263 research outputs found

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    A conformance test framework for the DeviceNet fieldbus

    Get PDF
    The DeviceNet fieldbus technology is introduced and discussed. DeviceNet is an open standard fieldbus which uses the proven Controller Area Network technology. As an open standard fieldbus, the device conformance is extremely important to ensure smooth operation. The error management in DeviceNet protocol is highlighted and an error injection technique is devised to test the implementation under test for the correct error-recovery conformance. The designed Error Frame Generator prototype allows the error management and recovery of DeviceNet implementations to be conformance tested. The Error Frame Generator can also be used in other Controller Area Network based protocols. In addition, an automated Conformance Test Engine framework has been defined for realising the conformance testing of DeviceNet implementations. Automated conformance test is used to achieve consistent and reliable test results, apart from the benefits in time and personnel savings. This involves the investigations and feasibility studies in adapting the ISO 9646 conformance test standards for use in DeviceNet fieldbus. The Unique Input/Output sequences method is used for the generation of DeviceNet conformance tests. The Unique Input/Output method does not require a fully specified protocol specification and gives shorter test sequences, since only specific state information is needed. As conformance testing addresses only the protocol verification, it is foreseen that formal method validation of the DeviceNet protocol must be performed at some stage to validate the DeviceNet specification

    An Approach to remote process monitoring and control

    Get PDF
    The purpose of this thesis is to present an approach to remote monitoring and operation of distributed real time process control systems. Conventional monitoring of process control systems currently requires a great deal of close supervision from trained personnel located on-site. In many cases, researchers, developers or maintenance personnel cannot be at every location where such a system is installed. Currently, a standardized architecture for remote access to such systems is not available. In addition, most of these systems are very expensive and under-utilized. Researchers would benefit by having access to different parts of a system concurrently The benefits of a layered architecture for remote process monitoring and control will be analyzed through the use of a demonstration system that was realized to examine the real time performance of the interconnection mechanisms between the process controller(s) and the system monitoring interfaces. Low level, real-time process control is achieved by using specialized networking schemes called fieldbusses to interconnect all control devices. In this system, fieldbus controllers will also assume the role of servers connected to the Internet, in order to make device information available to any local or remote clients. In the proposed architecture, remote clients are user interfaces, implemented as JAVA applets, which can be accessed with a web browser. The proposed system architecture allows for client interfaces to gain remote access to various types of fieldbusses transparently

    Hierarchical Control of the ATLAS Experiment

    Get PDF
    Control systems at High Energy Physics (HEP) experiments are becoming increasingly complex mainly due to the size, complexity and data volume associated to the front-end instrumentation. In particular, this becomes visible for the ATLAS experiment at the LHC accelerator at CERN. ATLAS will be the largest particle detector ever built, result of an international collaboration of more than 150 institutes. The experiment is composed of 9 different specialized sub-detectors that perform different tasks and have different requirements for operation. The system in charge of the safe and coherent operation of the whole experiment is called Detector Control System (DCS). This thesis presents the integration of the ATLAS DCS into a global control tree following the natural segmentation of the experiment into sub-detectors and smaller sub-systems. The integration of the many different systems composing the DCS includes issues such as: back-end organization, process model identification, fault detection, synchronization with external systems, automation of processes and supervisory control. Distributed control modeling is applied to the widely distributed devices that coexist in ATLAS. Thus, control is achieved by means of many distributed, autonomous and co-operative entities that are hierarchically organized and follow a finite-state machine logic. The key to integration of these systems lies in the so called Finite State Machine tool (FSM), which is based on two main enabling technologies: a SCADA product, and the State Manager Interface (SMI++) toolkit. The SMI++ toolkit has been already used with success in two previous HEP experiments providing functionality such as: an object-oriented language, a finite-state machine logic, an interface to develop expert systems, and a platform-independent communication protocol. This functionality is then used at all levels of the experiment operation process, ranging from the overall supervision down to device integration, enabling the overall sequencing and automation of the experiment. Although the experience gained in the past is an important input for the design of the detector's control hierarchy, further requirements arose due to the complexity and size of ATLAS. In total, around 200.000 channels will be supervised by the DCS and the final control tree will be hundreds of times bigger than any of the antecedents. Thus, in order to apply a hierarchical control model to the ATLAS DCS, a common approach has been proposed to ensure homogeneity between the large-scale distributed software ensembles of sub-detectors. A standard architecture and a human interface have been defined with emphasis on the early detection, monitoring and diagnosis of faults based on a dynamic fault-data mechanism. This mechanism relies on two parallel communication paths that manage the faults while providing a clear description of the detector conditions. The DCS information is split and handled by different types of SMI++ objects; whilst one path of objects manages the operational mode of the system, the other is to handle eventual faults. The proposed strategy has been validated through many different tests with positive results in both functionality and performance. This strategy has been successfully implemented and constitutes the ATLAS standard to build the global control tree. During the operation of the experiment, the DCS, responsible for the detector operation, must be synchronized with the data acquisition system which is in charge of the physics data taking process. The interaction between both systems has so far been limited, but becomes increasingly important as the detector nears completion. A prototype implementation, ready to be used during the sub-detector integration, has achieved data reconciliation by mapping the different segments of the data acquisition system into the DCS control tree. The adopted solution allows the data acquisition control applications to command different DCS sections independently and prevents incorrect physics data taking caused by a failure in a detector part. Finally, the human-machine interface presents and controls the DCS data in the ATLAS control room. The main challenges faced during the design and development phases were: how to support the operator in controlling this large system, how to maintain integration across many displays, and how to provide an effective navigation. These issues have been solved by combining the functionalities provided by both, the SCADA product and the FSM tool. The control hierarchy provides an intuitive structure for the organization of many different displays that are needed for the visualization of the experiment conditions. Each node in the tree represents a workspace that contains the functional information associated with its abstraction level within the hierarchy. By means of an effective navigation, any workspace of the control tree is accessible by the operator or detector expert within a common human interface layout. The interface is modular and flexible enough to be accommodated to new operational scenarios, fulfil the necessities of the different kind of users and facilitate the maintenance during the long lifetime of the detector of up to 20 years. The interface is in use since several months, and the sub-detector's control hierarchies, together with their associated displays, are currently being integrated into the common human-machine interface

    Web service control of component-based agile manufacturing systems

    Get PDF
    Current global business competition has resulted in significant challenges for manufacturing and production sectors focused on shorter product lifecyc1es, more diverse and customized products as well as cost pressures from competitors and customers. To remain competitive, manufacturers, particularly in automotive industry, require the next generation of manufacturing paradigms supporting flexible and reconfigurable production systems that allow quick system changeovers for various types of products. In addition, closer integration of shop floor and business systems is required as indicated by the research efforts in investigating "Agile and Collaborative Manufacturing Systems" in supporting the production unit throughout the manufacturing lifecycles. The integration of a business enterprise with its shop-floor and lifecycle supply partners is currently only achieved through complex proprietary solutions due to differences in technology, particularly between automation and business systems. The situation is further complicated by the diverse types of automation control devices employed. Recently, the emerging technology of Service Oriented Architecture's (SOA's) and Web Services (WS) has been demonstrated and proved successful in linking business applications. The adoption of this Web Services approach at the automation level, that would enable a seamless integration of business enterprise and a shop-floor system, is an active research topic within the automotive domain. If successful, reconfigurable automation systems formed by a network of collaborative autonomous and open control platform in distributed, loosely coupled manufacturing environment can be realized through a unifying platform of WS interfaces for devices communication. The adoption of SOA- Web Services on embedded automation devices can be achieved employing Device Profile for Web Services (DPWS) protocols which encapsulate device control functionality as provided services (e.g. device I/O operation, device state notification, device discovery) and business application interfaces into physical control components of machining automation. This novel approach supports the possibility of integrating pervasive enterprise applications through unifying Web Services interfaces and neutral Simple Object Access Protocol (SOAP) message communication between control systems and business applications over standard Ethernet-Local Area Networks (LAN's). In addition, the re-configurability of the automation system is enhanced via the utilisation of Web Services throughout an automated control, build, installation, test, maintenance and reuse system lifecycle via device self-discovery provided by the DPWS protocol...cont'd

    DESIGNING AND PROGRAMMING AUTOMATION IN DISTRIBUTED CONTROL SYSTEM ENVIRONMENT

    Get PDF
    This thesis studies distributed control systems on a general level followed by experimental parts of designing and programming assigned cases. The objective of those cases were to create control applications within the system for a hydrogen sulfide desuplhurization system and a sulfur dioxide distribution tank. The thesis was commissioned by Freeport Cobalt Ltd. chemical plant as part of plant-wide automation system upgrade. The goal was to create applications which would be efficient, safe, and user-friendly. The experimental part was completed with the ABB Industrial IT 800xA distributed control system and its composition was also used as a reference throughout the theoretical part of this thesis. The control applications were successfully created and introduced to everyday use at the plant.Tämä opinnäytetyö tutkii hajautettuja ohjausjärjestelmiä yleisellä tasolla, jota seuraa kokeelliset osuudet automaation suunnittelusta ja ohjelmoimisesta määritellyissä tapauksissa. Tapaukset olivat luoda järjestelmän sisällä ohjaussovellukset rikkivedyn rikinpoistojärjestelmälle, sekä rikkidioksidin jakelusäiliölle. Tämän opinnäytetyön tilasi Freeport Cobalt Oy kemikaalilaitos osana laitoksen automaatiojärjestelmän uusintaa. Tavoitteena oli luoda sovellukset jotka olisivat suorituskykyisiä, turvallisia, ja käyttäjäläheisiä. Kokeellinen osuus suoritettiin ABB Industrial IT 800xA hajautetulla ohjausjärjestelmällä sekä sen rakennetta käytettiin myös viitekehyksenä teoriaosuudessa. Sovellukset saatiin onnistuneesti luotua ja ne otettiin jokapäiväiseen käyttöön tehtaalla
    corecore