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Neuromorphic on‑chip recognition 
of saliva samples of COPD 
and healthy controls using 
memristive devices
Pouya Soltani Zarrin  1*, Finn Zahari2, Mamathamba K. Mahadevaiah1, Eduardo Perez1, 
Hermann Kohlstedt2 & Christian Wenger  1,3

Chronic Obstructive Pulmonary Disease (COPD) is a life-threatening lung disease, affecting millions 
of people worldwide. Implementation of Machine Learning (ML) techniques is crucial for the effective 
management of COPD in home-care environments. However, shortcomings of cloud-based ML 
tools in terms of data safety and energy efficiency limit their integration with low-power medical 
devices. To address this, energy efficient neuromorphic platforms can be used for the hardware-based 
implementation of ML methods. Therefore, a memristive neuromorphic platform is presented in this 
paper for the on-chip recognition of saliva samples of COPD patients and healthy controls. Results 
of its performance evaluations showed that the digital neuromorphic chip is capable of recognizing 
unseen COPD samples with accuracy and sensitivity values of 89% and 86%, respectively. Integration 
of this technology into personalized healthcare devices will enable the better management of chronic 
diseases such as COPD.

Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory lung disease, causing breathing difficul-
ties in patients due to obstructed airflow in lungs1. COPD is one of the main leading causes of death worldwide 
with an annual mortality rate of three million people2. Apart from its economical burden for healthcare systems, 
COPD drastically impacts patients’ life quality by restricting their physical activities. The main cause of COPD in 
developed countries is smoking tobacco, while lung damages caused by air pollution or scarce genetic conditions 
can also lead to the disease1. The most common symptoms of COPD include chronic coughs, chest tightness, 
shortness of breath, and abnormal sputum production. Despite the lack of an effective treatment for COPD, 
an early-stage diagnosis plays a crucial role for the effective management of the disease3. However, majority of 
patients with objective COPD go undiagnosed until late stages in the course of their disease due to the absence 
of necessary Point-of-Care (PoC) technologies. As a result, development of personalized solutions for the COPD 
management has been significantly promoted by contemporary healthcare systems for providing patients with 
appropriate medical assistance in an outpatient clinic or a home-care environment4.

Among various possible methods for the early diagnosis of COPD in a PoC setup, regular screening of dielec-
tric properties of patients’ saliva has shown to provide important information on the disease status5–8. However, 
information obtained on this one single parameter, dielectric properties of saliva, is not sufficient by itself for 
providing a comprehensive diagnostic solution9,10. In other words, the accurate diagnosis of the disease based 
on this approach is only possible by concurrent consideration of various personal–medical parameters related 
to patients. These parameters include demographic information of patients such age, gender, and the smoking 
background. To address this issue, Machine Learning (ML) tools have been applied on the rudimentary infor-
mation of saliva properties together with demographic parameters to identify the diagnostic status of patients 
in a PoC environment9,10.

ML tools applied on the clinical data acquired from PoC devices enable the efficient management of chronic 
diseases such as COPD. The scope of ML tools goes far beyond classical statistical analyses performed in med-
icine, providing accurate and real-time predictions on the health status of patients or the progress of their 
diseases11,12. In addition, availability of numerous health-related data, thanks to advancements in wearable tech-
nologies and internet-of-things, have facilitated the better integration of ML with healthcare devices in PoC 
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environments13. Therefore, constant and remote monitoring of patients for the management of chronic and 
degenerative conditions, monitoring their rehabilitation progress, and predicting critical–emergency health 
conditions have become a reality14. For example, tracking heart activities of elderly, monitoring blood glucose 
levels in diabetic patients, and observing the rehabilitation progress of Parkinson’s diseased patients are all among 
recent applications of ML in PoC11,13–16. Moreover, by taking advantage of ML tools, valuable information can 
be extracted from the vast amount of user data for identifying previously unknown disease trends or diagnostic 
links and providing comprehensive treatment plans and recommendations for healthcare specialists14,17.

Although the astonishing performance of ML for various studies, shortcomings of cloud-based techniques 
have limited their real-world applications in medicine18. These shortcomings include data safety concerns related 
to securing sensitive medical data in a single database, susceptible to malicious attacks or scandals. In addition, 
complexities associated with cloud communications such as robustness against interference is another hurdle, 
requiring precise design for the short-range (device to smartphone via bluetooth) and long-range (smartphone 
to backend using internet) communications for transferring data from medical devices to the backend13. Fur-
thermore, technical aspects of the cloud-based ML such as wide bandwidth requirements and low latency plays 
vital role for medical applications. For example, pre-processing and data curation—compression of the acquired 
data, prior to their extraction from a device towards the backend, is remarkably challenging for providing 
real-time information to users with the least possible delay. Last but not least, cloud-based techniques require 
immense energy consumption and enormous computational power, restricting their application for low-power 
PoC devices9,19.

Abovementioned shortcomings of the cloud-based ML in healthcare can possibly be addressed using neu-
romorphic platforms at the edge19,20. A neuromorphic platform offers a hardware-based imitation of neural 
networks by using actual electrical components as neurons and synapses21. Real-time analysis of data in a less 
time consuming manner with a smaller time delay is far more practical by bringing data post-processing from 
the backend onto a neuromorphic chip. Furthermore, securing sensitive medical data on a single chip, without 
cloud communications or backend storage, complies better with patient privacy regulations. In addition, since 
neuromorphic platforms process data near their source, they are relatively better immune against false operations 
and offer a large fault tolerance for medical applications. In other words, robustness of these technologies is vital 
for near-a-patient applications, where accessing a sufficient internet coverage is unfeasible. Moreover, energy-
efficient hardware-based neuromorphic systems require less computational power, making them an adequate 
technology for edge-computing required in PoC medical devices22–26.

Considering remarkable advantages of neuromorphic chips, they have been recently investigated for various 
ML applications including in medicine. As a an example, Cai et al. have introduced a memristor-based neuromor-
phic computing chip for the breast cancer data classification20. The developed chip demonstrated high accuracy 
of 94.6% for the classification of benign and malignant samples within the breast cancer screening dataset. The 
computationally-efficient technology has enabled the real-time processing of data with high speed and low 
energy consumption. Similarly, Choi et al. have proposed a memristor-based neuromorphic crossbar array for the 
online clustering of breast cancer data in an unsupervised fashion27. In this work, principal component analysis 
algorithm was implemented on the chip for effectively classifying sensory data with 97.6% accuracy. Online 
learning was successfully achieved in the developed memristor network, demonstrating the practicality of using 
neuromorphics for performing complex ML algorithms required for data-intensive tasks such as medical pattern 
recognition. In another study, a spiking neural network was implemented on a neuromorphic chip for the real-
time discrimination of electromyography signals for the hand gesture classification28. The proposed low-power 
technique provided an accuracy of 84% for the recognition of various gestures, making it a suitable technology 
for remote rehabilitation and diagnostic setups required for patients with Parkinson’s disease. Park et al. have 
reported the application of memristive neuromorphic synapses as a Hardware-based Neural Network (HNN) 
for the Electroencephalography (EEG) signal recognition29. Human thought patterns related to three different 
vowels were recorded using EEGs, while a subject imagined speaking them. Subsequently, the proposed memris-
tive HNN system was applied for learning and recognizing patterns of the acquired EEG signals. The developed 
device provided high accuracy for extracting features through recorded EEG signals during speech imagination 
experiments. Apart from the mentioned biomedical applications, neuromorphic chips have been extensively 
used for imaging scenarios including digit recognition30–35. As reported by Wenger et al., learning and recogni-
tion of the MNIST dataset digits have been experimentally demonstrated by taking advantage of the inherent 
stochasticity of Complementary Metal Oxide Semiconductor (CMOS)-integrated memristive devices30,31. A 
notable recognition rate of 89%, for a MNIST subset, was achieved in this work, demonstrating the potential of 
the proposed Resistive Random Access Memory (RRAM) technology for performing complex ML tasks.

Although neuromorphic systems offer an alternative platform for edge-computing required for the execution 
of ML algorithms on portable medical devices, their time-consuming training procedure for learning complex 
medical patterns is a significant drawback36,37. Moreover, deployment of pre-trained sophisticated deep learning 
networks onto neuromorphic chips, with rudimentary network structures, leads to lower precision, increased 
latency, and degraded energy efficiency and accuracy19,38. Therefore, development of a neuromorphic-compatible 
network topology is significantly important for pre-training a simulation-based Artificial Neural Network (ANN) 
prior to its deployment on a hardware-based neuromorphic platform. Backend training of a neuromorphic-
compatible ANN, on the cloud, reduces the training time required for learning complex medical patterns; while, 
implementation of the pre-trained network on a neuromorphic platform enables the real-time recognition and 
classification of medical data on a low-power PoC device36,37.

In our previous study, a neuromorphic-compatible ANN was developed for the COPD pattern recognition 
using synthesized data9. However, the hardware implementation of the model on a neuromorphic platform and 
its in-vitro performance evaluation using real clinical data were missing. Therefore, the objective of this work 
was to train our previously developed ANN simulation for the classification of saliva samples of COPD patients 



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19742  | https://doi.org/10.1038/s41598-020-76823-7

www.nature.com/scientificreports/

and Healthy Controls (HC) using real clinical data and to implement the trained ANN on IHP’s memristive 
hardware platform for on-chip recognition. The combination of the simulation-based training and hardware-
based recognition facilitates the better integration of neuromorphics with PoC medical devices, required for 
the management of chronic diseases such as COPD. Moreover, neuromorphic-equipped healthcare technologies 
provide the best platform for patients to take advantage of ML-based medicine, while having control over their 
medical data and privacy.

Methods
Data preparation.  The open access Exasens dataset, available at the UCI machine learning repository 
(https​://archi​ve.ics.uci.edu/ml/datas​ets/Exase​ns), was used in this study for training and evaluating the devel-
oped model for the classification and recognition of saliva samples of COPD patients and HC10. This novel data-
set contains information on hundred saliva samples collected from four groups of respiratory patients including: 
COPD (40 samples), HC (40 samples), asthma (10 samples), and respiratory infected subjects without COPD 
or asthma (10 samples). Attributes of the dataset, used for the classification of subjects, include demographic 
information of patients (age, gender, and smoking status) as well as dielectric properties (Minimum value for 
the real part of permittivity) of the characterized saliva samples for every class. For computational purposes, 
non-quantitative attributes—diagnosis, gender, and smoking status—were converted into numerical values 
using following labels: diagnosis (COPD (1)–HC (0)), gender (male (1)–female (0)), smoking status (smoker 
(3)–ex-smoker (2)–non-smoker (1)). Subsequently, analog values of these four attributes were thresholded and 
converted into 23 binary bits (Gender (1), smoking status (3), age (9), dielectric permittivity (10)), as shown in 
Fig. 1. Binarization of attributes of this small-sized dataset has shown to reduce overfitting and noise, and to 
improve the performance of ML tools for the classification of COPD and HC samples10,39. In addition, consider-
ing the small size of the investigated dataset, 80 samples for two classes of COPD and HC, 5-fold cross-valida-
tion method was implemented for the evaluation of the ANN model, thus preventing overfitting and providing 
reliable and generalizable results. Therefore, for every cross-validation fold, the dataset was split into different 
test–train subsets with the ratio of 20–80%, respectively. The test-fraction, with unseen data points during model 
training, was considered as an external validation dataset for the evaluation of models. Data preparations and 
ML implementations were performed on the JupyterLab environment using Keras 2.2.5 and Scikit-learn 0.22 
libraries of Python40.

Artificial neural network.  After data preparations, a dense ANN with one hidden-layer and one read-out 
layer was developed for the classification of COPD and HC samples, as shown in Fig. 2. The input layer of the 
network consisted of 23 neurons, considering binarized attributes of the dataset. To replicate the intrinsic struc-
ture of the intended neuromorphic platform, a hidden layer with 4 neurons and a sigmoid activation function 
was modeled. The read-out layer, with a sigmoid activation function, consisted of two neurons for two possible 
classes of COPD and HC. A dropout with 20% probability was applied to the hidden-layer for the overfitting 
prevention. Adam optimization algorithm, with 0.0001 learning rate, and a cross entropy error function were 
used for training network in the backend using the Google Colab GPU platform41. The developed ANN model 

Figure 1.   Conversion of analog attributes (gender, smoking status, age, and dielectric properties) into 23 binary 
bits.

https://archive.ics.uci.edu/ml/datasets/Exasens
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was trained for 3000 epochs with a batch size of 10, using the train-subset of every cross-validation fold. Network 
parameters including weights and biases were computed and optimized during the training phase and their final 
analog values were recorded for every fold. Considering the fact that the intended neuromorphic chip consists 
of digital memristive devices, multilevel thresholding of network analog parameters into 10 levels was necessary 
for the deployment of the trained ANN onto the hardware platform. Therefore, calculated weights and biases 
of the trained ANN were thresholded into 10 levels to comply hardware requirements, as shown in Fig. 3. For 
this purpose, the absolute maximum value among calculated parameters was identified and divided by five to 
determine the resolution of thresholding levels. As shown in Fig. 3, the calculated threshold was used with posi-
tive and negative signs for the 10-level segmentation of network parameters with positive and negative values, 
respectively. After calculating thresholding steps, network parameters with analog values were shifted up to the 
nearest threshold value (for positive levels and equivalent for negative levels), representing one digital device per 
level. It is noteworthy that positive and negative levels are interpreted as devices with different current directions 
for the hardware implementation. Finally, converted weights and biases of the network with 10-level resolution 
were recorded and extracted for the deployment on the memristive neuromorphic platform, as shown in Fig. 3. 
All metrics and models are available in details at https​://githu​b.com/Pouya​-SZ/Bione​uromo​rphic​s.

Hardware implementation.  The hardware implementation of the developed model was performed on 
amorphous HfO2 memristors which are CMOS-integrated 4-kbit RRAM arrays fabricated using the 250 nm 
CMOS technology at IHP42–44. The integration in CMOS technology is an important step towards fully inte-
grated neuromorphic circuits. The array consists of 64× 64 memristive cells in a 1-Transitor-1-Resistor (1T-1R) 

Figure 2.   ANN simulation topology, with one hidden-layer, for the classification of saliva samples of COPD 
patients and HC.

https://github.com/Pouya-SZ/Bioneuromorphics


5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19742  | https://doi.org/10.1038/s41598-020-76823-7

www.nature.com/scientificreports/

configuration. The packaged chip is shown in Fig. 4a. Devices can be switched between two distinct states, i.e. 
low resistance state (LRS) and high resistance state (HRS), by the formation and dissolution of a conductive 
filament consisting of oxygen vacancies. Nominal read-out currents are 30µA and 5µA at 0.2 V for LRS and 
HRS, respectively. The evolution of mean read-out currents of 128 devices is shown in Fig. 4b. Here, two distinct 
states are clearly present for 1000 switching cycles. Mean read-out currents of 30.8µA and 3.2µA at 0.2 V for 
LRS and HRS, respectively, are changing marginally to 31.6µA and 3.0µA . Mean read-out currents for different 
read-out voltages Vread ≤ 0.2V are shown in Fig. 4c for 128 devices being in LRS and HRS, respectively. The 
resistance does not scale linearly with the voltage42. Using a sufficient high voltage of 1.3 V or higher leads to reli-
able switching to LRS while using a sufficient low voltage of −1.6 V or lower leads to reliable switching to HRS. 
An even better control on the switching event can be achieved by using the Incremental Step Pulse with Verify 
Algorithm (ISPVA), which was used in this work45. It should be noted that applying voltage pulses with lower 
absolute value of the amplitude leads to stochastic switching between resistance states, which can be exploited 
for stochastic learning of analog data30,31. The stochasticity in amorphous devices is lower than in polycrystal-
line devices. This can most probably be attributed to a more homogenous defect distribution in the amorphous 
devices43, which is why these devices are used for the work described here. A thorough characterization of the 
devices in terms of switching voltages, endurance, yield and retention is given in31,43.

For the deployment of the thresholded model with 10 levels, a mixed-signal neuromorphic circuit with 
software-based neurons and hardware synapses was used similar to those shown in30. The RRAM chip was con-
nected via a standard 64 pin integrated circuit socket to a Printed Circuit Board (PCB). Visual Basic was used to 
simulate neurons on a conventional computer and to control the experimental setup. Furthermore, an Arduino 
Mega 2560 microcontroller board was used to serve the address pins of the RRAM chip. Read-out and switching 
pulses were applied using an Agilent E5263A Source Measurement Unit (SMU).

Considering the topology of the developed ANN model (Fig. 2) with one hidden layer and one read-out 
layer as well as four and two neurons per layer, respectively, 106 parameters (i.e. synaptic weights and biases) 
were required for linking network layers. On the other hand, since every memristive device on the hardware 
represents one level of the thresholded parameters, 1060 memristive devices were required on the hardware for 
the implementation of the developed COPD recognition model with 10-level resolution. Resistance states of 
1060 randomly chosen functional devices on a single chip were set to the HRS or LRS, respective to pre-trained 
weights. Every network parameter is represented by the combination of 10 devices so that the total value of the 
parameter is the sum of all 10 device currents read-out with voltages up to 0.2 V. Here, five devices are read-out 

Figure 3.   Multilevel thresholding of network analog parameters into 10 levels for complying hardware 
implementation requirements of the digital neuromorphic chip.
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with a positive voltage and five device are read-out with a negative voltage leading to positive and negative cur-
rents contributing to the total value of the network parameter. The minimum absolute value of one synaptic 
weight or bias is reached, when one device is in LRS and all other nine devices are in HRS leading to a nominal 
current of 1× 30µA+ 4× 5µA− 5× 5µA = 25µA determined with 0.2 V. The maximum absolute value is 
achieved by switching all devices corresponding to the same read-out polarity to LRS while all others are in HRS. 
Thus, a nominal current of 5× 30µA− 5× 5µA = 125µA is flowing. In between, equidistant discrete states 
can be achieved (shown in Fig. 5). Devices connecting input layer and hidden layer are read-out with +0.2V and 
−0.2V , while devices connecting hidden layer and read-out layer are read-out with voltage amplitudes between 
–0.2 V and +0.2 V as it is explained below. This leads to a non-linear distortion of network parameters, because 
of the non-ohmic conduction mechanism depicted in Fig. 4c.

After the successful implementation of pre-trained weights on the hardware, the test-subset of data was used 
to evaluate the performance of the neuromorphic model for the recognition of COPD and HC samples. For 
the recognition of COPD samples with the mixed-signal approach, 23 input bits of the test-subset data were 
applied to simulated neurons on the input layer, as shown in Fig. 6. Input bits with a value 1 were applied to the 
network by voltage pulses of ±0.2V (i.e. +0.2V or −0.2V for devices assigned to a positive or negative contribu-
tion, respectively, as explained above), while no voltage was applied for a 0 value input bit. As shown in Fig. 6, 
output neurons of every subarray are perceptrons with a sigmoidal activation function, which receive the sum 
of current values passing through devices connected together with a specific bias value. The read-out of device 
currents is done serial and they are summed up in software. A parallel read-out would require an application 
specific chip design. Nevertheless, a proof-of-principle for using devices in a hardware neuromorphic circuit 
can be given using serial read-out. These current values are normalized by the factor n to the maximum value of 
the pre-trained analog network to guarantee the sigmoid function is activated with a reasonable range of values. 
Thus, the maximum current of 125µA corresponds to the maximum pre-trained analog value. An activated 
perceptron i of the second layer is generating an analog output signals Xi within the interval of [0, 1]. These are 
applied to devices connecting layer 2 and 3 as voltage pulses with amplitudes Xi · ±0.2V with a precision of 10 
mV. Output values of the third layer (read-out layer) perceptrons are denoting whether a test sample belongs to 
COPD or HC categories. This realization is in agreement with the theory of neural networks that the weighted 
sum of inputs determine the value of a perceptron neuron in the subsequent layer, as demonstrated in Fig. 2. 
Therefore, applying test-subsets of COPD and HC with different input patterns generated two different current 

Figure 4.   (a) 4-kbit CMOS-integrated RRAM array of IHP mounted on a PCB as synaptic weights in mixed-
signal neuromorphic circuit; (b) Mean values and standard deviations of read-out currents of 128 devices 
integrated in a 4-kbit chip read-out at 0.2 V for 1000 switching cycles; (c) Read-out currents dependent on the 
read-out voltage amplitude and polarity. Red dots and black squares denoting mean values of 128 devices in 
LRS and HRS, respectively, while error bars are depicting standard deviations. The solid lines are showing linear 
resistors with resistance values similar to devices measured at +0.2 V in LRS (red) and HRS (black).
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values activating the read-out layer perceptrons of the neuromorphic network leading to the hardware-based 
recognition of these two classes.

Performance assessment.  While the train-subset of every cross-validation fold (64 data points out of 
overall 80) was used for training the ANN and computing the 10-level model topology, the test-subset, with 16 
data points, was considered as an external validation dataset for the performance evaluation of models for the 
recognition of saliva samples of COPD patients and HC. Tables 1, 2, and 3 report the 5-fold cross-validation 
performance of following models, respectively: ANN with analog parameters, ANN model with 10-level resolu-
tion topology, and the HNN with 10-level resolution deployed on the memristive neurmorphic chip. The perfor-
mance measures reported in these tables include accuracy, sensitivity, specificity, and precision for every cross-
validation fold as well as the average of all five folds. The reported accuracy measure in these tables indicates the 
performance of a model for correctly recognizing unseen test data, which was calculated as the percentage of 
true positives (correctly identified COPD) plus true negatives (correctly identified HC) out of all assessments. 
The sensitivity of a model was calculated as the proportion of True Positives (TP) out of all diseased cases; 
while the specificity value shows the number of True Negatives (TN) over number of TNs and False Positives 
(FP). Precision criterion shows the ratio of true positives over true plus false positives (incorrectly identified 
COPD). It should be noted that the hardware realization experiments were repeated five times for every single 
cross-validation fold to investigate the repeatability of measurements considering undesired effects of device-to-
device variability and failed switching events. Therefore, results reported in Table 3 represent the average of five 
repetition for every single cross-validation fold. In addition, Fig. 7 demonstrates confusion matrices for a single 
cross-validation fold (fold-5).

Figure 5.   Assignment of memristive devices for the appropriate replication of simulation weights on the 
hardware, considering current values of 25µA , 50µA , 75µA , 100µA , and 125µA for 1, 2, 3, 4, and 5 LRS levels 
(equivalent for negative levels), respectively.
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Results
As reported in Table 1, the ANN simulation with analog parameters provided a high accuracy of 90% for the 
recognition of unseen saliva samples of COPD patients and HC. In addition, sensitivity, specificity, and preci-
sion values of 92.5%, 87.5%, and 89.3%, respectively, have been reported for its 5-fold cross-validation perfor-
mance, making it a reliable model for the in-vitro diagnosis of COPD. On the other hand, Table 2 presents the 

Figure 6.   Application of 23 input bits of the test-subset data into simulated neurons for the recognition of 
COPD and HC samples. Input bits with a value 1 were applied to the network by voltage pulses of ±0.2V (i.e. 
+0.2V or −0.2V for devices assigned to a positive or negative contribution, respectively), while no voltage was 
applied for a 0 value input bit. Output neurons of every subarray are perceptrons with a sigmoidal activation 
function, which receive current values as the sum of all input voltages weighted with the resistivity values of 
individual memristive cells. These input currents are normalized by the factor n for mapping to a reasonable 
range for the activation of perceptrons. The output of the first perceptron layer is mapped to voltage pulses with 
variable amplitudes.

Table 1.   Performance of the ANN with analog parameters.

K-fold Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

Fold 1 87.5 100 75 80

Fold 2 93.75 87.5 100 100

Fold 3 81.25 87.5 75 77.78

Fold 4 93.75 87.5 100 100

Fold 5 93.75 100 87.5 88.89

Average 90 92.5 87.5 89.3

Table 2.   Performance of the ANN with 10-level resolution.

K-fold Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

Fold 1 87.5 87.5 87.5 87.5

Fold 2 93.75 87.5 100 100

Fold 3 81.25 87.5 75 77.78

Fold 4 93.75 87.5 100 100

Fold 5 81.25 75 87.5 85.7

Average 87.5 85 90 90.2
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performance assessment of the ANN simulation with the 10-level resolution topology. Although a slight perfor-
mance degradation compared to its original analog structure, the ANN model with 10-level resolution provided 
acceptable accuracy, sensitivity, specificity, and precision values of 87.5%, 85%, 90%, and 90.2%, respectively, for 
the recognition of unseen samples within the test-subset. These results are along with the fact that the multilevel 
thresholding of a network’s parameters impairs its recognition performance with respect to its resolution. In a 
similar manner, deployment of the model with 10-level resolution on the memristive neuromorphic platform 
has led to an on-chip recognition accuracy of 89%, indicating the reliability of the approach for the management 
of COPD in real-world applications (Table 3). In addition, high sensitivity, specificity, and precision values of 
86%, 92%, and 92% have been reported for the on-chip recognition of 16 unseen test samples using the RRAM 
neuromorphic platform, making it a suitable technology for the implementation of ML techniques on low-
power PoC medical devices. In particular, the network could reliably cope with the device-to-device variability 
of RRAM devices. Mean values of read-out currents were 3.9 ( ±1.0 ) µA and 35.5 ( ±3.7 ) µA for HRS and LRS 
devices, respectively. Additional to the device-to-device variability, failed switching events led to devices in the 
wrong resistance state. On average 2.68 of devices (i.e. 0.25%) were in the wrong state in each experimental run. 
Furthermore, the non-linear response of devices connecting layer 2 and 3 to voltage pulses with amplitudes 
between −0.2V and +0.2V (shown in Fig. 4c) did not strongly influence the accuracy. Even though all three 
mechanisms, i.e. device-to-device variability, failed switching events, and non-linear read-out may have affected 
the recognition performance of experiments, the overall average recognition rate was only slightly below the 
simulation with analog values. Nevertheless, in order to reduce the performance gap between the ANN simula-
tion and its hardware-based replication on the chip, development of binary ANN models is necessary in the 
future46,47. Alternatively, analog neuromorphic platforms, capable of replication of analog parameters on-chip, 
can also be used to address this issue48.

Figure 7 shows confusion matrices for the fifth cross-validation fold for the recognition of COPD and HC 
samples. The high accuracy, sensitivity, specificity, and precision for both simulation- and hardware-based ML 
models make them a promising tool for the recognition and management of COPD in PoC environments. There-
fore, acquired results illustrate the practicality of using a memristive neuromorphic platform for the on-chip 

Table 3.   Performance of the memristive neuromorphic chip.

K-fold Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

Fold 1 88 90 88 88

Fold 2 95 88 100 100

Fold 3 81 88 75 78

Fold 4 94 88 98 97

Fold 5 88 75 100 100

Average 89 86 92 92

Figure 7.   Confusion matrices for a single cross-validation fold (fold 5) for the recognition of COPD and HC 
samples, demonstrating the calculated sensitivity, precision, and specificity measures.
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recognition and classification of saliva samples of COPD patients and HC using real clinical data, which was 
proposed as the objective of this work.

Results reported in Tables 1, 2, and 3 present similar trends for all five cross-validation folds, indicating the 
reliability of the model performance in terms of overfitting. However, similar to any ML study on a small-sized 
dataset, generalizability of presented results to a larger population of samples is the main limitation of this 
work, necessitating the extensive collection of data for the management of COPD. Nonetheless, to the best of 
our knowledge, there is no other comprehensive dataset available up to date, which can be used for training and 
evaluating the proposed neuromorphic-oriented ML models for COPD detection in this work. Therefore, we 
consider our study as a stepping stone to future studies in the field.

Neuromorphic platforms address the high energy consumption shortcoming of cloud-based ML techniques 
for edge-computing applications. The read-out of all synaptic weights throughout experiments consumed on 
average 614.2 ( ±60.3 ) nJ per sample with a read-out pulse duration of 500µs (i.e. the shortest pulse duration of 
the used Agilent E5263A SMU). This could be significantly reduced to 12.3 ( ±1.2 ) nJ using 10µs pulses, which 
also allows a reliable read-out for utilized devices44. The energy efficiency of neuromorphic systems makes them 
an adequate technology for the integration of ML tools with low-power PoC medical devices. Hence, additional 
circuitry for a complete hardware realization (e.g. perceptrons) have to be implemented in low power electron-
ics in the future.

Discussion
It is noteworthy that the recognition accuracy of the neuromorphic HNN model improves with a greater num-
ber of thresholding levels, thus better replicating its original analog structure. However, a greater number of 
thresholding levels requires larger number of memristive devices on the hardware depending on the complexity 
of the original network and its number of parameters, thus restricting the resolution that can be chosen for the 
hardware deployment with respect to that specific neuromorphic hardware (e.g. 4096 devices for IHP’s RRAM 
chip). In addition, greater number of devices on the hardware consume more energy, while requiring a larger 
chip size and a longer time span for training and executing models depending on the internal design of the chip. 
Therefore, the trade-off between the accuracy of models and their on-chip efficacy in terms of power consump-
tion and chip size for various thresholding resolutions need to be taken into account for determining the most 
optimum resolution.

As previously highlighted, for the sake of time efficacy, no learning or training was performed on the neu-
romorphic chip in this work. This is due to the fact that training a simulation-based model for many thousand 
iterations in the backend is far more practical. For instance, training the ANN model, in this study, for the clas-
sification of COPD and HC samples required an average time span of 250 seconds for 3000 learning epochs. 
Therefore, this work illustrates promising results for the practicality of using pre-trained neuromorphic chips in 
complex real-world applications, such as imaging, with time-consuming training requirements. Nevertheless, 
RRAM neuromorphic systems can also be used for on-chip learning and adaptation to new input patterns by 
developing network structures and acquiring algorithms30,37. Adaptability of these chips to an individual patient 
data is significantly important for applications such as the epileptic seizure prediction, where developing a gener-
alizable ML model is not possible38. Hence, by taking advantage of neuromorphic-based ML techniques, devel-
oping personalized solutions for the management and diagnosis of chronic diseases such as COPD is feasible.

Notable results of this work imply the feasibility of using neuromorphic-based ML techniques for the enhance-
ment of PoC healthcare solutions for the management of COPD. Energy-efficient neuromorphic systems, used in 
this work, are expected to revolutionize the ML-based medicine in the future by bringing data post-processing 
from the backend onto the chip, thus providing accurate and real-time predictions on the health status of patients. 
Furthermore, neuromorphic-equipped medical devices will better protect users’ sensitive medical data without 
cloud communication requirements. Moreover, implementation of novel meta learning algorithms, such as 
few-shot learning, on neuromorphic platforms will enable the rapid adaptation and real-time learning in these 
systems with a few data points and the least possible computation39,49. Example of such applications, where online 
learning and adaptation of a ML model is crucial, include autonomous driving, surgical robotics, personalized 
medicine, and precision diagnostic39,49–52.

In conclusion, this work investigated the concept of on-chip recognition of saliva samples of COPD patients 
and HC using a memristive neuromorphic platform. A hardware-friendly artificial neural network simulation 
was developed and trained in the backend for the classification of COPD and HC samples using real clinical 
data. Subsequently, analog parameters of the trained model were thresholded into 10 levels and were deployed 
on a memristive neuromorphic platform for on-chip recognition purposes. The neuromorphic chip with 10-level 
resolution provided a remarkable accuracy of 89% for the on-chip recognition of COPD and HC samples, 
offering an alternative approach to cloud-based ML methods required for the management of COPD in PoC 
environments. As the next step, a binary ANN model for the prediction of epileptic seizure will be developed and 
deployed on the introduced memristive neuromorphic system for the on-chip forecasting of epilepsy scenarios 
using low-power healthcare wearables.

Data availability
Data used in this work are available publicly at the UCI machine learning repository under the open access 
Exasens dataset https​://archi​ve.ics.uci.edu/ml/datas​ets/Exase​ns. All metrics and models of this work are acces-
sible at https​://githu​b.com/Pouya​-SZ/Bione​uromo​rphic​s.
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