342 research outputs found

    PluralisMAC: a generic multi-MAC framework for heterogeneous, multiservice wireless networks, applied to smart containers

    Get PDF
    Developing energy-efficient MAC protocols for lightweight wireless systems has been a challenging task for decades because of the specific requirements of various applications and the varying environments in which wireless systems are deployed. Many MAC protocols for wireless networks have been proposed, often custom-made for a specific application. It is clear that one MAC does not fit all the requirements. So, how should a MAC layer deal with an application that has several modes (each with different requirements) or with the deployment of another application during the lifetime of the system? Especially in a mobile wireless system, like Smart Monitoring of Containers, we cannot know in advance the application state (empty container versus stuffed container). Dynamic switching between different energy-efficient MAC strategies is needed. Our architecture, called PluralisMAC, contains a generic multi-MAC framework and a generic neighbour monitoring and filtering framework. To validate the real-world feasibility of our architecture, we have implemented it in TinyOS and have done experiments on the TMote Sky nodes in the w-iLab.t testbed. Experimental results show that dynamic switching between MAC strategies is possible with minimal receive chain overhead, while meeting the various application requirements (reliability and low-energy consumption)

    Multiprotocol Authentication Device for HPC and Cloud Environments Based on Elliptic Curve Cryptography

    Get PDF
    Multifactor authentication is a relevant tool in securing IT infrastructures combining two or more credentials. We can find smartcards and hardware tokens to leverage the authentication process, but they have some limitations. Users connect these devices in the client node to log in or request access to services. Alternatively, if an application wants to use these resources, the code has to be amended with bespoke solutions to provide access. Thanks to advances in system-on-chip devices, we can integrate cryptographically robust, low-cost solutions. In this work, we present an autonomous device that allows multifactor authentication in client–server systems in a transparent way, which facilitates its integration in High-Performance Computing (HPC) and cloud systems, through a generic gateway. The proposed electronic token (eToken), based on the system-on-chip ESP32, provides an extra layer of security based on elliptic curve cryptography. Secure communications between elements use Message Queuing Telemetry Transport (MQTT) to facilitate their interconnection. We have evaluated different types of possible attacks and the impact on communications. The proposed system offers an efficient solution to increase security in access to services and systems.Spanish Ministry of Science, Innovation and Universities (MICINN) PGC2018-096663-B-C44European Union (EU

    Experimental evaluation of the usage of ad hoc networks as stubs for multiservice networks

    Get PDF
    This paper describes an experimental evaluation of a multiservice ad hoc network, aimed to be interconnected with an infrastructure, operator-managed network. This network supports the efficient delivery of services, unicast and multicast, legacy and multimedia, to users connected in the ad hoc network. It contains the following functionalities: routing and delivery of unicast and multicast services; distributed QoS mechanisms to support service differentiation and resource control responsive to node mobility; security, charging, and rewarding mechanisms to ensure the correct behaviour of the users in the ad hoc network. This paper experimentally evaluates the performance of multiple mechanisms, and the influence and performance penalty introduced in the network, with the incremental inclusion of new functionalities. The performance results obtained in the different real scenarios may question the real usage of ad-hoc networks for more than a minimal number of hops with such a large number of functionalities deployed

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels. This article presents an overview of the CONTREX European project, its main innovative technology (extension of a model based design approach, functional and extra-functional analysis with executable models and run-time management) and the final results of three industrial use-cases from different domain (avionics, automotive and telecommunication).The work leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2011 under grant agreement no. 611146

    Enabling Artificial Intelligence Analytics on The Edge

    Get PDF
    This thesis introduces a novel distributed model for handling in real-time, edge-based video analytics. The novelty of the model relies on decoupling and distributing the services into several decomposed functions, creating virtual function chains (V F C model). The model considers both computational and communication constraints. Theoretical, simulation and experimental results have shown that the V F C model can enable the support of heavy-load services to an edge environment while improving the footprint of the service compared to state-of-the art frameworks. In detail, results on the V F C model have shown that it can reduce the total edge cost, compared with a monolithic and a simple frame distribution models. For experimenting on a real-case scenario, a testbed edge environment has been developed, where the aforementioned models, as well as a general distribution framework (Apache Spark ©), have been deployed. A cloud service has also been considered. Experiments have shown that V F C can outperform all alternative approaches, by reducing operational cost and improving the QoS. Finally, a migration model, a caching model and a QoS monitoring service based on Long-Term-Short-Term models are introduced

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Overlay networks for smart grids

    Get PDF
    • …
    corecore