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a b s t r a c t

A k-fold x-coloring of a graph is an assignment of (at least) k distinct colors from the set
{1, 2, . . . , x} to each vertex such that any two adjacent vertices are assigned disjoint sets
of colors. The smallest number x such thatG admits a k-fold x-coloring is the k-th chromatic
number of G, denoted by χk(G). We determine the exact value of this parameter when G is
a web or an antiweb. Our results generalize the known corresponding results for odd cycles
and imply necessary and sufficient conditions under which χk(G) attains its lower and
upper bounds based on clique and integer and fractional chromatic numbers. Additionally,
we extend the concept of χ-critical graphs to χk-critical graphs. We identify the webs and
antiwebs having this property, for every integer k ≥ 1.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

For any integers k ≥ 1 and x ≥ 1, a k-fold x-coloring of a graph is an assignment of (at least) k distinct colors to each
vertex from the set {1, 2, . . . , x} such that any two adjacent vertices are assigned disjoint sets of colors [22,25]. Each color
used in the coloring defines what is called a stable set of the graph, i.e. a subset of pairwise nonadjacent vertices. We say
that a graph G is k-fold x-colorable if G admits a k-fold x-coloring. The smallest number x such that a graph G is k-fold
x-colorable is called the k-th chromatic number of G and is denoted by χk(G) [25]. Obviously, χ1(G) = χ(G) is the con-
ventional chromatic number of G. This variant of the conventional graph coloring was introduced in the context of radio
frequency assignment problem [17,23]. Other applications include scheduling problems, bandwidth allocation in radio net-
works, fleet maintenance and traffic phasing problems [2,12,15,18].

Let n and p be integers such that p ≥ 1 and n ≥ 2p. As defined by Trotter, the web W n
p is the graph whose vertices

can be labeled as {v0, v1, . . . , vn−1} in such a way that its edge set is {vivj | p ≤ |i − j| ≤ n − p} [26]. The antiweb W
n
p is

defined as the complement ofW n
p . Examples are depicted in Fig. 1, where the vertices are named according to an appropriate

labeling (for the sake of convenience, we often name the vertices in this way in the remainder of the text). We observe that
these definitions are interchanged in some references (see [21,27], for instance). Webs and antiwebs form subclasses of
circulant graphs that play an important role in the context of stable sets and vertex coloring problems [4,5,8,9,11,19–21,27].
Determining 1-fold coloring of circulant graphs is NP-Hard [7]. Therefore, determining chromatic parameters of subclasses
of circulant graphs is worthwhile (see, for instance, [1] and references therein).
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(a)W 8
3 . (b)W

8
3 .

Fig. 1. Example of a web and an antiweb.

In this paper, we derive a closed formula for the k-th chromatic number of webs and antiwebs. More specifically, we

prove that χk(W n
p ) =


kn
p


and χk(W

n
p) =


kn
n
p

, for every k ∈ N, thus generalizing similar results for odd cycles [25].

The denominator of each of these formulas is the size of the largest stable set in the corresponding graph, i.e. the stability
number of the graph [26]. Indeed, it does not seem surprising that the k-th chromatic number is equal to that value. This
claim comes from the idea of, starting with the circular numbering of the vertices, choosing a maximum independent set
to describe a color, and shifting the class color appropriately around the circle. However, proving that this process works is
not so simple, particularly in the case of antiwebs. Actually, this strategy does not work for general circulant graphs.

Besides its direct relation with the stability number, we also relate the k-th chromatic number of webs and antiwebs
with other parameters of the graph, such as the clique, chromatic and fractional chromatic numbers. Particularly, we derive
necessary and sufficient conditions under which the classical bounds given by these parameters are tight.

In addition to the value of k-th chromatic number, we also provide optimal k-fold colorings ofW n
p andW

n
p . Based on the

optimal colorings, we analyze when webs and antiwebs are critical with respect to this parameter. A graph G is said to be
χ-critical if χ(G − v) < χ(G), for all v ∈ V (G). An immediate consequence of this definition is that if v is a vertex of a χ-
critical graph G, then there exists an optimal 1-fold coloring of G such that the color of v is not assigned to any other vertex.
Not surprisingly, χ-critical subgraphs of G play an important role in several algorithmic approaches to vertex coloring. For
instance, they are the core of the reduction procedures of the heuristic of [14] as well as they give facet-inducing inequalities
of vertex coloring polytopes explored in cutting-planemethods [3,13,16]. From this algorithmic point of view, odd holes and
odd anti-holes are (along with cliques) the most widely used χ-critical subgraphs. It has already been noted that not only
odd holes or odd anti-holes, but also χ-critical webs and antiwebs give facet-defining inequalities [3,20].

We extend the concept of χ-critical graphs to χk-critical graphs in a straightforward way. Then, we characterize χk-
critical webs and antiwebs, for any integer k ≥ 1. The characterization crucially depends on the greatest common divisors
between n and p and between n and the stability number (which are equal for webs but may be different for antiwebs).
Using Bézout’s identity, we show that there exists k ≥ 1 such that W n

p is χk-critical if, and only if, gcd(n, p) = 1. Moreover,
when this condition holds, we determine all values of k for whichW n

p is χk-critical. Similar results are derived forW
n
p , where

the condition gcd(n, p) = 1 is replaced by gcd(n, p) ≠ p. As a consequence, we obtain that a web or an antiweb is χ-critical
if, and only if, the stability number divides n − 1. Such a characterization is trivial for webs but it was still not known for
antiwebs [20]. More surprisingly, we show that being χ-critical is also a sufficient condition for a web or an antiweb to be
χk-critical for all k ≥ 1.

Throughout this paper,wemostly use notation anddefinitions consistentwithwhat is generally accepted in graph theory.
Even though, let us set the grounds for all the notation used from here on. Given a graph G, V (G) and E(G) stand for its set of
vertices and edges, respectively. The simplified notation V and E is preferred when the graph G is clear by the context. The
complement of G is written as G = (V , E). The edge defined by vertices u and v is denoted by uv.

As already mentioned, a set S ⊆ V (G) is said to be a stable set if all vertices in it are pairwise non-adjacent in G, i.e.
uv ∉ E ∀u, v ∈ S. The stability number α(G) of G is the size of the largest stable set of G. Conversely, a clique of G is a subset
K ⊆ V (G) of pairwise adjacent vertices. The clique number of G is the size of the largest clique and is denoted by ω(G). For
ease of expression, we frequently refer to the graph itself as being a clique (resp. stable set) if its vertex set is a clique (resp.
stable set). The fractional chromatic number of G, to be denoted χ̄(G), is the infimum of x

k among the k-fold x-colorings [24].
It is known that ω(G) ≤ χ̄(G) ≤ χ(G) and n

α(G)
≤ χ̄(G) [24]. A graph G is perfect if ω(H) = χ(H), for all induced subgraph

H of G.
A chordless cycle of length n is a graph G such that V = {v1, v2, . . . , vn} and E = {vivi+1 : i = 1, 2, . . . , n − 1} ∪ {v1vn}.

A hole is a chordless cycle of length at least four. An antihole is the complement of a hole. Holes and antiholes are odd or
even according to the parity of their number of vertices. Odd holes and odd antiholes are minimally imperfect graphs [6].
Observe that the odd holes and odd anti-holes are exactly the websW 2ℓ+1

ℓ andW 2ℓ+1
2 , for some integer ℓ ≥ 2, whereas the

cliques are exactly the websW n
1 .
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In the next section, we present general lower and upper bounds for the k-th chromatic number of an arbitrary simple
graph. The exact value of this parameter is calculated for webs (Section 3.1) and antiwebs (Section 3.2). Some consequences
of this result are presented in the following sections. In Section 4, we relate the k-th chromatic number ofwebs and antiwebs
to their clique, integer and fractional chromatic numbers. In particular, we identify which webs and antiwebs achieve the
bounds given in Section 2 and those forwhich these bounds are strict. The definitions ofχk-critical andχ∗-critical graphs are
introduced in Section 5, as a natural extension of the concept of χ-critical graphs. Then, we identify all webs and antiwebs
that have these two properties.

2. Bounds for the k-th chromatic number of a graph

Two simple observations lead to lower and upper bounds for the k-th chromatic number of a graph G. On one hand, every
vertex of a clique of Gmust receive k colors different from any color assigned to the other vertices of the clique. On the other
hand, a k-fold coloring can be obtained by just replicating an 1-fold coloring k times. Therefore, we get the following bounds
which are tight, for instance, for perfect graphs.

Fact 1. For every k ∈ N, ω(G) ≤ χ̄(G) ≤
χk(G)

k ≤ χ(G).

Another lower bound is related to the stability number, as follows. The lexicographic product of a graph G by a graph H
is the graph that we obtain by replacing each vertex of G by a copy of H and adding all edges between two copies of H if and
only if the two replaced vertices of Gwere adjacent. More formally, the lexicographic product G ◦ H is a graph such that:
1. the vertex set of G ◦ H is the Cartesian product V (G) × V (H); and
2. any two vertices (u, û) and (v, v̂) are adjacent in G ◦ H if and only if either u is adjacent to v, or u = v and û is adjacent

to v̂.

As noted by Stahl, another way to interpret the k-th chromatic number of a graph G is in terms of χ(G ◦ Kk), where Kk is
a clique with k vertices [25]. It is easy to see that a k-fold x-coloring of G is equivalent to a 1-fold coloring of G ◦ Kk with
x colors. Therefore, χk(G) = χ(G ◦ Kk). Using this equation we can trivially derive the following lower bound for the k-th
chromatic number of any graph.

Fact 2. For every graph G and every k ∈ N, χk(G) ≥


kn

α(G)


.

Proof. If H1 and H2 are two graphs, then α(H1 ◦H2) = α(H1)α(H2) [10]. Therefore, α(G ◦ Kk) = α(G)α(Kk) = α(G). We get
χk(G) = χ(G ◦ Kk) ≥


kn

α(G◦Kk)


=


kn

α(G)


. �

Next we will show that the lower bound given by Fact 2 is tight for two classes of graphs, namely webs and antiwebs.
Moreover, some graphs in these classes also achieve the lower and upper bounds stated by Fact 1.

3. The k-th chromatic number of webs and antiwebs

In the remainder, let n and p be integers such that p ≥ 1 and n ≥ 2p and let ⊕ stand for addition modulus n, i.e.
i ⊕ j = (i + j) mod n for i, j ∈ Z. Let N stand for the set of natural numbers (0 excluded). The following known results will
be used later.

Lemma 1 (Trotter [26]). α(W
n
p) = ω(W n

p ) =


n
p


and α(W n

p ) = ω(W
n
p) = p.

Lemma 2 (Trotter [26]). Let n′ and p′ be integers such that p′
≥ 1 and n′

≥ 2p′. The web W n′

p′ is a subgraph of W n
p if, and only

if, np′
≥ n′p and n(p′

− 1) ≤ n′(p − 1).

3.1. Web

We start by defining some stable sets ofW n
p . For each integer i ≥ 0, define the following sequence of integers:

Si = ⟨i ⊕ 0, i ⊕ 1, . . . , i ⊕ (p − 1)⟩. (1)

Lemma 3. For every integer i ≥ 0, Si indexes a maximum stable set of W n
p .

Proof. By the symmetry ofW n
p , it suffices to consider the sequence S0. Let j1 and j2 be in S0. Notice that |j1 − j2| ≤ p−1 < p.

Then, vj1vj2 ∉ E(W n
p ), which proves that S0 indexes an independent set with cardinality p = α(W n

p ). �

Using the above lemma and the sets Si, we can now calculate the k-th chromatic number ofW n
p . The main idea is to build

a cover of the graph by stable sets in which each vertex ofW n
p is covered at least k times.

Theorem 1. For every k ∈ N, χk(W n
p ) =


kn
p


=


kn

α(Wn
p )


.
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(a)W
10
3 . (b) C(1) in blue, C(2) in red.

Fig. 2. Example of a 2-fold 7-coloring of W
10
3 . Recall that α(W

10
3 ) = 3. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Proof. By Fact 2, we only have to show that χk(W n
p ) ≤


kn
p


, for an arbitrary k ∈ N. For this purpose, we show that

Ξ(k) = ⟨S0, Sp, . . . , S(x−1)p⟩ gives a k-fold x-coloring ofW n
p , with x =


kn
p


. We have that

Ξ(k) =


0 ⊕ 0, 0 ⊕ 1, . . . , 0 ⊕ p − 1  

S0

, p ⊕ 0, . . . , p ⊕ (p − 1)  
Sp

, . . . , (x − 1)p ⊕ 0, . . . , (x − 1)p ⊕ (p − 1)  
S(x−1)p


.

Since the first element of S(ℓ+1)p, 0 ≤ ℓ < x−1, is the last element of Sℓp plus 1 (modulus n), we have thatΞ(k) is a sequence

(modulus n) of integer numbers starting at 0. Also, it has


kn
p


p ≥ kn elements. Therefore, each element between 0 and

n−1 appears at least k times in Ξ(k). By Lemma 3, this means that Ξ(k) gives a k-fold


kn
p


-coloring ofW n

p , as desired. �

3.2. Antiweb

As before, we proceed by determining stable sets ofW
n
p that cover each vertex at least k times. Now, we need to be more

judicious in the choice of the stable sets ofW
n
p . We start by defining the following sequences (illustrated in Fig. 2):

S0 =


t

n

α(W
n
p)


: t = 0, 1, . . . , α(W

n
p) − 1


(2)

Si = ⟨j ⊕ 1 : j ∈ Si−1⟩, i ∈ N
= ⟨j ⊕ i : j ∈ S0⟩, i ∈ N.

We claim that each Si indexes a maximum stable set ofW
n
p . This will be shown with the help of the following lemma.

Lemma 4. If x, y ∈ R and x ≥ y, then ⌊x − y⌋ ≤ ⌈x⌉ − ⌈y⌉ ≤ ⌈x − y⌉.

Proof. It is clear that x − ⌈x⌉ ≤ 0 and ⌈y⌉ − y < 1. By summing up these inequalities, we get x − y + ⌈y⌉ − ⌈x⌉ < 1.
Therefore, ⌊x − y⌋ + ⌈y⌉ − ⌈x⌉ ≤ 0 and ⌊x − y⌋ ≤ ⌈x⌉ − ⌈y⌉. To get the second inequality, recall that ⌈x − y⌉ + ⌈y⌉ ≥

⌈x − y + y⌉ = ⌈x⌉. �

We now get the counterpart of Lemma 3 for antiwebs.

Lemma 5. For every integer i ≥ 0, Si indexes a maximum stable set of W
n
p .

Proof. By the symmetry of an antiweb and the definition of the Si’s, it suffices to show the claimed result for S0. Let j1 and
j2 belong to S0. We have to show that p ≤ |j1 − j2| ≤ n − p. For the upper bound, note that

|j1 − j2| ≤


(α(W

n
p) − 1)n

α(W
n
p)


=


n −

n

α(W
n
p)


≤ n − p,

where the last inequality is due to α(W
n
p) = ⌊n/p⌋. On the other hand,

|j1 − j2| ≥ min
ℓ≥1


ℓn

α(W
n
p)


−


(ℓ − 1)n

α(W
n
p)


.
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By Lemma 4 and α(W
n
p) = ⌊n/p⌋, it follows that |j1 − j2| ≥ p. Therefore, S0 indexes an independent set of cardinality

α(W
n
p). �

The above lemma is the basis to give the expression of χk(W
n
p). We proceed by choosing an appropriate family of Si’s and,

then, we show that it covers each vertex at least k times. We first consider the case where k ≤ α(W
n
p).

Lemma 6. Let be given positive integers n, p, and k ≤ α(W
n
p). The index of each vertex of W

n
p belongs to at least k of the sequences

S0, S1, . . . , Sx(k)−1, where x(k) =


kn

α(Wn
p)


.

Proof. Let ℓ ∈ {1, 2, . . . , k} and t ∈ {0, 1, . . . , α(W
n
p) − 1}. Define A(ℓ, t) as the sequence comprising the (t + 1)-th

elements of S0, S1, . . . , Sx(ℓ)−1, that is,

A(ℓ, t) =


t

n

α(W
n
p)


⊕ i : i = 0, 1, . . . ,


ℓn

α(W
n
p)


− 1


.

Since ℓ ≤ α(W
n
p), A(ℓ, t) has


ℓn

α(Wn
p)


distinct elements. Fig. 2 illustrates these sets forW

10
3 .

Let B(ℓ, t) be the subsequence of A(ℓ, t) formed by its first


(ℓ+t)n
α(Wn

p)


−


tn

α(Wn
p)


≤


ℓn

α(Wn
p)


elements (the inequality

comes from Lemma 4). In Fig. 2(b), B(1, t) relates to the numbers in blue whereas B(2, t) comprises the numbers in blue and

red. Notice that B(ℓ, t) comprises consecutive integers (modulus n), starting at


tn
α(Wn

p)


⊕0 and ending at


(ℓ+t)n
α(Wn

p)


⊕ (−1).

Consequently, B(ℓ, t) ⊆ B(ℓ + 1, t).
Let C(1, t) = B(1, t) and C(ℓ + 1, t) = B(ℓ + 1, t) \ B(ℓ, t), for ℓ < k. Similarly to B(ℓ, t), C(ℓ, t) comprises consecutive

integers (modulus n), starting at


(ℓ+t−1)n
α(Wn

p)


⊕0 and ending at


(ℓ+t)n
α(Wn

p)


⊕ (−1). Observe that the first element of C(ℓ, t +1)

is the last element of C(ℓ, t) plus 1 (modulus n). Then, C(ℓ) = ⟨C(ℓ, 0), C(ℓ, 1), . . . , C(ℓ, α(W
n
p) − 1)⟩ is a sequence of

consecutive integers (modulus n) starting at the first element of C(ℓ, 0), that is


(ℓ−1)n
α(Wn

p)


⊕0, and ending at the last element

of C(ℓ, α(W
n
p) − 1), that is

(α(W
n
p) + ℓ − 1)n

α(W
n
p)


⊕ (−1) =


(ℓ − 1)n

α(W
n
p)


⊕ (−1).

This means that C(ℓ) ≡ ⟨0, 1, . . . , n − 1⟩. Therefore, for each ℓ = 1, 2, . . . , k, C(ℓ) covers every vertex once. In addition,
by definition of C(ℓ, t), ℓ > 1, the sequences Si’s from which the elements of C(ℓ, t) are taken are different from those of
C(1, t), C(2, t), . . . , C(ℓ− 1, t). Consequently, every vertex is covered k times by C(1), C(2), . . . , C(k), and so is covered at
least k times by S0, S1, . . . , Sx(k)−1. �

Now we are ready to prove our main result for antiwebs of this section.

Theorem 2. For every k ∈ N, χk(W
n
p) =


kn

α(Wn
p)


.

Proof. By Fact 2, we only need to show the inequality χk(W
n
p) ≤


kn

α(Wn
p)


. Let us write k = ℓα(W

n
p) + i, for integers ℓ ≥ 0

and 0 ≤ i < α(W
n
p). By Lemmas 5 and 6, it is straightforward that the stable sets S0, S1, . . . , Sx−1, where x =


in

α(Wn
p)


,

induce an i-fold x-coloring of W
n
p . The same lemmas also give an α(W

n
p)-fold n-coloring via sets S0, . . . , Sn−1. One copy of

the first coloring together with ℓ copies of the second one yield a k-fold coloring with ℓn+


in

α(Wn
p)


=


kn

α(Wn
p)


colors. �

4. Relation with other parameters

The strict relationship between χk(G) and α(G) established for webs (Theorem 1) and anti-webs (Theorem 2) naturally
motivates a similar questionwith respect to other parameters ofG known to be related to the chromatic number. Particularly,
we determine in this section when the bounds presented in Fact 1 are tight or strict. In what follows, ‘‘a mod b’’ stands for
the remainder of the division of a by b.
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Proposition 1. Let G be W n
p or W

n
p and k ∈ N. Then, χk(G) = kχ(G) if, and only if, gcd(n, α(G)) = α(G) or k < α(G)

α(G)−r , where
r = n mod α(G).

Proof. By Theorems 1 and 2,χk(G) = kχ(G) if, and only if,


kn
α(G)


= k


n

α(G)


, which is also equivalent to


kr

α(G)


= k


r

α(G)


.

This equality trivially holds if r = 0, that is, gcd(n, α(G)) = α(G). In the complementary case,


r
α(G)


= 1 and, consequently,

the equality is equivalent to kr
α(G)

> k − 1 or still k < α(G)

α(G)−r . �

Proposition 2. Let G be W n
p or W

n
p and k ∈ N. Then, χk(G) = kω(G) if, and only if, gcd(n, p) = p.

Proof. Let s = n mod p. Using Lemma 1, note that n = ⌊n/p⌋ p + s = ω(G)α(G) + s. By Theorems 1 and 2, we get

χk(G) =


kn

α(G)


= kω(G) +


ks

α(G)


.

The result then follows from the fact that s = 0 if, and only if, gcd(n, p) = p. �

As we can infer from Lemma 1, if p divides n, then so does α(W n
p ) and α(W

n
p). Under such a condition, which holds for

all perfect and some non-perfect webs and antiwebs, the lower and upper bounds given in Fact 1 are equal.

Corollary 1. Let G be W n
p or W

n
p and k ∈ N. Then, kω(G) = χk(G) = kχ(G) if, and only if, gcd(n, p) = p.

On the other hand, the same bounds are always strict for some webs and antiwebs, including the minimally imperfect
graphs.

Corollary 2. Let G be W n
p or W

n
p . If gcd(n − 1, α(G)) = α(G) and α(G) > 1, then χk(G) < kχ(G), for all k > 1. Moreover, if

gcd(n − 1, p) = p and p > 1, then kω(G) < χk(G) < kχ(G), for all k > 1.

Proof. Assume that gcd(n − 1, α(G)) = α(G) and α(G) ≥ 2. Then, r := n mod α(G) = 1 and α(G)

α(G)−r ≤ 2. By Proposition 1,
χk(G) < kχ(G) for all k > 1. To show the other inequality, assume that gcd(n − 1, p) = p and p > 1. Then, gcd(n, p) ≠ p.
Moreover, α(W n

p ) = p > 1 and α(W
n
p) =

n−1
p > 1 so that gcd(n − 1, α(G)) = α(G) > 1. By the first part of this corollary

and Proposition 2, the result follows. �

To conclude this section, we relate the fractional chromatic number and the k-th chromatic number. By definition, for
any graph G, these parameters are connected as follows:

χ̄(G) = inf


χk(G)

k

 k ∈ N


.

By Theorems 1 and 2, χk(G)

k ≥
n

α(G)
, for every k ∈ N, and this bound is attained with k = α(G). This leads to

Proposition 3. If G is W n
p or W

n
p , then χ̄(G) =

n
α(G)

.

Actually, the above expression holds for a larger class of graphs, namely vertex transitive graphs [24]. The following
property readily follows in the case of webs and antiwebs.

Proposition 4. Let G be W n
p or W

n
p and k ∈ N. Then, χk(G) = kχ̄(G) if, and only if, k gcd(n,α(G))

α(G)
∈ Z.

Proof. Let α = α(G) and g = gcd(n, α). By Theorems 1 and 2 and Proposition 3, χk(G) = kχ̄(G) if, and only if, kn
α

∈ Z. Since
n/g and α/g are coprimes, kn

α
=

k(n/g)
α/g is integer if, and only if, k

α/g ∈ Z. �

By the above proposition, given any web or antiweb G such that α(G) does not divide n, there are always values of k such
that χk(G) = kχ̄(G) and values of k such that χk(G) > kχ̄(G).

5. χk-critical web and antiwebs

We define a χk-critical graph as a graph G such that χk(G − v) < χk(G), for all v ∈ V (G). If this relation holds for every
k ∈ N, then G is said to be χ∗-critical. Now we investigate these properties for webs and antiwebs. The analysis is trivial in
the case where p = 1 because W n

1 is a clique. For the case where p > 1, the following property will be useful.

Lemma 7. If G is W n
p or W

n
p and p > 1, then α(G − v) = α(G) and ω(G − v) = ω(G), for all v ∈ V (G).

Proof. Let v ∈ V (G). Since p > 1, v is adjacent to some vertex u. Lemmas 3 and 5 imply that there is a maximum stable set
of G containing u. It follows that α(G − v) = α(G). Then, the other equality is a consequence of α(G) = ω(G). �
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Additionally, the greatest common divisor between n and α(G) plays an important role in our analysis. For arbitrary
nonzero integers a and b, Bézout’s identity guarantees that the equation ax + by = gcd(a, b) has an infinite number of
integer solutions (x, y). As there always exist solutions with positive x, we can define

t(a, b) = min

t ∈ N :

at − gcd(a, b)
b

∈ Z


.

For our purposes, it is sufficient to consider a and b as positive integers.

Lemma 8. Let a, b ∈ N. If gcd(a, b) = b, then t(a, b) = 1. Otherwise, 0 < t(a, b) < b
gcd(a,b) .

Proof. If gcd(a, b) = b, then we clearly have t(a, b) = 1. Now, assume that gcd(a, b) ≠ b. Define the coprime integers
a′

= a/ gcd(a, b) and b′
= b/ gcd(a, b) > 1. We have that t(a, b) = t(a′, b′) because gcd(a′, b′) = 1 and at−gcd(a,b)

b =
a′t−1
b′ ,

for all t ∈ N. By Bézout’s identity, there are integers x > 0 and y such that a′x + b′y = 1. Take t = x mod b′, that is,
t = x −

 x
b′


b′. Therefore, 0 ≤ t < b′ and ta′−1

b′ =

−y −

 x
b′


a′


∈ Z. Actually, t > 0 since b′ > 1. These properties of t
imply that 0 < t(a, b) = t(a′, b′) ≤ t < b′. �

5.1. Web

In this subsection, Theorem 1 is used to determine the k-chromatic number of the graph obtained by removing a vertex
from W n

p . For ease of notation, along this subsection let t⋆ = t(n, p) = t(n, α(W n
p )).

Lemma 9. For every k ∈ N and every vertex v ∈ V (W n
p ),

χk(W n
p − v) =



kn
p


, if gcd(n, p) ≠ 1,

kn −
 k

t⋆


p


, if gcd(n, p) = 1.

Proof. Let q = gcd(n, p). First, suppose that q > 1. Using Lemma 2, we conclude that W n/q
p/q is a proper subgraph of W n

p .
Then, by the symmetry ofW n

p , it is a subgraph ofW n
p − v. By Theorem 1, we have that

χk(W n
p − v) ≥

 n
q k
p
q


=


nk
p


.

The converse inequality follows as a consequence of χk(W n
p − v) ≤ χk(W n

p ).
Now, assume that q = 1.

Claim 1. χk(W n
p − v) ≤


nk−


k
t⋆


p


.

Proof. By the symmetry ofW n
p , we only need to prove the statement for v = vn−1. Since q = 1, p divides nt⋆ − 1. Let us use

(1) to define Ξ = ⟨S0, Sp, . . . , S nt⋆−1
p −1


p
⟩, which is a sequence (modulus n) of integer numbers starting at 0 and ending at

n − 2. Notice that it covers t⋆ times each integer from 0 to n − 2. Using this sequence
 k

t⋆

times, we get a

 k
t⋆

t⋆

-fold

coloring of W n
p − v with nt⋆−1

p

 k
t⋆

colors. If t⋆ divides k, then we are done. Otherwise, by Theorem 1 and the fact that

W n
p − v ⊆ W n

p , we can have an additional

k −

 k
t⋆

t⋆

-fold coloring with at most


n
p


k −

 k
t⋆

t⋆


colors. Therefore, we

obtain a k-fold coloring with at most nt⋆−1
p

 k
t⋆


+


n
p


k −

 k
t⋆

t⋆


=


nk−


k
t⋆


p


colors. �

Claim 2. χk(W n
p − v) ≥


(nt⋆−1)k

pt⋆


.

Proof. By Theorem 1, it suffices to show that W n′

t⋆ is a web included in W n
p − v, where n′

=
nt⋆−1

p ∈ Z because q = 1. By

Lemma 8, t⋆ < p implying that n′ < n. Therefore, we only need to show that W n′

t⋆ is a subgraph of W n
p . First, notice that

n ≥ 2p+1 and so n′
≥ 2t⋆ +

t⋆−1
p ≥ 2t⋆. Thus,W n′

t⋆ is indeed a web. To show that it is a subgraph ofW n
p , we apply Lemma 2.

On one hand, nt⋆ ≥ nt⋆ − 1 = n′p. On the other hand, n(t⋆ − 1) ≤ n′(p − 1) if, and only if, n′
≤ n − 1. Therefore, the two

conditions of Lemma 2 hold. �
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By Claims 1 and 2, we get
nk −

 k
t⋆


p


≥ χ(W n

p − v) ≥


nk −

k
t⋆

p


.

To conclude the proof, we show that equality holds everywhere above. Let us write k =
 k

t⋆

t⋆ + r , where 0 ≤ r < t⋆. By

the definition of t⋆, we have that nt⋆−1
p ∈ Z but nr−1

p ∉ Z. It follows that
nk −

k
t⋆

p


≥


nk −

 k
t⋆


− 1
p


=

nt⋆ − 1
p


k
t⋆


+


nr − 1

p



=


nt⋆ − 1

p


k
t⋆


+

nr
p


=


nk −

 k
t⋆


p


. �

Remark 1. The proof of Lemma 9 provides the alternative equality χk(W n
p − v) =


kn− k

t⋆
p


when gcd(n, p) = 1.

Removing a vertex from a graph may decrease its k-th chromatic number by a value varying from 0 to k. For webs, the
expressions of χk(W n

p ) and χk(W n
p − v) given above together with Lemma 4 bound this decrease as follows.

Corollary 3. Let k ∈ N and v ∈ V (W n
p ). If gcd(n, p) ≠ 1, then χk(W n

p ) = χk(W n
p − v). Otherwise,


k

pt⋆


≤ χk(W n

p ) −

χk(W n
p − v) ≤


k

pt⋆


.

Remark 2. An important feature of aχ-critical graphG is that, for every vertex v ∈ V (G), there is always an optimal coloring
where v does not share its color with the other vertices. Such a property makes it easier to show that inequalities based on
χ-critical graphs are facet-defining for 1-fold coloring polytopes [3,16,20]. For k ≥ 2, Corollary 3 establishes that cliques are
the unique webs for which there exists an optimal k-fold coloring where a vertex does not share any of its k colors with the
other vertices. Indeed, for p ≥ 2 and k ≥ 2, the upper bound given in Corollary 3 leads to χk(W n

p )−χk(W n
p −v) ≤

 k
2


< k.

Next, we identify the values of n, p, and k for which the lower bound given in Corollary 3 is nonzero. In other words, we
characterize the χk-critical webs, for every k ∈ N.

Theorem 3. Let k ∈ N. If gcd(n, p) ≠ 1, then W n
p is not χk-critical. Otherwise, the following assertions are equivalent:

(i) W n
p is χk-critical;

(ii) k ≥ pt⋆ or 0 < nk
p −


nk
p


≤

k
pt⋆ ;

(iii) k ≥ pt⋆ or k = at⋆ + bp for some integers a ≥ 1 and b ≥ 0.

Proof. The first part is an immediate consequence of Corollary 3. For the second part, assume that gcd(n, p) = 1, which
means that nt⋆−1

p ∈ Z. Let r = kn mod p, i.e. r
p =

kn
p −


kn
p


. So, assertion (ii) can be rewritten as

k ≥ pt⋆ or k ≥ rt⋆ with r > 0. (3)

On the other hand, by Theorem 1 and Remark 1, it follows that

χk(W n
p ) =


kn
p


+


r
p


and χk(W n

p − v) =


kn
p


+


r −

k
t⋆

p


.

Therefore, W n
p is χk-critical if, and only if,


r
p


>


r− k

t⋆
p


. If r = 0, this means that


−

k
t⋆
p


≤ −1 or, equivalently, k ≥ pt⋆.

If r ≥ 1, then the condition is equivalent to


r− k
t⋆

p


≤ 0 or still k ≥ rt⋆. As r < p, we can conclude that W n

p is χk-critical if,

and only if, condition (3) holds.
To show that (3) implies assertion (iii), it suffices to show that k ≥ rt⋆ and r > 0 imply that there exist integers a ≥ 1

and b ≥ 0 such that k = at⋆ + bp. Indeed, notice that kn−r
p ∈ Z. Then, knt⋆−rt⋆

p =
(nt⋆−1)k+(k−rt⋆)

p ∈ Z. We can deduce that
k−rt⋆

p ∈ Z or, equivalently, k = rt⋆ + bp for some b ∈ Z. Since k ≥ rt⋆ and r ≥ 1, the desired result follows.
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Conversely, let us assume that k = at⋆ + bp for some integers a ≥ 1 and b ≥ 0. If a ≥ p, then we trivially get condition
(3). So, assume that a < p. We claim that r = a. Indeed,

r = (nat⋆) mod p = nat⋆ −


(nt⋆ − 1)a + a

p


p = a −


a
p


p = a.

Since a ≥ 1 and b ≥ 0, we have that k ≥ rt⋆ and r > 0. �

As an immediate consequence of Theorem 3(iii), we have the characterization of χ∗-critical webs.

Theorem 4. The following assertions are equivalent:
(i) W n

p is χ∗-critical;
(ii) W n

p is χ-critical;
(iii) α(W n

p ) divides n − 1.

Proof. Since any χ∗-critical graph is χ-critical, we only need to prove that (ii) implies (iii), and (iii) implies (i). Moreover,
(iii) is equivalently to t⋆ = gcd(n, p) = 1. To show the first implication, we apply Theorem 3(iii) with k = 1. It follows that
gcd(n, p) = 1 and at⋆ ≤ 1 for a ≥ 1. Therefore, t⋆ = gcd(n, p) = 1. For the second part, notice that any k ∈ N can be
written as k = at⋆ + bp for a = k ≥ 1 and b = 0, whenever t⋆ = 1. The result follows again by Theorem 3(iii). �

Corollary 4. Cliques, odd holes and odd anti-holes are all χ∗-critical.

5.2. Antiwebs

Now, we turn our attention toW
n
p . Similarly to the previous subsection, Theorem 2 is used to determine the k-chromatic

number of the graph obtained by removing a vertex fromW
n
p . In this subsection, let t⋆ = t(n, α(W

n
p)).

Lemma 10. For every k ∈ N and every vertex v ∈ V (W
n
p),

χk(W
n
p − v) =




kn

α(W
n
p)


if gcd(n, p) = p,

k(n − 1)

α(W
n
p)


if gcd(n, p) ≠ p.

Proof. First assume that p divides n. Using Fact 1 and Corollary 1, we get

kω(W
n
p − v) ≤ χk(W

n
p − v) ≤ χk(W

n
p) = kω(W

n
p).

By Lemma 7, ω(W
n
p) = ω(W

n
p − v) if p > 1. The same equality trivially holds when p = 1 since W

n
1 has no edges. These

facts and the above expression show that χk(W
n
p − v) = χk(W

n
p) =


kn

α(Wn
p)


.

Now assume that gcd(n, p) ≠ p. Then, p > 1 and n > 2p. By Fact 2 and Lemma 7, we have that χk(W
n
p − v) ≥


k(n−1)
α(Wn

p)


.

Now, we claim thatW
n
p − v is a subgraph ofW

n−1
p . First, notice that this antiweb is well-defined because n − 1 ≥ 2p. Now,

let vivj ∈ E(W
n
p − v) ⊂ E(W

n
p). Then |i− j| < p or |i− j| > n− p > (n− 1) − p. Therefore, vivj ∈ E(W

n−1
p ). This proves the

claim. Then, Theorem 2 implies that χk(W
n
p − v) ≤ χk(W

n−1
p ) =


k(n−1)

α(Wn−1
p )


. Moreover, since p does not divide n, it follows

that α(W
n−1
p ) =


n−1
p


=


n
p


= α(W

n
p). This shows the converse inequality χk(W

n
p − v) ≤


k(n−1)
α(Wn

p)


. �

Using again Lemma 4, we can now bound the difference between χk(W
n
p) and χk(W

n
p − v).

Corollary 5. Let k ∈ N and v ∈ V (W
n
p). If p divides n, then χk(W

n
p −v) = χk(W

n
p). Otherwise,


k

α(Wn
p)


≤ χk(W

n
p)−χk(W

n
p −

v) ≤


k

α(Wn
p)


.

Remark 3. For k ≥ 2, no antiweb has an optimal k-fold coloring where a vertex does not share any of its k colors with other
vertices. Since α(W

n
p) ≥ 2, Corollary 5 establishes that χk(W

n
p) − χk(W

n
p − v) ≤

 k
2


< k, whenever k ≥ 2.
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The above results also allow us to characterize the χk-critical antiwebs, as follows.

Theorem 5. Let k ∈ N. If gcd(n, p) = p, then W
n
p is not χk-critical. Otherwise, the following assertions are equivalent:

(i) W
n
p is χk-critical;

(ii) k ≥ α(W
n
p) or 0 < nk

α(Wn
p)

−


nk

α(Wn
p)


≤

k
α(Wn

p)
;

(iii) k ≥ α(W
n
p) or k = at⋆ + bq for some integers a ≥ 1 and b ≥

a(gcd(n,α(Wn
p))−t⋆)

q , where q = α(W
n
p)/ gcd(n, α(W

n
p)).

Proof. We use Theorem 2 and Lemma 10 to get the expressions of χk(W
n
p) and χk(W

n
p − v). Then, the first part of the

statement immediately follows. Now assume that gcd(n, p) ≠ p. Let α = α(W
n
p) and r = kn mod α so that r

α
=

kn
α

−
 kn

α


.

It follows that

χk(W
n
p) =


kn
α


+

 r
α


and χk(W

n
p − v) =


kn
α


+


r − k

α


.

Therefore, W
n
p is χk-critical if, and only if,

 r
α


>
 r−k

α


. If r = 0, this means that


−

k
α


≤ −1 or, equivalently, k ≥ α. If

r ≥ 1, then the condition is equivalent to
 r−k

α


≤ 0 or still k ≥ r . As r < α, we can conclude that W

n
p is χk-critical if, and

only if,

k ≥ α, or k ≥ r and r > 0. (4)

Notice that this is exactly assertion (ii).
To show the remaining equivalence, we use again (4). Let g = gcd(n, α). By the definitions of r and t⋆, we have that

gk−rt⋆

α
=

nk−r
α

t⋆ −
nt⋆−g

α
k ∈ Z. It follows that k = at⋆ + bq for some b ∈ Z and a = r/g ∈ Z. Therefore, the second

alternative of (4) implies the second alternative of assertion (iii). This leads to one direction of the desired equivalence.
Conversely, let us assume that assertion (iii) holds, that is, there exist integers a ≥ 1 and b such that k = at⋆ + bq and

bq ≥ ag − at⋆. Then, k ≥ ag . If ag ≥ α, then we trivially get item (ii). So, assume that ag < α. We will show that r = ag .
Indeed,

r =


nat⋆ +

nb
g

α


mod α = (nat⋆) mod α

= nat⋆ −


(nt⋆ − g)a + ag

α


α = ag −

ag
α


α = ag.

Since a ≥ 1 and k ≥ ag , we have that k ≥ r and r > 0, showing the converse implication. �

The counterpart of Theorem 4 for antiwebs can be stated now.

Theorem 6. The following assertions are equivalent:

(i) W
n
p is χ∗-critical;

(ii) W
n
p is χ-critical;

(iii) α(W
n
p) divides n − 1.

Proof. Let α = α(W
n
p), g = gcd(n, α) and q = α/g . It is trivial that (i) implies (ii). Now assume that W

n
p is χ-critical. By

applying Theorem 5(iii) with k = 1, we have that at⋆ + bq = 1 and bq ≥ ag − at⋆, for some integers a ≥ 1 and b. Then,
ag ≤ 1. It follows that a = g = 1 and b =

1−t⋆
q ∈ Z. Since gcd(n, p) ≠ p, due to Theorem 5, and 1 ≤ t⋆ < q, due to

Lemma 8, we obtain that 0 ≥ b ≥


1−q
q


= 0. Therefore, t⋆ = g = 1 showing that α divides n − 1.

Conversely, assume that n−1
α

∈ Z, i.e. t⋆ = g = 1. Then, α ≠
n
p , which implies that gcd(n, p) ≠ p. Moreover, any k ∈ N

can be written as k = at⋆ + bq for a = k ≥ 1 and b = 0. Since a and b satisfy the conditions of Theorem 5(iii), W
n
p is

χ∗-critical. �

Corollary 6. If p divides n − 1 then W n
p and W

n
p are χ∗-critical.

Proof. By Theorem 4, it remains to show that W
n
p is χ∗-critical. Under the hypothesis, we have that α(W

n
p) =

n−1
p . Since

n−1
α(Wn

p)
= p ∈ Z, the result follows by Theorem 6. �
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