80 research outputs found

    Algorithmic and enumerative aspects of the Moser-Tardos distribution

    Full text link
    Moser & Tardos have developed a powerful algorithmic approach (henceforth "MT") to the Lovasz Local Lemma (LLL); the basic operation done in MT and its variants is a search for "bad" events in a current configuration. In the initial stage of MT, the variables are set independently. We examine the distributions on these variables which arise during intermediate stages of MT. We show that these configurations have a more or less "random" form, building further on the "MT-distribution" concept of Haeupler et al. in understanding the (intermediate and) output distribution of MT. This has a variety of algorithmic applications; the most important is that bad events can be found relatively quickly, improving upon MT across the complexity spectrum: it makes some polynomial-time algorithms sub-linear (e.g., for Latin transversals, which are of basic combinatorial interest), gives lower-degree polynomial run-times in some settings, transforms certain super-polynomial-time algorithms into polynomial-time ones, and leads to Las Vegas algorithms for some coloring problems for which only Monte Carlo algorithms were known. We show that in certain conditions when the LLL condition is violated, a variant of the MT algorithm can still produce a distribution which avoids most of the bad events. We show in some cases this MT variant can run faster than the original MT algorithm itself, and develop the first-known criterion for the case of the asymmetric LLL. This can be used to find partial Latin transversals -- improving upon earlier bounds of Stein (1975) -- among other applications. We furthermore give applications in enumeration, showing that most applications (where we aim for all or most of the bad events to be avoided) have many more solutions than known before by proving that the MT-distribution has "large" min-entropy and hence that its support-size is large

    Structural Parameterizations of Clique Coloring

    Get PDF
    A clique coloring of a graph is an assignment of colors to its vertices such that no maximal clique is monochromatic. We initiate the study of structural parameterizations of the Clique Coloring problem which asks whether a given graph has a clique coloring with q colors. For fixed q ? 2, we give an ?^?(q^{tw})-time algorithm when the input graph is given together with one of its tree decompositions of width tw. We complement this result with a matching lower bound under the Strong Exponential Time Hypothesis. We furthermore show that (when the number of colors is unbounded) Clique Coloring is XP parameterized by clique-width

    Graph Theory

    Get PDF
    Graph theory is a rapidly developing area of mathematics. Recent years have seen the development of deep theories, and the increasing importance of methods from other parts of mathematics. The workshop on Graph Theory brought together together a broad range of researchers to discuss some of the major new developments. There were three central themes, each of which has seen striking recent progress: the structure of graphs with forbidden subgraphs; graph minor theory; and applications of the entropy compression method. The workshop featured major talks on current work in these areas, as well as presentations of recent breakthroughs and connections to other areas. There was a particularly exciting selection of longer talks, including presentations on the structure of graphs with forbidden induced subgraphs, embedding simply connected 2-complexes in 3-space, and an announcement of the solution of the well-known Oberwolfach Problem

    Műszaki informatikai problémákhoz kapcsolódó diszkrét matematikai modellek vizsgálata = Discrete mathematical models related to problems in informatics

    Get PDF
    Diszkrét matematikai módszerekkel strukturális és kvantitatív összefüggéseket bizonyítottunk; algoritmusokat terveztünk, komplexitásukat elemeztük. Az eredmények a gráfok és hipergráfok elméletéhez, valamint on-line ütemezéshez kapcsolódnak. Néhány kiemelés: - Pontosan leírtuk azokat a szerkezeti feltételeket, amelyeknek teljesülni kell ahhoz, hogy egy kommunikációs hálózatban és annak minden összefüggő részében legyen olyan, megadott típusú összefüggő részhálózat, ahonnan az összes többi elem közvetlenül elérhető. (A probléma két évtizeden át megoldatlan volt.) - Aszimptotikusan pontos becslést adtunk egy n-elemű alaphalmaz olyan, k-asokból álló halmazrendszereinek minimális méretére, amelyekben minden k-osztályú partícióhoz van olyan halmaz, ami az összes partíció-osztályt metszi. (Nyitott probléma volt 1973 óta, több szerző egymástól függetlenül is felvetette.) - Halmazrendszerek partícióira az eddigieknél általánosabb modellt vezettünk be, megvizsgáltuk részosztályainak hierarchikus szerkezetét és hatékony algoritmusokat adtunk. (Sok alkalmazás várható az erőforrás-allokáció területén.) - Kidolgoztunk egy módszert, amellyel lokálisan véges pozíciós játékok nyerő stratégiája megtalálható mindössze lineáris méretű memória használatával. - Félig on-line ütemezési algoritmusokat terveztünk (kétgépes feladatra, nem azonos sebességű processzorokra), amelyeknek versenyképességi aránya bizonyítottan jobb, mint ami a legjobb teljesen on-line módszerekkel elérhető. | Applying discrete mathematical methods, we proved structural and quantitative relations, designed algorithms and analyzed their complexity. The results deal with graph and hypergraph theory and on-line scheduling. Some selected ones are: - We described the exact structural conditions which have to hold in order that an intercommunication network and each of its connected parts contain a connected subnetwork of prescribed type, from which all the other nodes of the network can be reached via direct link. (This problem was open for two decades.) - We gave asymptotically tight estimates on the minimum size of set systems of k-element sets over an n-element set such that, for each k-partition of the set, the set system contains a k-set meeting all classes of the partition. (This was an open problem since 1973, raised by several authors independently.) - We introduced a new model, more general than the previous ones, for partitions of set systems. We studied the hierarchic structure of its subclasses, and designed efficient algorithms. (Many applications are expected in the area of resource allocation.) - We developed a method to learn winning strategies in locally finite positional games, which requires linear-size memory only. - We designed semi-online scheduling algorithms (for two uniform processors of unequal speed), whose competitive ratio provably beats the best possible one achievable in the purely on-line setting

    Borel versions of the Local Lemma and LOCAL algorithms for graphs of finite asymptotic separation index

    Full text link
    Asymptotic separation index is a parameter that measures how easily a Borel graph can be approximated by its subgraphs with finite components. In contrast to the more classical notion of hyperfiniteness, asymptotic separation index is well-suited for combinatorial applications in the Borel setting. The main result of this paper is a Borel version of the Lov\'asz Local Lemma -- a powerful general-purpose tool in probabilistic combinatorics -- under a finite asymptotic separation index assumption. As a consequence, we show that locally checkable labeling problems that are solvable by efficient randomized distributed algorithms admit Borel solutions on bounded degree Borel graphs with finite asymptotic separation index. From this we derive a number of corollaries, for example a Borel version of Brooks's theorem for graphs with finite asymptotic separation index

    Colorings of graphs, digraphs, and hypergraphs

    Get PDF
    Brooks' Theorem ist eines der bekanntesten Resultate über Graphenfärbungen: Sei G ein zusammenhängender Graph mit Maximalgrad d. Ist G kein vollständiger Graph, so lassen sich die Ecken von G so mit d Farben färben, dass zwei benachbarte Ecken unterschiedlich gefärbt sind. In der vorliegenden Arbeit liegt der Fokus auf Verallgemeinerungen von Brooks Theorem für Färbungen von Hypergraphen und gerichteten Graphen. Eine Färbung eines Hypergraphen ist eine Färbung der Ecken so, dass keine Kante monochromatisch ist. Auf Hypergraphen erweitert wurde der Satz von Brooks von R.P. Jones. Im ersten Teil der Dissertation werden Möglichkeiten aufgezeigt, das Resultat von Jones weiter zu verallgemeinern. Kernstück ist ein Zerlegungsresultat: Zu einem Hypergraphen H und einer Folge f=(f_1,…,f_p) von Funktionen, welche von V(H) in die natürlichen Zahlen abbilden, wird untersucht, ob es eine Zerlegung von H in induzierte Unterhypergraphen H_1,…,H_p derart gibt, dass jedes H_i strikt f_i-degeneriert ist. Dies bedeutet, dass jeder Unterhypergraph H_i' von H_i eine Ecke v enthält, deren Grad in H_i' kleiner als f_i(v) ist. Es wird bewiesen, dass die Bedingung f_1(v)+…+f_p(v) \geq d_H(v) für alle v fast immer ausreichend für die Existenz einer solchen Zerlegung ist und gezeigt, dass sich die Ausnahmefälle gut charakterisieren lassen. Durch geeignete Wahl der Funktion f lassen sich viele bekannte Resultate ableiten, was im dritten Kapitel erörtert wird. Danach werden zwei weitere Verallgemeinerungen des Satzes von Jones bewiesen: Ein Theorem zu DP-Färbungen von Hypergraphen und ein Resultat, welches die chromatische Zahl eines Hypergraphen mit dessen maximalem lokalen Kantenzusammenhang verbindet. Der zweite Teil untersucht Färbungen gerichteter Graphen. Eine azyklische Färbung eines gerichteten Graphen ist eine Färbung der Eckenmenge des gerichteten Graphen sodass es keine monochromatischen gerichteten Kreise gibt. Auf dieses Konzept lassen sich viele klassische Färbungsresultate übertragen. Dazu zählt auch Brooks Theorem, wie von Mohar bewiesen wurde. Im siebten Kapitel werden DP-Färbungen gerichteter Graphen untersucht. Insbesondere erfolgt der Transfer von Mohars Theorem auf DP-Färbungen. Das darauffolgende Kapitel befasst sich mit kritischen gerichteten Graphen. Insbesondere werden Konstruktionen für diese angegeben und die gerichtete Version des Satzes von Hajós bewiesen.Brooks‘ Theorem is one of the most known results in graph coloring theory: Let G be a connected graph with maximum degree d >2. If G is not a complete graph, then there is a coloring of the vertices of G with d colors such that no two adjacent vertices get the same color. Based on Brooks' result, various research topics in graph coloring arose. Also, it became evident that Brooks' Theorem could be transferred to many other coloring-concepts. The present thesis puts its focus especially on two of those concepts: hypergraphs and digraphs. A coloring of a hypergraph H is a coloring of its vertices such that no edge is monochromatic. Brooks' Theorem for hypergraphs was obtained by R.P. Jones. In the first part of this thesis, we present several ways how to further extend Jones' theorem. The key element is a partition result, to which the second chapter is devoted. Given a hypergraph H and a sequence f=(f_1,…,f_p) of functions, we examine if there is a partition of HH into induced subhypergraphs H_1,…,H_p such that each of the H_i is strictly f_i-degenerate. This means that in each non-empty subhypergraph H_i' of H_i there is a vertex v having degree d_{H_i'}(v
    corecore