceedings First International Conference on Computer Vision, London, 1987b. 

Same as the 1987 Seattle paper. 
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I Psaltis, D. and J.Hong, “Shift-invariant optical associative memories ,” Optical Engineering, vol. 26, no. 1, pp. 

Reilly, DE., “A neural model for category learning,’’ Biological Cybernetics, vol. 45, pp. 35-41, 1982. Cooper 
vision model 

Richards, Whitman and Donald D. Hoffman, “Codon constraints on closed 2D shapes,” in Human and Machine 
Vision II, e d  &el Rosenfeld, pp. 207-223, Academic Press, Boston, 1986. 

Introduces the idea of “codons” as simple 2-D shape primitives for describing plane curves. A contour or 
boundary c w e  can be considered to consist of a string of such codons. Because of the strong consaaints 
imposed by the bounding contour (silhouette) formed from 3D objects, only a small set of “realistic” 
curves may be generated from any set of codons, thus making the codon representation highly redundant 
(good for error correction). 

10-15, 1987. 

I 

Rock, I., Orientation and Form, p. Academic, New York, 1973. 

Rosenfeld, A., “Some pyramid techniques for image segmentation,” in Pyramidal Systems for Computer Vision, 
e& V. Cantoni and S. Levialdi, Springer-Verlag, Berlin, 1986a. 

Discusses the use of pyramidal techniques (representing images at various resolutioils) for rapidly exuact- 
ing global structures from an image. Such techniques are amenable to parallel implementation. 

l 

Rosenfeld, A., Human and Machine Vision II, Academic Press, Boston, 1986b. A collection of papers. 

Rosenfeld, A., “Recognizing unexpected objects: A proposed approach.” in Image Understanding Workshop, 

Rosenfeld, A., “Image analysis and computer vision: 1987,” Computer Vision Graphics and Image Processing, 

A bibliography of over 1400 references (1987 only!) covering research in computer vision and image 
analysis, arranged by subject matter. 

ing: Explorations in the Microstructure of Cognition: Volume 1: Foundations, ed. D.E. Rumelhart and 

Shows how a simple model of competitive learning, involving a form of lateral inhibition and Hebbian 
learning, can classify “features,” or groupings of the input pattern set. Provides a good mathematical 
analysis of the model and some interesting experimental results on patterns presented on a 2-D grid. 

Rumelhart, D. E., G. E. Hinton, and R. J. Williams, “Learning Internal Representations by Error Propagation,” 
in Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Volume I: Founda- 
tions, ed. DE. Rumelhart and J.L. McClelland, pp. 318-362, MIT Press, Cambridge, Mass., 1985. 

The definitive paper on back-propagation. Derives the generalized delta rule for gradient descent and 
shows the results of several interesting experiments. Shows how a back-prop network can be trained for 
rotation and shift invariance to the letters T and C (weights ar copied en masse to achieve shift invari- 
ance). 

Sabbah, D., “Design of a highly parallel visual recognition system,” IJCAI, vol. 7, pp. 722-727, Vancouver, 
B.C., 1981. 

Sabbah, D., “A Connectionist Approach to Visual Recognition,” TRlO7, Computer Science Department, Univer- 
sity of Rochester, April 1982. 

Applies the connectionist theories of Ballard and Feldman to visual recognition in Kanade’s Origami 
World A conceptual hierarchy is defined, where levels represent the extraction of progressively more 
complex features. At the lowest level, edge segments are detected. These are coalesced into lines and 
rays, then L-joints and T-joints, then complex joints and 2-D shapes, and then finally 3-D Origami objects. 
Between levels, topdown reinforcement is used to further enhance those units which help to comprise 
something “meaningful” in the level above. Within levels, local lateral inhibition causes units to compete 

pp. 620-627, 1987. 

VO~. 42, pp. 234-293, 1988. 

I Rumelhart, D. E. and D. Zipser, “Feature discovery by competitive learning,” in Parallel Distributed Process- 

I J.L. McClelland, pp. 151-193, MIT Press, Cambridge, Mass., 1985. 

I 
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I with one another, which in turn causes noisy, ambiguous or otherwise un-substantiated input to die out. 

missing. 

Sabbah demonstrates the operation of the network with a number of examples. Especially evident is the 
ability of the network to recognize objects which have been partially occluded or which have information 

Sabbah, D., “Computing with connections in visual recognition of Origami objects,” Cognitive Science, pp. 25- 
. 

50, Winter 1985. 

See 1982 tech report. 

Sacks, Oliver W., The Man Who Mistook his Wife for a Hat, Summit Books, 1985. 

Contains an account of a man with visual agnosia. He can tell what features an object is comprised of, 
but he cannot classify the object as a whole unless some other sensory clue is given (touch, verbal hint). 

Sanger, T.D., “Optimal unsupervised learning in a single-layer linear feedforward neural network,” in First An- 
nual INNS Meeting, Boston, MA, 1988. 

Presents a method for unsupervised learning in a neural network that optimizes the amount of information 
preserved in the output layer (similar to Linsker, 1988). It is shown that a Hebbian learning rule can be 
used to learn the eigenvectors of the iriput auto-correlation matrix (that is, the Karhunen-Loeve transform). 
When the input is an image (actually, many sub-images), the eigenvectors turn out to be very similar to 
the receptive field profiles of cells in the retina, LGN, and visual cortex. The paper also discusses the 
significance of these results for texture segmentation and receptive field development. 

Schwab, E.C. and H.C. Nusbaum, eds., Pattern Recognition by Humans and Machines: Vision Perception, 2, 
Academic Press, San Diego, 1986. collection of papers 

Schwartz, E.L., “Computational geometry and functional architecture of striate cortex,” Vision Research, vol. 

Shows that the mapping from retina to visual cortex is of the form log(z+c), where z is complex and c is 
real (in effect, a warped log-polar transform). Demonstrates how scaling and rotation of a pattern on the 
retina are transformed into shifts of a somewhat invariant pattern on the retina. (Note: this mapping ap- 
plies to the central 20-30 degrees of visual field. The Fovea Centralis, which covers only the central 1-2 
degrees of visual field, would not appear to demonstrate rotation invariance since it lies in the area most 
warped from the additive constant in the transform.) Gives an explanation for some optical illusions (e.g. 
MacKay complementary image illusion) based on the local and global architecture of visual cortex. Sug- 
gests that neurons infero-temporal cortex may detect boundary curvature on the retina by detecting “lines” 
on the surface of striate cortex (i.e., because orientation preference changes across the surface of striate 
cortex, a line of active neurons would most likely indicate a curve). 

Schwartz, E.L., “A quantitative model of the functional architecture of human striate cortex with application to 
visual illusion and cortical texture analysis,” Biological Cybernetics, vol. 37, pp. 63-76, 1980b. 

In addition to the material presented previously (Vision Research, 1980), this article also points out how 
the cortical representation can be utilized for texture analysis. Schwartz shows how hypercolumns in stri-  
ate cortex can encode certain textures in such a way that they may be easily segmented. 

20, pp. 645-669, 1980a. 

I 

Schwartz, E.L., “Cortical anatomy, size invariance, and spatial frequency analysis,” Perception, vol. 10, pp. 
455-468, 1981. 

Points out several serious flaws with Cavanagh’s hypothesis regarding size and position invariance in the 
human visual system. Namely, he refutes Cavanagh’s claim that the visual system is shift invariant and 
that it does a global Fourier analysis by rejecting the phase from piecewise Fourier transforms. Gives a 
shortened version of the 1980 paper. 

Schwartz, EL., R. Desimone, T. Albright, and C. Gross, “Shape recognition and inferior-temporal neurons,” 
Proceedings of the National Academy of Sciences, vol. 80, pp. 5776-5778, 1983. 

’Proposes that Fourier Descriptors (Zahn & Roskies 1972) are used to encode shape information in infero- 
temporal cortex. In an experiment on inferotemporal neurons in the macaque monkey, it was found that 
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many neurons (54% of 234 visually responsive units) were selective to the frequency of the Fourier 
Descriptor stimuli, mostly independent of size and position. These results suggest that inferotemporal cor- 
tex may code for shape on the basis of global boundary curvature, much as striate cortex codes for shape 
on the basis of local edge orientation. 

Schwartz, EL., “Local and global functional architecture in primate striate cortex: outline of a spatial mapping 
I doctrine for perception,” in Models of the Visual Cortex, ed. D. Rose and V.G. Dobson, pp. 146-156, John 

I Wiley & Sons Ltd., New York, 1985. 

More discussion of the log(z+c) mapping from retina to cortex. Delves more into the local structure of 
the mapping. 

Schwartz, EL. and Yehezkel Yeshurun, “Towards a non-network approach to “neural modeling”: some basic is- 
sues of measurement, simulation, and computational significance of brain maps,” in Proceedings of the 
IEEE First International Conference on Neural Network, vol. N ,  pp. 225-233, 1987. 

Discusses some techniques for 3-D modelling of neuroanatomy. Illustrates a simulation of how a retinal 
image appears on the visual cortex. Since the mapping from retina to cortex is extremely space-variant 
(due to the logarithmic spacing of sensors in the retina), a theory is proposed for explaining how the visual 
system fuses individual “scans” of an object into a single percept. 

Sejnowski, TJ., “Open questions about computation in cerebral cortex,” in Parallel Distributed Processing: Ex- 
plorations in the Microstructure of Cognition: V o l m  2: Psychological and Biological Models, ed. J. L. 
McClelland and D.E. Rumelhart, pp. 372-389, MIT Press, Cambridge, Mass., 1985. 
Poses some interesting questions about computation in cerebral cortex. How is information represented 
(grandmother cells vs. distributed representations)? How is information processed? Is some sort of itera- 
tive relaxation scheme reasonable to expect given the slow switching speed of neurons? What sort of tem- 
poral dependencies exist? How can the functional connectivity of the cortex be reconfigured with experi- 
ence and still make sense? 

Sejnowski, T.J. and Geoffrey E. Hinton, “Separating figure from ground with a Bolzmann machine,” in Vision, 
Brain, and Cooperative Computation, ed. M. Arbib and A.R. Hanson, MIT Press, Cambridge, Mass., 1987. 

A relaxation process is proposed for separating figure from ground. Each edge is considered to be part of 
the figurdground boundary, with one si& pointing toward figure and the other toward ground. Edges in- 
teract with their neighbors so that a consistent state is reached (neighboring edges agree on where the 
figure or ground is). 

Shepard, RN.  and J. Metzler, “Mental rotation of three-dimensional objects,” Science, vol. 171, pp. 701-703, 
1971. 

Reports that the time required to correctly match two 3-D objects which have been rotated relative to each 
other is linearly proportional to the amount of rotation. The objects were displayed as 2-D perspective 
drawings, and they were rotated either within the picture plane or in depth. The slope of the relationship 
would imply that “mental rotations” are done at 60 degrees per second. 

Sparks, David L. and Martha Jay, “The role of the primate superior colliculus in sensorimotor integration,” in 
Vision, Brain, and Cooperative Computation, ed. M. Arbib and A.R. Hanson, MIT Press, Cambridge, 
Mass., 1987. 

The superior colliculus is thought to translate sensory signals from several modalities (visual, auditory, 
somatosensory) into motor commands for directing eye movements. This paper proposes that the superior 
colliculus contains a map of motor error and is organized in motor coordinates, rather than sensory coordi- 
nates. 

Sutherland, N.S., “Object recognition,” in Handbook of Perception, Vol. 3, Biology of Perceptual Systems, ed. 
ED. Carterette, pp. 157-206, Academic Press, New York, 1973. 
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Tenenbaum, J.M. and A. Witkin, Program chairs, Symposium: Physical and Biological Approaches to Computa- 

Terzopoulos, D., “Regularization of inverse visual problems involving discontinuities,” IEEE Transactions on 

T h e y ,  BN. and C. Macdonald, “Are curves detected by ’curvature detectors?’,” Perception, vol. 7, pp. 51-64, 
1978. 

Describes some experiments aimed at determining whether curves are detected by ’curvature detectors.’ 
This question remains unanswered. Author is inconclusive as to whether curves are detected by a set of 
linear contour detectors, or detectors designed specifically for curves. 

Trehub, Arnold, “Visualcognitive neuronal networls,” in Vision, Brain, and Cooperative Computation, ed. M. 
Arbib and A.R. Hanson, MIT Press, Cambridge, Mass., 1987. 

Presents an all-encompassing neural network model of the visual system. Networks are presented for stor- 
ing and learning patterns, transforming patterns according to rotation or scale, and integrating patterns into 
objects or scenes. 

Treisman, A.M. and G. Gelade, “A feature-integration theory of attention,” €qri t ive  Psychology, vol. 12, pp. 

It is proposed that the visual scene is initially coded along a number of separable dimensions, such as 
color, orientation, spatial frequency, brighmess, size, etc., and that these features are registered early, au- 
tomatically, and in parallel across the visual field: Objects are identified separately and only at a later 
stage, which requires focused attention. The feature-integration theory of attention suggests that attention 
is directed serially to each stimulus in a display whenever conjunctions of more than one separable feature 
are needed to characterize or distinguish the possible objects presented. This paper presents compelling 
evidence for such a theory. 

Treisman, A.M. and H. Schmidt, “Illusory conjunctions in the perception of objects,” Cognitive Psychology, 

As a corollary to the feature-integration theory of attention (Treisman 1980), this paper proposes that when 
attention is diverted or overloaded, features may be wrongly combined, giving rise to “illusory conjunc- 
tions.” For example, brief presentation of a red T and a blue S may be incorrectly registered as a blue T 
and a red S. Such experiments suggest that our internal representation contains discrete labels of values 
on each feature dimension separately, and that a whole object must be resynthesized from a set of these 
feature labels. 

Treisman, A.M., “The role of attention in object perception,” in Physical and Biological Processing of Images, 
ed 0. Braddick and A. Sleigh, Springer, London, 1982. 

Treisman, A.M. and R. Paterson, “Emergent features, attention, and object perception,” Journal of Experimental 
Psychology: Human Perception and Performance, vol. 10, no. 1, 1984. 

Treisman, A.M., “Preattentive processing in vision,” in Human and Machine Vision II, ed. Azriel Rosenfeld, 
pp. 313-334, Academic Press, Boston, 1986. 

Presents further research on theories of search and attention. Hypothesizes that search for the presence of 
a visual primitive is automatic and parallel, whereas search for the absence of the same feature is serial 
and requires focused attention. 

Machine,” in Proceedings CVPR-88, 1988. 

Describes a model-based object recognition system and its parallel implementation on the Connection 
Machine. Similar in approach to Ballad. Local boundary features, in this case comers formed by inter- 
secting line segments, are extracted from the image. These boundary features are matched in parallel to 
all possible model instances through a set of viewing transform parameters (translation or rotation). Each 
match to a model instance generates a “hypothesis”, that is, a vote for a particular model and a set of 

tional Vision, AAAI, Menlo Park, CA, 1988. 

. Pattern Analysis and Machine Intelligence, vol. PAMI-8, pp. 413-424, 1986. 

97-136, 1980. 

V O ~ .  14, pp. 107-141, 1982. 

- Tucker, Lewis W., Carl R. Feynman, and Donna M. Fritzsche, “Object Recognition Using the Connection 
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viewing transform parameters (translation and rotation). Each hypothesis projects its model instance back 
onto the image for verification, and that hypothesis which has the highest confidence (most votes) and the 
strongest verification wins (Le. object is recognized). Because comer features and hypotheses are assigned 
one per processor, recognition time is less than linearly proportional to the number of objects in the data 
base or the complexity of the scene. 

Ullman, S., The Interpretarwn of Visual Motion, MIT Press, Cambridge, MA, 1979. 

Ullman, S., “Visual routines: Where bottom-up and top-down processing meet,” in Pattern Recognition by Hu- 
mans and Machines: Visual Perception, ed. Eileen C. Schwab and Howard C. Nusbaum, vol. 2, Academic 
Press, San Diego, 1986. 

Discusses visual processing in terms of two stages: 1) the creation of base representations (primal sketch, 
2&1/2-D sketch), which is a bottom-up, spatially uniform process in a viewer centered frame, and 2) the 
application of visual routines to base representations, which is a topdown process for defining objects, 
parts, and spatial relations. 

Ungerleider, L.G. and M. Mishkin, in Analysis of Visual Behavior, pp. 549-586, MIT Press, Cambridge, MA, 
1982. 

Unnikrishnan, K.P., A.S. Pandya, and E. Harth, “Role of feedback in visual perception,” in Proceedings of the 
IEEE First International Cor$erence on Neural Networks, vol. IV, pp. 259-267, 1987. 

Presents a model of visual perception which accounts for the extensive reciprocal connections between 
lower and higher centers of visual processing (retina, LGN, layers of Vl, etc.). When a certain stimulus at 
one level resembles some predefined pattern by the second level, then that stimulus receives topdown 
enhancement; otherwise, the stimulus is suppressed. The net effect is that extraneous features are 
suppressed and missing features are completed. (see Sabbah 1982) 

Van Essen, D.C. and J.H.R. Maunsell, “Hierarchical organization and functional streams in visual cortex,” 
Trends in Neuroscience, vol. 6, pp. 370-375, 1983. 

Describes the hierarchical structure, inter-relationships, and function of various areas of cortical visual pro- 
cessing. Briefly discusses the role of MT (middle temporal cortex) and MST (medial superior temporal 
cortex) in motion analysis, the role of V4 in color perception, and the role of IT (inferotemporal cortex) in 
form perception (so-called “grandmother cells” responsive to faces (Perrett 1982) or hands (Gross 1972) 
have been reported in this area). Discusses some of the regularities in the hierarchical structure: Connec- 
tions between corfical areas tend to be reciprocal, such that if A projects to B then B also projects to A; 
Also, receptive field size increases at successive stages of the hierarchy. Good list of references. 

Van Essen, D.C., “Functional organization of primate visual cortex,” in The Cerebral Cortex, vol. 3, pp. 259- 
329, Plenum Press, New York, 1985. 

A much more detailed, thorough, and up-to-date version of Van Essen’s 1983 TIN paper. 

Vilnrotter, F.A., R. Nevatia, and K. Price, “Structural analysis of natural textures,” IEEE Transactions on Pat- 
tern Analysis and Machine Intelligence, vol. PAMI-8, no. 1, pp. 76-89, January 1986. 

Vistnes, Richard, “Detecting dotted lines and curves in randomdot patterns,” in Image Understanding 
Workshop, pp. 849-861, 1987. 

Presents a model for explaining human ability to pre-attentively detect dotted lines and curves in images. 
The model is based on detecting “non-accidental“ structures, such as a high density of dots within an 
elongated region compared with its local surrounding area. Predictions of the model compare well with 
human performance. 

von der Malsburg, Chr., “Self-organization of orientation sensitive cells in the striate cortex,” Kybernetik, vol. 

Uses a model of lateral inhibition and Hebbian learning to show how the orientation selectivity of simple 
cells in the visual cortex can be developed through experience, rather than being pre-determined genetical- 
ly. A retina of 19 units is stimulated with 9 different patterns in the form of light bars at all orientations. 

14, pp. 85-100, 1973. 

. 
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A “cortex” consisting of 338 units is connected to the retina such that each retinal cell excites all the corti- 
cal cells through a set of weights. These weights are modified according to a Hebbian-type rule. Within 
the cortex, there is an on-center/off-surround interaction such that the firing of one cell helps excite its 
neighbors, but inhibits more distant neighbors. After 100 trials, the cortex exhibits much the same 
behavior as Hubel and Wiesel found in the visual cortex of mammals. 

von Seelen, W., H. A. Mallot, and F. Giannakopoulos, “Characteristics of neuronal systems in the visual cor- 
tex,” Biological Cybernetics, vol. 56, pp. 3749, 1987. 

A linear systems approach to modeling the visual cortex: 2-D spatial filtering, feedback, retinotopic map- 
ping, nonlinear cortex couplings. Not too clear, but contains good diagrams of retinotopic mapping and 
the relation of visual cortex to other areas of the brain. 

Voorhees, Harry and Tomaso Poggio, “Detecting textons and texture boundaries in natural images,’’ in Interna- 
tional Cory5erence on Computer Vision, pp. 250-258, London, 1987. 

Proposes a method for extracting textons (Julesz, 1983) from natural images. An image is Gaussian 
filtered in order to estimate the background noise. The background noise level is then used as the thres- 
hold level for an edge detection operator (LOG filter). The result is that edges are found along texture 
boundaries instead of purely intensity boundaries. 

Walters, D., “Selection of image primitives for general-purpose visual processing,” Computer Vision, Graphics, 
and Image Processing, vol. 37, pp. 261-298, 1987. 

Describes some peseptually significant visual features (namely, relations between line-ends). Shows that 
al l  possible relations between line-ends, or end-connections, can be classed as one of just four types of 
connections. This sort information can be used to enhance contours in an image that have a high proba- 
bility of being part of an object’s contour. Describes the “rho-space representation,” a three-dimensional 
discretized space (2 dim. for spatial pos. in the image and 1 dim. for orientation of edges), with inhibitory 
and excitory connections among points in the space for enhancing or rejecting certain parts of a contour. 

Walters, D., “Orientation based contour descriptors,’’ in AAAI Symposium on Physical and Biological Ap- 
proaches to Computational Vision, pp. 30-32, 1988a. 

Contours are represented in the “rho-space representation” (see Walters, 1987). Contour descriptors are 
extracted from the rho-space representation and provided to the recognition stage for classification. This 
method was applied to the task of recognizing hand-drawn numerals. Shows that local zero-crossings of 
curvature can be readily computed from the local neighborhood computations of the rho-space representa- 
tion. 

Walters, D., “Integration of texture properties for texture segmentation,” in AAAI Symposium on Physical and 
Biological Approaches to Computational Vision, pp. 33-35, 1988b. 

Waltz, D., “Understanding line drawings of scenes with shadows,” in The Psychology of Computer Vision, e d  
P.H. Winston, pp. 19-91, McGraw-Hill, New York, 1975. 

Watson, A.B., “Detection and recognition of simple spatial forms,” in Physical and Biological Processing of 
Images, ed. OJ. Braddick and A.C. Slade, pp. 100-114, Springer-Verlag, Berlin, 1983. 

Uses the Gabor function (product of 2-d sine and Gaussian) as a model of simple cell function. A feature 
vector is generated by convolving Gabor functions of various location, size, spatial frequency, and orienta- 
tion with a simple spatial pattern, such as a grid. Detection or recognition is performed by comparison 
with a template feature vector (least squares). 

Watson, A.B., “The cortex transform: Rapid computation of simulated neural images,” Computer Vision, 
Graphics, and Image Processing, vol. 39, no. 3, pp. 31 1-327, September 1987. 

Expands somewhat on the work in the 1983 paper. Describes a transform which simulates the representa- 
tional transformauon from retina to visual cortex. Windows of various spatial bandwidth and orientation 
selectivity are convolved with an image through multiplication in the frequency domain. The result is a 
series of image pyramids, where resolution varies within a pyramid, and orientation selectivity varies from 

. 

c 

- 
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l one pyramid to the next The transformation is invertible. 

Wechsler, H. and G.L. Zimmerman, “2-D invariant object recognition using distributed associative memory,” 
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 6, pp. 811-821, Nov. 1988. 

Uses the log-polar transform as the front end to an associative memory. Objects are recognized despite 
changes in scale and mtation. Some simple examples are given. 

Weisstein, Naomi and Eva Wong, “Figure-ground organization and the spatial and temporal responses of the 
visual system,” in Pattern Recognition by Humans and Machines: Vision Perception, ed. Eileen C .  
Schwab and Howard C. Nusbaum, vol. 2, Academic PTess, San Diego, 1986. 

Widrow, B., “Generalization and information storage in networks of Adaline neurons,” in Self Organizing Sys- 
t em,  ed. M.C. Yovits, G.T. Jacobi, and G.D. Goldstein, pp. 435-461, Spartan Books, Washington, 1962. 

Widrow’s classic neural nets paper. Describes the operation of the ADALINE (ADAptive LInear NEuron) 
and provides a proof of convergence for the LMS algorithm. Demonstrates the applicability of the ADA- 
LINE to 2-D pattern recognition tasks, and shows how the ADALINE can be trained to generalize with 
respect to rotation, size, translation, and noise. For example, to generalize with respect to 90 deg. rotation, 
the ADALINE forms a matrix of iidghts which is equal to its transpose. Thus a pattern will produce the 
same response no matter what its orientation. 

Widrow, B., R.G. Winter, and R.A. Baxter, “Learning phenomena in layered neural networks,” in Proceedings 
of the IEEE First International Conference on Neural Networks, 1987. 

Shows how a multiple layer network can be constructed as an “invariance net,” such that 2-D patterns can 
be transformed into patterns invariant to rotation, size, and translation. This is a kind of “brute force” ap- 
proach, such as in Fukushima’s Neocognitron: Weights are copied and then translated, rotated, or scaled 
en mass within a “s lab of ADALINEs in order to produce an invariant response. Widrow has a nice, 
simple rule for training multiple-layer nets called “don’t rock the boat.” 

Wiesel, T.N., “The posmatal development of the visual cortex and the influence of environment,” Narure, vol. 

Describes an experiment where a new-born monkey was deprived of vision in its right eye while the left 
eye was exposed to vertical stripes for 57 hours; The result was that vertically oriented stimuli became 
much more effective in driving cortical cells of the left eye than those of the right eye. Horizontally 
oriented stimuli gave equal responses for both eyes. This suggests that some competition among neurons 
is taking place during early development. Agrees very nicely with competitive learning models. 

Williams, R., “Feature discovery through em-correction learning,” University of California at Sun Diego, In- 
stitute for Cognitive Science Technical Report, vol. 8501, 1985. 

Wilson, H.R. and S.C. Giese, “Threshold visibility of frequency gradient patterns,” Vision Research, vol. 17, 

Wilson, H.R. and J.R. Bergen, “A four mechanism model for spatial vision,” Vision Research, vol. 19, pp. 19- 
32, 1979. 

Proposes that the visual scene is analyzed with four different size-tuned mechanisms (Le., four different 
resolutions). Each mechanism is described by the the difference of two 2-D Gaussian functions - essen- 
tially a centedsurround-type receptive field profile. The four receptive fields have central widths of 3.1’, 
6.2’, 11.7’, and 21’ at the fovea. 

Wilson, H.R., “Discrimination of contour curvature: data and theory,” Journal of the Optical Society of Ameri- 
ca, vol. 2, no. 7, pp. 1191-1199, July 1985. 

Presents the theory, with experimental results to support it, that curvature discrimination is based upon 
mechanisms selective for orientation and spatial frequency. 

229, pp. 583-591, 1982. 

pp. 1177-1 190, 1977. 
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I Witkin, A.P. and J.M. Tenenbaum, “On the role of structure in vision,” in Human und Machine Vision, ed. J. 

Witkin, A.P., “Scale-space filtering,” in Proceedings IJCAI, pp. 1019-1022, 1983. 

Beck et al., Academic Press, 1982. I 

a Describes a method for richly and compactly describing signals over a variety of scales. Signals are 
filtered at several scales (several values of sigma are chosen for a Gaussian convolution kernel) and a 
“scale-space image” is formed by the surface swept out by laying the filtered signals side by side. Extre- 
ma can be identified at come  scales and then traced to finer scales for localization. 

Witkin, A.P., Demetri Terzopoulos, and Michael Kass, “Signal matching through scale space,” International 
Journal of Computer Vision, vol. 1, no. 2, pp. 133-144, 1987. 

Describes a method for matching signals (l-D or 2-D) which have been deformed with respect to each 
other (such as a motion sequence or stereo pair). The matching process is formulated in terms of energy 
minimization, involving constraints on smoothness and similarity. An optimal match is first found at a 
coarse scale and then tracked to a fine scale. Results are presented for a one-dimensional signal, a motion 
sequence, and a stereo pair. 

Wojcik, Zbigniew, “Rough approrimation of shapes in pattern recognition,” Computer Vision, Graphics, and 
Image Processing, vol. 40, pp. 228-249, 1987. 

Attempts to create a “language” for describing shapes from their contours. A small window is passed over 
the contour and features are extracted at each point, such as lines, comers, and intersections. These 
features compose a “sentence“ which can be used to universally recognize the object. 

Yang, Hedong and Clark C. Guest, “Performance of backpropagation for rotation invariant pattern recognition,” 
in Proceedings of the IEEE First International Conference on Neural Networks, vol. IV, pp. 365-370, 
1987. 

Uses backpropagation to train a 2 layer network to recognize 2-D shapes invariant to rotation. Four pat- 
terns, A,T,H, and R, presented on a 16x16 array, are trained in at all rotations in 15 deg. intervals. Thus, 
rotations between intervals are considered distortions of the trained in patterns. The number of units in 
the hidden layer is arbitrarily chosen to be 64. Four grandmother cells are used at the output for recogniz- 
ing each of the four patterns. With some modification in the sigmoid function, all four patterns can be 
recognized at any rotation. 

Zahn, C.T. and R.Z. Roskies, “Fourier descriptors of plane closed curves,” IEEE Transactions on Computers, 

Presents a method for forming an invariant description of plane closed curves. A curve is represented 
parametrically as a function of arc length by the accumulated change in direction of the curve along the 
perimeter. The Fourier coefficients of this function can then be used to uniquely describe the curve invari- 
ant to changes in rotation, translation, or scale (the perimeter is normalized to 2pi). 

Zucker, S.W., “Toward a model of texture,” Computer Graphics und Image Processing, vol. 5, pp. 190-202, 
1976. 

Zucker, S.W., R.A. Hummel, and A. Rosenfeld, “An application of relaxation labeling to line and curve 
enhancement,” IEEE Transactions on Computers, vol. C-26, no. 4, pp. 394-403, 922-929, April 1977. 

VO~. C21, pp. 269-281, 1972. 
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Shows how relaxation labeling can be used to enhance lines and curves in images. An image pixel array 
is considered as a graph of objects with edge orientation labels attached to them (edgels). In the relaxa- 
tion process, each object updates its label to be more compatible with its neighbors, as determined by a set 
of compatibility weights between line labels. The compatibility weights are chosen such that edges of 
similar orientation support one another, while edges of perpendicular orientation antagonize one another; 
“no-line“ labels are supported positively by surrounding “no-line” labels and negatively by line labels 
oriented toward the point. This process converges, in only a few iterations, so that global lines or curves 
are enhanced and “noisy“ elements are suppressed. 



Zucker, S.W. and R.A. Hummel, “Receptive fields and the representation of visual information,” Proceedings 
of the Seventh International Conference on Pattern Recognition, pp. 515-517, 1984. 

Zucker, S.W. and P. Parent, “Multiple-size operators and optimal curve finding,” in Multiresolution Image Pro- 
cessing and Analysis, ed. A. Rosenfeld, pp. 200-210, Springer Verlag, Berlin, 1984. 

Applies relaxation labeling to line and curve enhancement at multiple resolutions. Edges detected by large 
scale operators provide contextual constraint for edges detected by smaller scale operators. 

Zucker, S.W., “Early orientation selection: Tangent fields and the dimensionality of their support,” in Human 
and Machine Vision 11, ed. Azriel Rosenfeld, pp. 335-364, Academic Press, Boston, 1986. 

Considers two types of orientation structure in images: Type I processes, which are ldimensional contours 
such as boundary curves, and Type II processes, which are 2-dimensional flows such as wood grain or 
hair. Algorithms are formulated for infemng a vector field of tangents from such patterns. 
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