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Abstract
The DeviceNet fieldbus technology is introduced and discussed. 

DeviceNet is an open standard fieldbus which uses the proven Controller Area 

Network technology. As an open standard fieldbus, the device conformance is 

extremely important to ensure smooth operation. The error management in 

DeviceNet protocol is highlighted and an error injection technique is devised to 

test the implementation under test for the correct error-recovery conformance. 

The designed Error Frame Generator prototype allows the error management and 

recovery of DeviceNet implementations to be conformance tested. The Error 

Frame Generator can also be used in other Controller Area Network based 

protocols.

In addition, an automated Conformance Test Engine framework has been 

defined for realising the conformance testing of DeviceNet implementations. 

Automated conformance test is used to achieve consistent and reliable test results, 

apart from the benefits in time and personnel savings. This involves the 

investigations and feasibility studies in adapting the ISO 9646 conformance test 

standards for use in DeviceNet fieldbus.

The Unique Input/Output sequences method is used for the generation of 

DeviceNet conformance tests. The Unique Input/Output method does not require 

a fully specified protocol specification and gives shorter test sequences, since only 

specific state information is needed. As conformance testing addresses only the 

protocol verification, it is foreseen that formal method validation o f the 

DeviceNet protocol must be performed at some stage to validate the DeviceNet 

specification.
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Chapter  1 - Introduction

With the reduction of product life-cycle from years to months, today’s 

manufacturing systems must not only be efficient enough to produce high 

volume and quality products at minimal possible costs, they must also have 

sufficient flexibility for fast product change. The advent of higher power-to- 

cost ratio silicon has enabled microprocessors to be used extensively in the 

control and instrumentation of the manufacturing world. As such, computer- 

controlled systems are ideal for producing quality products competitively.

1.1 Evolution of Digital Control Systems

Digital computers were first introduced to improve the efficiency of 

measurement and control systems two decades ago. Initially these were stand­

alone custom-designed control systems which were very bulky, expensive and 

unreliable. In 1968, a group of engineers from General Motors, USA 

conceived an idea to provide a flexible and cost effective solution to replace 

the hard-wired relay-logic in industrial control |1, 2|. They called their 

invention the Programmable Logic Controller (PLC). Since then the PLC has 

become the dominant control technology in the manufacturing and process 

industry.

The advancement in the semiconductor industry has had a dramatic 

impact on PLC technology. Intel introduced the first 8-bit 8008 

microprocessor in 1972, development followed by the more powerful 8080 two
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years later [3]. To date, the growth of the semiconductor industry has been 

correctly predicted by Moore’s Law1. In 1977, Allen-Bradley of the USA 

introduced the first industry standard PLC based on the newly introduced Intel 

8080 microprocessor [2], It was not until the 1980s that PLCs were used 

extensively in control and instrumentation in the manufacturing industry.

The advantage of using the PLC is that the sequence of operations or 

controls can be altered easily by programming the PLC using customised 

software called ladder-logic. The PLC (which consists of microprocessors) 

reads values from the sensors, evaluates and executes commands by sending 

new states to the actuators. Its modular design allows easy upgrade and 

expansion of the control system when the need arises. When there is a fault in 

a module, it can be easily replaced by another plug-in module, thus increasing 

the maintainability of the system, as well as production up-time.

This flexibility has enabled control system vendors to mass produce the 

PLC to be used in virtually all control applications. End-users can then alter 

the software to cater for their specific requirements. Control system vendors 

like Allen-Bradley, Festo, GEC, Hitachi, Omron, Mitsubishi, Selectron to name 

a few, have since shared the market for PLCs. This has brought PLCs within 

the budget of many potential users in the manufacturing industries, with higher 

performance systems introduced every year. For example, the PLC3 controller 

introduced by Allen Bradley in 1980 was 1,000 times more powerful than the 

company’s first PLC 11|.

1 Gordon Moore is the co-founder of Intel and a chip designer, lie observed that a new chip 
will Ire developed every 18 months and contain twice as much processing power as its 
predecessor. Combining the two observations, he predicted that chip processing power will 
increase exponentially and this became known as Moore's l.aw. 
fly SB. Khoh Page 1-2
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1.2 Complexity of Control Systems

As the activity of process control becomes more complex, more sensors 

and actuators are needed to perform the control sequences. More devices 

mean more wiring. In addition, the strive towards higher product quality in the 

competitive global market of the 90s has imposed new requirements on the 

manufacturing systems. The use of quality assurance technique such as the 

statistical process control (SPC) [4] requires manufacturing processes to be 

monitored closely. Furthermore, all instruments involved in the manufacturing 

processes must be in tip-top working condition to maximise production up­

time. To achieve this, extensive preventive failure analysis and maintenance 

program is exercised to monitor and maintain the instrument’s health. This 

resulted in the influx of the wiring harness as monitor lines are needed to 

obtain the health and status feedback from the devices. To meet the ever 

increasing demand of complex process control, the following observations are 

made.

• Flexibility

The conventional point-to-point system was designed for transfer 

line facility in mass production environment, i.e. large batch size 

manufacturing. Most of the process/assembly stations were not 

expected to be reconfigured frequently as it is a very tedious and time- 

consuming job to set up and manage the wire spaghetti. Any addition of 

new device will involve the routing of new wires through the already 

complex cable conduit that is difficult to access. In other words, the 

time penalty for set-up and commissioning of these control system has 

become noticeable.
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• Reliability

The reliability of the conventional point-to-point wiring is 

questionable. An average size PLC may consist of 8 I/O racks with 32 

I/Os per rack. This means that there are about 200 wires that need to 

be labelled and managed properly. To get the wiring right first time is a 

challenging experience. The large number of wires may also lead to a 

decreased in system reliability, i.e. more wires, more chances of things 

going wrong. In addition, the use of junction boxes and connectors for 

wire management will contribute to the poor reliability of the system.

• Noise and Cross-talk interference

Cross-talk interference is another problem in wire-packed control 

systems. It is a situation where neighbouring wires induce 

electromagnetic noise to each other and caused stray signals and 

distortions. Therefore, additional care must be taken when routing the 

analogue-to-digital converter’s signal wire to ensure that the accuracy 

of the analogue value is not affected. The use of shielded cable may be 

required in extremely noisy environments.

• Maintainability

The objective of a production system is to convert the raw 

materials into finished products. Machine breakdown or production 

downtime is a costly affair. Hence, the reliability and maintainability of 

the production system is of utmost importance. The speed with which a 

fault can be located and rectified, or prevented, plays a vital role. 

However, if a wire were to have bad electrical contact in the 200 wires 

conduit, identifying the fault may be a painstaking and time consuming 

job.
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Ideally, the new generation of manufacturing control systems must be 

modular, easily reconfigurable, highly reliable and maintainable, fault tolerant 

and, most importantly, cost effective. They must be flexible in adapting 

themselves to fast product change. A solution is to inter-connect all the 

sensors and actuators with a single digital bus for realising the automation and 

controls. The multiplexing of these sensors and actuators signals via a single 

bus is achieved using the emerging fieldbus technology, i.e. a technology 

derived from the computer local area networks (LANs).

1.3 Fieldbus Technology

Fieldbus is defined as an all digital, high performance, multi-drop 

communication network for connecting process instrumentation to controllers 

[5]. In its simplest form, fieldbus is just a communication media which benefits 

the users with simple ‘plug-and-play’ installation, reduced wiring, improved 

diagnostic-ability, reconfiguration flexibility and ease of maintenance. Fieldbus 

is a computer network optimised for controls and instrumentation. Therefore, 

it features small data packets with deterministic bus arbitration scheme for 

guaranteed network response time.

Fieldbus system brings substantial costs savings. An Italian power 

utility predicts a 4% reduction in overall investment costs after allowing for 

10-20% increase in new device costs |6 |. In Du Pont’s fieldbus installation, 

wiring cost savings of up to 20% were reported for its Brevard site facility in 

Asheville, North Carolina, USA |7 |. The installation at BP Research and 

Engineering facility, Sunbury-on-Thames, UK, has also demonstrated savings 

in cost and installed cables, as well as enhanced process control system 

performance in an industrial situation |X|.
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The application of fieldbus is not restricted to process control and 

manufacturing industry. For example, Profibus (i.e. another instance of 

fieldbus) is used in the Warsaw underground, Poland for reporting the status of 

the subway equipment and data exchange between computers at the dispatch 

and control centre, and the Kabaty end station [9], This is believed to be the 

first fieldbus installation in safety-critical railway signalling application [10]. 

Other areas of fteldbus application include building automation and marine 

application.

1.4 Fieldbus Standards

Fieldbus can be divided into open standard and proprietary. Proprietary 

tieldbus standard is developed and marketed by a single vendor with limited 

product range. Market trend has indicated that the proprietary fieldbusses are 

no longer welcome by the industry. The flexibility o f sourcing devices from 

different vendors and plugging together to form a single field control and 

instrument system (i.e. an open fieldbus standard) has far greater benefits than 

relying on a single source. Many proprietary fieldbusses have since joined 

forces to reduce the many proprietary standards by forming the consortia for 

an open standard.

The Instrument Society o f America (ISA) has collaborated with the 

International Electrotechnical Committee (IEC) to form the ISA/IEC SP-50 

working committee in an attempt to define an international standard for the 

fieldhus. One of the objectives o f the SP-50 working committee was to define 

an international fieldbus standard so as to eliminate the many standards 

available today.
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In the meantime, two vendor-driven consortia fieldbusses, i.e. 

WorldFip2 and Interoperable Systems Project3 (ISP) had collaborated in 

October 1994 to produce the Fieldbus Foundation (FF) fieldbus standard. The 

Fieldbus Foundation has inherited many of the SP-50 specification which 

include the SP-50 physical layer (IEC 1158-2 standard) for intrinsically safe 

operation. Fieldbus Foundation (FF) hopes that when an international fieldbus 

standard is created, FF can be fully compatible with the SP-50 fieldbus 

standard and become the de-facto industry standard.

Within Europe, CENELEC4 has approved WorldFip [11], Profibus [12) 

and P-Net [13] as the European fieldbus norm, EN 50170 [14, 15]. This may 

mean that Europe and America may well go in different directions, leaving us 

with no international fieldbus standard.

While the ISA/IEC SP-50 has neared its end of the international fieldbus 

standard specification, there have been another development of a much simpler, 

lower level fieldbus subset. This simple I/O function fieldbus is sometimes 

referred to as the sensor bus. Among them are Actuator Sensor Interface 

(ASI), Controller Area Network (CAN) 116| based networks, e.g. CAL [17], 

CANOpen [18], CAN Kingdom [ 19], DeviceNet [20] and Smart Distributed 

Systems (SDS) [21, 22, 23], Lonworks 124, 25] and Profibus-DP [26, 27]. The 

successful de-facto standard in this sector will depend on the cost- 

effectiveness, product availability, consortia of vendors, as well as the technical 

advantages.

2 WorlilFip is backed by Allcn-Bradlcy, Honeywell and others.
1 Interoperable Systems Project (ISP) is supported by Fisher-Rosemount, Siemens, Jonson 
Yokogawa clc.
* CENELF.C - The European Commiucc lor lilectmlechnical Standardisation 
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1.5 Conformance to Fieldbus Standard

In an open fieldbus scenario, all the field instruments must conform to 

the rules laid out by the standard specification. Failure to adhere to the 

fieldbus standard protocol will bring catastrophic failure not only to the 

responsible culprit, but the entire fieldbus network or system. This will affect 

the end-users’ confidence on the particular fieldbus standard. Conformance 

testing an open fieldbus implementation is the vital step to ensure that all the 

field device developers have uniform interpretation of the specification, and 

that their products conform to the protocol standard.

“A conformance testing is used to verify that the external behaviour of a 

given implementation of a protocol is equivalent to its formal specification” 

[28|.

DeviceNet is an open standard fieldbus which uses the proven CAN 

technology. Since it is an open standard, the conformance testing is a must to 

ensure the smooth operation and success of this fieldbus standard. DeviceNet 

is owned by the Open DeviceNet Vendors’ Association (ODVA), and consists 

of a consortium of more than 130 companies which include Allen-Bradley, 

Banner, Omron, Peperl & Fuch, Schrader-Bellows and SMC. ODVA has 

formed many Special Interest Group (SIG) to manage and govern the technical 

related issues of DeviceNet. Among the many ODVA SIGs, the Conformance 

SIG is of particular interest due to its responsibility on the conformance testing 

of DeviceNet implementation.

A significant number of conformance test suites have been developed by 

the Conformance SIG. Until now, the conformance test suites of DeviceNet 

still do not include the tests for error recovery and management. The error
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recovery sequences and state machines are defined in the protocol specification 

for product developers to follow. For example, when a fault is detected the 

device must indicate the detected fault by flashing its LEDs in a predefined 

fashion and move into a predefined “safe state”. In addition, the device’s 

internal object’s attribute must register the detected fault. So far, the test for 

correct error recovery and management has been hampered by the lack of a 

suitable method of injecting errors.

Given the importance in conformance testing of the implementation of 

correct error recovery and handling, perhaps a special hardware can be 

researched and designed to carry out the job. This protocol emulator must be 

able to inject errors in a controlled manner. In other words, it must only 

induce error on the implementation under test so that the effect can be 

observed by another node, i.e. the test system.

1.6 Research Objectives

The primary objective of this thesis is to study, investigate and devise an 

appropriate compliance test tool for injecting error onto the bus. This allows 

the testing of DeviceNet open standard fieldbus implementations for correct 

error recovery.

The research started with the investigation o f alternative uses of the 

Controller Area Network (CAN) technology in non-automotive sectors. It was 

envisaged that the CAN technology can be feasibly applied in the controls and 

instrumentation industry. The background study and investigation on the 

current controls and instrumentation trends were carried out. This led to the 

development of DeviceNet, i.e. a CAN derivative fieldbus. Progressively a
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knowledge gap had been identified in the area of conformance testing, in 

particular on the error injection for implementation fault testing.

The possibility of realising an automated approach for conformance 

testing had to be explored to achieve consistent and high-quality test results. 

Thus an error injection mechanism has been designed and included in the 

automated compliance test framework for realising the error testing.

The secondary objective includes the study and recommendation of the 

suitable object-oriented concept and design methodology for use in the 

prototype development. An interoperability test system for DeviceNet must 

also be investigated to test DeviceNet as a complete controls and 

instrumentation system, rather than as individually complied nodes.
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F ieldbus Control S ystem s

Fieldbus is a new technology of controls and instrumentation which uses 

the computer networks technology. These fieldbusses must be able to interface 

with the existing computer networks within a manufacturing organisation. A 

hierarchy of computer networks has been established, each responsible for the 

corresponding level needs. For instance, the computer networks at the lowest 

hierarchy normally consist of hard real-time controls, with short and bursty 

data packets for deterministic network response. On the other hand, higher 

level networks such as those used in the Management Information System 

(MIS) will place great emphasis on the data carrying capacity rather than 

deterministic network response time. Combining these various levels of 

computer networks, data from the shop floor can be fed directly into higher 

level systems to achieve the computer integrated manufacturing (CIM) systems 

within the organisation.

2.1 The Automated Manufacturing Hierarchy

In the paper published by C. McLean et al [29|, the authors have 

proposed the five levels of control hierarchy based on analysis of a non- 

automated batch manufacturing system. The five levels were facility, shop, cell, 

work station and equipment. Computer Aided Manufacturing (CAM) was 

believed to be introduced sometime later as there is no evidence of it when 

McLean et al. published their findings in 1983. The automated manufacturing
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control hierarchy realised in the National Bureau of Standards’ Automated 

Manufacturing Research Facility (currently known as the National Institute of 

Standards and Technology, NIST), which was planned to be operational in 

1986 [29] is shown in Figure 2-1.

Figure 2-1 The automated manufacturing hierarchy of McLean et al.

Also known as the control pyramid 130], the hierarchy has to act as the 

foundation whenever automated manufacturing issues are discussed. So, the 

introduction of CIM has further caused the need to interconnect every 

machines or islands of machines in the manufacturing environment in order to 

facilitate better information Hows within the CIM envelope. This has
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encouraged the development and utilisation of various communication 

networks between different hierarchies and within the same hierarchy.

According to the work done by Valenzano et al [31], the communication 

infrastructure to support CIM is composed of 3 types of communication 

networks as shown in Figure 2.2. The communication network within this 

context is referring to computer networks such as Local Area Network (LAN).

Figure 2-2 The automated manufacturing pyramid and its communication
network hierarchy

At the higher level of the hierarchy, large data flow is required, with less 

emphasis on the real-time response. However, the situation is totally reversed 

at the bottom of the hierarchy where fewer data are exchanged rapidly with 

strict real-time constraints. These two extreme applications on both ends of the 

pyramid place greatly differing demands on networks requirements, and no 

single network technology today can be optimised for the full range of 

operations.
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The currently recognised solution to the differing requirements is to use 

different levels of communication networks to cover these needs. This involves 

the use of many communication gateways to convert the different data formats 

from one level to another so that the data can be consumed by other 

communication networks.

However, there is a drastic change in the type-11 and type-III networks. 

Years ago, these networks mainly consisted of vendor specific or proprietary 

solution. The majority of the communication networks were not part of the 

control system design, nor use LAN type communication. They were simply 

some extensions to be bolted on the controllers for communication to take 

place, e.g. RS-232, IEEE-488 communication standards. Emphasis was placed 

on the better design of the control system rather than integrating the 

communication protocol into the control systems. Because they were not 

computer networks, the OSI 7 layer model cannot be used to model the 

communication interface. Hence, communication between these devices were 

not elegantly carried out.

Today, many of these communication media such as RS-485, have been 

replaced with the open standards computer networks, most of which are based 

their design on the ISO/OSI 7 layer model for openness. The adoption of 

computer network allows the communication interface to be designed into the 

control and instrumentation systems, rather than the conventional ‘bolted-on’ 

approach. The availability of more powerful and advanced semiconductor 

technology, i.e. more powerful and cost effective processors, has enabled more 

complex and sophisticated communication to be implemented.
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Suddenly, the communication requirements in the factory shop floor 

have opened another new market niche, i.e. communication networks. Digital 

busses were used to interconnect the machines and islands of automation 

together, These industrial communication networks are known as fieldbus. 

Elegantly designed gateways were introduced by the fieldbus vendors to 

transfer the data from one layer to another.

2.1.1 Information Layer
At the top of the hierarchy, information exchange through the network 

is in large blocks (in the region of several kilo bytes to megabytes). This level 

is incompatible with real-time critical applications due to the inverse 

relationship between real-time control and data packet size. Table 2.1 shows a 

comparison between various level of industrial computer networks in-terms of 

the network size, data volume and response time. Networks at the information 

level will therefore tend to have more data carrying capability but less real-time 

performance.

At this level, networks will be used for transferring data between 

departments in the CIM environment (Figure 2.2) within a company (Intranet), 

or even globally (Internet) using Ethernet with TCP/IP protocol. The packet 

size for Ethernet based networks varies between 64 bytes to 1,518 bytes at 10 

to 50 Mbits/s typical. The applications that run at this level do not have any 

strict real-time constraints and any additional delays can be tolerated by the 

system. A typical application may be transferring Statistical Process Control 

(SPC) data from automation cells to the Management Information System
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(MIS) database of the factory for quality assurance purposes. Other

applications include email, file transfer, database query and update, etc.

2.1.2 Control Layer
One level down from the information layer is the control layer. At the 

control level, smaller quantities of data (as compared to information level) are 

being transferred between different cell controllers at high speed for exercising 

real-time control. Each data packet may be in the region of a hundred bytes. 

Most of the computer networks used in this layer are found on the shop floor 

to connect field instruments together. Hence, the term fieldbus is coined to 

refer to any computer network which is used for real-time control. For 

example, Profibus and Fip are currently the two top contender at this level.

2.1.3 Device Layer
Communication networks in the Device Layer are very similar to the 

control layer. Here, the communication network needs to satisfy hard real­

time constraints as compared to the control layer. Since the communications 

are among devices such as sensors, actuators and the PLC, data flows are 

usually in terms of bits or in a few bytes. The network traffic mainly involves 

the cyclic exchanges of sensor values and actuator commands in a short and 

bursty fashion. The Protocol Data Unit (PDU) must be short in order to 

minmise the network latency time. In addition, the network must be capable of 

delivering high network efficiency in this frequent, periodic, small sized data 

application.
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Network efficiency refers to the ratio between the amount of useful user

data ferried across the network and the number of bits needed to perform the

ferrying operation [32].

Since the network links mainly the sensors and actuators to the PLC, it 

is also known as Sensor Bus. Example of sensor bus include Actuator Sensor 

Interface (ASI), CANopen, DeviceNet and Smart Distributed System (SDS). 

Another reason for having a Sensor Bus is the economic factor, i.e. the cost of 

putting the network interface on a low-cost device must be minimal.

Table 2-1 The summary characteristics of different level computer networks in 
a manufacturing organisation

Network size Data volume Response time

Information Layer Large Large Slow

Control Layer Moderate Moderate Moderate

Device Layer Small Small Fast

2.1.4 Planning Horizon

With the use of more powerful hardware solely for communication, the 

planning horizon on each level will undoubtedly increase. Planning horizon is 

the amount of time any control system is allocated to handle its tasks |29|. 

The system does not need to know about any activities outside its planning 

horizons. Hence, the planning horizon acts as an information hiding 

mechanism so that the complex system can be decomposed and executed 

separately by less powerful sub-systems. The boundary of control in eacli sub­

system is defined by its immediate higher level in the hierarchy.
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The planning horizon of the 3 layer model may still remain the same, but 

be implemented differently. Instead of using the physical hardware to 

decompose the planning horizon, the planning horizon can be done in some 

clever software routine. In other words, instead of using 3 separate sets of 

PLCs to form a control hierarchy, the system can be implemented in a multi­

processors PLC with 3 different independent sets of software routine (3 

channels of software), each invisible to the other. The object-oriented 

technology in software design, which features the data abstraction and 

encapsulation, can be used in this instance to hide away unnecessary 

information, thus simplifying the control system design.

2.2 Overview of Fieldbus

The process control industry has been waiting for a technology which is 

capable of reducing the wiring harness, providing reconfiguration flexibility, 

reliability and, most importantly, cost effectiveness. These requirements have 

made fieldbus systems the key focal point for the development of better and 

more efficient digital control systems for the 21st. century.

With the application of fieldbus, the control systems in Figure 2-3 can 

now be replaced with a single wire serial data bus that interconnects all the 

sensors and actuators before linking back to the central controller. Figure 2-4 

depicts a typical fieldbus control system. The availability of an on-board 

microcontroller allows the simple switch to have some ‘intelligence’. This 

allows it to perform other functions such as self-diagnosis, self-calibration, 

error warning etc. In addition, extra parameters can be realised without the
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actuators and control networks has marked a new era of control technology in

factory automation. Figure 2-3 and Figure 2-4 show the comparison between

the conventional point-to-point control system and the more simplified fieldbus

control.

_______________________________ Chapter 2 - Fieldbus Control Systems
use of additional wire. The appearance of intelligent/smart sensors and

Figure 2-3 Conventional point-to-point PLC based control system

Figure 2-4 Distributed control using fieldbus network
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2.2.1 Historical Background
The original idea of having a Fieldbus was simply to replace the ageing 

4-20mA transmission signal designed some 25 years ago with a digital 

communication media. In the past, communication between smart field 

instruments was done mainly by proprietary digital busses and custom designed 

gateways. Most vendors developed proprietary digital busses for their own 

markets. This does not create a problem as the user company has large 

engineering resources to support the many gateways and signal converters. 

General Motors for instance, spend more than half of their automation budget 

on the implementation of custom interfaces between intelligent instruments. At 

the end of the 1980s, there were so many proprietary digital busses around that 

engineering staff of the user company could no longer cope with the specific 

proprietary solutions. In addition, many companies were involved in 

“rightsizing” exercises and laid-off many “redundant” employees. The industry 

has since realised that in order to utilise these smart instruments successfully, a 

new generation of communication standard is required. This is the same train 

o f thought that GM had when it embarked on the Manufacturing Automation 

Protocol (MAP) and Technical and Office Protocol (TOP) project to minimise 

the interfacing problems.

In the simplest form, fieldbus networks replace complex wiring which 

benefits the users in terms of system installation cost, shorter commissioning 

time and improved diagnostics-ability. Ficldbusses interface with higher level 

computer networks through gateways to allow a continuous How of data from
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the shop floor to higher hierarchy. This allows higher level systems access to

data on lower levels, thus providing better integration within the organisation,

i.e. a step closer to computer integrated manufacturing (CIM).

However, fieldbus is more than a digital communication network [33]. 

It is an open Field Control System (FCS) of the 21st. century which will 

change the scene in distributed control and field instrumentation. Although it 

took the industry almost a decade to realise the full potential and complexity of 

Fieldbus, this highly distributed process system will be an important issue in 

Automation Industry.

The availability of new generation high performance single-chip 

microcomputers or microcontrollers has started to change the scene of process 

control. For example, microcontrollers now have the capability and power to 

process complex PID control algorithms locally, instead of routing the raw 

data back to the central processors for processing. Fuelled by the smaller 

footprint of surface mounted technology and higher performance to cost ratio 

silicon, more advanced control routines can be feasibly and economically 

implemented on the field device itself. This has indirectly moved the control 

tasks from the central control unit to the field resident microcontrollers, hence 

the birth of distributed control systems. These microprocessor based 

instrumentation systems are collectively referred to as smart instruments. If 

implemented properly, these smart instruments will execute the control 

sequence in parallel. In 1989, Oxford University, Foxboro GB Ltd and ICI

________________________ Chapter 2 - Fieldbus Control Systems
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fieldbus application [34],

2.2.2 Open Standard Fieldbus
In general Fieldbus networks can be divided into two categories, i.e. 

proprietary and open standard architecture. Proprietary fieldbus is developed 

and marketed by a single vendor with a range of products to offer. Since it’s 

proprietary, the vendor has full authority and responsibility to optimise the 

performance and rectify the fault of its fieldbus system. This will either give an 

outstanding performance or otherwise. Being controlled by a single source 

means easier technical support access when things go wrong. For instance, 

one call to the vendor may solve the problem. However, when the system 

consists of several vendor’s products, it may take a while for the vendors to 

work out whose device is at fault in an open architecture scenario.

On the other hand, open standard Fieldbus, which consists of numerous 

automation vendors, offers better product range and varieties. These different 

vendors’ devices must be able to co-exist on the same network, thus 

interoperability and interchangeability is of paramount importance. For 

example, DeviceNet is an open standard fieldbus which consist of more than 

130 vendors such as ABB Robotics, Allen Bradley, Hewlett-Packard, Hitachi, 

Omron, and Mitsubishi. More vendors means better product choice. In theory, 

the open standard fieldbus offers the users the ‘pick and mix’ solution. 

However, when things go wrong, it may be difficult to nail down which 

vendor’s device is responsible for the fault. To prevent this problem from

________ _______________________Chapter 2 - Fieldbus Control Systems
launched the Sensor Validation (SEVAC) project to develop smart sensors for
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surfacing, all devices must undergo strict interoperability and conformance

exercise before delivery to the end-users. Nevertheless, open standard tends to

survive longer than a proprietary solution and become the de-facto standard.

The most important criteria in selecting a fieldbus network are not 

technical but political [35]. However, this does not mean that the technical 

constraints are unimportant. The technical constraints should always reflect 

the real user needs, which include the organisational and management 

constraints. For example, although fieldbus A is better than fieldbus B 

technically, fieldbus B may be chosen as the solution based on management 

grounds that it is more cost effective and readily available. In addition, there is 

no global solution as to which fieldbus to use. A successful implementation in 

one organisation may result in total disaster in another organisation. This is 

why there are so many proprietary and open fieldbus standards available to 

date.

There are a few general guidelines to consider when choosing the right 

network for the right level of operation. These include the network size, real­

time capability and data volume requirements. Table 2.1 (Page 2-7) 

summarises the characteristics of each level’s network in the hierarchy.

2.2.3 Intelligent instruments

The use of fieldbus has contributed to the development of intelligent 

instrument for industrial automation. In order for the fieldbus communication 

to take place, the field devices are now furnished with microprocessors and 

digital interfaces. With an onboard microprocessor, the instrument can now
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perform some ‘thinking’ process, hence the birth of intelligent devices. An 

intelligent device is more aware of its environment and surroundings through 

its sensors and clever software algorithm. The availability of low cost but more 

powerful silicon has also helped to make the dream of intelligent devices a 

reality. The development has enabled some of the intelligence or features 

previously resident in automation computers to be installed in these intelligent 

field devices.

2.2.4 Intrinsically Safe Fieldbus

The intrinsically safe version of fieldbus allows fieldbus technology to be 

used in the chemical and petro-chemical industries. This involves the use of 

special electronic line drivers to prevent ignition arising from electrical short- 

circuits or temperature rises. Essentially, they are the same as the non- 

intrinsically safe devices, except that special interface protection allows them 

to be used in hazardous conditions. A point must be made that intrinsically 

safe fieldbus is never certified for safety critical applications such as nuclear 

plant.

2.2.5 ISO/OSI 7-layer model[88]

As mentioned before, fieldbus is a low level industrial computer network 

optimised for real-time control. At the simplest form, it serves as a common 

communication medium which links the sensors, actuators and instruments in 

the manufacturing process control using a single cable bus. This scenario of 

networking sensors and actuators using fieldbus is analogous to networking 

computers in offices for information and resource sharing through a single wire 

bus. The difference is that conventional TCP/IP systems that use the Ethernet 

signalling as the backbone are optimised for file transfers. Data packet size of 

1,500 bytes is typical. In addition to this, Ethernet signalling is non-
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deterministic and deteriorates exponentially when transmission bandwidth 

overshoots 33%. These higher level communication networks are not suitable 

for real-time control purpose. Since fieldbus is a form of computer network, it 

can be referenced using the ISO 7498 OSI model as shown in Figure 2.5.

|7. Application Layer 7. Application Layer |
6. Presentation Layer

: 1 
: : 
: :

! 1 : :

|5. Session Layer

|4. Transport Layer
¡3. Network layer
2. Data I.ink layer 2. Data Link Layer j
1. Physical Layer 1. Physical Layer |

ISO  74 9 8  | Fieldbus |

Figure 2-5 The ISO 7 layer model and reduced stack fieldbus model

As all fieldbusses use base-band transmission technique, they do not 

need to implement the full 7 layers of the OSI. Furthermore, more layers mean 

more time overheads involved, which is not desired in the real-time control 

entity. Therefore, all fieldbus protocols use the reduced stack 7 layer OSI 

model (i.e. the 3 layer model) for fast network response time as shown in 

Figure 2.5.
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2.3 Discrete Control System

Fieldbus control system is discrete in nature where the system monitors 

the process under control at a discrete distant of time. The time distant maybe 

500ps, 6ms, 30ms etc. depending on the criticality of the real-time system. In 

general, the discrete control system utilising fieldbus technology falls into two 

categories, i.e. event-triggered or time-triggered control systems.

2.3.1 Time-Triggered

Time-triggered system, also known as sampled-data system, involves 

the sampling of data and execution of control sequence at predefined time 

interval. This approach allows synchronisation and simultaneity in carrying out 

the control sequence. The fundamental mechanism in realising this method of 

control, i.e. time-triggered system, is through the use of polling. All the 

device’s data on the fieldbus are polled and their states are updated at a 

discrete time interval. The advantage of this approach is that the network bus 

traffic is predefined. The bus loading for a time-triggered fieldbus is almost 

constant, regardless of devices’ activities.

2.3.2 Event-Triggered

On the other hand, event-triggered system only acts when there is a 

change of state within the device occurring. For example, if a switch is not 

triggered, there will not be any message on the bus. The notion of this event- 

triggered system allows lower bus loading when there is not much activity 

going on, except for the ‘heart-beat’ messages. However, when everything 

starts to happen at once, there is a risk of overloading the transmission 

bandwidth, or delaying of time-critical messages if not designed properly.
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Fieldbus utilising the event-triggered approach normally has special 

priority allotted for the safety critical and time critical data. For example, 

when an alarm condition is encountered, a special high priority message may be 

used to ensure that the safety and time critical alarm message do get through 

irrespective of the network traffic condition. Nevertheless, there will always 

be some network traffic for the “heart-beat” message2 when the system is idle. 

In real-life fieldbus implementation, a mixture of the event-triggered and time- 

triggered approach is used.

2.3.3 Time Consistency

Time consistency means that the set of values available on a given 

control device is identical to the samples of the states of the next lower devices 

at the same sampling instant [36]. For example, the DeviceNet scanner will 

issue the bit-strobe command to sample the data from all the devices (i.e. lower 

devices) on its scan list. If the system fulfils the time consistency criterion, 

then all the data values on the lower devices, e.g. photosensor input, flex 

input/output, pneumatics on/off states will be the same as those data values 

sampled by the scanner at the same sampling instant.

2.3.4 Space Consistency

Space consistency means that the value of the sampled data will be the 

same and identical throughout the network regardless of where the controller is 

situated, i.e. data consistency throughout the network (361. The global 

acknowledgement of Controller Area Network (CAN) protocol, where all the

2 "Hcarl-Bcal” message is the message to tell llie consumer of the data (client) that the 
producer of the data (server) is still alive. This will enable the proper countermeasure to he 
taken by the control system should the server become faulty and fail to provide the required 
parameters.
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nodes receive, verify and acknowledge the same data fulfils the spatial 

consistency of fieldbus implementation. In other words, space consistency 

ensures that different copies of the data transmitted will be identical at the 

same sampling instant.

2.4 Conformance to the Open Standard Fieldbus

Conformance is very important in a multi-vendor, multi-product open 

standard scenario. The effect of not conforming to the open standard can lead 

to the loss of user confidence on the standard. For example, when IBM 

opened the PC architecture to the vendors, only those 100% compatible PCs 

survived the strong competition. Those vendors with 95% compatibility 

systems eventually lost their share of the market. The lesson learnt from the 

personal computer industry can be applied to the open standard fieldbus 

industry in general.

What happens if we have a 95% conformed device for an open standard 

fieldbus? At some point during its operation, the device will disrupt the 

network due to the incompatibility problem. This compatibility issue has 

resulted in the extensive use of the term interoperability. The interoperability 

of devices becomes the acid test for an open standard fieldbus. Every open 

standard fieldbus is trying to get the devices to work harmoniously on the same 

network, even if they come from different vendors.

Interoperability and interchangeability are the buzzwords C. Ajluni (371 

used to describe the open standard fieldbus devices. It is also the intention of 

this thesis to look into the interoperability and interchangeability aspects of an
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open standard fieldbus, i.e. DeviceNet. This leads to the proposed design and 

development of a conformance test engine for the conformance testing of 

DeviceNet devices. The interoperability testing is discussed in Section 4.5.5.

2.5 Future of Fieldbus

The use of fieldbus is almost certain to increase in factory automation as 

well as building automation. Fieldbus will do to the control and 

instrumentation industry what the networked PCs did to the office automation. 

To date, however, there is no one fieldbus that caters for all of the 

manufacturing world’s needs. The scenario always consists of various fieldbus 

standards working in concert to achieve this new era in production control. 

For example, Profibus, WorldFIP, Lonworks, CAN based network (e.g. 

DeviceNet, SDS) and others have different roles to play in the scene. 

Conversely, each company's choice of fieldbus is unlikely to be based on the 

technical aspects. Already different suppliers of automation control system 

hardware are pushing different fieldbusses, with the result that, even though 

the fieldbus may not be proprietary, the choice of fieldbus and supplier are not 

independent decisions.

One of the major reasons why fieldbuses have not been used more 

widely is the lack of availability o f automation products with the 

communication capability. This will ease over the next year or two, but the 

fieldbus that is most likely to be widely adopted will be the one which has the 

widest range of compatible products in the market first and a large installed 

nodes.
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In another development, the European Comission has initiated the Pre- 

Normative Requirements for Intelligent Actuation and Measurement (PRIAM) 

project to study the implication of intelligence in field devices [38]. PRIAM 

(an ESPRIT project) has also developed many prototype tools to assist 

effective application of the fieldbus technology in Europe. In order to review 

and enhance the findings of PRIAM project, the European Intelligent Actuation 

and Measurement Group (EIAMUG) was formed in 1994. The goal of 

EIAMUG is to shift the evolution of plant automation from current emphasis 

on control towards an integrated structure of control, maintenance and 

technical management function, or Control, Maintenance and technical 

Management (CMM) in short [39].
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T he D eviceNet  F ieldbus

DeviceNet is one of the low level open standard fieldbusses suitable for 

real-time control in industrial applications. It uses the proven Controller Area 

Network (CAN) technology as a backbone. CAN’s high performance error 

detection mechanism and good electromagnetic immunity make DeviceNet 

feasible to be used safely in the noisy factory environment. The high volume of 

CAN silicon used in production cars make DeviceNet implementations cost 

effective in simple, low cost field devices.

3.1 Overview of CAN

CAN was originally designed as in-vehicle network by Bosch, Germany 

in 1986 for distributed real-time control [40], Work on designing CAN 

protocol began in 1981 when the engineers at Bosch were faced with the task 

of establishing real-time communication between three electronic control units 

(ECUs), i.e. engine management unit, anti-lock brakes and automatic 

transmission control. Conventional universal asynchronous receiver/transceiver 

(UART) interface for point-to-point communication (one-to-one relationship) 

has immediately became unusable for multi-microcontrollers communication 

(many-to-many relationships). In addition, the use of electronics in vehicle is 

increasing each year. These electronics systems are getting more complex and 

sophisticated which resulted in the increase size of the wiring harness. Today’s
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Mondeo for example, uses a total of 1.5km of wiring (41]. It was apparent that 

CAN protocol needed to be developed not only to replace the conventional 

UART interface, but also to reduce the wiring harness so as to increase the 

manufacturability of modern vehicles.

The term Controller Area Network (CAN) was coined by Professor 

Lawrence of Fachhochschule Wolfenbiittel in Germany as the design neared its 

completion. After the protocol launch in 1986, the first CAN silicon was 

available from Intel in summer 1987. The first production car using the CAN 

technology was rolled out from production in 1991. CAN was used to inter­

link the 5 electronic control units (ECUs) of this luxury car, Mercedes S Class 

at a baud rate of 500 kbit/s 140].

3.1.1 The ISO 11898 Standard

By 1993, CAN became the ISO 11898 |42] and ISO 11519-2 [431 

standards for information exchange and real-time control in road vehicles. It 

has been widely used on many production cars including BMW [44], Jaguar 

145] and Mercedes for high speed information exchange and real-time control 

between Electronic Control Units (ECUs) such as the engine management unit 

and Anti-lock braking System (ABS). Other innovative CAN automotive 

applications include the Mercedes-Benz’s Electronic Stability Program (ESP - 

where driving on a frozen lake without losing control is possible) and Lucas’s 

intelligent brake developed under PROgraMme for a European Traffic with 

Highest Efficiency and Unprecedented Safety (PROMETHEUS) project, as 

well as Arnold Schwarzenegger’s High Mobility Modular Wheeled Vehicle 

(HUMMER) [411.

By S B Khoh Page 3-2



Chapter 3 - The DeviceNet Fieldbus

3.1.2 CAN Industrial Applications

Today, CAN technology is not only being used extensively in the 

automotive sectors, it can also be found in many industrial applications. Until 

1995, over 10 million CAN chips were sold, of which the automotive industry 

only accounted for 3 million, while the other 6 million chips were used in non- 

automotive applications [46[. This reflected the popularity and wide

acceptance of the technology in industry [47, 48, 58]. The use of Carrier- 

Sense Multiple Access/Collision Detection + Non-Destructive Bitwise 

Arbitration (CSMA/CD + NDBA) technique for guaranteed network latency 

time and a bit rate of up to 1 Mbit/s makes CAN an ideal control network in a 

wide variety of real-time applications [49, 50]. Its high immunity against 

electromagnetic noise enable it to work in harsh electromagnetic environments 

[51, 52],

In addition, the high quantity of CAN chips available from Intel, Philips, 

Motorola, National Semiconductor, NEC and Siemens for automotive 

applications, helps lower the CAN implementation costs. The cost

effectiveness of CAN technology allows network interface to be implemented 

directly onto low cost devices such as the proximity switches and photosensors 

in the automation field. With its many technical advantages, it is evident that 

the cost effective CAN technology can be used in industrial automation, with 

many other applications that are yet to be discovered [43, 531.

3.1.3 Higher Layer Protocols using CAN

In order to adapt the CAN technology efficiently in the automation 

world, new application layer protocols and standards need to be defined to 

realise a truly open networking standard. Many higher layer protocols based 

on CAN technology have been developed in recent years for industrial 
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applications. Among them are CANOpen (CAN Application Layer profiles) 

[17, 18|, CAN Kingdom [19], DeviceNet [53] and Smart Distributed System 

(SDS) [22, 23) open standard fieldbusses. There are also numerous 

proprietary CAN industrial implementations which include the marine 

navigational equipment (N A VICO), Philips medical equipment [54], aerospace 

electronics [55, 56], lift controls, building automation and access control [57].

3.2 DeviceNet - A Higher Layer Protocol

DeviceNet protocol was designed by Allen Bradley, USA for industrial 

automation. Since its launch in Spring 1994, DeviceNet has joined the many 

open standard fieldbusses available today for real-time control and 

communication in the process control automation. A year later, DeviceNet had 

become the property of the Open DeviceNet Vendors Association (ODVA). 

ODVA consists of a consortium of companies who developed DeviceNet 

products.

Even though CAN network can support numerous bus rates, DeviceNet 

standard chooses to support only 3 operating baud rates, i.e. 125 kbit/s, 250 

kbit/s and 50()kbit/s. According to a conducted survey [58], more than 66% of 

fieldbus applications require a bus length of less than 100 metres, and only 3% 

of the fieldbus applications require a length of more than 1000 metres. This 

statistic makes DeviceNet, which supports a maximum bus length of 500 

metres (refer Table 3-1), an ideal candidate for networking sensors and 

actuators in automation islands.
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Table 3-1 The DeviceNet Baud Rate and Bus length

Baud Rate Bus Length (Metres)

500 kbit/s 100

250 kbit/s 250

125 kbit/st 500

t  All DeviceNet devices are default to operate at 125kbit/s.

3.2.1 The Network Topology

DeviceNet network uses linear bus network topology with 1210 

terminators (1% metal film, V* Watt resistor) at both ends of the trunk line. 

The bus network topology allows easy node connection and detachment from 

the trunk, without affecting other communicating nodes. The network can also 

be configured with various branches on the drop lines [59], thereby enhancing 

the flexibility of the network configuration. Each DeviceNet cable consists of 

5 wires for CAN High and CAN Low signals, Power (+24V), Ground and 

Shielding. The power bus allows a maximum of 8 amperes of current to be 

drawn from any point of the thick trunk cable. This allows simple devices such 

as photosensors and proximity switches to be powered directly from the 

DeviceNet network. There are restrictions which govern the power 

consumption and cumulative drop length defined in the DeviceNet 

specification.

A DeviceNet network is capable of supporting 64 physical nodes, with 

up to 6 meters of drops via the tee-junction at the trunk line. The long drop 

cables offer the flexibility to route DeviceNet devices at difficult corners. 

Every DeviceNet device must have a unique Media Access Control Identifier 

(MACID) such that no two nodes will transmit the same data packet. The valid
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MACIDs are from 0 to 63, with MACID 63 being default for non-configured 

device. The MACID can be freely assigned so long as they do not conflict with 

each other, i.e. two nodes being assigned the same MACID.

If 2 or more DeviceNet systems were to be connected on a single bus, 

the maximum number of nodes per system must not exceed 64 (i.e. only 64 

different MACIDs are allowed on any network bus.). For instance, there may 

be 2 DeviceNet Master/Slave systems, one with 50 nodes, the other with 14 

nodes, which utilise the same physical media. Even though connecting more 

than 64 physical nodes is possible, e.g. by connecting a passive network 

analyser node (without any assigned MACID), this must be prohibited for any 

operating network. The additional node may upset the impedance characteristic 

of the network, or even damage the bus driver of other nodes which are 

designed to sink and source a maximum of 64 nodes. A specially designed high 

impedance, low power bus driver may be used for network analyser equipment 

to minimise the disturbance on the network.

3.2.2 The DeviceNet Layered Architecture

The ISO 7 Layer OSI model has been used as a reference for DeviceNet 

protocol development. DeviceNet protocol is a superset of the existing ISO 

1 1898 standard, which is CAN. To complete the DeviceNet protocol 

definition, an application layer optimised for real-time control and the Media 

Access Unit (MAU, i.e. cable) were defined on top of the ISO 11898. The 

Data Link and Physical Layer of ISO 11898 standard were adopted from the 

existing ISO 8802-2 and ISO 8802-3 Local Area Network (LAN) standards. 

As DeviceNet uses the ISO 11898 standard, it also adopted the ISO 8802-2 

and 3 for the corresponding 2 layers of the OSI stack (ISO 7498). Figure 3-1 

shows the relationships between ISO 7498, ISO 11898 and DeviceNet.
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Application Layer— —

3. Network

1. Physical La;

I S O  7 4 9 8

Logical Link Control
Media Access Control
CAM S p e c .  2 .0 A

Physical Layer Signalling
1 Medium Attachment

Medium Dependent Interface

D e v i c e N e t

I S O  1 1 8 9 8  I

Figure 3-1 DeviceNet and its reference to the OSI 7 layer model

According to ISO 8802-2, the Data Link Layer is further divided into

• Logical Link Control (LLC), and

• Medium Access Control (MAC).

The LLC sublayer is responsible for functions associated with the 

acceptance filtering of the CAN frames, as well as the notification of bus 

overloading condition. The automatic retransmission of corrupted CAN frames 

is also the responsibility of the LLC.
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MAC on the other hand will perform the role associated with:-

a) the construction of message frames

i.e., by adding SOF (Start-of-Frame), Arbitration Field (11-bit Identifier 

and remote-transmission-request (RTR)), Control Field (2 reserved bits 

and DLC-Data Length Code), data field, CRC field, acknowledgement 

field and end-of-frame (EOF). It is responsible for transferring these bits 

on the wire, starting with SOF.

b) error detection and signalling facilities of CAN protocol.

i.e. to perform the CRC checksum sequence and construct the 

appropriate Error Flags (Error Active/Passive)for error signalling, and 

validating the message frame against Bit/Stuff/CRC/Form/ACK Error.

c) acknowledge al] CAN frames provided no error has been found in (b)

d) provide the interface to the Fault Confinement Entity to realise the 

various states in fault confinement such as Error Passive and Error Active 

states.

The ISO 8802-3 subdivides the Physical Layer of the ISO 7498 into :-

• Physical Signalling (PLS),

• Physical Medium Attachment (PMA), and

• Medium Dependent Interface (MDI)

The Physical Signalling defines the CAN bit stream encoding/decoding 

and bit time synchronisation. This includes the definition and programming of 

bit time partition, i.e. the SYN_SEG, PROP_SEG, PHASE_SEG_1, 

PHASE_SEG_2. Modern CAN controllers have combined the PROP_SEG and 

the PHASE_SEG 1, and called it TSEG_1 (60, 611.
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3.2.3 Medium Access Unit (MAU)

Medium Access Unit (MAU) refers to the part where the physical layer 

couples the node to the transmission medium. It consists of:-

• Physical Medium Attachment (PMA), and

• Medium Dependent Interface (MDI) (refer Figure 3-1).

In the context of DeviceNet, MDI simply refers to the DeviceNet open, 

sealed micro or mini style connectors. The PMA in this instance will be the 

Philips 82C250 bus driver, or any driver configuration that is capable of 

realising the CAN high speed physical signalling as shown in Figure 3-2.

Figure 3-2 An Example of the ISO 1 1898 high speed physical signalling

3.3 DeviceNet Messaging Scheme

DeviceNet Messaging Scheme is responsible for all data transfers in the 

protocol. It partitions the 11-bit CAN identifiers into 4 main message groups, 

i.c. Message Group 1, Group 2, Group 3 and Group 4. These message groups 

have differing priority in bus arbitration, where Group I Messages command
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the highest priority. (In CAN, the lower the Identifier number, the higher the 

priority of the message.) Table 3-2 shows the breakdown of the message 

groups in the CAN identifier field. The 11-bit CAN Identifiers are referred to 

in later sections as the Connection ID (CID).

Table 3-2 The DeviceNet Message Groups [62)

11-bit CA N Identifiers
Range in

10 9 | K | 7 | 6 5 1 4 1 3 1 2  1 1 1 0 Hex
0 C ro u p  1 

M essage ID
S ource  M A C  ID 000-3  FF M essage G roup 1

1 0 M AC ID G roup  2 
M essage ID

40 0 -5 FF M essage G roup 2

1 1 G ro u p  3 
M essage ID

S ource  M A C  ID 600-7B F M essage G roup 3

1 1 1 1 1 G ro u p  4 
M essage ID

7C0-7H F M essage G roup 4

1 1 1 I 1 1 1 X X X X 7F 0-7F F In v alid  CA N Identifiers

Having defined the message groups within the CAN identifier field, 

DeviceNet protocol uses the CAN data field  to define the protocol information 

in certain instances. This further expands the messaging capability of the 

DeviceNet protocol. Figure 3-3 shows the DeviceNet messaging scheme 

responsible for data transfers.

DeviceNet messaging 
Scheme 1

I/O Messaging

_L

Explicit Messaging I

Non-Fragtnented
1

Fragmented
X

Non-FragmentedI Fragmented

Figure 3-3 The summary of DeviceNet Messages
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The I/O messages of DeviceNet utilise Message Group 1 for highest 

priority bus access and are suitable for real-time communication. Explicit 

Messages occupy Message Group 2 for point-to-point communication, and are 

more suited for application with fewer time critical messages. From Table 3-2, 

it can be seen that I/O messages (Group 1) have a higher priority than those 

explicit messages (Group 2). This corresponds with the CAN protocol where 

the lower the CAN identifier, the higher the priority for bus arbitration.

3.3.1 Explicit Messaging

All communications in DeviceNet starts with the Explicit Messaging. As 

mentioned earlier, the explicit message of DeviceNet uses the CAN data field 

to carry the protocol information. Explicit message divides the 8-byte CAN 

data field into:-

• Message Header, and

• Message Body.

An instance of the Explicit Message is the Open Explicit Messaging 

Request!Response messages as shown in Figure 3-4. The first column of the 

table shows the data byte offset in the CAN data field, while the remaining 

eight columns represent a single data byte. Analysing the Open Explicit 

Messaging Connection Request message reveals the first data byte (which is 

shaded) as the Message H eader of the Explicit Message, while the remaining 

three bytes are referred to as the Message Body. It can be seen that the Open 

Explicit Messaging Connection Request is a four byte message, while the Open 

Explicit Messaging Connection Response message consists of six data bytes. 

Explicit Message with a Message Body of more than seven bytes will be 

transmitted under the Fragmentation Protocol, which will be discussed in 

Section 3.3.3.
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Open Explicit Messaging Connection Request

Open Explicit Messaging Connection Response

Figure 3-4 Open Explicit Messaging Connection Request/Response Message
[ 62|

3.3.2 I/O Messaging

Explicit Messaging forms the fundamental communication mechanism of 

DeviceNet. Explicit Messaging is responsible for establishing the logical 

connections between nodes on the network. Having established the logical link 

between the producer and the consumer of the data, the devices can implicitly 

use the I/O messaging for very fast data exchange. Therefore, I/O messages are 

only useful to those nodes who have prior knowledge on the Protocol Data 

Unit (PDU)’s data. To a casual observer such as a bus analyser, the I/O 

messages will be meaningless, unless this casual observer is present during the
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establishment process o f the logical connections. PDU using the I/O Messaging 

scheme does not have any protocol information encoded in the CAN data field, 

with the exception of the Fragmented I/O Message.

3.3.3 Fragmentation Protocol

It is possible to transmit information which consists of more than 8 data 

bytes per PDU in DeviceNet using the Fragmentation Protocol. Fragmentation 

protocol supports both the I/O Messaging and Explicit Messaging. The 

Fragmentation protocol adds a byte of overhead into the existing data format 

of both I/O and Explicit Messages. As a result, Fragmented I/O messages only 

transfer 7 bytes of data in one PDU, whilst the Message Body of Fragmented 

Explicit Message is reduced to 6 bytes per PDU.

Both I/O and Explicit Fragmentation Protocol Messages format are 

shown in Figure 3-5. The shaded areas are responsible for Fragmentation 

Protocol. Notice that the IIO Fragmentation Protocol uses a data byte less 

than the Explicit Fragmentation Protocol. The Fragment Type indicates 

whether the PDU is the first fragment (0), middle fragment (1) or last fragment 

(2). The first fragment must have the value 0 or 3F hex (111111 binary) in the 

fragment count field in order to be valid. Other successive PDUs that follow 

the first fragment must have the middle fragment indicated in the fragment 

type field. The fragment count will be incremented according to the following 

formulae.
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I/O Fragmented Message Format

Ü

nt

I/O Message Fragment

Explicit Fragmented Message Format

7 6 5 1 4 | 3 | 2 | 1 | 0~
0 Frag

(1)
XID MACID

H Ü
llilll

Fragment
..

£

nt

Explicit Message Body Fragment

t n S 7

Figure 3-5 The Fragmentation Protocol Message 
Format [62]

Fragment Count = (Fragment Count + 1) mod 64

When the transmitter reaches its last fragmented PDU, it will indicate to 

the receiver by putting the value 2 in the fragment type Field to indicate that 

it’s the last fragment. In the Explicit Fragmented Messaging scenario, the 

receiver must acknowledge the reception of the each fragment by transmitting 

a value 3 in the fragment type field. The DeviceNet Specification, however, 

does not define whether the receiver needs to echo back the fragment count
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and data bytes to the transmitter, or just acknowledge with a value 3 in the 

fragment type field.

With fragmentation protocol, the maximum network efficiency1 for I/O 

messages has dropped from 59% for the full 8 data byte PDU to 38%. Since 

the Message Body o f Explicit Message has been reduced by a byte, the best 

network efficiency achievable is 44%, i.e. after a reduction of 7% efficiency. 

(Note : The network efficiency is calculated without taking into account the 

CAN protocol’s stuff bits.)

In theory, there is no limit for the number of data bytes to be 

transmitted via the fragmentation protocol. By analysing the network 

efficiency, it is obvious that transferring data longer than 8 bytes is not efficient 

in DeviceNet. Most o f the fragmentation data consist of the non time critical 

information such as the transmissions of Serial Number and Product type 

during initialisation phase of the network. The use of fragmentation messages 

is best avoided during run-time. If circumstances allow, it is preferable to keep 

the fragmented I/O messages to a minimum for hard real-time systems.

3.4 Application Layer Optimised for Control

The application layer of DeviceNet is optimised for real-time control. It 

can be divided into the following two categories:-

• client/server for low priority point-to-point messaging

• multicast for real-time I/O data

1 Network Efficiency refers U) the ratio of the amount of the user data and the number of 
hits needed to transmit such information (as defined by |23, Iturante et al.|)______________
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3.4.1 Unconnected Message Manager (UCMM)

The Unconnected Message Manager or UCMM in short is responsible 

for establishing the logical connection between two nodes at initial stage. In 

DeviceNet, the data producer and data consumer must be linked logically using 

network binding tools such as the DeviceNet Manager Software. This network 

binding tool creates a logical link in which both devices, i.e. the producer and 

consumer of the data, communicate. Even though one can easily connect a 

device on the network, the device will not do anything until it has been 

configured, i.e. established connection. Therefore the term “plug-and-play” is 

perhaps not applicable to DeviceNet yet.

From section 3.3.1, we learnt that the Explicit Messaging is the first 

messaging scheme a device will use in DeviceNet. When a DeviceNet node is 

plugged into the network, logical link must be established prior to the 

consumption and production of data. In fact, the Duplicate MACID Check 

Message that a device transmits before going online is an explicit message. 

This message ensures a unique MACID is assigned before the new device is 

allowed to go on-line. The network binding tool will establish connection with 

the new device via the UCMM port using the Open Explicit Messaging 

Connection Request Message. The UCMM only processes 3 instances of 

DeviceNet network service message. They are:-

1. Open Explicit Messaging Connection service (Service Code 4B hex)

2. Close Explicit Messaging Connection service (Service Code 4C hex), and

3. Error Response service (Service Code, 14 hex) messages

The UCMM of a device can be analogous to a door-man of a hotel 

building. The person can either open the door to let you enter, close the door 

when you go out, or refuse to let you enter at all. If the connection instance is
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available and free, the UCMM will reply with the Open Explicit Messaging 

Connection Response Message, indicating a successful transaction with the 

appropriate parameters. All the succeeding transactions no longer involve the 

UCMM, but use the Connection Object Class, unless the following happen.

a) A Close Explicit Messaging Connection Service is requested, in which the 

UCMM closes the existing connection instance.

b) Another Open Explicit Messaging Connection Service is requested. This 

situation will cause the UCMM to send an error response if there is no 

available connection for the request (i.e. the device only has 1 connection 

instance), or reply with a success response if there is another free 

connection instance available (i.e. for device which supports multiple 

connection instances).

Since UCMM related messages do not utilise the Connection Object, 

they are not connection based messages, i.e. they do not occupy any available 

connection instance of the Connection Object Class.

3.4.2 The Connection Object Class

After successfully gaining access to the DeviceNet device via UCMM, 

the connection must be routed (by Message Router Object) to the Connection 

Object of the device for connection based messaging. The Connection Object 

Class allocates and manages the I/O and Explicit Messaging Connections of the 

device. It uses the services provided by the Link Producer Object Class 

and/or Link Consumer Object Class for transmission and reception of data. 

Again, the Connection Object can be analogous to a receptionist in a hotel. 

The receptionist will register the guest and issue the guest with a room key, 

before using the porter service to see the guest to his/her room. Once the guest
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knows the orientation of the hotel, it is possible for the guest to leave the hotel 

room and return, without the assistance of the receptionist. A “path” has been 

created in the mind map of the guest to allow him/her to shuttle between the 

hotel room and his/her destination.

In the context of DeviceNet, a unique connection instance will be 

created between the Connection Object Class of the new device and the tool. 

This instance will be assigned a unique Connection ID (CID) which will be 

used for subsequent transactions. The tool then configures the Connection 

Object Instance attributes by using the services provided by the Connection 

Object Class. It uses the create service of the Connection Object Class to 

instantiate a connection of your choice. For example, one can create an HO 

Messaging Connection with attributes such as change-of-state Transport 

Class triggering (using transportclass_trigger attribute) connection with 

maximum PDU length of 4 bytes (using produced_connection_size attribute) 

and an EPR (expected_packet_rate) time-out of 20()ms. When the 

instantiation process is completed, i.e. established connection, all subsequent 

transmissions associated with that connection instance will use the Group 1 I/O 

Messaging scheme with an assigned CID.

3.4.3 Application Object Class

Application Object Class of DeviceNet is responsible for providing the 

function o f the device itself to the acquiring client end-point. The presence 

sensing o f a photo-sensor (i.e. the ON/OFF state of the photo sensor) is an 

instance o f the Application Object Class.

Before the presence sensing data of the photo-sensor can be utilised, the 

logical connection between both the client and server end-points must be
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initialised via the Explicit Messaging connection. Once the Explicit Messaging 

connection with the Connection Object Class messaging is established, the 

other end-point of this logical link can require any attribute and service 

provided by this new node. If the service of the Application Object is needed, 

the Connection Object Class will utilise those services provided by the Link 

Producer Object Class and/or Link Consumer Object Class, i.e.

• create a connection instance

• delete a connection instance

for establishing the necessary connections.

Figure 3-6 The interface between Application Object and Connection
Object

For example, a connection instance between the Application Object of 

the photo-sensor and the PLC Scanner’s object must be established before 

ON/OFF states of the photo-sensor can be consumed by the PLC Scanner. 

Figure 3-6 shows the internal object relationships of a DeviceNet device, e.g. 

photo-sensor, to enable the production and consumption of data (i.e. logical 

connection).
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3.4.4 Network Services

DeviceNet protocol defines a standard set of network services that all 

DeviceNet compliant devices must implement. Figure 3-7 summarises all the 

DeviceNet network services available to-date. The figure also shows that 

vendor specific services are possible by implementing these services within the 

allocated area, i.e. service code 32-4A hex. All these services can only be 

realised using the Explicit Messaging Connection scheme. This allows many 

resources to be implemented, accessed and modified by the corresponding 

application. For instance, the user can modify the dark sensing of the photo­

sensor into light-sensing, and save the modification in the device by initiating a 

set_attribute_single service with the appropriate parameter attributes.
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Service 
Code 

(in hex)

Service Name

4B Open Explicit Messaging 
Connection

4C Close Explicit Messaging 
Connection

Range 
(in hex)
00-31 DcviccNct 

Common Services
32-4A Vendor Specific

4B-63 Object Class 
Specific

64-7F Reserved

80- FF Invalid

Figure 3-7 The DeviceNet Network services

3.5 DeviceNet Network Error Management

Much of DeviceNet error management is relying on the proven CAN 

technology. DeviceNet has included additional definition of error recovery and 

management to those already available in the CAN technology.

3.5.1 Error Detection in CAN

CAN does not have error correction facility. It only has the error 

detection mechanism and relying on the automatic retransmission of corrupted
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messages. Reference [631 provides a detailed analysis on the error detection 

mechanisms in the CAN protocol. There are 5 error detection mechanisms 

available in CAN. They are:-

3.5.1.1 Acknowledgement

All CAN nodes acknowledge when an error free message frame 

is received. The missing of acknowledgement is interpreted as an error 

by the transmitter.

3.5.1.2 Monitoring

Every transmitting node checks the bit stream detected on bus 

with its transmitted bits. This bit-by-bit checking of the transmitter 

guarantees safe detection of all global and local errors. A global error is 

the error agreed by all nodes on the system. An example of global error 

may be a voltage spike on the trunk line which was seen by all nodes. A 

local error is an error caused and/or detected by the local node only. 

For instance, when a node transmits a “ l ” on the bus, it expects to 

receive a “1” back. If it does not see a “ 1” on the bus, an error has 

occurred. An exception is that the transmitter allows its transmitted 

recessive bits (“ 1”) to be overwritten by dominant bits (“0”) at the 

arbitration field and the acknowledgetnent slot of CAN frame.

3.5.1.3 Frame Check

The CAN protocol contains fixed format bit fields for each 

message frame. All nodes check for the consistency of the frame format. 

Any mismatch on the frame format is interpreted as an error.
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3.5.1.4 Cyclic Redundancy Check (CRC)

The CRC sequence in CAN is calculated by dividing the 

polynomial,/ with the generator polynomial, gp,

where gp = x  +X + X  + JC + X  + X  +X  +1

The coefficients of polynomial / ,  (calculated using modulo-2) 

consist of the destuffed bit stream of Start-of-Frame (SOF), Arbitration 

Field, Control Field and Data Field (if any). The remaining 15 lowest 

coefficients of the polynomial /  are all set to 0. The remainder of the 

polynomial division (15-bit value) is then transmitted by the transmitter. 

At the receiver, the same process is repeated to obtain the remainder of 

the polynomial division. Any mismatch in the remainder checksum is 

interpreted as error.

3.5.1.5 Bit Stuffing

A stuff bit of the opposite polarity is inserted upon detection of 5 

consecutive bits of the same polarity. The transmitting node will stuff 

the bit stream while the receiver will de-stuff appropriately. If a bit 

stream consists of more than 5 successive bits of the same polarity 

during the transmission of the CAN frame, an error is detected.

3.5.2 Fault Confinement in CAN

Table 3-3 shows the fault confinement of CAN protocol. If an error 

occurs during the transmission of a message, the Transmit Error Counter 

(TEC) on the transmitter will be incremented by a value 8. All other nodes 

(receivers) on the network will increment their Receive Error Counter (REC) 

by l. This mechanism ensures that the faulty transmitter will enter the bus-off
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state before causing catastrophic failure to the operating network. Both the 

REC and TEC will be decrement by 1 every time a good message frame is 

received and acknowledged. This allows the nodes to recover from temporary 

error or short disturbances.

Table 3-3 The Transmit Error Counter (TEC)/Receive Error Counter (REC) 
values with respect to their corresponding states.

Error-Active 0 <  TEC S 127, or 
0 < REC < 127

Error-Passive 128 < TEC <255, or 
128 < REC <255

Bus-Off 255 < TEC, or 
255 < REC

If one of the many receivers on a network is faulty, the following 

situation will happen. Since the receiver is faulty, it will disagree with other 

receiving nodes in validating a CAN message frame. When the receiver 

interprets the valid CAN frame as an error, it will signal the error condition by 

transmitting an active error frame (assume all devices are in normal state prior 

to this). Because all other nodes on the network are interpreting the CAN 

message as a perfectly good message frame, the appearance of the active error 

frame (transmitted by the faulty receiver) violates the bit stuffing rule (a 

maximum of 5 consecutive bits of the same polarity are allowed) in the CAN 

protocol.

At this stage, all the healthy receivers will collectively transmit their 

active error flags; not to indicate that the message frame is corrupted, but to 

indicate the bit-stuffing rule violation. The faulty receiver which started the 

transmission of the active error frame will now detect more error flags on the 

bus due to the second wave of error frames transmitted by the healthy nodes.
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In this situation, the faulty receiver that transmitted the active error frame, and 

greeted by more active error frames will have to increment its REC by a value 

of 8. All other receivers will increment their REC by 1. The transmitting node 

which is involved in this scenario will increment its TEC by 8.

Whenever a healthy CAN message is received and acknowledged, the 

TEC and REC will be decrement by a value 1. In the case of the faulty 

receiver, the TEC of the healthy transmitter and the REC of the faulty receiver 

will be incremented by 8. The REC and TEC counters’ values will keep 

incrementing until an error passive state is reached. The faulty receiver node 

will then transmit the passive error frame instead of the active error frame. The 

passive error frame consists of 14 recessive bits, i.e. 6 recessive bits (passive 

error flag) + 8 recessive bits (error delimiter). The transmission of passive 

error frame could no longer influence the network bus (and all the healthy 

nodes) as the passive error frame*can be overwritten by other nodes. The 

healthy transmitter will now receive valid acknowledgement from the rest of 

the healthy receivers and decrease its TEC counter, while the faulty receiver 

will keep incrementing its REC and go into the bus-off state.

3.5.3 Error Counters and Fault Confinement

Figure 3-8 shows the 8-bit Transmit Error Counter and its carry bit on 

the left. The counter is set to zero after the reset of a CAN controller. When an 

error is encountered, the TEC will increment its count by a value of 8. When 

the TEC.7 bit is equal to 1, the CAN controller will switch its fault 

confinement state into error passive. The counter will decrement its count by I 

when a valid message frame is received. If the value of TEC keeps increasing, 

the CAN controller will go into the bus-off state when the carry bit of the
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counter is set. The settings of any bit from TEC.O to TEC.6 will force the CAN 

chip to operate in the error active state.

Msb 8-bit Transmit Error Counter lsb

Carry TEC.7 TEC.6 TEC.5 TEC.4 TEC. 3 TEC.2 TEC. 1 TEC.O

Figure 3-8 The transmit error counter overflow mechanism

3.5.4 DeviceNet Bus-Off Counter

The bus-off counter of DeviceNet protocol specification counts the 

number of times the device’s CAN chip went into the bus-off state. All CAN 

controllers have the ability to flag the embedded software with a bus-off 

interrupt when the internal CAN Transmit Error Counter (TEC) or Receive 

Error Counter (REC) overflowed at 255. The TEC and REC are build into 

every CAN controllers. They must not be confused with the DeviceNet Bus-off 

Counter. The 8-bit counter (DeviceNet) will not reset itself, or rollover, when 

the maximum count of 255 is reached. The counter can be initialised to 0 when 

the following occurrs:-

1. power-up

2. device initialisation

3. when a Set_Attribute_Single request specifying Bus-off counter attribute is 

received

3.5.5 DeviceNet Bus-Off Interrupt (BOI)

The BOI attribute in DeviceNet protocol defines how a device behaves 

when a CAN bus-off state is encountered. BOI can take two values, i.e. ‘0 ’ and 

‘ 1’ as illustrated in Table 3-4.
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Table 3-4 The DeviceNet BOI value and its corresponding meaning.

BOI Value Required Action

‘0 ’ The embedded software must hold the CAN chip in the bus-off 

(reset) state and ensure that the device enters the communication 

fault state.

• r The bus-off CAN chip is allowed to be reset and continue 

communication, after the predefined initialisation steps of the 

Network Access State machine are performed.

The BOI value ‘1’ can be treated as a soft reset o f the device. All the 

previously established connections can either be deleted or kept in the 

configured state depending on the preference of product developers. In either 

instance, the duplicate MACID detection process must be performed as defined 

in the Network Access State machine of DeviceNet.

3.6 DeviceNet Abstract Object Model

Even though object-oriented methodology is not a global solution for a 

problem, it is suitable for describing DeviceNet protocol implementation. The 

use of object oriented technique in decomposing a device’s internal logic 

makes software design and development easier. The object-oriented approach 

encourages the reuse of the proven and tested codes.

Each DeviceNet device can be modelled using a collection of objects. 

These objects define the device’s internal components interaction (e.g. 

memory, communication, logic etc.), the communication services available 

(e.g. I/O polled or bit-strobed messaging) and the device’s behaviour in
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response to external stimuli. Generally, each DeviceNet device can be modelled 

using two abstract objects (Figure 3-9), i.e.

• the Application Object, and

• the Communication Object.

//-

Photosensor Input ;

-------- T --------
Application Object :

Communication 
Object

Node MACID #63

DcviccNct Network Bus
-//

Figure 3-9 A DeviceNet Abstract Model

The application object is responsible for the device’s dedicated function 

and must not be confused with the Application Layer of the OS I model and 

DeviceNet Specification. From the earlier example, the application object of a 

photo-sensor consists of the embedded software monitoring the logic state 

(ON/OFF) of the photo-transistor. On the other hand, the communication 

object will manage all the tasks related to DeviceNet communication, which 

consists of many more objects such as Connection Objects, Message Router 

Object etc.

Generally, the communication object includes all the services provided 

by the OS I model. It manages and provides the necessary services to realise the 

run-time data exchange among networked devices. For example, the logical 

link between the Application Object and Communication Object allows the

lly S O Khoh Page 3-28



Chapter 3 - The DeviceNet Fieldbus

ON/OFF parameter of the photo-transistor to be visible and consumed by other 

networked devices. Deep in its engine room, the Communication Object will 

include the Physical Layer, Data Link Layer and the Application Layer of the 7 

layer OSI model. The Communication Object is decomposed into many other 

objects, namely the Identity Object, Message Router Object, DeviceNet 

Object, Assembly Object, Connection Object, etc., in another level of 

complexity. This information hiding technique is one of the many features of 

object oriented design where complexities can be tailored to the level of 

concern.

3.7 Protocol Implementation

The DeviceNet protocol is implemented in the embedded software. 

Unlike Lonworks [64|, Profibus and WorldFip fieldbus implementations, there 

is no dedicated protocol controller associated with the DeviceNet protocol 

implementation. In the above mentioned fieldbus implementations, special 

protocol chips which realise the higher layer of the OSI model such as the 

message formats, the network services and variables are hard-coded in the 

silicon. In DeviceNet implementation, all the protocol messaging scheme and 

data format are implemented in the embedded software of the device.

3.7.1 Software Implemented Protocol

Software implementation of the DeviceNet protocol benefits the 

developers by using off-the-shelf CAN controllers. The difference between a 

DeviceNet implementation and non-DeviceNet implementation lies only in the 

embedded controlling software. In theory, all CAN implementations can be 

transformed to be DeviceNet implementations by modifying the embedded 

software on the implementations.
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The use of common chips to realise DeviceNet protocol offers various 

benefits. Firstly, it will be cheaper to use common parts which are readily 

available from more than 6 semiconductor manufacturers.

Secondly, the embedded software approach allows the developer the 

flexibility to support other CAN based fieldbusses such as CANOpen and SDS. 

This can be easily achieved by using different sets of embedded software for 

the corresponding protocol implementation. If conditions permit, all the higher 

layer protocols may even be implemented on the same device, with an 

automatic protocol selection facility to adapt this “multi-protocol” device into 

its corresponding environment. The idea of a “multi-protocol” device may 

prove a nightmare for the protocol conformance testers. The approach of 

developing various sets of protocol software for CANOpen, DeviceNet and 

SDS will be a more feasible solution today.

Thirdly, protocol implementation using software allows easy upgrades 

should the need arises. There are no expensive masks to be designed and 

manufactured. As most devices are equipped with flash memory, protocol 

version upgrades can easily be done by technical support staff by 

reprogramming the EEPROM with latest updates. This allows the older 

implementations to enjoy the same features as the latest developed device.

3.7.2 Dedicated Protocol Controller

On the contrary, on-chip solution adopted by Profibus, WorldFip and 

Lonworks open standards offers the device developers a quick interface for the 

corresponding protocols. The use of these protocol chips or dedicated protocol 

controllers simplifies the device design as all the PDUs and the 7 layer OSI 

services have been hardwired in the protocol controllers. This approach allows
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consistent implementation to be achieved quickly, but protocol upgrades may 

be a costly exercise as new masks are needed for the silicon.

Despite the easy standardisation of PDU format of this dedicated 

protocol controller approach, conformance testing is still needed to verify the 

correct operations defined by the protocol state machine. For example, when a 

device encounters a network error, the device must go into a “safe mode” and 

warn other devices on the network via a standard error message defined by the 

protocol. Whilst the standard error message format will be defined by the 

dedicated protocol chip, the triggering of this message is governed by the 

appropriate embedded software. In short, conformance testing of fieldbus 

devices using dedicated protocol controllers is still needed.

In space limited implementation such as a proximity switch, single chip 

implementation is preferred as there may be no room for another protocol chip 

to realise the necessary communication. It is also not economical to use this 

approach on low end, low cost devices. A simple low cost device requires 

simple network implementation, preferably a single chip microcontroller 

solution. This is why WorldFip and Profibus can also be used to interlink 

bigger and more complex equipment such as CNC machines, PLCs and drives. 

Single chip solutions may also help in qualifying design for the Certificate of 

Europe (CE)’s stringent Electromagnetic Compatibility (EMC) requirements.
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3.8 Conformance to DeviceNet

From the previous section, the many issues involved in developing a 

DeviceNet device, which focus on the conformance of DeviceNet 

implementation were highlighted. Without conformance, interoperability of 

devices will not be possible. Without interoperability, the ideal of open 

standard fieldbus will not be achieved. Generally, the conformance to an open 

standard fieldbus can be divided into:-

1. hardware conformance

2. software conformance

3.9 DeviceNet Hardware Conformance Test

The Conformance Test Engine (CTE) framework in this project 

concerns the DeviceNet protocol messaging and its messaging schemes. The 

corresponding test equipment needed to carry out the hardware conformance 

test is not addressed. The hardware conformance test involves the use of high 

precision measuring equipment such as amp/volt meters, oscilloscopes and 

dummy loads (to emulate network nodes) to verify that the designed physical 

layer conforms to the DeviceNet specification.

3.9.1 Bit Timing Parameters

The utilisation of the approved physical layer driver chip no doubt will 

fulfil the electrical characteristics requirements. However, it is still not 100% 

certain that DeviceNet communication will take place successfully, especially 

at maximum bus length. The bit period of the CAN protocol can be 

programmed to accommodate different design criteria, e.g. maximum bus 

length and maximum oscillator tolerances. The utilisation of different bit
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timing parameters will cause communication failure even though the same 

physical layer design is used.

An easier solution is to ask the product developers what bit timing 

parameter values they have implemented on their devices. Nevertheless, the 

hardware conformance test must be set up to ensure that the product 

developers have correctly implemented the CAN bit timing parameters (i.e. 

TSEG1 and TSEG2 values) for the corresponding DeviceNet baud rates.

H ----------------------------------------------------------------------H

Sync TSEGI TSEG2
i

Sample Point

Figure 3-10 The CAN nominal bit period

Figure 3-10 shows a nominal bit time of a CAN frame that consist of the 

synchronisation segment (Sync), Time Segment 1 (TSEG1) and Time Segment 

2 (TSEG2). Both TSEG1 and TSEG2 values are programmable via the Bit 

Timing Register 0 (BTRO) and Bit Timing Register 1 (BTR1) registers of the 

CAN controller. The Sync segment always consists of one system clock 

period, tsys., whereas TSEG1 and TSEG2 can have various tsys- In addition, 

TSEG1 must always be greater than TSEG2. The minimum value that the 

TSEG2 can have is 2 I s y s , i.e. information processing time. This is the time 

needed for the CAN hardware to determine the sampled bit level (i.e. either 

“ 1” or “0”). The TSEGI and TSEG2 values will determine the position of the 

sample point within the bit period.
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Propagation Delay versus Oscillator Tolerance Optimisation

Greater TSEG1 value in combination with short TSEG2 (i.e. late 

sampling) will allow longer bus length to be utilised as the electrical signal has 

more time to propagate further, i.e. maximum propagation delay2. This 

configuration requires an accurate crystal oscillator to minimise the oscillator 

tolerances. Conversely, the sampling point must be set nearer to the middle of 

the bit period in order to compensate for the oscillator tolerance. As a 

consequence, shorter bus length is required. Propagation delay optimisation is 

used in DeviceNet. Table 3-5 shows a summary of BTRO and BTR1 example 

values used in DeviceNet. BTRO controls the baud rate prescaler so that the 

appropriate tSys can be obtained by scaling down the crystal oscillator’s speed 

(usually 16Mhz or 2()Mhz crystal) of the CAN controller. The Synchronisation 

Jump Width (SJW) that is used for lengthening and shortening the bit period 

(up to 3 tsYs) is not used in DeviceNet.

Table 3-5 The BTRO and BTR1 values used in DeviceNet

BTRO SJW=0

Prescaler

=3 (-r 4) @ 125 Kbit/s 
= 1 (t  2) @ 250 Kbit/s 
=0 (t 1 ) @ 500 Kbit/s

BTR1 1 sample per bit

TSEG1 (16 Mhz) : set to provide 13 tsvs 
TSEG1 (20 Mhz) : set to provide 16 Isys

TSEG2 (16 Mhz) : set to provide 2 tsYs 
TSEG2 (20 Mhz) : set to provide 3 tsYs

2 The propagation delay involved in CAN protocol is the lime needed by die electrical
signal to go Ironi one CAN controller lo the oilier, and die lime needed lor its return.______
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3.9.2 Opto-isolation delay

Opto-isolation is required for devices that use high voltage supply such 

as the three-phase motor drive. The high voltage system must be isolated from 

the DeviceNet network with a 500 Volt isolation. The opto-isolator used in a 

DeviceNet implementation must fall within the 40ns maximum delay limit. The 

maximum combined delays, (i.e. both opto-isolator and the transceiver delays) 

are 120ns (80ns from transceiver delay) for the transmitter and 130ns (90ns 

from transceiver delay) for the receiver. Failure to comply with these 

requirements will introduce incompatible bit-timing which will cause a 

communication problem.

3.9.3 Physical Hardware

Physical hardware conformance starts from the basic and physical area 

which include the use of standard wire/cable, with corresponding colour coding 

and standard connectors. For instance, the CAN High signal is coded with 

WHITE wire, while the BLUE coloured wire indicates the CAN LOW signal. 

The wiring of the connectors and sockets must follow those stipulated in the 

DeviceNet specification. The area of interest may extend to the correctly 

implemented LEDs, e.g. RED for warning and GREEN for healthy operation.

3.9.4 CAN Controllers

Since the DeviceNet protocol is implemented using the embedded 

software in the microcontrollers, not all CAN silicon can be used to implement 

the DeviceNet fieldbus. The non-DeviceNet compliant CAN silicon can be 

categorised as below:-

a) the CAN chip which lacks the EPROM space needed to implement the

DeviceNet Communication Objects.
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b) the non-programmable, protocol only device, e.g. Serial Linked 

Input/Output (SLIO).

The architecture of CAN chips can be classified into two different categories, 

i.e.:-

• embedded (integrated CAN controllers), and

• peripheral (stand-alone CAN controllers)

with various message acceptance filtering capabilities. Table 3-6 shows the 

compatibility of currently available CAN controllers with DeviceNet 

implementation.

Embedded CAN controllers offer a tight coupling between the CAN 

communication section and the microcontrollers. These controllers feature 

register addressable CAN parameters and DMA transfer between CAN and the 

microcontroller core. Standalone CAN controllers are ideal for upgrading the 

existing embedded system for CAN communication. This can be analogous to 

the addition of an Ethernet communication card into an expansion slot of the 

Personal Computer for network communication in office LAN environment.

CAN controllers that allow some specific messages to be filtered (in 

addition to the mask) are referred to as Full CAN controllers, while CAN 

controllers that provide a mask to filter a range of identifiers are referred to as 

Basic CAN controllers. Both full and basic CAN controllers differ only in the 

message filtering capability of the silicon, and both are compliant with the 

CAN protocol specification.
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Table 3-6 A summary of available CAN chips and their compatibility to
DeviceNet

Manufacturer Product Type Acceptance
Filtering

(Full/Basic
CAN)

DeviceNet
Compliant

Intel 8xl96CA Embedded Full y

82526/7 Peripheral Full ✓

Motorola 68HC705 x4/16/32 Embedded Basic y

National COP 684/884 BC Embedded Basic X

Semiconductor MM 57C360/2 SLIO Basic X

NEC pPD72005 Peripheral Full y

Siemens 81C90/91 Peripheral Full y

81C515C Embedded Basic y

81C806 Embedded Full y

81C815 Embedded Basic y

C167C Embedded Full y

Philips 82C150 SLIO Basic X

82C200 Peripheral Basic y

8xC592/8 Embedded Basic y

The choice of which CAN controller to use for DeviceNet 

implementation depends on the DeviceNet developers, provided that the one 

chosen fulfils the fundamental requirements of the DeviceNet Specification. In 

the system using basic CAN controller, the microcontroller will be interrupted 

more frequently as there is only an 8-bit mask to filter out the unwanted 

messages. If interrupt rate is critical in an embedded system design, then full 

CAN controller will be the better option ¡is the microcontroller is interrupted
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only when the required message is received. This keeps the microcontroller 

from the tasks associated with network communication to a minimum.

Since the DeviceNet communication protocol relies heavily on the 

correctly implemented embedded software, it is important to thoroughly test 

the software for correct operation.

3.9.5 Physical Layer

All DeviceNet compliant devices must be able to work in a network of 

up to 64 nodes with maximum bus length. DeviceNet developers are free to 

design their own bus drivers on condition that the custom designed physical 

layer drivers must have equal or better specifications than that of the Philips 

82C250. The Philips 82C250 bus driver complies with the ISO 11898 high 

speed physical layer signalling and comes in an 8 pin Small Outline Integrated 

Circuit (SOIC) package. Philips is improving the 82C250 to drive up to 110 

nodes instead of the current 64 nodes 1651. Appendix A of the DeviceNet 

Volume 1 specification has defined the required electrical parameters for 

physical layer conformance.

The physical layer conformance test ensures that the electrical 

characteristics and parameters of the implementation fall within the limits 

defined in the DeviceNet specification. This area of concerns normally has 

been sorted out by developers in the early stage of the engineering design 

process, as redesigning the hardware can be a costly exercise.

Since the majority of product developers are using the same physical 

layer (i.e. the Philips 82C250 bus driver) chips in their products, the DeviccNct 

physical layer conformance test is not considered as critical as the protocol
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messaging test. The quality assurance of Philips semiconductor is relied upon 

to ensure that the electrical characteristics of the chips manufactured are all 

within the tolerance limits.

3.10 DeviceNet Software Conformance Test

Since DeviceNet is a software intensive implementation, considerable 

amount of effort should be placed in this area. The embedded software of the 

implementation will be tested only for protocol related function. Computer 

software which governs the internal operation of the device remains the 

responsibility of the product vendor. For example, the testing o f  the software 

which controls the ramp-up and ramp-down speed of a drive is beyond the 

scope of the conformance test. This leads to the proposed design of a 

conformance test framework for conformance testing the DeviceNet protocol 

software.
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T h e  C o n f o r m a n c e  T e s t i n g  
C o n c e p t s  a n d  M e t h o d o l o g i e s

In order to achieve full interoperability of devices such as sensors and 

actuators in a fieldbus system, an exercise to ensure the correct implementation 

of the protocol is needed. This exercise is referred to as Conformance Testing. 

Conformance Testing is defined as a set of tests performed to check whether 

an Implementation Under Test (IUT) conforms to its formal specification |66|. 

It assures that the conforming products are implemented according to the 

formal specification, and they will interoperate and deliver the specified 

services.

Testing a new implementation may be time consuming and costly, but 

the consequences of not testing may be even dearer. For example, the 

destruction of the multi-million pounds Ariane-5 rocket and its invaluable 

cargo due to software failure emphasised the importance of software testing 

|67|. The software was adopted from European Space Agency (ESA) Ariane 

5’s predecessor and was thought to be proven and reliable until the 

catastrophic explosion of Ariane-5, 39 seconds after its launch on 4 June 1996. 

If the piece of software had been properly tested, the accident probably would 

not have taken place. However, totally eliminating software related accidents 

is not possible as today’s software products are so complex and sophisticated, 

and they arc constantly influenced by time and cost constraints. In addition,
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software engineering is a human activity and will always be prone to human 

error. Nevertheless, reasonable care must be taken when implementing safety 

critical software. This includes the use of methodologies and proof checkers 

(e.g. mathematical models and formal methods) to minimise the likelihood of 

human error.

4.1 The Black Box Testing Approach

Conformance Testing is classified as a black box approach if the 

external tester can only observe the outputs generated by the IUT upon the 

receptions of the appropriate inputs. This approach is used by the ISO 9646 for 

conformance testing. In an open standard, there are boundaries which govern 

the areas where a developer must conform to a standard set of protocols, and 

those areas which are proprietary to the developer. The information which falls 

in the proprietary areas will be classified and remain the responsibility of the 

product developers. Conformance testing should never be seen as a 

replacement of the quality assurance procedures utilised by vendors, as it 

governs only the externally visible public interface of an open standard. The 

internal operations of the implementation will not be of interest to the 

conformance testing. This black-box metaphor has also been used extensively 

in all object oriented systems.

4.2 Formal Tool for Protocol Representation

Formal tools in the form of language or notation must be used in order 

to describe the protocol accurately and precisely. This will help the 

comprehension of the protocol specification and avoid multiple interpretations 

of the standard protocol. A specification written in English language will be
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categorised as an informal specification, and will only be become a formal 

specification when the formal language or notation is used.

4.2.1 The Formal Description Techniques

The Formal Description Techniques (FDTs) are used to minimise the 

language ambiguities apparent in the protocol specification. Examples of 

available FDTs are SDL [68], ESTELLE [69], LOTOS [70] and TTCN (The 

Tree and Tabular Combined Notation). In the ISO 9646 definition, TTCN has 

been selected as the formal description language for the standard.

TTCN was designed to exactly express all attributes of an abstract test 

suite as specified in ISO 9646-2 specification. The TREE section of the 

notation is used in the dynamic behaviour descriptions to describe the 

occurrences of events according to the specification’s state machine. The 

TABULAR section is used to simplify the representation of all static elements 

such as the PDU formats and verdicts associated with a particular test event.

In DeviceNet, the Abstract Syntax Notation One (ASN.l), i.e. another 

instance of formal notation, was used to formally specify information format 

and data types of the communication entities. ASN.l (as defined in ISO 8824) 

is similar to the TABULAR section of the TTCN, which is useful in specifying 

the Application Layer of the OSI protocol. Neufeld [711 gives a good 

overview of the ASN.l technique. Further information on the application of 

ASN.l on DeviceNet protocol specification can be obtained from Appendix J 

of DeviceNet Specification Vol. I, Release 1.1.

As object-oriented technique is more widely used in the software 

industry, the object-oriented model has been used by Cena et al 1721 to model
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the FIP. In another separate occasion, Juanole and Gallon |73] have proposed 

the Stochastic Timed Petri-Nets (STPN) model as the formal modelling of 

fieldbus protocol. Both the object-oriented model and STPN model have one 

thing in common, i.e. they consider the time factor. Hence, they can be used to 

model the fieldbus protocol as closely as possible.

Nevertheless, proven FDTs such as LOTOS, SDL and ESTELLE are 

still used for defining the lower layers of the protocol specification, whilst 

waiting for the new object-oriented model to mature.

Today, there are many commercial software tool-kits which support a 

wide range of FDTs. Some of these formal description software tool-kits are 

capable of compiling the formal language notation into run-time codes for test 

execution. This feature will help to automate the conformance test generation 

process, as well as automating the testing process of the implementation.

4.2.2 The Finite State Machine

The Formal Description Techniques (FDTs) discussed so far were based 

on the assumption that the communication protocol can be modelled using the 

finite state machine. In other words, the formal conformance test generation 

methodologies have been primarily based on the finite state machine (FSM) 

model 1741 of the protocol specification.

“-4 finite state machine, or finite automaton, is an abstract model 

describing the synchronous sequential machine and its spatial counter-part, 

the iterative network.” ...Zvi Kohavi
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A FSM is an automaton, with a finite number of states, that changes 

from one state to another when subjected to external stimuli. A state is the 

stable condition where the automaton pauses or rests. The automaton will 

generate an observable output (which may be null depending on conditions) 

when an external stimulus called input is applied. We denote a state transition 

of the FSM from initial state S. to final state which is caused by an inputt 

and generates an output by the following relationship.

( St , S j  ; inputk / output,)

In an IUT, there are three steps to verify whether the FSM is 

implemented correctly.

Step 1 Bring the 1UT into state S. (Test Preamble)

Step 2 Apply the inputk and observe that the IUT generates the output' 

Step 3 Verify that the final state is SJ

A FSM is called fully specified if for every permissible state there exists 

a permissible output for every permissible input set, /. A FSM is called 

partially specified if some of the inputs are not allowed in some states. Most 

real life communication protocols are classified as partially specified. The 

FSM will be minimal if the protocol specification has only one unique state for 

a permissible input set, I.

A detailed discussion on the finite state modelling on OSI 

communication protocol can be obtained from reference |75|. The FSM used 

to model the Network Access state transitions of DeviceNet communication 

protocol is shown in Figure 4-1.
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Figure 4-1 The DeviceNet Network Access State Transitions

4.2.3 Formal Protocol Modelling

Formal Protocol Modelling involves the use of formal languages and the 

FSM to model the protocol specification. The formal protocol modelling 

exercise is to produce a formal protocol specification, and to detect any 

possible errors on the protocol itself.

Conformance exercise only conforms the IUT to the formal protocol 

specification. It does not check the correct behaviour of the protocol itself. 

For example, if the protocol defines that an implementation must produce an
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output HAPPY in state X when stimulated with input SUCCESS, all the IUT 

must produce the same output HAPPY when stimulated with SUCCESS in 

order to comply with the protocol; even though this is a faulty state transition 

on the protocol. In other words, the conformance exercise only ensures the 

correct implementation of a device to the protocol specification. It does not 

check the correct operation of the protocol itself.

4.3 Requirements of Conformance Testing

Reference [76| provides a good definition of conformance related issues 

in OS I protocols. There are three levels of conformance requirements in any 

OSI protocols, i.e., the mandatory requirements, the conditional requirements 

and the optional requirements. Mandatory requirements are those requirements 

that must be fulfilled whenever an implementation wishes to conform to a 

standard protocol, and must be observed at all times. The conditional 

requirements allow observations to be done only when the conditions defined 

in the specification apply. For instance, the implementation of a Presence 

Sensing Object in DeviceNet is a conditional requirement of the protocol which 

only governs presence sensing devices. On the other hand, the implementation 

of Identity Object is a mandatory requirement as this is needed in every 

DeviceNet implementation. Lastly, the optional requirements deal with those 

situations where an implementation is an optional requirement of the protocol. 

For instance, the Parameter Object of DeviceNet which provides the user with 

the configuration related data is an optional requirement. However, if the 

optional requirement is implemented, the device will be required to undergo 

the corresponding conformance testing process.
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Each level of conformance requirement can be divided into two 

categories. They are:-

1. Static Conformance, and

2. Dynamic Conformance

Static Conformance are the fundamental requirements to allow an 

implementation to interconnect in a network. In the context of DeviceNet, it 

may govern the use of the right physical media to the use of correctly 

implemented message frames and PDUs. The dynamic conformance governs 

the predefined behaviour of an implementation and involves the protocol FSM. 

For example, before a DeviceNet device is allowed to go on-line, it must 

ensure that it has performed the duplicate MACID detection process to 

guarantee the uniqueness of its MACID. In short, dynamic conformance 

specifies the observable behaviours permissible by the protocol specification.

4.4 Types of Conformance Testing

The objective of conformance testing is to check whether an 

Implementation Under Test (IUT) conforms to its protocol specification. 

However, due to the practical limitations and economic factors, it is impossible 

to adopt an exhaustive approach for conformance testing. Therefore, five types 

of conformance testing (section 4.4.1-4.4.5) have been identified to indicate 

the level of conformance of an implementation. The basic interconnection test, 

capability test and behaviour test, with the exception of the conformance 

resolution test, must be standardised for a communication protocol.
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4.4.1 Basic Interconnection Testing

The basic interconnection tests provide limited testing to ensure that 

there is sufficient conformance for the interconnection to take place. Any 

implementation which does not succeed in this test will have severe non­

conformity problems and all subsequent tests will be terminated. The test acts 

as a preliminary filter before proceeding on to the more comprehensive and 

costly tests. In the context of DeviceNet, this may be a test for the Open 

Explicit Messaging Connection. If the implementation fails this test, then there 

is no point in proceeding as all subsequent tests have to depend on the Explicit 

Messaging Connections. Other examples o f this test include the verification of

• the physical wire and connector of the DUT (Device Under Test) for correct 

colour coding and orientation,

• the testing of the appropriate voltage signals on the bus driver, and

• the correct flashing of the LED indicators.

4.4.2 Capability Testing

This test determines the presence o f the implemented features declared

in the Protocol Implementation Conformance Statement (PICS). (The term

Statement o f Compliance (SOC) is used within the context o f DeviceNet.) It

checks whether the appropriate features claimed in the PICS are consistently

implemented in the IUT. The capability testing governs the area of the
*

specification where the product developers have options for different 

implementations. For example, the MACID and baud rate settings of a 

DeviceNet device can be configured either using DIP switches or via the 

DeviceNet Object instance attributes. If the product developer decided to 

implement the DeviceNet Object, the developer must indicate this in the SOC
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document1. The DUT will then be tested for the proper implementation of the 

DeviceNet Object. The flexibility in implementing various device features as 

stated in the SOC for compliance allows the product developers to design 

innovative products for their market niche.

4.4.3 Behaviour Testing

Behaviour testing is used to determine the extent of the dynamic 

conformance requirements. As the number of possible combinations of states 

and events are infinite in a protocol, exhaustive testing must be avoided. 

Therefore, this test utilises the many conformance test generation 

methodologies, which are to be discussed in section 4.5. As an example, all 

DeviceNet devices must perform the duplicate MACID detection routine 

before going on-line to guarantee the uniqueness of their MACID. Therefore, 

all DeviceNet implementations must undergo the behaviour testing process.

4.4.4 Conformance Resolution Testing

This test is used to verify the uncertainties found in the previous three 

tests, so that a definite pass/fail result can be obtained. Even though previous 

tests failed to deliver the definite pass/fail answer, they help to narrow down 

the area where further tests are needed. Then, a conformance resolution test is 

performed to eliminate the uncertainty. As the situation o f uncertainty will be 

different for each IUT, this test will not be standardised, i.e. no standardised 

abstract test case, and will be carried out on an ad hoc basis.

1 The SOC document in DcviccNct lakes llic form of an electronic data file.
fly S B Khoh I’age 4-10



Chapter 4 - The Conformance Testing Concepts and Methodologies

4.4.5 Interoperability Test

Interoperability test is used to determine whether two implementations 

will inter-operate. In the fieldbus protocol, interoperability refers to the ability 

of network devices to work together in a system. It can be further decomposed 

into three levels of interoperability, i.e.:-

i. basic interfacing,

ii. substitution with limited capability, and

iii. substitution with full integration [771.

The basic interfacing interoperability will guarantee the network 

communication for any compliant device. The latter two categories concern the 

function and data of the devices. Some fieldbus devices contain more 

parameters than others. For instance, the flow transducer from vendor A also 

gives the ambient temperature reading but this temperature parameter may be 

missing from devices available from vendor B. In fact this area almost crosses 

the fine boundary which separates the functionality of a device and its 

communication protocol conformance. While interchanging a category (iii) 

device with another same category device allows the full functions to be 

interchanged without restriction, interchanging devices from different 

categories can result in the unavailability of certain control data. In summary, 

interoperability concerns the communication protocol, while interchangability 

relates to the functionality and data of the device.
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4.5 The Conformance Test Generation Methodologies

Conformance test generation methodologies are used to design and 

define the necessary conformance test suites for a protocol. The four most 

popular techniques used in generating conformance tests are as follows.

4.5.1 Transition Tour

The transition tour method was first suggested by Naito and Tsunoyama 

[78) for FSM-based sequential circuits. It is the most straight forward 

approach for conformance test generation. The state transitions defined by 

the FSM of the protocol specification are exercised at least once by applying 

the appropriate input sequence and observing the corresponding output. 

Sarikaya and Bochmann first applied this method in protocol conformance 

testing in 1982 [79|. The major disadvantage of this method is the omission 

of the state verification step which severely limits the fault detection 

capability of the technique.

4.5.2 Distinguishing Sequence (DS) Method

The DS-Method is a two phase approach. The test on the first phase checks 

that each state defined by the specification exists in the implementation. In 

the second phase of the test, the DS-method checks for correct output and 

transitions in the remaining transitions defined by the specification. This two 

phase approach is also used by Voung’s UIOv method |8()|, the SW method 

18 11 (Single Transition Checking using W set) and the partial W-method 

(Wp) 1821.
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A distinguishing sequence of an FSM is an input sequence which generates 

an output sequence that uniquely identifies the state, Si of an 

implementation prior to the application of the input sequence (Figure 4-2).

Since the DS-Method was originally developed for sequential circuit testing 

|75, 83] where all the states are fully specified, it suffers some drawbacks 

when applied to communication protocols that are typically partially 

specified. It will not be possible to generate every input sequence for every 

state due to the partially specified protocol. In addition, the number of tests 

to be generated for a FSM of n states will be n , which limits the use of 

this method.

4.5.3 W-Method

This method is also known as the Characterising Sequences Method and 

was introduced for FSM specifications that do not posses a distinguishing 

sequence. It is very similar to the DS-method where a characterising set of 

input sequences are applied to the state S/ and the output sequences are 

observed. Each characterising set of state S/ distinguishes state Si from a 

group of states, hence uniquely identifying the state Si after applying all the 

characterising sequences. This results in very long test suites for most 

modern protocols as compared with those developed using other 

methodologies.

Input
Sequence

Output
Sequence

Figure 4-2 The DS-Method Testing

Il y SO. Khoh Page 4-13



Chapter 4 - The Conformance Testing Concepts and Methodologies

In short, the Characterising Sequences Method is used as an alternative if 

the protocol specification does not have a distinguishing sequence. Another 

disadvantage of this method is that most real life protocols do not exhibit 

the distinguishing sequences due to partially specified specification. So, it 

will be difficult to find the distinguishing sequences in this situation.

4.5.4 Unique Input/Output (UIO) Method

The UIO method uses a unique sequence as an input for state, S/ such 

that its output sequence uniquely identifies the state, S/. The UIO sequence 

is designed with the knowledge of what the new state will be. If an 

implementation under test does not return the expected output sequence, the 

test will be declared failed. The tester will not have any knowledge on the 

new state of the implementation when the failure occurred. This 

distinguishes the UIO method from the DS-method and W-method where 

the test designer knows the new state of the implementation, whether it 

returns the expected result or not.

This method, unlike the DS-method and W-method, does not require 

a fully specified protocol specification to realise it. Thus it results in a 

shorter test sequence, as only specific state information is needed. The 

limitation of this method is that it cannot tell which state the implementation 

is visiting when it fails the test. The UIO method was first introduced by 

Sabnani and Dahbura in a published paper [ 841. A rural Chinese postman 

tour algorithm was later used by Aho et. al. |85| to optimise the UIO 

method so that more efficient conformance test sequences can be generated. 

The rural Chinese postman tour is an optimisation problem whereby all 

states in the state machine must be visited and traversed the minimum 

number of times.
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4.5.5 Fault Coverage of test generation techniques

After reviewing the four most popular conformance test generation 

methods, the next step will be to find out which is the most efficient technique 

for DeviceNet. Sidhu and Leong did a Monte Carlo simulation [86] to 

estimate the fault coverage o f these techniques [87]. They devised a method of 

generating random faulty specifications and ranked them into 10 different 

classes of faults. For example, a Class 1 fault is formed by modifying at random 

the output of a state in the specification state machine. A Class 2 fault will be 

the same as Class 1 except the modification is made on the tail state that 

follows the previous modified output state, and so on.

Both Sidhu and Leong also defined the two levels of conformance, i.e. 

strong conformance and weak conformance. Strong conformance requires the 

IUT to generate the same outputs for all the input sequences as defined in the 

specification. Conversely, weak conformance requires the IUT to have the 

same behaviour as that specified in the core edges of the protocol state 

machine. The DUT is allowed to have unspecified behaviour for the input 

sequences on those non-core edges. The edges in a given protocol state 

machine are referred to as core edges. The non-core edges consist of 

unspecified state input sequences, and is assumed that the protocol entity will 

produce a null output or ignore those input sequences.

Sidhu et al ]87] then concluded that the three methods, i.e. DS, W and 

UIO methods are excellent for detecting faults in strong conformance testing. 

In addition, Dahbura and Sabnani also reported similar findings on UIO 

method in another published paper |89 |. The Transition Tour method, 

however, could not detect all of the single faults presented for strong 

conformance testing as concluded by Sidhu et al. On the weak conformance
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testing, Transition Tour method again could not detect all of the single faults 

injected.

In summary, the four methods presented will detect any output error of 

the implementation, provided the implementation follows the FSM 

specification. However, transfer errors, i.e. errors in the next state reached by a 

transition, will not always be found. Therefore, the W-Method and 

Distinguishing Sequence method will be used to find the transfer errors 

provided that the number of states of the implementation remains within a 

certain boundary. The Transition Tour method mainly concentrates on the 

controllability issues while the rest of the methods address the observability 

issues. Controllability aims at bringing the IUT into the desired state where a 

test is to be conducted, i.e. test preamble. Observability aims at the 

identification of the IUT’s current state after a state transition has taken place.

4.6 The Compliance Testing of OSI protocols

OSl protocols no doubt offer many advantages and benefits to the end 

users. Verifying the implementation for protocol conformance is a great 

challenge for both the compliance test designers and test engineers. Since the 

first meeting on Conformance Testing Methodology and Framework by 

ISO/TC97/SC16 working committee in October 1983 [90], there has been 

considerable research which focused on this area. The most significant 

contribution has been the definition of ISO/IEC 9646 multi-parts Conformance 

Testing Methodology and Framework in 1992, and with its Part 7 definition 

(ISO/IEC 9646-7) just being completed in 1995 |91|. ISO/IEC 9646 governs 

the conformance testing of any communication system that can be modelled
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using the Open Systems Interconnection (ISO 7498), which includes the open 

standard fieldbus.

The ISO 10303 multi-parts standards, in particular the ISO 10303-21 

and ISO/DIS 10303-32, set the conformance test standards for industrial 

automation systems [92, 93], As the 10303 multi-part standards concern the 

correct data representation and data exchange of the automation systems (e.g. 

PLCs), they are not used in this thesis. There is a fine line that separates the 

fieldbus as a communication systems, and a control and automation system. In 

fact a fieldbus system is an industrial automation system with built-in 

communication facility. The conformance testing of open standard fieldbus 

placed greater emphasis on the communication rather than the automation and 

control aspect of the system. In the context of DeviceNet, Volume I of the 

DeviceNet specification governs the communication section of the protocol, 

while Volume II concerns the data representation and exchange (e.g. device 

profiles and data byte scaling).

Hitherto, we have yet to have an international fieldbus standard, let 

alone the international standard for open standard fieldbus conformance. The 

international fieldbus standardisation process is progressing slowly, despite the 

effort by ISA/IEC and other standard organisations. Nevertheless, the work 

this thesis presents will be valid for conformance testing of any open standard 

fieldbus.

The open standard fieldbus, e.g. DeviceNet utilises 3 layers (Physical, 

Data-Link and Application Layer) of the OSI model, in comparison to a fully 

implemented 7 layer stacks of X.25 communication protocol. This well-known 

reduced protocol stack communication model (i.e. 3 layer model) enhances the
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real-time network performance by reducing the overheads of the 

communication software and network functions (i.e. either simplified or 

eliminated network functions). Since an open standard fieldbus can be 

modelled on the OSI model, much of the work defined in ISO/IEC 9646 can be 

adapted in this area of research. This statement is made based on the following 

factors:-

• Open Standard Fieldbus and the OSI Communication Protocol utilise the 

same Physical, Data Link and Application Layer of the 7 layer OSI Model 

(ISO 7498).

• The methodology defined by ISO/IEC 9646 for conformance focuses on 

single-layer testing, starting with the lowest layer and incrementing one 

layer at a time through the seven layers. This can be utilised for testing the 

open standard fieldbus implementations, i.e. the reduced protocol stack (3 

layer model) communication model.

Therefore, it can be deduced that the conformance testing 

methodologies and techniques for testing the OSI protocols can be adapted for 

testing the open standard fieldbus protocols which uses the reduced stack OSI 

model. Figure 4-3 shows the standard conformance testing framework as 

perceived by ISO 9646 standard. It is also valid to say that all open fieldbus 

standards are designed using the ISO 7 layer model to achieve interoperability 

and openness of the fieldbus standards. Every conformance testing 

methodology available to date is a derivation and enhancement of this standard 

framework. Figure 4-3 shows the three stages in a conformance testing 

process, i.e. the abstract test suite specification, the test realisation and the 

conformance assessment processes. They will be individually discussed in the 

following sections. ISO 9646 uses the TTCN (The Tree and Tabular Combined
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Notation) as the formal description techniques (FDTs) for the abstract test 

suite specification.

Legend
IUT Implementation Under Test

PICS Protocol Implementation Conformance Statement

PIXIT :- Protocol Implementation Extra Information for Testing

TTCN Tree and Tabular Combined Notation

Figure 4-3 The Standard Conformance Testing Methodology and Framework
(ISO 9646)

4.7 Abstract Test Suite Specification

The complex conformance test architecture is impossible to comprehend 

without breaking it into many smaller modules. A conformance test suite can 

be decomposed into various Test Groups for different test objectives as 

depicted in Figure 4-4. At the lowest of the hierarchy are the Test Events 

which consist of the indivisible units such as the PDU transfers. The ordering
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and groupings of Test Events will form the Test Case. Each Test Case consists 

of a number of steps (i.e. Test Events) needed to carry out a specific 

conformance test on the IUT. A number of related Test Cases will collectively 

create a Test Group to fulfil certain test objective.

Test Suite

r  Test Group ^ '  Test Group ''j

__> V___

/ / \
r Test Case ^ '  Test Case ^ r  Test Case ^ r  Test Case N

V.__ __ V__ __> __y L________ J

'  Test Event ''i Test Event ^ Test Event '

l ________ J k___________ _̂________y

Figure 4-4 The Conformance Test Suite Structure |911

The DeviceNet conformance suite can be divided into the following test 

groups:-

a) Network Access Test,

b) Transport Layer Test,
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c) DeviceNet Messaging Test,

d) Device Profile Verification Test,

e) DeviceNet Master Test,

0  Group 2 Server Poll/Bit Strobe Test,

g) UCMM Connection Test, and

h) Object Class Test Groups |94|.

Within a Test Group, there are many Test Cases. In the example of the 

Transport Layer Test Group, the Test Cases will include:-

a) Explicit Messaging Fragmented Production

b) Explicit Messaging Fragmented Consumption

c) I/O Connection Fragmented Production, and

d) I/O Connection Fragmented Consumption Test Cases.

Each of the listed Test Cases will have its own test steps to carry out 

the testing. For instance, in order to carry out the Explicit Messaging 

Fragmented Production Test Case, the following steps will be needed:-

• Open an Explicit Messaging connection to the DUT and set the EPR to 0

• Send a Get_Attribute_Single request service to the Explicit Messaging 

Connection’s Produced_Connection_Size attribute.

• Success Response expected with produced connection size

• If produced connection size ^ 8 bytes, then proceed to Explicit Messaging 

Fragmented Consumption Test Case

• Send a Get_Attribute_Single request to the attribute with fragmentation

• Send a first fragment acknowledge with a Fragment_Count of 3 (which 

supposed to be 0), and expect no response from the DUT

• and so on
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4.8 Conformance Test Realisation

The conformance test realisation is where the actual conformance 

testing process is physically carried out. A local single layer test method (ISO 

9646) is shown in Figure 4-5. The test system (i.e. CTE in this instance) will 

initiate the necessary command and control to verify the IUT for conformance. 

In the reduced stack fieldbus protocol, the Service Provider is simply replaced 

with a media cable, as there is no public switching networks involved. An 

instance of the test method, i.e. CTE for DeviceNet will be discussed in-depth 

in Chapter 5.

Test System
Upper PCO
Tester ASPs

Test
C oord ination

Procedure

Lower
Tester

PDUs s
IUT U

TPCO |  ASPs

Service Provider

Keys:-
ASP Abstract Service Primitives
1UT Implementation Under Test
PCO Point of Control and Observation
SUT System Under Test

Figure 4-5 The Local Single Layer Test Method

The setup (Figure 4-5) presupposes that only the Test system and the 

IUT are involved in the conformance testing process. Both the test system and 

the IUT are configured to have a one-to-one relationship.
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4.9 Conformance Assessment Process

Figure 4-6 DeviceNet Conformance Assessment Procedure Outline (modelled 
from ISO 9646 and CCITT)

The conformance assessment procedure will act as a guideline on how 

to carry out the verification activities during test realisation: in other words, 

how to verify the IUT for conformance, having got the conformance test suites 

and conformance test setup. Figure 4-6 is a modified version of the 

conformance assessment procedure outlined in the ISO 9646 standard. It can 

be broadly divided into four stages:-
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1. analysis of SOC

2. test suite selection

3. test execution

4. analysis and review

By examining the statement of conformance (SOC) document, the test 

engineer can then select the relevant tests for the IUT from the test suite 

database. The selected test suites are compiled. Then the compiled test suites 

are executed to verify the IUT against the SOC and the protocol specification. 

Lastly, the test results are collected and analysed. The analysis of test results 

can be done in real-time during test execution, or in the form of a report after 

the end of the test. Typically, both real-time analysis and post test execution 

analysis are used in real-life implementations. For instance, if an IUT does not 

respond to a request message, a real-time analysis can be done to report the 

failure on the IUT and terminate the conformance test.

4.10 Protocol Frames Definition

In the DeviceNet conformance testing scenario, protocol frames can be 

divided into three categories for easy identification:-

4.10.1 Valid frames

These are syntactically correct frames which are received at the 

correct or opportune time (i.e. the protocol entity expects to receive 

such a frame in its current state.).

4.10.2 Inopportune frames

These are syntactically correct frames but arrive at the wrong 

time (i.e. the protocol entity does not expect to receive such a frame in
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its current state). For instance, the correct syntax fragmented message 

with the wrong fragment count can be classified as an inopportune 

frame.

4.10.3 Invalid/lllegal frames

These are the frames which have incorrect syntax. CAN remote 

frame is a good example of an invalid/illegal frame as it is not allowed 

in the DeviceNet protocol.

The conformance test suite for detecting inopportune frames is the most 

difficult to design. This is because inopportune frames are perfectly healthy 

PDUs but appear at the wrong time or in the wrong sequence, depending on 

the state of the IUT. The consumption of Invalid/lllegal frame by the IUT at 

any point during the test will void the conformance to DeviceNet. Appendix C 

lists the Invalid DeviceNet Message Conformance Test Specification.

4.11 The Conformance Test Architecture for DeviceNet

The conformance testing processes must be designed, developed and 

certified prior to testing any implementation for conformance. There is a need 

to ensure that an executable test case meets its protocol specification before it 

is used to examine another system. The certification and verification process 

can go on forever. A conformance test suite needs to be tested before it can be 

used to test the implementation for conformance. At another level, the 

methodology used must be verified and tested before it can be used to develop 

the conformance test suite.
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Generally, the standards are there for the masses to utilise. Since there 

will be only a few conformance test labs available for DeviceNet, the 

verification process of the conformance test lab may be less formal and simple. 

The verification process for the test lab may involve running the conformance 

test suite and obtaining an identical, repeatable test result. The production of 

repeatable and identical test results for the same conformance test suite at 

different test labs will ensure uniform conformance test lab equipment 

standards. However, this does not verify that the conformance test suite is free 

from any error.

The conformance testing and verification process at each stage is 

governed by the law of diminishing returns. There is no way to verify and test 

all the processes involved before they are utilised. Every level in the design 

assumes the correct implementation on which the design is based. For 

instance, tests to ensure that the personal computer used is 100% compatible 

with the PC architecture are regarded as unnecessary in the design of a 

DeviceNet conformance test system which uses a PC. In general, the 

conformance testing of a fieldbus protocol can be divided into the following 

vicious cycle as shown in Figure 4-7.

Protocol 
Specification

Compliant Conformance
Products Test p,ans

Conformance 
Test Lab/System

Figure 4-7 The Conformance Test Life Cycle
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First, the protocol specification is defined. Then the formal method is 

used to derive the formal protocol specification from the defined specification. 

The formal protocol specification acts as the consistency and proof checker to 

reduce possible error and eliminate the ambiguity of natural language. Having 

verified the protocol, the next step is to develop the conformance test suites 

and systems so that the conformance testing process can be carried out. Here, 

formal design methodology such as DS, W and UIO methods are used to 

design the conformance test suites. The use of these methodologies guarantees 

a systematic and efficient approach in the test suite design. The test suites are 

then transferred into executable conformance test systems. At this stage, the 

conformance test system will need to be verified and tested prior to testing any 

IUT for conformance.

In DeviceNet, the conformance test software and the independent test 

labs must be verified before they are allowed to perform the product 

certification process. Even though the product developers are allowed to carry 

out self-compliance, the final IUT needs to be sent for conformance testing to 

an approved conformance test lab. In Profibus implementations, all Profibus 

compliant products must undergo conformance tests conducted by the so- 

called Test Centres. These independent Test Centres use the same conformance 

test hardware and software to verify the Profibus implementations for correct 

protocol realisation. Implementations which violate the standard are prohibited 

from bearing the Profibus certificate.

The conformance test cycle (Figure 4-7) will loop back to the protocol 

specification at the end of the vicious cycle. The reason is that errors may be 

found during the life cycle of the lieldbus protocol and amendment must be 

made to the protocol. In another instance, it may due to the new protocol
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updates to accommodate new features, e.g. highly distributed peer-to-peer 

communication in future.

4.11.1 Conformance Special Interest Group in ODVA

In the DeviceNet implementation, ODVA has taken the initiatives in 

forming a Special Interest Group (SIG) for compliance testing. This special 

interest group plays an active role in defining the appropriate conformance test 

plans to conform an implementation to the DeviceNet specification. ODVA is 

also following the footsteps of other open communication protocol to carry out 

the compliance testing process at independent test sites. For instance, the 

conformance certification program of Fieldbus Foundation has been developed 

by the Fraunhofer Institute of Germany, i.e. an independent test site.

4.11.2 Independent DeviceNet Test Lab

The use of independent conformance test sites will benefit the 

DeviceNet developers with the following:-

• ability to give impartial test results

• the use of standard plan, test setup and test cases ensure all DeviceNet 

implementations are equal and interoperable.

• single source to govern the protocol specification upgrades.

In addition to that, it is also recognised that the standard compliance 

test software is made available to'DeviceNet developers so that they can pre­

test their implementations during design and development stages. This may 

contribute to shorter product development lead time.
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The D eviceNet  Conform ance 
Test  E ngine F ramework

In order to successfully carry out the conformance testing process on a 

DeviceNet fieldbus implementation, an efficient and cost effective conformance 

test framework must be designed and developed. Figure 5.1 shows the 

proposed automated conformance test engine (CTE) framework set-up in an 

independent test laboratory. The testing processes are controlled by the host 

PC of the test system. All hardware components used are easily available and 

can be purchased off the shelf.

The Conformance Test Engine
Implementation 

Under Test
Error Frame 

Generator Unit

DcviccNct Network Bus

Figure 5-1 The Conformance Test Engine Framework
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5.1 Assumptions

The DeviceNet protocol specification is assumed to be a formal 

protocol and correct in its operations. No effort has been made to validate the 

protocol specification itself. The protocol validation, i.e. the process of 

checking the consistency and correct operations of the formal protocol 

specification is beyond the scope of the CTE. The conformance test 

framework only ensures the correct implementation of the Device Under Test 

(DUT1) to the specified protocol, i.e. protocol verification. Therefore any 

error involving the protocol specification will not be detected.

5.2 Automating the Conformance Testing process

Despite the use of conformance testing methodology, traditional testing, 

development and maintenance are tedious, time-consuming and error prone. 

The test results can be inconsistent due to variability in the expertise and 

practices of the test engineers. As the test systems get more complex and 

sophisticated, the number of tests in a test suite will grow. This growth may 

result in excessively long execution time for conformance and may not impress 

the product developers who send their DUT for conformance testing. 

Therefore, the process of conformance testing must be automated as much as 

technology allows. Automation is used in manufacturing industry to produce 

consistent quality products at competitive cost. Similarly, automated testing 

systems can be used to produce good quality and consistent test results [95, 

96|. The conformance test engine (CTE) framework is designed to automate 

the conformance testing process.

Chapter 5 - T he DeviceNet Conformance Test Engine Framework

1 Device Under Test (DUT) of DeviccNel is similar in meaning to ihe term Implementation 
Under Tesl (IUT) defined in ISO 9646 standard
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5.3 The criteria considered in CTE design

5.3.1 Economical factor

Even though cost is not a technical factor, often it is the most influential 

factor for a design. The conformance testing process must not be expensive. 

This means that conformance testing must be swiftly carried out and the 

conformance test rig and equipment should be based on commonly available 

platforms to save cost. The conformance testing process must be automated to 

reduce the time needed for testing.

5.3.2 Reliability and Repeatability

The CTE must not only be fast and accurate in carrying out the 

conformance testing process, it must also be able to provide accurate and 

reliable test results, i.e. the repeatability of all test results in all cases. In order 

to determine the robustness of the DUT, some tests may need to be run 

repetitively for days. The test results are then analysed using statistical 

methods to determine the consistency of the DUT. If an error is detected, the 

error is expected to replicate itself in all the test runs, i.e. the repeatability of 

test results. The CTE hardware must also be reliable enough to withstand many 

hours of non-stop operation. This is usually not a problem for most IBM PCs.

5.3.3 Upgrade-ability

Volume II of the DeviceNet specification governs all the device profiles. 

Device profile is there to ensure that interchangability of DeviceNet devices are 

possible with the definitions of parameters such as data scaling, data format 

and parameters resolution for a common device group. As the available 

devices increase in volume, more device profiles will be defined. This growing 

process requires a framework which can grow with the need. Therefore, the
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suggested solution will be to use a Windows database such as Access to store 

all the information. The utilisation of database allows easy upgrade and 

amendment when new device profiles are introduced. This database approach 

is not implemented in the current project.

5.3.4 Maintainability

Software maintenance is another key issue that need to be considered 

during system design. The CTE design encourage the use of Windows 

component software and object-oriented techniques. It is based on the vision 

that the CTE software requires minimal modification and update throughout its 

life cycle. Any protocol updates can be done by amending the test database.

5.4 CTE Hardware

In order to drive down the set-up cost, the DeviceNet conformance test 

framework must be designed and developed on a common platform which is 

proven and reliable. IBM PC architecture has been around since the early 

1980s (IBM PC was launched in UK on 12th August 1981 with 16kb of RAM, 

mono monitor and optional cassette storage.) and has become a de-facto 

standard in the computer industry. These cost-effective and relatively powerful 

machines can be customised easily for the conformance testing of DeviceNet 

implementations. They have enough resources to offer for the purpose of 

conformance test application. In addition, there are many CAN PC interface 

cards (16-bit ISA bus format) available today.
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The major components of the Conformance Test Engine (CTE) are

• a 486 based (or higher) IBM compatible computer

• a commercially available CAN card (Softing CAN-AC2), and

• a protocol emulator for error frame injection, i.e. the Error Frame Generator 

(EFG).

The CAN-AC2 card is chosen for this project due to its intelligent 

independent operating kernel architecture. The CAN-AC2 card itself is a single 

card computer which consists of a NEC V25 processor and two CAN 

controllers. It is plugged into the 16-bit ISA bus expansion slot of the PC.

The information exchange between the CAN card and the PC is 

executed via the dual-ported RAM on the CAN card and the upper memory 

block of the PC memory map (i.e. EOOOO-DFFFF Hex). This configuration 

allows fast data exchange between the two processors, i.e. NEC V25 and Intel 

486 CPUs, and facilitates independent operations of both systems. In other 

words, both the CAN card and the PC can be viewed as two separate computer 

systems sharing data via the dual-ported RAM. The PC’s processor will not 

interfere with the real-time embedded software of the CAN card and vice 

versa, thus increasing the real-time performance of the system.

5.5 CTE Software

The conformance testing software is the main module which resides on 

the personal computer and runs under DOS 6.22 and the Microsoft Windows

3.11 environment. A real-time kernel such as iRMX is not used, as the timing 

and task scheduling of the conformance testing process are not critical. The 

use of a dedicated operating system would make in-house testing more difficult
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to set up. The CTE should remain as simple as possible to enable product 

developers to carry out in-house testing themselves. It must utilise the 

commonly available resources such as DOS and Windows whenever possible. 

In addition, the resources must also be standardised so that the quality and 

consistency of the tests are not sacrificed.

The CTE software is developed using the Visual C++ object-oriented 

programming environment to take advantage of the Microsoft Foundation 

Class (MFC) library and Dynamic Link Libraries (DLLs). MFC is an object- 

oriented library for the Windows environment. For example, the mouse actions 

such as drag-and-drop and double click actions in Windows are all governed by 

the MFC library, and can be inherited from the foundation class.

One of the advantage of this is that when the need to upgrade to a later 

version o f  Windows arises, the source code can be compiled using the later 

versions o f  the MFC library. The utilisation of the MFC and DLL also allows 

forward compatibility of Windows programs to the latest version of Windows. 

For example, most Windows 3.11 programs can be run safely on Windows 95, 

with a few exceptions. The DLL is another feature of Windows programs 

where the program is dynamically linked during run time. This allows a smaller 

executable file size to be achieved. However, if a required library component 

is missing from the working directory, the program will stall with an execution 

error. For instance, if one accidentally deleted a program.DLL file, the 

program will not launch even though the program.EXE file is present. The 

purpose of DLL is to minimise the Windows executable code size.
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5.5.1 Dual Purpose Conformance Test Software

The conformance test software can be categorised into two different 

modes of operations, i.e.-

• development test, and

• conformance test modes.

The development test mode will be used by product developers in-house 

to investigate their implementations during development. Normally, a reduced 

configuration CTE hardware is used by the product developers. Therefore, 

some functions on the conformance test software involving special hardware 

such as the EFG protocol emulator may be disabled. Any option not available 

to the developers will be automatically greyed out by the conformance test 

software, which is a standard feature of Windows software.

Once the product developers are satisfied with their implementations, 

the implementations will be sent to an independent test lab for conformance 

testing. The same piece of conformance test software is used to allow 

consistency in testing. All functions of the CTE will be enabled. The exercise 

of letting the product developers run the conformance test in-house aims to 

minimise the engineering iteration process involved in conforming an 

implementation to DeviceNet. This will result in a shorter development lead 

time and cost savings.

5.5.2 Modularity of CTE Design

The CTE framework has been designed for modularity using object- 

oriented techniques and component software. This is important as the 

development of the DeviceNet conformance test comes from the participating 

members in the ODVA conformance Special Interests Group (SIG). The
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conformance SIG has to liaise with other working groups such as the drive 

profile SIG to include the appropriate module for conformance testing. The 

modularity achieved through object-oriented design allows various modules to 

be added and combined together at different stages of CTE development. 

Furthermore, the design can be modified easily to utilise the component 

software in future. All the modules will then be compiled prior to run-time to 

achieve maximum efficiency and timing during conformance testing.

Component software can be analogous to Integrated Circuits (ICs) in 

the electronics world. With the use of the IC components, the design engineer 

can concentrate on the higher level of the design without getting into the lower 

level details. For example, the engineer can use the AND gate in an IC without 

having to design an AND gate from transistors and resistors. In software 

engineering context, an application can be divided into components such as 

Graphical User Interfaces (GUIs) for Man Machine Interface (MMI), databases 

for storing information and spreadsheets for calculations. Each component can 

be separately developed and combined together to form a complete package.

Conformance testing is a growing process, with endless introduction of 

new device profiles. Therefore, the database of conformance test suites needs 

to be updated frequently. If component software is used, one can use the 

Access database package to store all the conformance test suites and test steps 

for the CTE. If a test suite update is required, only the conformance test suites 

database needs to be updated. The rest of the framework remains intact.

In the instance of modularity, the EFG is an optional module of the CTE 

framework used at the independent test lab. The EFG unit is a CAN protocol 

emulator capable of emulating error conditions on a DeviceNct network. It is
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remotely controlled by the CTE software on the PC using the CErrFrGen 

object class. If the EFG hardware is available, the CErrFrGen class will notify 

the conformance test software and this feature is enabled. The CErrFrGen 

object class will then be available to the Windows environment, so that 

commands and controls to the EFG can be issued via the conformance test 

software. The EFG hardware will appear only as an encapsulated CErrFrGen 

object with its appropriate attributes. The conformance test software can be 

visualised as a collection o f objects as shown in Figure 5.2. Again, the EFG 

object is another software component which contributes to the whole CTE 

software.

Figure 5-2 The object decomposition of CTE software

The design and development of EFG is unique in the area of DeviceNet 

research. With the help of an EFG unit, the DUT’s behaviour during error 

conditions can now be investigated and tested. Chapter 6 provides detailed 

discussions on the EFG design.
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5.6 Windows Based CTE Software Design

During the design phase of the project, considerable analysis has been 

done to decide whether the conformance testing framework should be 

developed under DOS or Windows platform. The study was finally completed 

with the decision to use Windows as the development platform based on the 

following reasons:-

5.6.1 Virtual Device Driver

Windows uses the Graphics Device Interface (GDI) which 

minimises the hardware dependency, i.e. SVGA drivers, printer drivers 

are totally encapsulated as an object. The conformance test software 

can make use of the already available software components and 

marshals the necessary controls and commands to achieve the 

conformance testing. For instance, the CAN-AC2 card is supplied with 

its own ac2.dll library. To utilise the functions provided by the CAN- 

AC2 card, the conformance test software calls the relevant object class. 

The ac2.dll file is included in the working directory.

5.6.2 Human Computer Interface (HCI)

Windows features a Graphics User Interface (GUI) which 

provides a more user-friendly human computer interface (HCI), thus 

improving usability. HCI is the study of the interaction between people, 

computers and tasks |97|. The consistent layout of Windows program 

and interface format allows easy interaction between the user and the 

computers. The learning curve involved in using another Windows 

software for a Windows user is very minimal. Windows’ GUI interface 

has achieved many proven track records as the preferred user interface 

since its launch.
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5.6.3 Flexibility and Expandability

Microsoft’s Database Management System (DBMS) and Open 

Database Connectivity (ODBC) allow extensive database support and 

data-exchange between off-the shelf database packages such as Access 

to interface seamlessly into the CTE framework. The idea is to store 

the conformance tests in the database and to isolate the expertise. For 

example, the database section can be developed by computer scientists 

who are experts in database management, normalisation etc. When 

there is a change in the Specification or device profile, only the 

database section needs to be amended or updated. This can further be 

expanded into a knowledge-base in future.

5.6.4 Object Oriented Systems

The object-oriented nature of Windows environment encourages 

reuse of codes. For instance, the CTE software developer does not 

need to worry about the development of a relational database as it can 

be implemented using Microsoft Access.

5.6.5 De-facto Industry Standard

Windows has become the de-facto standard in the personal 

computer world. This popularity will contribute in the bug weeding 

process as there are more chances of discovering the software bugs, if 

any, due to the widespread usage. One may argue that DOS based 

programs will run faster than Windows. The advancement in the 

semiconductor has minimised Windows’ shortcomings and given 

Windows programs performance similar to their DOS cousin. Windows 

has the advantage over DOS based program as a lot of the building 

blocks can be inherited from huge Windows library. Windows also
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comes in many different languages which is a very useful resource to 

have for today’s global market.

5.6.6 Maintainability.

The Windows environment and programming is standard. There 

are no hidden extras that the software engineers need to know to 

maintain the codes. With object-oriented notation and a knowledge of 

Windows programming, any Windows programmer can maintain the

codes.

5.7 Disadvantages of the Windows platform

5.7.1 Memory Use

Windows programs need larger physical memory (i.e. RAM) and a more 

powerful processor to run on. The average program size is also larger than an 

equivalent DOS based counterpart and this requires bigger secondary storage 

space. The availability of super-scalar Pentium Class processors and the 

plummeting cost of hardware have made Windows an attractive solution.

5.7.2 Timers

Another area of concern is that the hardware timer available on 

Windows based program may not be fine enough for controlling real-time 

application. The PC ROM BIOS initialises the Intel 8259 timer chip to produce 

a timer interrupt (08 Hex) every 54.925ms (i.e. “clock tick” resolution). 

Windows timer uses the timer logic built into the IBM PC’s hardware and 

allows 32 timers to be active at any one time. The highest resolution of the 

interrupt or “clock tick” of Windows timer is 54.925ms. The 32 timers can be 

cascaded to achieve intervals shorter than 54.925ms.
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The use of a PC CAN card with on-board embedded kernel software for 

independent running of the real-time application and the PC has made real-time 

control on PC possible. Besides, Personal Computers (PCs) have been used to 

run factory-floor control logic [98], These PC architectures are called “soft” 

PLCs. These PCs can either use the Microsoft Windows designed for the 

desktops, or real-time operating kernels with Windows sitting on top of them. 

It has been shown that a well-designed Windows NT system will respond to a 

switch input from the field within a 20ms time window [99],

In another real-time application of controlling an X-Ray machine, a PC 

running iRMX for Windows was able to achieve a response time o f less then 1 

ms [100]. The CANalyser from Vector, which is based on the CAN-AC2 card 

and DOS operating system, is capable of achieving a lOOps time resolution 

when running on a 486-DX33 machine. The fastest time for the arrival of a 

Protocol Data Unit (PDU) will be 94ps (shortest PDU (47 bits) with zero 

length data field, exclusive stuff-bits) at 500kbit/s with 100% bus loading. This 

is more than adequate for DeviceNet conformance test application as the 

conformance testing does not utilise 100% of the transmission bandwidth 

(typically less than 10% bus loading).

5.7.3 Development Tool Wizard

A Windows based program has been the end-user’s dream and the 

programmer’s nightmare. There is no doubt that the Windows based software 

is very complex. However, help is at hand, as the wizard tools available in 

most program development environments are maturing. For example, the 

Visual C++ programming environment is capable of generating the necessary 

C++ program skeletons and comments when the corresponding questions 

within the Windows dialogue box are answered.
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In short, most of the disadvantages of the Windows based approach for 

the DeviceNet conformance testing platform can be solved by using more 

powerful machines (486 or higher machines) and bigger memory and secondary 

storage, i.e. spend more money on the hardware platform. Until we can prove 

Moore’s Law wrong, we will continue to have more powerful but cost 

effective processors. Hence, the processor and memory problems of Windows 

will soon be a problem of the past.

5.8 In-house testing with a Standard PC set-up

Conformance testing can take up as much as 30% o f the total 

development budget of a software implementation [101]. In order to speed up 

the process of conformance testing and shorten the development lead time, 

product developers can use the same version of conformance test software 

during the course of product development. This will ensure that their 

implementations are compliant to the DeviceNet protocol specification prior to 

sending the implementation for conformance testing in the independent test lab. 

The conformance test software will not run if incompatible hardware is 

encountered, therefore consistency in conformance testing is achieved.

5.9 The Operation of CTE

Figure 5.3 shows that the statement of conformance (SOC) document in 

the form of an electronic data file is input into the CTE at the beginning of the 

test. This SOC data file was generated when the product developer filled in an 

electronic statement of conformance form. The DeviceNet SOC is a 

combination of the protocol implementation conformance statement (PICS) 

and protocol implementation extra information for testing (PIXIT) defined by 

ISO 9646.
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Figure 5-3 The CTE internal interactions

After obtaining information from the supplied SOC data fde, the CTE 

then verifies the identity of the Device Under Test (DUT) by comparing the 

SOC information against the Identity Object of the implementation. This 

preliminary step will ensure that the SOC is referring to the correct DUT for 

subsequent testing. Once the identity o f the implementation and its device 

profile is determined, the CTE will search its conformance test suite database 

for the relevant tests and compile them. The conformance testing will then 

begin.

It is proposed that the CTE software only contains the skeleton of the 

framework. The CTE software will only marshal the conformance testing 

operation. All the data and information obtained will be processed by separate 

modules. For example, the conformance test suites can be stored in carefully

designed databases. Should the need to modify the conformance test suites
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arise, only the database needs data updates. The CTE software will remain the 

same.

Early investigations on DDE shows that data traffic on the CAN bus can 

be passed on to consuming client application. The client application in this 

instance can be just a pass/fail report analyser, or the more extensive 

knowledge based inference machine. Analysis tools such as LabView for 

Windows etc. have utilised the DDE hot links to their operations. It has been 

used extensively in the SCADA sector.
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T h e  E r r o r  F r a m e  G e n e r a t o r  
D e s i g n

The Error Frame Generation (EFG) module is designed to verify the 

error behaviour on DeviceNet implementation. Previously no conformance test 

suites were designed to test the correct error recovery sequence of a 

DeviceNet implementation. This was because there was no way of generating 

or injecting errors on the DeviceNet bus in a controlled manner. The EFG 

module developed in this project makes this possible.

The EFG Prototype Design

The Error Frame Generator (EFG) is a sub component of the CTE 

framework as depicted in Figure 6-1. The EFG is a protocol emulator capable 

of injecting CAN error flags onto the network bus to facilitate error testing on 

the DUT. The DeviceNet specification defines a sequence of states which a 

DeviceNet device must execute when error is detected on the network bus 

[621. As such, all DeviceNet implementations must obey the error handling 

mechanisms defined in the specification.

All CAN controllers have the ability to indicate the detected errors to 

the Data Link Layer of the OSI stack, but they do not allow the user software
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to initiate transmission of the error flag. The error detection and signalling 

mechanisms are hard-coded in the MAC (Media Access Control) of the Data 

Link layer (42], In order to verify the correct implementation of error 

management and fault confinement in DUT, a method of injecting errors into 

the DeviceNet signal bus is devised.

The objective of CAN Error Frame Generator is to generate the ‘active 

error flag’ on the DeviceNet bus. This simulates an error condition whereby 

the DUT must perform the stipulated error handling routine. The generation 

and injection of error frames using the EFG is the only way to observe and 

verify the DUT behaviour under error conditions. The EFG allows the 

DeviceNet conformance test suite to verify: -

• the correct implementation of error management in DUT

• the correct recovery procedure and sequence in DUT

Furthermore, the EFG can also be used to study the behaviour of a 

DeviceNet network when subjected to a random or periodic burst of errors.

6.2 The EFG Operation explained

The EFG is remotely controlled by the host PC using the following 2 

distinct messages, i.e. EFG Request and Response Message as shown in Figure 

6-1. Both messages use the Reserved DeviceNet messages, therefore they 

should not be consumed by the DUT. The consumption of these messages by 

DUT will void its compliance for DeviceNet. Both messages are used to ‘ferry’ 

the commands issued by the PC to the EFG, and the status from the EFG to 

the PC. The internal operation of the EFG can be controlled using the 

provided EFG Registers.
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msb lsb

msb Isb

Data Byte 7 6 5 4 3 2 1

1 DUT

ID Register2

3 Error Frame Register

4 ID Count Register

5 Status Register

Figure 6-1 The EFG Request and Response Messages

6.2.1 EFG Request Message

The EFG Request Message (CAN Identifier 7C0 hex ) consists 

of 6 data bytes. The 6 data bytes are further divided into 5 different 

registers, namely the DUT ID Register, Error Frame Register, ID Count 

Register, Status Register and Configuration Register. These registers 

will be individually illustrated in the following sections.

6.2.2 EFG Response Message

The EFG Response Message (CAN Identifier 7CI hex) is a 

complement to the EFG Request Message. When the EFG unit receives
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the EFG Request Message from the host PC, it will echo back its 

internal states and the received data using the EFG Response Message. 

This allows the host PC to know the exact state and status of the EFG 

unit.

EFG Request Message
CAN Descriptor

EFG Unit 
(592)

I Identifier 7C0 hex | 1)111 Hy« » I
I PUT ID Register | PM» »>* *2

I PUT ID Register | I)1U »*■=n

I E rro r Frame Register | D“* Bylf 114
| | P  Count Register | 1)111

I Status Register |_____ P«u Byte #6
|( onfl^urntion Register

EFG Response Message
CAN Descriptor

I Identifier 7CI hex I D»uBy««l
I PUT IP  Realster I P»uByte»2

I PUT IP  Reglster~| P»-Hyc«T
I E rro r Krame Register I P«mtyte»4

[ IP  Count Register I P»t»Hyte«s 
I Status R egister!

Figure 6-2 The operation of the EFG Request/Response Messages

Figure 6-2 illustrates how the two EFG Request/Response messages are 

used to transfer the command and status between the PC and the EFG module. 

CAN Identifier 7C0 hex, which is a reserved DeviceNet message, is used by 

the PC to send the appropriate command to the EFG unit. Only the EFG unit 

will consume the data packet as it is the reserved DeviceNet identifier. The 

hardware design and block diagram of the EFG module will be illustrated in 

Section 6.3.
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6.2.3 DUTJD Register

The DUT_ID register (i.e. the 1“ and 2nd data byte of ERG 

Request/Response Message) contains the 11-bit CAN Identifier (1D10...ID0) 

and the data length (DLC3...DLC0) that is to be zapped with an Active Error 

Flag every time it appears on the CAN bus. The register (Table 6-1) is write- 

able during EFG Reset and it is Read-Only at all other times.

Table 6-1 The DUT_ID Register

Msb Isb
Data Byte 7 6 5 4 3 2 1 0

0 ID10 ID9 IDS ID7 ID6 ID5 ID4 ID3

1 ID2 IDI IDO R DLC3 DLC2 DLC1 DLCO

6.2.4 Error Frame Register

The Error Frame Register (Table 6-2) is a read/write register which 

occupies the 3rd data byte of ERG Request/Response Message, i.e. data byte 

offset #2. During Reset, this register is write-able with values between 0 and 

127. The EFG will cycle the generation of Active Error Flag depending on the 

corresponding bit enabled in the register. This register will echo back the 

number of Active Error Flags generated prior to the read status request 

command.

Table 6-2 The Error Frame Register

Data
Byte

7 6 5 4 3 2 i 0

2 KF.R.7 BP.R.6 HF_R.5 lil*_R.4 BP.R.2 KP.R.I HP.R.O
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6.2.5 ID Count

The ID_Count register (Table 6-3, i.e. the fourth data byte of the ERG 

Request/Response Message) displays how many instances of DUT ID has been 

monitored on the bus since the CTE became active.

Table 6-3 ID_Count Register

Data
Byte

7 6 5 4 3 2 l 0

3 ID_C.7 1D.C.6 ID.C.5 ID_C.4 ID_C.3 ID.C.2 ID.C.l ID_C.O

6.2.6 Status Register

The fifth data byte of the EFG Request/Response Message is the Status 

Register (Table 6-4) of the EFG unit. This register will indicate all the vital 

information on the EFG states and status.

Table 6-4 The Status Register and its functional description

Data
Byte

7 6 5 4 3 2 l 0

4 EFG Error Reserved Reserved M onito r
D U TJD

EF
C ounter

DU TJD
C ounter

Ready Reset

Reset (RVw J 0- Normal mode operation.
1- Reset enabled.

Ready (R/W) 0- Disable EFG (Stop).
1- Enable EFG (Start).

DUT_ID 
Counter (R)

Displays the number of DUT_ID monitored on bus.

0- Disable the counter. The DUT_ID counter will reset to 
00 hex.

1- Enable the counter. The counter will display how 
many, instances of the DUT_ID have been monitored 
on the bus.

EF Counter 
(R/W)

Displays the number of Active Error Flag generated (R). 
The number of Active Error Flag to be generated (W).
0- Disable the EF Counter.
1- Enable the EF Counter. The EFG unit will generate the 

Active Error Flag according to the EF Counter value.
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For example, if the EF Counter contains a value 5, only 
the first 5 instances of the DUT_ID will be zapped with 
an Active Error Flag.
See also MODE in Configuration Register.

DUT ID Status
(R)

0- No. DUT_ID is loaded.
1- DUT_ID to be monitored is successfully loaded in the 

EFG. The DUT_ID to be monitored is echoed in the 
DUT_ID. field. This normally will cause the EFG Error 
bit set to ‘ 1’.

Reserved

Reserved

EFG Error (R) 0- EFG status OK.
1- EFG internal fault.

R : = Read Only, +,W:=Writeable.
Note : The Error Frame Counter and Monitored DUT_ID Counter will default

to zero whenever Reset mode is entered.

6.2.7 Configuration Register

The Configuration Register (Table 6-5) is the last data byte in the ERG 

Request Message. This register is only accessible when the Reset mode is 

enabled. The register is only applicable in the EFG Request Message.

Table 6-5 The Configuration Register and its functional description

Data
byte

7 6 5 4 3 2 l 0

5 Reserved R ese rv ed Reserved Reserved Reserved EF
C ounter

D U T J D
C ounter

M o d e

Mode 0- EFG will generate an Active Error Flag whenever the 
D U T JD  is monitored on the bus.
1- EFG will generate the Active Error Flag according to 
the value loaded in the Error flags counter.

DUTJD
Counter

0- Disabled. The counter will not reset and remain at last 
count or maximum of 128.
1- Enabled The counter will roll-over to 0 when maximum 
count of 128 is reached.

EF Counter 0- Disabled. The counter will not reset and remain at last 
count or maximum of 128.
1- Enabled The counter will roll-over to 0 when maximum 
count of 128 is reached.
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6.3 The EFG Hardware

Figure 6-3 The block diagram of the Error Frame Generator Module Hardware 

The hardware of the EFG module (Figure 6-3) consists of the following,

i.e.:-

• Pattern Recognition Hardware,

• Pattern Comparator,

• Error Frame Generation (EFG) Hardware.

6.3.1 Pattern Recognition Hardware

The function of the pattern recognition hardware is to detect the start of 

frame (SOF) of the CAN frame, i.e. l l l l l l l O  binary. Once the start of 

frame is detected, the pattern recognition hardware will feed the CAN bit 

stream into the serial-to-parallel converter. This allows the serial bit stream 

to be converted into parallel word before feeding into the pattern 

comparator (74HCT688) input.
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6.3.2 Pattern Comparator

The pattern comparator takes the role of “mask and match” filter in CAN 

protocol. It compares the CAN/DeviceNet identifier detected from the bus 

against the identifier stored in the register. The identifier stored in the 

register is downloaded from the 592 controller (via Port 4) before the 

detection and comparison sequence starts. It only compares the Identifier 

field of the CAN frame, i.e. 11-bit identifier. All subsequent bit streams 

following the Identifier field are ignored. If a match is found, the pattern 

comparator will send an enable signal to the error frame generator logic to 

transmit an active error flag.

A 16-bit word is used for the pattern comparator due to the following 

reasons:-

• CAN adopts the bit-stuffing coding technique with a stuff width of 5. The 

maximum stuff bits possible within the 11-bit identifier are two stuff bits.

• The pattern comparator only comes in an 8-bit package.

The 16-bit word typically consists of SOF (1-bit), 11-bit Identifier (11-bits), 

RTR (Remote Transmission Request - 1 bit), maximum of 3 stuff bits (3- 

bits) and 2 reserved bits.

Table 6-6 The bit word for pattern comparator

16-bit word to be compared by the pattern comparator
_15_ 14 13 12 II 10 9 8 7 6 5 4 3 2 | 0

Min SQF im o irw mg ir>7 ID6 IP5 ID4 ID3 IP2 IP1 IDO RTR R R D L C 3

B —___
—
____

—
____ —____ —

____1------11____11------11------1I I1------11------11------1I 1-----ii h - —11------1I 1----- 11-----
1D6 1ID5 1IP4 1ID3 1ID2 1 j IDI 1id o Ir t r I R

Legend
DLC.3 :- The most significant 4-bit of the Data Length Code (DLC) 
R :- Reserved Bits (Standard CAN Frame’s reserved bits)
RTR Remote Transmission Request (default to “0”)
S Stuff Bits
SOF Start of Frame
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Table 6-6 shows the arrangement of the 16-bit word in the pattern 

comparator. The number of bits to be compared by the comparator varies 

between 13 bits (for the minimum packet header size) to 15 bits (for the 

maximum packet header size), illustrated by the shaded area on the table.

The original idea was to use a tri-state device to enable the appropriate 

number o f bits to be compared. Since the bit-stream has been stuffed by the 

software in 592 controller, the number of bits to be compared can be 

controlled via an AND gate. A “ 1” at the 2 input AND gate will allow the data 

to flow through to the pattern comparator input. A “0” will cause the output of 

the 2 input AND gate to output a “0”, thus a “0” is input to the pattern 

comparator’s input.

From the 74HCT541 
latch.

Out: Pattern 
Comparator

From 592 control pin (74HCT688) input pin
“I”- for enable 

for disable

Figure 6-4 A simple data flow control using AND gate

By using this simple flow control technique, the software can determine 

how many bits are to be compared by the pattern comparator by switching the 

corresponding pin ON or OFF. If the software detects a maximum of 2 stuff 

bits, the pattern comparator can be configured to compare a total of 15 bits. If 

only 13-bits are needed for the comparator, i.e. the situation where no stuff
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bits are present, the software can be programmed to insert zeros for the non- 

concerned bits and disable the data flow to the pattern comparator by writing a 

“0” to the 2 input AND gate.

An improvement has been made to eliminate the AND gate and compare 

the first 16 bits of the CAN message bit-stream instead. The embedded 

software residing in the 592 controller is used to arrange the requested DUT 

identifier into the transmitted/received form of CAN bit-stream. This 16-bit 

CAN bit-stream is then downloaded into the pattern comparator. In the case 

of the shortest (unstuffed bit-stream) Protocol Data Unit PDU), the data 

length of the PDU must be known. The data length code (DLC, i.e. the most 

significant bit) is then included in the 16-bit CAN bit-stream for comparing.

6.3.3 Error Frame Generation Logic

This module generates the active error flag on the DeviceNet bus. The 

generation of the active error flag simulates error conditions (local error) on 

the bus. This method of error injection only affects the DUT, thus allowing the 

DUT behaviour to be monitored by the host PC, i.e. another CAN node.

The active error flag is realised using a synchronous BCD counter. The 

counter is clocked using a global clock provided by the EXO-3 crystal 

oscillator. The clock frequency takes the same frequency as the CAN baud 

rate. For instance, if the CAN network is operating at 125kbit/s, the 125khz 

clock source is used to clock the counter. Table 6-7 shows the truth table of 

the counter with its corresponding output. The objective is to use the counter 

to generate 6 dominant and 8 recessive bits, i.e. an active error flag.' The 

output function is then minimised using Karnaugh Map as shown in Figure 6-5.
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Table 6-7 The Truth Table for Active Error Flag

Decimal A B c D O utput (F)
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 0
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 1
8 1 0 0 0 1
9 1 0 0 1 1
10 1 0 1 0 1
11 1 0 1 1 1
12 1 1 0 0 1
13 1 1 0 1 1
14 1 1 1 0 X
15 1 1 1 1 X

Using Karnaugh Map for minimisation

A digital logic is then designed to realise the Boolean expression, 

Y=A+BC. The output Y is fed into the transmit pin of the Philips 82C250 

physical layer chip. This module effectively forms the error frame generator 

(EFG) logic.

Page 6-12fly S.B.Khoh



Chapter 6 - The Error Frame Generator Design

6.4 EFG Hardware Design

The Error Frame Generator (EFG) prototype was wire-wrapped and 

implemented on a Euro-card. Wire-wrapping technique is used to allow more 

densely integrated circuit design and orientation. The following issues were 

highlighted during the course of EFG hardware design and development.

6.4.1 Clock Synchronisation

When the start of frame (SOF) of CAN frame is detected, all CAN 

controllers will synchronise their local clock at the same instant. Using the 

local crystal oscillator, each controller can then measure the exact bit period, 

tbit for the correct sampling instant. Similarly, the EFG pattern recognition 

hardware must be able to synchronise itself to the SOF and maintain the 

correct bit period, tb« until the end-of-frame. This precise timing for EFG unit 

is provided by the EXO-3 crystal oscillator with an 8-bit counter as the clock 

prescaler.

6.4.2 Hardware based CAN Message Screeners

From Section 6.3 of the EFG hardware design, it can be seen that a 

pattern recognition hardware is used to screen for the required CAN identifier, 

rather than the conventional way of using CAN controller. CAN controller is 

not used for detecting the CAN identifier in this instance due to the following

reasons.

The CAN controller only flags an interrupt when a complete CAN frame 

has been received, i.e. an acknowledgement has been given by the receiving 

node. This could not be used for the purpose of error injection. The active 

error flag must he incident upon the transmitting CAN frame in order to forge
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the error condition. If the active error frame is not precisely incident on the 

CAN message frame (which is to be zapped into bus-off state), other nodes on 

the network will be affected by the EFG unit.

Legend
Ack : acknowledgement S : stuff bits
CRC : cyclic redundancy check SOF : start of frame
EOF : end of frame tbit : bit period, c.g. 8ps for
RTR : remote transmission request 125kbil/s bus

Figure 6-6 A CAN message frame with reference to the bit period clock, tbu

Figure 6-6 shows a typical CAN message frame. The shaded area 

indicates the area of interests to the pattern recognition unit, i.e. the hardware 

based CAN message screener. The area consists o f the arbitration field (the 

11-bit identifier and 1 bit RTR), 2 reserved bits and the most significant bit of 

the control field of the CAN frame.
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Start of Frame Acknowledgement
Delimiter

11 Arbitration Field | j j | | End of
■ j . ' Frame

t a r b

^ -----------------------------
t r s p

Figure 6-7 The definition of EFG response time 

From Figure 6-7, the following relationships can be established, i.e.

trsp  =  fm sg "  t arb

where

trsp := the time taken for EFG unit to recognise the required CAN identifier and 

transmit an active error frame 

tmsg := the CAN message frame validity period 

tarb := the arbitration field validity period

For successful error injection, the error frame generation unit must fulfil 

the following criterion, i.e.:-

trsp  ^  tm s g  “ ta rb

In other words, the transmission of the active error frame must be 

carried out before the temporal validity o f the message frame has ended. The 

transmission of active error frame on the transmitting message forces the 

transmitter node to believe that it has caused an error. The transmitter will then 

initiate the error recovery sequences at once.
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The shortest CAN frame consists of 47 bits (assuming zero length 

message with no stuff bits). First, the EFG unit must determine the CAN 

identifier by scanning the arbitration field. Once the correct CAN identifier is 

obtained, the EFG logic must be armed to transmit an active error frame, all 

within the 35 bit (i.e. 4 7 - 1 2  bit arbitration field) time. The designed EFG unit 

has successfully fulfilled these criteria.

6.4.3 EFG Response Time

The tbit will be different for different DeviceNet baud rate. For example, 

if the DeviceNet network is operating at 125 kbit/s.

1
Period, t = -----------------

frequency, /
1

tbil "  125A:

= 8 ps

Table 6-8 The relationships between baud rate and the bit period, tbii

Baud Rate 125 kbit/s 250 kbit/s 500 kbit/s

Bit Period, tbit 8 ps 4 ps 2 ps

At the fastest baud rate, i.e. 500 kbit/s, the turn-around response time, 

trsp of the EFG unit must be less than 2ps x 36 bits = 72 ps (the period from 

control field to the acknowledge field, assuming no stuff bits involved). If the 

EFG logic fails to deliver an active error flag within this response time, then 

the EFG unit will not be successful in injecting error on the target node.
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The EFG unit designed in this project has successfully satisfied this 

crucial criteria. It has demonstrated its capability to zapp off the zero length 

CAN message frame successfully at 125kbit/s.

6.4.4 CTE Baud Rate Setting

In the EFG unit, the global clock is provided by the EXO-3 

programmable crystal oscillator. The current design uses 3 DIP switches to 

manually set the EFG unit into one of the three different baud rates of 

DeviceNet. Even though it is possible to program the oscillator using the 

Philips 592 microcontroller, it is not adopted in the current design. The choice 

between manual and software controlled baud rate settings is only a matter of 

individual preference.

6.5 EFG Software Design

The software that controls the internal operations o f the EFG unit has 

been designed and developed using the Hitop development environment. As 

can be seen from Figure 6-3, the heart of the EFG unit is the Philips 8xC592 

microcontroller, i.e. a derivative of the Intel MCS-51 family. Therefore, Keil C 

compiler is used to compile the C source into the 8051 executables.

The functions of the EFG embedded software are:-

i) . to receive and execute the commands from the host PC

ii) .to setup and control the EFG logic for error generation at the appropriate 

moment.

¡¡i).to insert the necessary stuff bits within the 16-bit word
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Function (i) requires the handling of the CAN communication such as 

the screening of the EFG Request message and the transmission of EFG 

Response message. Function (ii) involves the setting and resetting of the 

appropriate port pins of the 592 controller for arming the EFG logic. In 

function (iii), the software will be responsible for inserting necessary stuff-bits 

into the DUT_ID register. This allows the 11-bit CAN identifier loaded in the 

DUT_ID register to have identical bit stream (inclusive stuffed bits) with those 

that would appear on the network bus. The EFG embedded software 

flowcharts are listed in Appendix B.

6.6 The EFG Unit Verification Process

After the wire-wrapped prototype and embedded software development 

had been completed, experiments were conducted to investigate the correct 

operation of the EFG logic (Figure 6-8). During this experiment, the Softing 

Analyser/Emulator was used to transmit messages on the network bus. The 

embedded software on the EFG module was executed via the Hitop monitor 

program. Once the Hitop monitor program was running, the EFG unit could 

be treated as an independent embedded system. Commands to the EFG unit 

were issued using the Softing Emulator. The Softing emulator has a window 

to show the network traffic. It can be seen that the EFG response message will 

appear every time an EFG request message is sent to the EFG module. This 

verifies that the EFG unit is active.

A DeviceNet flex I/O and a photo-electric sensor were attached to the 

bus as an experiment control. These two DeviceNet devices were in idle mode.
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Figure 6-8 The EFG Verification Test Set-up

Experiment (I)

The EFG request message is a fixed data length message. In order to 

verify that the EFG unit only responds to the correct EFG request message, 

EFG request messages with different data length were sent. The EFG unit 

must not respond to any of the invalid data length EFG request messages. 

Observation: EFG only response to Identifier 7C0 hex with data length code = 

6 .

Experiment (II)

An identifier (which is to be “zapped” by the EFG) is downloaded into 

the EFG via the EFG Request message (DUT_Identifier). The EFG’s pattern 

comparator is enabled which arms the EFG unit for error injection. The same 

identifier is then downloaded into the Sorting emulator for cyclic transmission. 

Observation: The node (Sorting emulator) that transmitted the DUT .identifier 

went into bus-off state immediately.

Experiment (III)

Experiment (II) is repeated but a single shot transmission is used rather 

than cyclic transmission.

I*age 6 -1 9Il y S .B .Khoh



Chapter 6 - The Error Frame Generator Design

Observation: Softing emulator gone into bus-off state upon the transmission of 

the single shot message.

The same result as Experiment (II) is obtained, i.e. the Softing emulator 

which transmits the cyclic identifier went into bus-off state upon the arming of 

the EFG unit. Experiment (II) and (III) were repeated with different DUT, 

DUT-1 and DUT+1. The summary of the test results can be seen in Table 6-9.

Table 6-9 A summary observation results of the experiment

State of operations

Identifier (ID) 
Transmitted by 

Softing Emulator

Softing
Emulator

EFG unit Flex I/O & 
Photo-sensor

I DUT_ID

(Cyclic)

bus-off error-active* * error-active*

11 DUT_ID - 1

(Cyclic)

normal normal normal

III D U TJD  + 1

(Cyclic)

normal normal normal

IV D U TJD

(One-shot)

bus-off error-active** error-active*

V D U TJD  - 1 

(One-shot)

normal normal normal

VI D U T J D + 1 

(One-shot)

normal normal normal

The error-active slate is deduced based on the CAN protocol specification. The 
deduction is made because both the scanner and photo-sensor do not have any indicator to 
indicate the error-active stale. The solid green communication status LEDs indicated that 
communication is healthy and unaffected.

"Since the Error Frame Register is not implemented in this experiment, the error- 
active state can only be assumed.
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In all the above experiments, the EFG unit, Flex I/O and photo-eye 

remained active, even though the Softing emulator/analyser had gone into the 

bus-off state. From CAN protocol specification, it can be deduced that those 

nodes which remained active in the experiments were in error-active states.

Both the cyclic and one-shot transmission o f the DUT_ID gave the same 

results. This is significant as it confirmed the fact that retransmission of CAN 

protocol during error existed. This is the reason why both cyclic and single 

shot gave the same results.

The transmission of DUT_ID, DUT_ID + 1 and D U T JD  - 1 proved 

that the EFG unit can efficiently distinguish the right message frame to be 

zapped into bus-off state. This verifies the internal operation of the pattern 

comparator, registers and EFG embedded software. Figure 6-9 shows the 

sequences involved in zapping a node into the bus-off state.
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Figure 6-9 The error injection sequence

6.7 EFG Unit Constraints

Due to the lack of time and resources, not all the designed components 

of the EFG were implemented. The most vital part of the design, i.e. the ability 

to recognise a DUT_1D and zap the message frame with an active error frame 

is implemented successfully. The rest of the EFG features which allow fine- 

tuning of the EFG operations are not implemented. The followings are the 

constraints and abnormality found in the EFG design.
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6.7.1 EFG Request/Response Message priority

The EFG unit is controlled by the host PC using the EFG 

Request/Response messages. Currently, both messages use the reserved 

DeviceNet identifiers, i.e. identifier 7C0 hex for EFG Request and 7Cl for 

EFG Response messages. The use of low priority messages for the ferrying of 

commands/controls may not be favourable in certain situations. This is 

especially true in the situation of a heavily loaded network where it may be 

impossible to get the command across.

For instance, the Softing emulator was configured to do cyclic 

transmission of Identifier 00 hex at 0ms interval. The cyclic transmission of 

such message prevented any EFG Request/Response message from getting to 

the EFG unit.

Between the EFG Request and Response message, it is justifiable to 

assign the EFG Request message to have a higher priority than the response. 

The argument behind this is that the EFG unit is an intelligent node which is 

self-sufficient to carry out the assigned tasks. The EFG Response message is 

used to verify the received command and data with the host PC. If the heavy 

network traffic prevents the EFG Response message from getting back to the 

host, the EFG unit will still be able to execute the host’s previously issued 

command. The host, however, could not determine certain parameters such as 

the number of active error frames transmitted prior to the DUT bus-off state. 

In this situation, the host can either wait for the EFG Response message, or 

issue another EFG Request message to initiate another EFG Response 

message.
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7.1 CAN Bit Timing Parameters Verification

The bit timing parameters o f the CAN protocol will influence the 

correct operation of DeviceNet fieldbus communication. Instead of using high 

precision and expensive measuring equipment to verify the bit timing 

parameters implemented by the product developers, an alternative solution can 

be suggested consisting of two steps. The first step is to ask the product 

developer to find out which CAN controller has been used in the 

implementation, and what is the corresponding bit timing parameters. This 

gives a good indication as to whether the implementation uses compatible bit 

timing parameters. If the CAN controller used is new to DeviceNet, the 

ODVA Conformance SIG must appoint a lab to investigate the appropriate bit 

timing parameters for the new device. Once the optimum bit timing parameter 

is determined, the information will be available to all product developers for 

reference.

Once satisfied with the correct bit timing parameters, the 

implementation is then connected to a full size DeviceNet network with 

maximum length trunk and drop cables. The implementation is successively 

configured for operation in all the 3 DeviceNet baud rates, i.e. 125kbit/s, 

250kbit/s and 500kbit/s. If communication is successfully established, it can 

be deduced that the bit timing parameters and opto-isolation delay are within
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the scope of the DeviceNet fieldbus specification. The DeviceNet network used 

in the interoperability test exercise can be used for this purpose.

7.2 Local Control for EFG Unit

The error frame generator(EFG) unit within the conformance test engine 

(CTE) framework is remotely controlled by the host PC to allow fully 

automated conformance testing to be performed. If the EFG is to be used as a 

standalone unit, the prototype can be modified to accept input from a keypad 

or other input devices, instead of using the EFG Request and Response 

message. As such, a portable EFG embedded system can be developed. The 

portable unit can be used to inject errors in any CAN system so that the system 

behaviour under error conditions can be studied.

7.3 Global Error Generator

The error frame generator (EFG) unit has demonstrated a method of 

injecting errors onto the DeviceNet bus. The errors generated are referred to 

as local errors in the CAN protocol. The local error is appropriate in the 

context of the conformance testing framework as this error condition only 

affects the IUT(implementation under test). This allows the IUT to be 

observed by other CAN nodes on the bus, i.e. the test system. The global error 

in the CAN protocol is the error agreed and detected by all CAN nodes. A 

global error generator is regarded as unnecessary as it will only be useful in the 

verification of the error detection mechanism in CAN protocol. The error 

detection facility in the CAN protocol has been mathematically validated and 

proven.
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7.4 Test Preamble/Post-amble Optimisation

The Unique Input/Output (UIO) method is used for generating the 

conformance test suites for DeviceNet. The methodology ensures that a 

consistent conformance test suite is obtained. However, the rural Chinese 

postman optimisation problem still exists. This is the problem that involves the 

preamble and post-amble of the conformance test. For example, in order to 

test the Vendor ID attribute within the Identity Object, the test preamble which 

includes an open explicit messaging connection, and the setting o f the EPR 

value to zero needs to be performed. After performing the test pre-amble, the 

test system is now ready for the actual test, i.e. to send a get_attribute_single 

service to the Identity Object specifying the Vendor ID attribute. The result of 

the test is then analysed based on the response received. The test post-amble 

concerns the necessary steps taken after the test to prepare the IUT for the 

next test. In this instance, in order not to repeat the test preamble again, all 

the attributes within the Identity Object are tested before the explicit 

messaging connection is closed. The idea is to repeat as little as possible the 

non value added test preamble and post-amble steps. There is no single 

solution to the rural Chinese postman tour problem. The optimisation of the 

above described problem is beyond the scope of this thesis.

7.5 Uniform Resource Interpreter

The conformance test is a growing system. Whenever a new device 

profile is introduced, the conformance test suite must be developed to 

accommodate the newly introduced profile. Soon, conformance testing will 

become the bottle-neck for open standard fieldbus advancement. Any 

modification and upgrade to the protocol specification will not be reflected 

immediately by the conformance test suites.
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The recommended solution is to design the CTE software to mimic the 

uniform resource locator (URL) browser of the Internet. Conformance test 

suites are encoded with special tags in the database. The CTE software will 

read the corresponding test suite database and control tags according to the 

information contained in the statement of conformance(SOC) file. The 

conformance test suites will then be compiled and run. Whenever a new device 

profile is made available, only the test suite database needs updating. This 

allows the CTE framework to grow with the DeviceNet technology.

7.6 Future Systems

7.6.1 Interoperability Test

A conformance test only verifies that the product developers have 

correctly implemented the protocol specification, i.e. to test the 

implementation as a node. Although the implementation has undergone and 

passed the conformance test, it may not be absolutely certain that all devices 

will work harmoniously as a system. This can be illustrated simply with the 

following example.

In the DeviceNet master-slave configuration scenario, the master has to 

proxy for all its slave devices. Every DeviceNet connection has a connection 

time-out time (i.e. the expected packet rate(EPR) time-out) agreed by both 

devices involved in the connection during the dynamic connection 

establishment. A DeviceNet network may consist of Group 2 and Group 2 

only devices. Group 2 only devices consist of slave devices which use the 

much simpler predefined-master-slave messaging connection sets of 

DeviceNet. If an open explicit messaging connection request message to a
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slave device is received, the master device will intercept the request and proxy 

to all its slave devices.

If a network manager tool is used to obtain some information from a 

slave node during run-time (Figure 7.1), the DeviceNet master will intercept 

the explicit message targeted for its slave and respond on the slave’s behalf. 

From the network manager tool view-point, the communication between the 

slave device and the tool has been successfully established. The tool is not 

aware that the response message actually came from the master device. A 

typical EPR time-out value for explicit messaging connection is set.

I iHendcd communication

Network Manager 
Tool

Slave device

DeviceNet Bus

Figure 7-1 The communication between the network manager tool and a slave 
device owned by a master

If the information queried by the network manager tool is not available 

in the master device, the master device will have to open another connection to 

the slave device using the predefined master-slave connection set to get the 

information queried by the tool. As this involves another level o f messaging 

connection, the timer for the explicit connection between the tool and the 

master will expire before the predefined master-slave connection’s timer. As a
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result, the master could not provide the tool with the information requested. 

In this scenario, all devices involved are fully compliant with the protocol 

standard. The failure results because both the tool and the master device did 

not set their EPR time-out period appropriately. On the other hand, the master 

device did not realise that the tool was going to query for the information 

which is not available in the master device.

Therefore, an interoperability test is needed to find incompatibilities 

which may be due to incorrect configuration parameters, or the service 

semantics involved in interoperability. Furthermore, the interoperability test 

could provide valuable information on optimising the fieldbus system.

7.6.2 The Protocol Watch-dog

The EFG prototype has shown that a protocol emulator can be used to 

inject error into the DeviceNet bus and allow the error recovery management 

of the implementation to be studied. The EFG prototype can be further 

expanded into a strategic watch-dog tool that sits on the network and monitors 

the DeviceNet network. For example, the chattering of a node is not desired 

as it uses valuable network bandwidth. If the chattering node is transmitting a 

high priority message on a DeviceNet fieldbus (i.e. low CAN identifier 

number), lower priority messages will have difficulty in gaining bus access. 

This may jeopardise the correct operation of the overall system. In this 

situation, this network “watch dog” can be sprung into action by zapping the 

chattering node into the bus-off state.

Note that a chattering node is a healthy node which transmits healthy 

messages but at a much higher frequency than it was designed for. Therefore 

the fault-confinement of the CAN protocol does not apply in this instance. The
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supervisory node(watch-dog) can utilise the EFG unit to switch the abnormal 

node into bus-off. This provides an additional level of security to  the operating 

network against failure caused by chattering nodes.

7.6.3 DeviceNet Fieldbus Emulator

An idea of developing a rapid prototyping machine to emulate the 

DeviceNet network as well as to perform the pre-runtime scheduling has been 

conceived. The principle behind this rapid prototyping machine is very similar 

to the in-circuit emulator used in embedded system development. The fieldbus 

emulator hardware set-up is identical to that used in the CTE framework 

design. The difference lies in the software that governs the hardware 

operations.

The fieldbus user can specify the system requirements and an 

environment is set-up to reflect the specified requirements as closely as 

possible. The DeviceNet emulator is then run which simulates the desired 

network conditions. This includes the mock-up PDU format and transfers. 

Alternatively, the emulator can be used to “play back” the actual network 

traffic captured earlier in a similar fieldbus installation. The end-user will then 

have an idea whether the planned network is capable of satisfying needs. If not, 

the various parameters on the network can be configured on the emulator 

before it is run again. For example, the user may want to know how much 

bandwidth can be gained by using the event-triggered transport class instead of 

the time-triggered option.

As the hardware set-up is identical to the CTE framework, this means 

that the conformance test lab can provide an additional pre-runtime scheduling 

service to the DeviceNet end-users.
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7.6.4 DeviceNet Protocol Controller

It may be easier to put all the DeviceNet protocol messaging on a mask 

rather than to implement these messaging scheme in software. The only 

concern here will be the cost effectiveness of this approach. It is foreseen that 

if the conformance testing is efficient to weed out any irregularity of the 

implementation, the embedded software approach will definitely be better due 

to its flexibility. The product developers can develop products not only to 

conform to DeviceNet, but also to CANOpen, SDS, CAN Kingdom and any 

CAN system by altering the embedded software in the device. Furthermore, 

the use of the generic CAN controller will benefit the product vendors 

economically due to the mass utilisation of these controllers in the automotive 

industry. Any protocol upgrade can be done easily as there are no expensive 

masks to design.

7.6.5 Formal Methods for Protocol Specification Modelling

A formal method is needed to produce a formal DeviceNet protocol 

specification. By using formal methods to model the protocol specification, 

protocol errors can be found at a very early stage of the design. The 

conformance testing process addresses the issues of protocol verification, 

whereas a protocol validation process needs to be done using formal methods.

Conversely, formal methods suffer from the linguistic constraints where 

certain scenarios cannot be exactly modelled. Nevertheless, the results 

obtained will be better than those before its application as every methodology 

will disclose different kinds of problems. It is strongly suggested that a formal 

specification of DeviceNet, i.e. protocol validation should be done. Further 

delay in the formal specification process will make protocol fault rectification 

(if any) more complicated and costly. In addition, the formal specification may
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help to conform a fieldbus standard to an intrinsically safe fieldbus as 

mathematical proofs are obtained on the fieldbus behaviour.

7.6.6 Notation and Methodology Compilers

In the next decade, the demand for software engineers with 

programming language skills may decrease. There has been a considerable 

amount of research in the area of compiler design which converts formal design 

methodology models into run-time codes. For example, the ROSE tool, which 

is an object-oriented design methodology tool-kit, is capable of generating C++ 

run-time codes from object diagrams. It can also reverse engineer existing C++ 

run-time codes to create the object diagrams when required. Tools like these 

are on the increase. The maturing field of knowledge based and expert system 

will help to encapsulate the software experts’ knowledge and include them in 

these compilers.

7.6.7 Knowledge-Based Fault Diagnostic Module

A knowledge-based inference machine could be incorporated into the 

CTE framework to diagnose the IUT’s fault during conformance testing. 

Instead of giving a pass/fail verdict, the CTE would explain what has caused 

the IUT to fail the conformance test. A solution to the problem may then be 

recommended by the knowledge-base. This feature would be particularly 

useful to product developers during in-house testing of DeviceNet 

implementations.

7.6.8 Peer-to-peer and Highly Distributed Control

The ultimate aim of fieldbus control systems is the realisation of highly 

distributed control (IIDC) systems. Fieldbus has provided the major structure 

needed for a highly distributed control system. With the use o f an appropriate
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ladder logic compiler, the control and command can be residing on the field 

devices themselves. The argument behind this principle is very simple. A PLC 

program consists of rungs o f control information with monitored inputs and 

outputs. Normally, there are only a few inputs to be monitored in each rung 

that trigger a specific output. If this information can be stripped down and 

loaded into the field device’s memory, then the central controller such as a 

PLC is no longer needed for storing and executing the control sequences. This 

will realise the full automation hierarchy that has been the dream of the past 

decade.

Even though DeviceNet is designed with a client/server relationship in 

data production and consumption, the move to highly distributed peer-to-peer 

has many unforeseen boundaries. In theory, the producer/consumer model of 

DeviceNet will be valid for master/slave as well as peer-to-peer configuration. 

However, the peer-to-peer configuration may not benefit from the fast multi­

cast bit-strobe command of the predefined master/slave connection set. All 

peer-to-peer communications take the form of request/response messages 

(Group 2 messages) which may be slower depending on the network 

bandwidth.
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A method of injecting errors into the DeviceNet fieldbus to allow 

conformance testing on error recovery and management to be carried out has 

been developed. This prototype has been lab-tested to be workable. A 

conformance test engine, CTE has been devised to allow an automated 

conformance test approach. The automated CTE allows reliable and consistent 

conformance test results to be obtained without having to rely on the skills of 

conformance test engineers. In addition, an automated test also saves time and 

personnel. Furthermore, the designed conformance test framework and error 

frame generator can be used in conformance testing and error injection for all 

CAN based protocols.

The Unique Input/Output (UIO) method has been identified and used in 

generating the conformance test suites for the DeviceNet fieldbus. The use of 

Booch object-oriented design methodology in DeviceNet and CTE design is 

appropriate. The object-oriented approach complements the Windows 

component software integration. It is foreseen that formal method validation 

of the DeviceNet protocol must be performed at some stage to validate the 

DeviceNet specification.

An interoperability test must be performed to investigate the 

interactions between conformance devices on a full sized DeviceNet network. 

The interoperability test will ensure the correct inter-device communications.
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It can also be used to determine the feasibility of a field application which 

relies on the combined efforts of various devices.

It is suggested that a knowledge-based inference engine should be 

developed and incorporated into the CTE framework for the diagnosis of non- 

conforming implementation in future.
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A p p e n d i x  A

T h e  E r r o r  F r a m e  G e n e r a t o r  U n i t  
a n d  S c h e m a t i c  D i a g r a m

Figure A-l The Error Frame Generator Unit

Figure A-l shows the Error Frame Generator(EFG) prototype which 

consist of two Eurocards connected via a custom designed back-plane. On board 

voltage regulators (8-30V  dc regulation) were used to allow the EFG to be 

powered from the DeviceNet bus. The bottom layer Eurocard is an off-the-shelf 

Philips 8xC592 microcontroller card, i.e. Phytec Mini-module 592. The upper 

layer Eurocard is the custom designed logic circuits for realising the CAN 

message screener and error frame generation logic. Figure A-2 and A-3 show the 

component side and the wire-wrapping side of the designed prototype.
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Appendix A - The Error Frame Generator Unit and Schematic Diagram

Figure A-2 The Component side of the designed prototype

Figure A-3 The underside of the designed prototype
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Appendix A - The Frror Frame Generator Unit and Schematic Diagram
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A p p e n d i x  B

F l o w c h a r t  F o r  T h e  EFG 
E m b e d d e d  S o f t w a r e

EFG Unit System Flowchart
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Appendix B - Flowchart For The EFG Embedded Software

The Main Progam Software Flowchart
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Appendix B - Flowchart For The EFG Embedded Software

CAN_lnit() subroutine 
(The 592 CAN controller initialisation)
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Appendix B - Flowchart For The EFG Embedded Software

EFG lnit() subroutine

c Start 3

Read the CANCON register

OR the CANCON register value to global 
system flags of main program loop

c End
3

CANJnterrupt_Handler() subroutine
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CAN Receive_Handler() subroutine
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Appendix B - Flowchart For The EFG Embedded Software

jl

CAN identifier, id = 0x07C1, rtr = 0
■ ■ ■ ■ ■ ■ ■ ■

..
descrip_1= id »  3,
descrip_2= (id «  5) | (rtr «  4) | die

«
1 -

CAN ADR = TXJD 
CAN DAT=descrip_1

JL
CANADR=TX_ID+1 
CANDAT=descrip_2

tx_message[0]=DUT_descrp_1 
tx_message[l j=DUT_descrp_2 
tx_message[2]=error_frame_reg 
tx_message(3]=id_count_reg 
tx_message[4]=status__reg

CANADR = AUTOJNCR_TX_BUFFEf i

CAN Transmit Handler() subroutine (i)
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CAN Transmit HandlerQ subroutine (ii)
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Appendix B - Flowchart For The EFG Embedded Software

A.
Enable CA N Jd Screener Logit

Enable Pattern Comparator

Update the EFG status registei

C End )

EFG_Handler() subroutine
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A p p e n d i x  C

D e v i c e N e t  M e s s a g e  C o n f o r m a n c e  
T e s t  S p e c i f i c a t i o n

Introduction
The invalid DeviceNet Message Test is intended to verify that a 

DeviceNet device does not respond to messages other than the DeviceNet 

messages specified in the DeviceNet Specification Volume I, Release 1.2. 

Figure C-l shows that DeviceNet protocol messages is a subset of CAN 

protocol messages. Therefore, it is important to ensure that DeviceNet 

devices:-

•  only respond and/or react to those DeviceNet Messages specified in the 

DeviceNet Specification Vol. 1, Release 1.2.

•  must not generate, respond and/or react to CAN messages outside the 

boundary o f the DeviceNet specification, i.e. messages that are not- 

specified in the DeviceNet Specification.

Figure C -l. The relationship between CAN and DeviceNet messages
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In general, the DeviceNet Message Test can be divided into the 

following categories.

1. Invalid Syntax DeviceNet Message Test

2. Unused CAN Remote Frame Test

3. Invalid Data-Length DeviceNet Message Test

4. Invalid Message Identifier DeviceNet Message Test

5. Invalid Explicit Message Header Test

6. Reserved/Unused DeviceNet Message Test

C.l Invalid Syntax DeviceNet Message Test

This section defines the compliance for DeviceNet devices when 

presented with Valid CAN messages but Invalid Syntax DeviceNet Messages. 

DeviceNet message is a subset of CAN message as shown in Figure C-l. For 

example, CAN protocol supports the Remote Transmission Request (RTR) 

function but Remote Transmission Request is illegal in DeviceNet protocol. 

All DeviceNet devices, i.e. Client, Server, Peer, Group 2 Client, Group 2 

Server, Group 2 Only Client, Group 2 Only Server must undergo this test.

DeviceNet utilises the 11-bit identifier Standard CAN Frame format (i.e. 

CAN 2.0A compliant device). The extended 29-bit identifier Extended CAN 

Frame format (i.e. CAN 2.OB compliant device) is prohibited in DeviceNet 

system. All CAN controllers supporting Extended CAN Frame format must be 

set to operate in the Standard CAN (CAN 2.0A) mode. The difference 

between Standard CAN Frame and the Extended CAN Frame lies in the packet 

header (Arbitration Field) of the CAN PDU as shown in Figure C-2. The 

Control field. Data field, CRC field, ACK and EOF frame format remain the 

same for both the Standard and Extended CAN frame.
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Appendix C - DeviceNet Message Conformance Test Specification

SOF : Start of Frame IDE : Identifier Extension
RTR : Remote Transmit Request DLC : Data Length Code
SRR : Substitute Remote Request RO, R1 : Reserved Bits

Source : CAN Specification 2.0

Figure C-2 The Standard and Extended CAN Frames

Note

CAN 2.0A complaint controller will interpret the CAN 2.OB CAN frame 

as an error due to the different interpretations of CAN frame format. Note the 

circled area in Figure 2. Only CAN 2.OB and/or CAN 2.OB passive compliant 

devices allow CAN 2.0 A and CAN 2.OB messages to co-exist on the same 

bus.

CAN 2.0A device Supports Standard CAN frame (11-bit

identifier) format

CAN 2.OB device Supports both Standard (11-bit Identifier) and

Extended (29-bit Identifier) CAN frame format. 

CAN 2.OB passive device Supports Standard CAN frame (11-bit

identifier) format, but will not interpret the 

Extended Frame (29-bit Identifier) as an error. 

The Extended CAN frame will be ignored by
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the controller. The controller will acknowledge 

in the ACK bit of the Extended CAN frame.

C.2 Unused CAN Remote Frame Test

DeviceNet does not use the Remote Frame of CAN protocol. Therefore, 

all DeviceNet devices must not consume, react or respond to the Remote 

Frame.

NB: DeviceNet Specification Volume 1, Release 1.2 specifies that only the 

Standard CAN Frame (11-bit Identifier) is allowed. Implementations using 

CAN 2.OB compliant controllers must be default to run at CAN 2.0A mode. 

The compliance test plan assumes that DeviceNet developers have 

implemented their implementations in the Standard CAN Frame (11-bit 

Identifier) format.

Functional Description

This test verifies the response

1. when an Open Explicit Messaging Request service with Remote 

Transmission Request bit set.

2. when a CAN Remote Frame (Invalid DeviceNet message) is received.

Test Procedure

1)

• Send an Open Explicit Messaging (EM) request service. Use the following 

arguments when creating a connection via the UCMM : 

Message_Body_Format = 0 , Group_Select = a supported group. Message 

Id as appropriate for the chosen Group_Select.
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• Request a Set_Attribute_Single service, Expected_Packet_Rate, value=0

• Request a Get_Attribute_Single service to Connection Object Class 

(05hex), Attribute ID = State (01 hex)

Pass : Expected response

• Request a Get_Attribute_Single service with RTR bit = 1 to Identity Object 

Class (01 hex), Attribute ID = Vendor (01 hex)

Pass : The device must not respond to and/or consume any of the Open 

Explicit Messaging request services.

2)

• Send a Standard CAN Remote Frame (i.e. RTR-Remote Transmission 

Request bit=l) message with CAN identifier = 0 hex, Data-Length = 0.

• The Remote Frame transmission is repeated 8 times, each with Data- 

Length=l, 2, 3, 4, 5, 6, 7 or 8 bytes

• The CAN identifier is incremented by one after Remote Frame with Data- 

Length = 8 bytes is transmitted.

• The test is repeated until identifier 0x7EF hex is reached.

Pass : The device must not respond to and/or consume any of the CAN 

Standard Remote Frame messages.

C.3 Invalid Data-Length DeviceNet Message

This section defines a fundamental test to verify that the DUT has 

implemented Data-Length Code check prior to data consumption. For example, 

the Open Explicit Messaging Connection Request message is always 4 bytes
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long. If Open Explicit Message Connection Request message is longer or 

shorter than 4 bytes, the DUT must not consume any of the message.

Functional Description

This test verifies the response when an Invalid Length Open Explicit 

Messaging Connection Request service is received.

Test Procedure

• Send an Open Explicit Messaging Connection Request service to DUT with 

the following arguments:

• Message__Body_Format = 0, Group_Select = a supported group. Message 

Id as appropriate for the chosen Group_Select

• Set the Data-Length Code (DLC) of the CAN protocol to 4 bytes.

• Request a Set_Attribute_Single service, Expected_Packet_Rate, value = 

zero

• Request a Get_Attribute_Single service, State 

Pass : Expected response.

Close the Explicit Messaging Connection

• Send an Open Explicit Messaging Connection Request service to DUT with 

the following arguments:

• Message_Body_Format = 0, Group_Select = a supported group, Message 

Id as appropriate for the chosen Group_Select

• Set the Data-Length Code (DLC) of the CAN protocol to 5 bytes.

Pass : The DUT must not respond to and/or consume any of the Open Explicit 

Messaging request services.
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• Send an Open Explicit Messaging Connection Request service to DUT with 

the following arguments:

• Message_Body_Format = 0, Group_Select = a supported group, Message 

Id as appropriate for the chosen Group_Select

• Set the Data-Length Code (DLC) of the CAN protocol to 3 bytes.

Pass : The DUT must not respond to and/or consume any of the Open Explicit 

Messaging request services.

C.4 Invalid Message Identifier DeviceNet Message

This section defines the test to verify that the DUT has implemented 

boundary check on the Message ID prior to data consumption. For example, 

the Open Explicit Messaging Connection Request message is always using 

Group 3 Message ID 6 for UCMM capable device. If Open Explicit Message 

Connection Request message is other than Message ID 6, the DUT must not 

consume any of the message.

Functional Description

This test verifies the response when

1. an Open Explicit Messaging Connection Request service with Message ID 

other than Group 3 Message ID 6 is received.

2. a Group 2 Only Open Explicit Messaging Connection Request service with 

Message ID other than Group 2 Message ID 6 is received.

Test Procedure

Group 2 Device (UCMM Capable Device)

D
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• Send an Open Explicit Messaging Connection Request service via Message 

Group 3 to DUT with the following arguments:

Message_Body_Format = 0, Group_Select = a supported group, Message Id as 

appropriate for the chosen Group_Select, Message ID in the CAN Identifier 

field = 6.

Pass : Open Explicit Connection Success Response received.

Wait for the connection to time-out.

• Send an Open Explicit Messaging Connection Request service via Message 

Group 3 to DUT with the following arguments:

Message_Body_Format = 0, Group_Select = a supported group, Message Id as 

appropriate for the chosen Group_Select, Message ID in the CAN Identifier 

field = 0.

• Wait for 500 miliseconds

Pass : The DUT must ignore the message.

The test is repeated with Message ID in the CAN Identifier field set to 1,2, 3, 

4, 5 and 7

• Wait for 500 miliseconds

Pass : The DUT must ignore the message.

Group 2 Only Device (UCMM Incapable Device)

• Send an Open Explicit Messaging Connection Request service via Message 

Group 2 to DUT with the following arguments:

Message_Body_Format = 0, Group_Select = 1 (Group 2), Message Id as 

appropriate for the chosen Group_Select, Message ID in the CAN Identifier 

field = 6 (Group 2 Only Unconnected Explicit Request Message).

Pass : Open Explicit Connection Success Response received.
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Wait for the connection to time-out.

• Send an Open Explicit Messaging Connection Request service via Message 

Group 2 to DUT with the following arguments:

Message_Body_Format = 0, Group_Select = 1 (Group 2), Message Id as 

appropriate for the chosen Group_Select, Message ID in the CAN Identifier 

field = 0.

• Wait for 500 miliseconds

Pass : The DUT must ignore the message.

The test is repeated with Message ID in the CAN Identifier field set to 1,2, 3, 

4, 5 and 7

• Wait for 500 miliseconds

Pass : The DUT must ignore the message.

C.5 Invalid Explicit Message Header Test

This section defines the test for Invalid Explicit Message Header in 

DeviceNet protocol. The DeviceNet protocol information is defined in the data 

field of CAN PDU during explicit messaging. Therefore, it is important to 

check the correct interpretation and implementation of the DeviceNet Explicit 

Messaging mechanism. The Open Explicit Messaging Connection Request and 

Response format is shown in Figure 3.0.
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B yte
O ffse

Byte
Offse

1 R/R
_ 1 0 J _

Service C ode  [4BJ 1 R/R
111

Service Code (4B)

2 Reserved (All B its = 0) R equested  M essage 
Body Form at

2 R eserv ed  (All Bits = 0) Actual M essage 
Body Form at

3 G roup  Select S ource  M essage ID 3 D estin a tio n  M essage ID Source M essage ID

Open E xplic it M essaging C onnection  R equest 

(M essage G roup 3, M essage ID  6)

C onnection

Instance ID

O p en  E xp lic it M essaging C onnection  Success Response 
(M essage G roup 3 , M essage ID 5)

Figure C-3 The Open Explicit Messaging Connection Request/Response

Message

The Message Header of the Open Explicit Messaging Connection 

Request/Response messages is indicated as the shaded area in Figure C-3.

C.5.1 Invalid MAC ID in Message Header - Group 3 Message ID 6

The Open Explicit Messaging Connection Request service requests the 

establishment of a logical link between two DeviceNet nodes across which 

Explicit Messages will be transmitted. This test is only applicable to Group 2 

devices (UCMM Capable Devices).

Functional Description

This test verifies the response of the DUT to an Invalid MAC ID in the 

Message Header of Open Explicit Messaging Connection Request Message.

1 The Destination MAC ID is always specified in the M essage Header associated with Open
Explicit Messaging Connection Rcqucst/Rcsponsc. pp 4-7 Vol. I__________________________
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Test Procedure

• Open an Explicit Messaging (EM) connection using Group 3 Message ID 

6. Use the following arguments when creating a connection via the UCMM: 

Message_Body_Format = 0, Group_Select = a supported group, Message

CAN Identifier MAC ID Message Header MAC ID

S o u rce S o u rc e

Pass : The DUT must ignore the message.

• Open an Explicit Messaging (EM) connection using Group 3 Message ID 

6. Use the following arguments when creating a connection via the UCMM: 

Message_Body_Format = 0, Group_Select = a supported group, Message 

ID as appropriate for the chosen Group_Select._______________________

CAN Identifier MAC ID Message Header MAC ID

S o u rce D e s tin a tio n

• Request a Set_Attribute_Single, Expected_Packet_Rate, value = zero(0).

• Request a Get_Attribute_Single, State (01)

Pass : Expected response

State(Ol)

Close the Explicit Message Connection

• Open an Explicit Messaging (EM) connection using Group 3 Message ID 

6. Use the following arguments when creating a connection via the UCMM: 

Message_Body_Format = 0, Group_Select = a supported group, Message 

ID as appropriate for the chosen Group_Select._______________________

CAN Identifier MAC ID Message Header MAC ID

S o u rce O th e r  th a n  S o u rc e !D e s tin a tio n
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Pass : The DUT must ignore the message.

• Open an Explicit Messaging (EM) connection using Group 3 Message ID 

6. Use the following arguments when creating a connection via the UCMM: 

Message_Body_Format = 0, Group_Select = a supported group, Message 

ID as appropriate for the chosen Group_Select._______________________

CAN Identifier MAC ID Message Header MAC ID

Destination Source

Pass : The DUT must ignore the message.

• Open an Explicit Messaging (EM) connection using Group 3 Message ID

6. Use the following arguments when creating a connection via the UCMM: 

Message_Body_Format = 0, Group_Select = a supported group, Message ID 

as appropriate for the chosen Group_Select._____________________________

CAN Identifier MAC ID Message Header MAC ID

Destination Destination

Pass : The DUT must ignore the message.

• Open an Explicit Messaging (EM) connection using Group 3 Message ID

6. Use the following arguments when creating a connection via the UCMM: 

Message_Body_Format = 0, Group_Select = a supported group, Message ID 

as appropriate for the chosen Group^Select._____________________________

CAN Identifier MAC ID Message Header MAC ID

Destination Other than Source!Destination

Pass : The DUT must ignore the message.

• Open an Explicit Messaging (EM) connection using Group 3 Message ID 

6. Use the following arguments when creating a connection via the UCMM:
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Message_Body_Format = 0, Group_Select = a supported group, Message ID 

as appropriate for the chosen Group_Select._____________________________

CAN Identifier MAC ID Message Header MAC ID

Other than Source!Destination Source

Pass : The DUT must ignore the message.

• Open an Explicit Messaging (EM) connection using Group 3 Message ID 

6. Use the following arguments when creating a connection via the UCMM: 

Message_Body_Format = 0, Group_Select = a supported group, Message ID 

as appropriate for the chosen Group_Select.

CAN Identifier MAC ID Message Header MAC ID

Other than Source/Destination Destination

Pass : The DUT must ignore the message.

• Open an Explicit Messaging (EM) connection using Group 3 Message ID

6. Use the following arguments when creating a connection via the UCMM: 

Message_Body_Format = 0, Group_Select = a supported group, Message ID 

as appropriate for the chosen Group_Select._____________________________

CAN Identifier MAC ID Message Header MAC ID

Other than Source/Destination Other than Source/Destination

Pass : The DUT must ignore the message.

C.5.2 Invalid MAC ID in Message Header - Message Group 2

When an Explicit Message is received, the MAC ID field within the 

Message Header is examined according to the following rules.
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mm

A The Destination MAC ID is specified The Source MAC ID is specified in the

in the Connection ID (CAN Identifier MAC ID portion of the Message

Field) Header

B The Source MAC ID is specified in the The Destination MAC ID is specified

Connection ID (CAN Identifier Field) in the MAC ID portion of the Message 

Header.

If the Explicit Message fails to satisfy either A or B, then the message is 

discarded (Vol. I pp. 4-4). This rule only applies to Explicit Connection 

Messaging using Group 2 Messages.

CAN Identifier Bits

10 9 8 7 6 5 4 3 2 1 0

1 0 MAC ID Group 2 
Message ID

Message Group 2

Functional Description

This test verifies the response of the DUT to an Invalid MAC ID in the 

CAN Identifier Field and the Message Header of the Open Explicit Messaging 

Connection Request Message. The following table defines the Source and 

Destination MAC IDs for Test 1 through Test 6.

Test Combination CAN Identifier’s MAC ID Message Header’s MAC ID
1 1 Source Source
2 2 Source Destination

3 3 Source Other than Source!Destination
4 4 Destination Source
5 5 Destination Destination

6 6 Destination Other than Source!Destination

7 7 Other than Source 1Destination Source

8 8 Other than Source!Destination Destination

9 9 Other than Source!Destination Other than Source!Destination

By S B Khoh Page C-14



Appendix C - DeviceNet Message Conformance Test Specification

NB : Other than Source!Destination refer to the remaining 62 MAC IDs 

excluded Source and Destination MAC IDs.

Test Procedure

1)

• Open an Explicit Messaging (EM) connection. Use the following arguments

when creating a connection via the UCMM:

Message_Body_Format = 0, Group_Select = 1 (Group 2), Message ID as 

appropriate for the chosen Group_Select._________________________________

Combination CAN Identifier MAC ID Message Header MAC ID

1 Source Source

Pass : The DUT must ignore the message.

2)

• Open an Explicit Messaging (EM) connection. Use the following arguments

when creating a connection via the UCMM:

Message_Body_Format = 0, Group_Select = 1 (Group 2), Message ID as 

appropriate for the chosen Group_Select._____ ___________________________

Combination CAN Identifier MAC ID Message Header MAC ID

2 Source Destination

• Request a Set_Attribute_Single, Expected_Packet_Rate, value = zero(0).

• Request a Get_Attribute_Single, State (01)

Close Explicit Messaging Connection

3)
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• Open an Explicit Messaging (EM) connection. Use the following arguments

when creating a connection via the UCMM:

Message_Body_Format = 0, Group_Select = 1 (Group 2), Message ID as 

appropriate for the chosen Group_Select.________________________________

Combination CAN Identifier MAC ID Message Header MAC ID

3 Source Other than 

Source!Destination

Pass : The DUT must ignore the message.

•  Repeat the test with 61 other MAC IDs 

Pass : The DUT must ignore the message.

4)

•  Open an Explicit Messaging (EM) connection. Use the following arguments

when creating a connection via the UCMM:

Message_Body_Format = 0, Group_Select = 1 (Group 2), Message ID as 

appropriate for the chosen Group_Select.________________________________

Combination CAN Identifier MAC ID Message Header MAC ID

4 Destination Source

Pass : The DUT must ignore the message.

5)

• Open an Explicit Messaging (EM) connection. Use the following arguments

when creating a connection via the UCMM:

Message_Body_Format = 0, Group_Select = 1 (Group 2), Message ID as 

appropriate for the chosen Group_Select.________________________________

Combination CAN Identifier MAC ID Message Header MAC ID

5 Destination Destination
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Pass : The DUT must ignore the message.

6)

• Open an Explicit Messaging (EM) connection. Use the following arguments

when creating a connection via the UCMM:

Message_Body_Format = 0, Group_Select = 1 (Group 2), Message ID as 

appropriate for the chosen Group_Select.________________________________

Combination CAN Identifier MAC ID Message Header MAC ID
6 Destination Other than 

Source! Destination

Pass : The DUT must ignore the message.

• Repeat the test with 61 other MAC IDs 

Pass : The DUT must ignore the message.

7)

• Open an Explicit Messaging (EM) connection. Use the following arguments

when creating a connection via the UCMM:

Message_Body_Format = 0, Group_Select = 1 (Group 2), Message ID as 

appropriate for the chosen Group_Select._______________________________

Combination CAN Identifier MAC ID Message Header MAC ID
7 Other than 

Source!Destination
Source

Pass : The DUT must ignore the message.

• Repeat the test with 61 other MAC IDs 

Pass : The DUT must ignore the message.

8)

• Open an Explicit Messaging (EM) connection. Use the following arguments 

when creating a connection via the UCMM:

Message_Body_Format = 0, Group_Select = 1 (Group 2), Message ID as 

appropriate for the chosen Group__Select.
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Combination CAN Identifier MAC ID Message Header MAC ID
8 Other than 

Source! Destination
Destination

Pass : The DUT must ignore the message.

• Repeat the test with 61 other MAC IDs 

Pass : The DUT must ignore the message.

9)

• Open an Explicit Messaging (EM) connection. Use the following arguments

when creating a connection via the UCMM:

Message_Body_Format = 0, Group_Select = 1 (Group 2), Message ID as 

appropriate for the chosen Group_Select._________________________________

Combination CAN Identifier MAC ID Message Header MAC ID

9 Other than Source/Destination Other than Source!Destination

Pass : The DUT must ignore the message. 

• Repeat the test with 61 other MAC IDs 

Pass : The DUT must ignore the message.

C.5.3 Invalid Message_Body_Format in Open Explicit Messaging 

Connection

During the Open Explicit Messaging Connection request service, the 

Client will request one of the Message_Body_Formats of DeviceNet. The 

available Message_Body_Formats are:-

DeviceNet (8/8) 

DeviceNet (8/16) 

DeviceNet (16/16) 

DeviceNet (16/8)

Class = 8 bit USINT 

Class = 8 bit USINT 

Class = 16 bit UINT 

Class =16 bit UINT

Instance ID = 8 bit USINT 

Instance ID = 16 bit UINT 

Instance ID =16 bit UINT 

Instance ID = 8 bit USINT

By S B  Khoh Page C -18



Appendix C - DeviceNet Message Conformance Test Specification

The Server will respond with the appropriate Message_Body_Format 

that it supports in the Open Explicit Messaging Connection response service 

(Vol. I pp. 4-8). From now onwards, all the Explicit Messaging Connection 

must be done using the Message_Body_Format specified in the Open Explicit 

Messaging Connection response service.

Message_Body_Format | Class (bit integer) 1  Instance (bit integer) "

0 8 USINT 8 USINT

1 8 USINT 16 UINT

2 16UINT 16 UINT

3 16 UINT 8 USINT

4 - Of hex Reserved by DeviceNet

Functional Description

This section verifies the response of the DUT when presented with an 

invalid message format in the Explicit Messaging Connection.

Test Procedure

• Open an Explicit Messaging (EM) connection. Use the following arguments 

when creating a connection via the UCMM:

Message_Body_Format = 0, Group_Select = a supported group, Message 

ID as appropriate for the chosen Group Select.

Use the Message_Body_Format value returned by the Server for 

subsequent transactions

• Request a Set_Attribute_Single, Expected Packet__Rate, value = zero(0).
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• Request a Get_Attribute_Single, State (01) 

Pass : Expected response

If returned Message_Body_Format, value = 0, then use

M essageBodyFormat value = I, 2 and 3 for subsequent test

• Request a Get_Attribute_Single service to Connection Object, Attribute = 

State (01)

response

[Invalid Attribute Value (0x09), 

Error_Response Value (94 09 FF)|

response

If returned M essageBodyForm at, value = 1, then use Message Body 

Format value = 0, 2 and 3 for subsequent test

• Request a Get_Attribute_Single service to Connection Object, Attribute = 

State (01)

Pass : Expected

[Invalid Attribute Value (0x09), 
Error_Response Value (94 09 FF)|
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If returned M essageBodyForm at, value = 2, then use

Message_Body_Format value = 0, 1 and 3 for subsequent test

• Request a Get_Attribute_Single service to Connection Object, Attribute = 

State (01)

Pass : Expected response

[Invalid Attribute Value (0x09), 

Error_Response Value (94 09 FF)]

If returned Message Body Format, value = 3, then use Message Body 

Format value = 0, 1 and 2 for subsequent test

• Request a Get_Attribute_Single service to Connection Object, Attribute = 

State (01)

onse

[Invalid Attribute Value (0x09), 

Error_Response Value (94 09 FF)|

C.5.4 Invalid Message Group Select in Explicit Messaging

The Invalid Message Group_Select test verifies the proper 

implementation of the Message Group in Explicit Messaging. The test can be 

divided into two categories, ie. Group 2 device, and Group 2 Only device.
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Functional Description

This section verifies the response of

1. the Group 2 (UCMM Capable) DUT when presented with an invalid 

Message Group_Select in the Explicit Messaging Connection.

2. the Group 2 Only (UCMM Incapable) DUT when presented with an invalid 

Message Group_Select in the Explicit Messaging Connection.

Test Procedure

1)

Group 2 (UCMM Capable) Device

• Open an Explicit Messaging (EM) connection. Use the following arguments 

when creating a connection via the UCMM (Message Group 3, Message ID 

6):

Message_Body_Format = 0, Group_Select = as shown in the following 

table, Message ID as appropriate for the chosen Group_Select.

2)

Group 2 Only (UCMM Incapable) Device

• Open an Explicit Messaging (EM) connection. Use the following arguments 

when creating a connection via the Group 2 Only Unconnected Explicit 

Request Message (Message Group 2, Message ID 6): 

Message_Body_Format = 0, Group_Select = as shown in the following 

table, Message ID as appropriate for the chosen Group_Select.

0, 3 Success Response

Group Select_Resource_Error (94 02 01)

2, 4-f hex Group_Select_Out_of_Range Error (94 20 01)
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Pass : Expected response

Group Select_Resource_Error (94 02 01)____

Success Response_________________________

Group_Select_Out_of_Range Error (94 20 01)2, 4-f hex

C.6 Reserved/Unused DeviceNet Message Test

The Reserved DeviceNet Message ensures that no DeviceNet devices 

consume, react/respond to the reserved or unused DeviceNet messages.

C.6.1 Reserved DeviceNet Message Group 4 Test

This section defines the test to ensure that no DeviceNet 

implementations utilise the reserved message group, ie. Message Group 4 in 

DeviceNet protocol.

Functional Description

This test verifies the response when a Group 4 Message is received.

CAN Identifier Bits

10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 Group 4 Message ID Message Group 4

Test Procedure

• Send an Open Explicit Messaging (EM) request service. Use the following 

arguments when creating a connection via the UCMM : 

Message_Body_Format = 0 , Group_Select = a supported group. Message 

id as appropriate for the chosen Group_Select.

• Request a Set Attribute Single service, Expected_Packet Rate, value=()
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• Request a Get_Attribute_Single service to Connection Object Class 

(05hex), Attribute ID = State (Olhex)

Pass : Expected response

Close the Explicit Messaging (EM) connection and wait for a Close Explicit

Connection Success response.

• Send an Open Explicit Request Messaging Connection using the same 

arguments as previous test except changing the Group 3 Message ID 6 to 

Group 4 Message ID 6.

Pass : The DUT must not respond to the message.

• Repeat the test by sending an Open Explicit Request Messaging Connection 

using the same arguments as previous test with a range of Identifiers from 

Group 4 Message ID 1 to Group 4 Message ID 0x2f hex.

Pass : The DUT must not respond to the message.
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C.6.2 Unused DeviceNet Services Test (Other than Common 

Services)

The Unused DeviceNet Services Test has been defined in individual 

DeviceNet object tests. Refer to DeviceNet Conformance Test Specification - 

Test 500/002/01 for full details.

C.6.3 Unused DeviceNet Object Classes Test

The Unused DeviceNet Services Test has been defined in individual 

DeviceNet object tests. Refer to DeviceNet Conformance Test Specification - 

Test 500/002/01 for full details.

C.6.4 Reserved Message_Body_Format Test

The Message_Body_Format in the Explicit Messaging Connection holds 

the information on how the message body format to be used over the Explicit 

Messaging Connection. DeviceNet Specification Vol. I, Rel. 1.2 only defines 4 

types of Message_Body_Format to be used over the Explicit Messaging 

Connection. Hence, it is important to ensure that all the Explicit Messaging 

Connections only utilise the 4 (four) types of Message_Body_Format as 

specified in the specification (pp. 4-8). This test ensures that no DeviceNet 

implementation utilises the Reserved Message_Body_Format.

Functional Description

This section defines the response of the DUT when an Open Explicit 

Messaging Connection Request service with Reserved Message_Body_Format 

is received.
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Test Procedure

• Open an Explicit Messaging (EM) connection. Use the following arguments 

when creating a connection via the UCMM:

Message_Body_Format = 0, Group_Select = a supported group, Message 

ID as appropriate for the chosen Group_Select.

Use the Message_Body_Format value returned by the Server for subsequent 

transactions

• Request a Set_Attribute_Single, Expected_Packet_Rate, value = zero(0).

• Request a Get_Attribute_Single, State (01)

• Request a Get_Attribute_Single service to Connection Object, Attribute = 

State (01) with Message_Body_Format value = 4 hex.

• The test is repeated until Message_Body_Format value = Of hex is reached. 

Pass : Expected response

• •: '' - -

4 - Of hex | Error Response |

During the establishment of Explicit Messaging Connection, the Client 

will request one of the Message_Body_Format of DeviceNet. The available 

Message_Body_Formats are:-
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DeviceNet (8/8) Class = 8 bit USINT Instance ID = 8 bit USINT

DeviceNet (8/16) Class = 8 bit USINT Instance ID = 16 bit UINT

DeviceNet (16/16) Class = 16 bit UINT Instance ID =16 bit UINT

DeviceNet (16/8) Class = 16 bit UINT Instance ID = 8 bit USINT

The Server will respond with the appropriate Message_Body_Format 

that it supports in the Open Explicit Messaging Connection response service 

(Vol. I pp. 4-8). From now onwards, all the Explicit Messaging Connection 

must be done using the Message_Body_Format specified in the Open Explicit 

Messaging Connection response service.

C.6.5 Reserved Group Select Test

The Group_Select field in the Explicit Message Header indicates the 

Message Group across which messages associated with this connection are to 

be exchanged. DeviceNet Vol. I, Rel. 1.2 defines only Message Group 1, 

Message Group 2, Message Group 3 as valid choices for the Group_Select 

field. Explicit Messages which requests Group_Select other than the above 

mentioned Groups are illegal.

Functional Description

This section defines the response of the DUT when:-

1) . an Open Explicit Messaging Connection Request service with

Group_Select=0 is received.

2) . an Open Explicit Messaging Connection Request service with

Group_Select=l is received.

3) . an Open Explicit Messaging Connection Request service with

Group_Select=3 is received.

4) . an Open Explicit Messaging Connection Request service with the reserved

Group_Select is received.
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Test Procedure

1)

• Open an Explicit Messaging (EM) connection. Use the following arguments 

when creating a connection via the UCMM:

Message_Body_Format = 0, Group_Select = 0, Message ID as appropriate 

for the chosen Group_Select.________________________________________

Combination CAN Identifier MAC ID Message Header MAC ID

1 Source Destination

Pass : Open Explicit Messaging Connection Success Response or Error 

Response [94 02 01, Resource_Unavailable]

Close the Explicit Messaging Connection

2 )

• Open an Explicit Messaging (EM) connection. Use the following arguments 

when creating a connection via the UCMM:

Message_Body_Format = 0, G ro u p S elec t = 1 (Group 2), Message ID as 

appropriate for the chosen Group_Select. ___________________________

Combination CAN Identifier MAC ID Message Header MAC ID

1 Source Destination

Pass : Open Explicit Messaging Connection Success Response or Error 

Response 194 02 01, Resource_Unavailable|

Close the Explicit Messaging Connection

NB: Group 2 Only device must return an Error Response [94 02 01, 

Resource_Unavailable|
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3)

• Open an Explicit Messaging (EM) connection. Use the following arguments 

when creating a connection via the UCMM:

Message_Body_Format = 0, Group_Select = 3, Message ID as appropriate 

for the chosen Group_Select.________________________________________

Combination CAN Identifier MAC ID Message Header MAC ID

1 Source Destination

Pass : Open Explicit Messaging Connection Success Response or Error 

Response |94 02 01, Resource_Unavailable]

Close the Explicit Messaging Connection

4)

• Open an Explicit Messaging (EM) connection. Use the following arguments

when creating a connection via the UCMM:

Message_Body_Format = 0, Group_Select = 2, Message ID as appropriate 

for the chosen Group_Select.________________________________________

Combination CAN Identifier MAC ID Message Header MAC ID

1 Source Destination

Pass : Expected Error response : |94 02 01, Reserved by DeviceNetl
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