125 research outputs found

    Dissections, Hom-complexes and the Cayley trick

    Get PDF
    We show that certain canonical realizations of the complexes Hom(G,H) and Hom_+(G,H) of (partial) graph homomorphisms studied by Babson and Kozlov are in fact instances of the polyhedral Cayley trick. For G a complete graph, we then characterize when a canonical projection of these complexes is itself again a complex, and exhibit several well-known objects that arise as cells or subcomplexes of such projected Hom-complexes: the dissections of a convex polygon into k-gons, Postnikov's generalized permutohedra, staircase triangulations, the complex dual to the lower faces of a cyclic polytope, and the graph of weak compositions of an integer into a fixed number of summands.Comment: 23 pages, 5 figures; improved exposition; accepted for publication in JCT

    Perfectly contractile graphs and quadratic toric rings

    Full text link
    Perfect graphs form one of the distinguished classes of finite simple graphs. In 2006, Chudnovsky, Robertson, Saymour and Thomas proved that a graph is perfect if and only if it has no odd holes and no odd antiholes as induced subgraphs, which was conjectured by Berge. We consider the class A{\mathcal A} of graphs that have no odd holes, no antiholes and no odd stretchers as induced subgraphs. In particular, every graph belonging to A{\mathcal A} is perfect. Everett and Reed conjectured that a graph belongs to A{\mathcal A} if and only if it is perfectly contractile. In the present paper, we discuss graphs belonging to A{\mathcal A} from a viewpoint of commutative algebra. In fact, we conjecture that a perfect graph GG belongs to A{\mathcal A} if and only if the toric ideal of the stable set polytope of GG is generated by quadratic binomials. Especially, we show that this conjecture is true for Meyniel graphs, perfectly orderable graphs, and clique separable graphs, which are perfectly contractile graphs.Comment: 10 page

    Optimal k-fold colorings of webs and antiwebs

    Get PDF
    A k-fold x-coloring of a graph is an assignment of (at least) k distinct colors from the set {1, 2, ..., x} to each vertex such that any two adjacent vertices are assigned disjoint sets of colors. The smallest number x such that G admits a k-fold x-coloring is the k-th chromatic number of G, denoted by \chi_k(G). We determine the exact value of this parameter when G is a web or an antiweb. Our results generalize the known corresponding results for odd cycles and imply necessary and sufficient conditions under which \chi_k(G) attains its lower and upper bounds based on the clique, the fractional chromatic and the chromatic numbers. Additionally, we extend the concept of \chi-critical graphs to \chi_k-critical graphs. We identify the webs and antiwebs having this property, for every integer k <= 1.Comment: A short version of this paper was presented at the Simp\'osio Brasileiro de Pesquisa Operacional, Brazil, 201

    TDMA is Optimal for All-unicast DoF Region of TIM if and only if Topology is Chordal Bipartite

    Get PDF
    The main result of this work is that an orthogonal access scheme such as TDMA achieves the all-unicast degrees of freedom (DoF) region of the topological interference management (TIM) problem if and only if the network topology graph is chordal bipartite, i.e., every cycle that can contain a chord, does contain a chord. The all-unicast DoF region includes the DoF region for any arbitrary choice of a unicast message set, so e.g., the results of Maleki and Jafar on the optimality of orthogonal access for the sum-DoF of one-dimensional convex networks are recovered as a special case. The result is also established for the corresponding topological representation of the index coding problem
    • 

    corecore