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Abstract

In 1940, a certain William T. TUTTE presented the Cambridge Philosophical Society a paper
called “Coloring of abstract graphs”; authored by Rowland L. BROOKS. In this paper, he
proved one of the most known results in graph coloring theory:

Let G be a graph with maximum degree ∆ > 2, all of whose components are
distinct from the complete graph K∆+1. Then, there is a coloring of the vertices
of G with ∆ colors such that no two vertices that are joined by an edge get the
same color.

In the following years, based on BROOKS’ result, a large variety of new research topics
in graph coloring arose. Among other things, different proof techniques were developed
that can be used in order to verify the above theorem. Furthermore, it became evident
that BROOKS’ Theorem could be transferred to many other graph- respectively coloring-
concepts. The present thesis puts its focus especially on two of those concepts: hypergraphs
and digraphs. A proper coloring of a hypergraph H is a coloring of its vertices such that
each edge contains at least two vertices of distinct color. BROOKS’ Theorem for hypergraphs
was obtained in 1975 by Rhys P. JONES; in particular, he showed that the above statement
equally holds for hypergraphs. In the first part of this thesis, we present several possible ways
how to further extend JONES’ theorem. The key element is a partition result, to which the
entire second chapter is devoted. Given a hypergraph H and a sequence f = (f1, f2, . . . , fp) of
functions mapping from the vertex set of H to the set of non-negative integers, we examine
if there is a partition of H into induced subhypergraphs H1, H2, . . . , Hp such that each of the
hypergraphs Hi is strictly fi-degenerate. This means that in each non-empty subhypergraph
H ′

i of Hi there is a vertex v having degree dH ′
i
(v) < fi(v). We prove that the condition

f1(v) + f2(v) + . . . + fp(v) ≥ dH(v) for all vertices v of H is almost always sufficient for the
existence of such a partition and we further show that the exceptional cases can be fully
characterized. By choosing an appropriate function f, many well known coloring results can
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be derived from the partition result, as shown in the third chapter. In the fourth and fifth
chapter we prove two further generalizations of JONES’ theorem. Here, one main result is
a theorem on DP-colorings of hypergraphs, a recent concept that is based on list-colorings
but significantly more general. The second main result links the chromatic number of a
hypergraph with its maximum local edge connectivity, i.e., the maximum number of edge
disjoint paths between any two of the hypergraph’s vertices.

The second part of the thesis is devoted to colorings of digraphs. An acyclic coloring of a
digraph is a coloring of its vertex set such that the same-colored vertices induce subdigraphs
that do not contain a directed cycle; so called acyclic subdigraphs. This coloring concept is
practical for many reasons: on one hand, every proper coloring of an undirected graph G is
also an acyclic coloring of the digraph D(G) that results from G by replacing each edge of G
with a pair of opposite arcs (and vice versa). On the other hand, many classic coloring results
can be transferred to this coloring concept. This also includes BROOKS’ Theorem, as proved
by MOHAR in 2010. In Chapter 7, similar to Chapter 4, we examine DP-colorings; this time,
however, for digraphs. The chapter’s main result is the transfer of MOHAR’s theorem to
DP-colorings. The following chapter deals with critical digraphs. In particular, we describe
construction methods for critical digraphs and prove the digraph version of HAjÓS’ Theorem.
The thesis concludes with a collection of open problems regarding colorings of digraphs.

Colorings of a graph, a digraph, and a hypergraph.



Zusammenfassung

Im Jahre 1940 stellte ein gewisser William T. TUTTE der Cambridge Philosophical Society
eine Abhandlung mit dem Namen “Coloring of abstract graphs” vor; Verfasser der Arbeit war
Rowland L. BROOKS. In dieser Arbeit bewies er eines der bis heute bekanntesten Resultate
der Färbungstheorie von Graphen:

Es sei G ein Graph mit Maximalgrad ∆ > 2, dessen sämtliche Komponenten
verschieden vom vollständigen Graphen K∆+1 sind. Dann lassen sich die Ecken
von G so mit ∆ Farben färben, dass keine zwei durch eine Kante verbundenen
Ecken dieselbe Farbe erhalten.

In den darauffolgenden Jahrzenten entwickelten sich, ausgehend von BROOKS Resultat, eine
Vielzahl neuer Forschungsthematiken in Bezug auf Färbungen von Graphen. Es wurden
unter anderem verschiedene Beweistechniken entdeckt, mit denen sich obiges Theorem veri-
fizieren lässt, zudem zeigte sich, dass sich BROOKS Resultat auch auf viele andere Graphen-
beziehungsweise Färbungskonzepte übertragen lässt. Besonderer Fokus liegt in der vor-
liegenden Arbeit auf zweien dieser Konzepte: Hypergraphen und gerichtete Graphen. Eine
zulässige Färbung eines Hypergraphen H ist eine Färbung der Ecken von H so, dass jede
Kante wenigstens zwei Ecken unterschiedlicher Farbe enthält. Für Hypergraphen wurde der
Satz von BROOKS im Jahre 1975 von Rhys P. JONES publiziert, welcher zeigen konnte, dass
obige Aussage ebenso auf Hypergraphen zutrifft. Im ersten Teil dieser Dissertation wer-
den mehrere Möglichkeiten aufgezeigt, das Resultat von JONES weiter zu verallgemeinern.
Kernstück ist dabei ein Zerlegungsresultat, dem das zweite Kapitel vollständig gewidmet
ist. Zu einem Hypergraphen H und einer Folge f = (f1, f2, . . . , fp) von Funktionen, welche
von der Eckenmenge von H in die nicht-negativen ganzen Zahlen abbilden, wird untersucht,
ob es eine Zerlegung des Hypergraphen in induzierte Unterhypergraphen H1, H2, . . . , Hp

derart gibt, dass jeder der Hypergraphen Hi strikt fi-degeneriert ist. Dies bedeutet, dass
jeder der Unterhypergraphen H ′

i von Hi eine Ecke v enthält, deren Grad in H ′
i kleiner als



v

fi(v) ist. Es wird bewiesen, dass die Bedingung f1(v) + f2(v) + . . . + fp(v) ≥ dH(v) für alle
Ecken v fast immer ausreichend für die Existenz einer solchen Zerlegung ist und gezeigt,
dass sich die Ausnahmefälle vollständig charakterisieren lassen. Durch geeignete Wahl der
Funktion f lassen sich schließlich viele bekannte Färbungsresultate ableiten, was im drit-
ten Kapitel erörtert wird. Im vierten und fünften Kapitel werden zwei weitere Verallge-
meinerungen des Satzes von JONES bewiesen. Ein Hauptresultat ist hierbei das Theorem zu
DP-Färbungen von Hypergraphen, einem erst 2016 entwickelten Färbungskonzept, welches
auf Listenfärbungen beruht, obgleich aber wesentlich allgemeiner ist. Das zweite Hauptre-
sultat verbindet die chromatische Zahl eines Hypergraphen mit dessen maximalem lokalen
Kantenzusammenhang, d.h., der maximalen Anzahl kantendisjunkter Wege zwischen zwei
Ecken des Hypergraphen.

Der zweite Teil der Dissertation handelt von Färbungen gerichteter Graphen. Eine azy-
klische Färbung eines gerichteten Graphen ist eine Färbung der Eckenmenge des gerichteten
Graphen, sodass die von gleichgefärbten Ecken induzierten Untergraphen keinen gerichteten
Kreis enthalten. Dieses Färbungskonzept ist aus mehreren Gründen praktikabel: Zum
Einen ist dadurch jede zulässige Färbung eines ungerichteten Graphen G auch immer eine
azyklische Färbung des gerichteten Graphen D(G), welcher entsteht, indem jede Kante
von G durch zwei gegensätzlich orientierte Kanten ersetzt wird (und andersherum). Zum
Anderen lassen sich auf dieses Konzept viele klassische Färbungsresultate übertragen. Dazu
zählt auch BROOKS Theorem, wie 2010 von MOHAR bewiesen wurde. Im siebten Kapitel
werden, wie bereits in Kapitel 4, DP-Färbungen untersucht, diesmal jedoch für gerichtete
Graphen. Das Hauptresultat des Kapitels stellt den Transfer von MOHARs Theorem auf DP-
Färbungen dar. Das darauffolgende Kapitel befasst sich mit kritischen gerichteten Graphen.
Insbesondere werden Konstruktionen für kritische gerichtete Graphen angegeben und die
gerichtete Version des Satzes von HAjÓS bewiesen. Den Abschluss der Dissertation bildet
eine Sammlung offener Probleme in Bezug auf Färbungen gerichteter Graphen.

Färbungen eines Graphen, gerichteten Graphen, und eines Hypergraphen.
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Introduction

The Theorems of Brooks and Gallai

The chromatic number is probably the most examined parameter in coloring theory of
graphs. Given a (simple) graph G, the chromatic number χ(G) of G is defined as the least
integer k for which there is a coloring of the vertices of G with k colors such that no same-
colored vertices are adjacent. Such a coloring is also referred to as a proper coloring of G
and a proper k-coloring of G. Until the 1940s, papers on graph coloring solely investigated
map-colorings; the common goal was to prove the Four-Color-Conjecture, which had been
postulated by Francis GUTHRiE in 1852. The first paper on coloring of abstract graphs,
however, is due to Rowland Leonard BROOKS. In November 1940, he asked his fellow student
William T. TUTTE to communicate his work “On colouring the nodes of a network” [26] to
the Cambridge Philosophical Society. In this paper, he proved the following remarkable
result, nowadays known as BROOKS’ Theorem.

Theorem 1 (BROOKS, 1941). Let G be a connected graph of maximum degree ∆. Then,
χ(G) ≤ ∆ + 1 and equality holds if and only if G is a complete graph or a cycle of odd
length. ⋄

Although BROOKS initially confirmed his result for disconnected graphs with ∆ > 2,
he noticed that it is sufficient to prove the theorem only for connected graphs and that
χ(G) ≤ ∆ + 1 also holds true for ∆ ∈ {0, 1, 2}; the theorem as stated above is the common
way how BROOKS’ Theorem is referred to. After finishing his studies at Trinity College in
Cambridge, BROOKS became an income-tax inspector in London. Throughout his life, he
published only five papers [26, 27, 28, 29, 30]; three of those being joint work with Cedric



Introduction: The Theorems of Brooks and Gallai 2

A.B. SMiTH, Arthur H. STONE, and William T. TUTTE. Particularly famous is their paper
“The dissection of rectangles into squares”, which they wrote together at Trinity College.

In the 1970s, Paul ERDŐS, Arthur L. RUBiN, and Herbert TAYLOR [44] and, independently,
Vadim G. ViZiNG [120] developed a more general coloring concept, so called list-coloring.
Given a graph G, we assign each vertex v a set (list) L(v) of admissible colors. Then, a
proper L-coloring of G is a proper coloring of G where each vertices color is taken from the
vertices color list. This concept extends the usual coloring concept as a proper k-coloring
of a graph resembles a proper L-coloring with L(v) = {1, 2, . . . , k} for all vertices v. ERDŐS,
RUBiN, and TAYLOR [44] and, independently, Oleg V. BORODiN [19, 20] proved the following
degree version of BROOKS’ Theorem. Note that a block of a graph G is a maximal connected
subgraph without separating vertices.

Theorem 2 (ERDŐS, RUBiN, and TAYLOR, 1979). Let G be a connected graph and, for each
vertex v of G, let L(v) be a list of at least degree of v many colors. Then, G admits a proper
L-coloring, unless each block of G is a complete graph, or an odd cycle. ⋄

Critical Graphs
The critical graph method is a useful concept for proving results related to graph coloring.
As defined by Gabriel A. DiRAC in his PhD thesis “On the Colouring of Graphs” [35] in 1951,
a graph G is critical and k-critical if χ(G) = k but χ(G ′) < k for every proper subgraph G ′

of G. The usefulness of critical graphs comes from two important observations. First of all,

every graph contains a critical subgraph having the same chromatic number.

In order to verify this, let G be a graph with χ(G) = k and let G ′ be a minimal subgraph of
G with χ(G ′) = χ(G). Then, χ(G̃) < k for all G̃ ⊂ G ′, but χ(G ′) = k and so G ′ is k-critical.
The second important observation is the following. Let P be a monotone graph property
(i.e. G ∈ P implies G ′ ∈ P for all G ′ ⊆ G) and let ρ be a monotone graph parameter for P,
i.e., a mapping that assigns each graph G ∈ P a real number ρ(G) such that ρ(G ′) ≤ ρ(G)

whenever G ′ is a subgraph of G. Then, the following holds true.

If χ(G ′) ≤ ρ(G ′) whenever G ′ is a critical graph from P, then every graph
G ∈ P satisfies χ(G) ≤ ρ(G).

This is due to the fact that every graph G contains a critical graph G ′ having the same
chromatic number and so χ(G) = χ(G ′) ≤ ρ(G ′) ≤ ρ(G), as claimed. Those two observa-
tions are commonly referred to as the Critical Graph Method. Thus, if we want to prove
upper bounds for the chromatic number it usually suffices to prove the bounds for critical
graphs. Moreover, for every fixed k ≥ 1, every graph G satisfies
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χ(G) ≤ k− 1 if and only if no k-critical graph is a subgraph of G.

Thus, extensive knowledge about the class CRI(k) of all k-critical graphs would be helpful
in order to solve coloring problems. It is obvious that the complete graph Kk is the only k-
critical graph with at most k vertices and that for k = 1, 2, there are no others. Furthermore,
KÖNiG’s characterization of bipartite graphs [68] is equivalent to the fact that the class
CRI(3) coincides with the class of cycles having odd length. However, it is very unlikely
that there is a good characterization of the class of CRI(k) for any fixed k ≥ 4. This is
related to the fact that the decision problem whether a given graph G satisfies χ(G) ≤ 3 is
already NP-complete (see [112]).

The critical graph method was initially observed by DiRAC. As pointed out in his thesis,

“Every general feature of k-chromatic graphs is possessed also by critical k-chromatic
graphs, on the other hand a critical graph is more sharply defined and less arbitrary
than a non-critical graph.”

G. A. DiRAC, 1951 [35]

Suprisingly, even 4-critical graphs with fixed order are ten a penny, as proved by Vojtěch
RÖDL in the 1970s (see [118]). Apparently, DiRAC told Bjarne TOFT that he did not know
about BROOKS’ paper when he was writing his thesis, but instead had been inspired to
consider graph colorings by Peter UNGER; he was informed about BROOKS’ Theorem by his
external examiner, who was no other than C.A.B. SMiTH. DiRAC later published his results
on critical graphs within various papers (see, for instance, [36, 37, 38, 39, 40]). In [39], he
proved that every k-critical graph is (k−1)-edge-connected. As a trivial consequence, every
k-critical graph has minimum degree at least k − 1. This motivated Tibor GALLAi [48],
who continued DiRAC’s studies in the well-known papers [48, 49], to classify the vertices of
a k-critical graph into two parts. A low vertex of a k-critical graph G is a vertex of degree
k− 1, vertices of higher degree are called high vertices. Moreover, the low vertex subgraph
of G is the subgraph of G that is induced by the set of low vertices; we denote it by GL.
GALLAi [48] proved the following result, thereby extending BROOKS’ Theorem.

Theorem 3 (GALLAi, 1963). If G is a critical graph, then each block of GL is a complete
graph or an odd cycle. ⋄

Note that the above theorem can be deduced from Theorem 2 by using a trick that will
occur frequently in this thesis: Let G be a k-critical graph and let B be a block of GL.
Then, as G is critical, G − V(B) admits a proper (k − 1)-coloring. By renaming the colors
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if necessary we may assume that all colors are chosen from the set {1, 2, . . . , k− 1}. Now we
define the lists for the vertices of B as follows: for v ∈ V(B) let L(v) be the list of colors
from {1, 2, . . . , k− 1} that do not occur in the neighborhood of v. Then, as all vertices from
B are low vertices and, therefore, have degree k− 1 in G, we obtain that the cardinality of
L(v) is at least the degree of v in B for all vertices v ∈ V(B). As consequence, the premises
of Theorem 2 are fulfilled and, hence, B admits a proper L-coloring, unless B is a complete
graph or an odd cycle. Since a proper L-coloring of B would lead to a proper (k−1)-coloring
of G, which is impossible, this implies Theorem 3’s statement.

In this thesis, we aim to generalize the theorems of BROOKS, ERDŐS, RUBiN, and TAYLOR,
and GALLAi in various different settings. The partition result of Chapter 2 will lead to a
hypergraph version of all those results, as well as to a version of those results for generalized
hypergraph coloring. Moreover, we will prove a hypergraph as well as a digraph version of
them for DP-coloring. That it is possible to obtain these results in the described and even
in many more versions emphasizes their—up to this day—outstanding importance in graph
coloring theory.

The author took inspiration for the introduction from the very readable survey “Brooks’s
theorem” by Michael STiEBiTZ and Bjarne TOFT [110]. For the standard reference work on
results and open problems in graph coloring theory we refer the reader to the book “Graph
Coloring Problems” by Tommy R. JENSEN and Bjarne TOFT [62].



Part I

Partitions and Colorings of
Hypergraphs



Chapter 1

Preliminaries: Hypergraphs

1.1. Basic Terminology

As usual, N denotes the set of positive integers and N0 = N ∪ {0} is the set of non-negative
integers. For k, ℓ ∈ N0 let [k, ℓ] = {h ∈ N0 | k ≤ h ≤ ℓ}. Given a set V , we denote the
cardinality of V by |V | and the power set of V by 2V . The empty set is denoted by ∅.

Hypergraphs
A hypergraph H = (V, E, i) is a triple consisting of two finite sets, V and E, and a function
i from E to the power set 2V with |i(e)| ≥ 2 for e ∈ E (i.e., no loops are allowed). The set
V = V(H) is called vertex set of H; its elements are the vertices of H. The cardinality of
V is the order of H, we denote it by |H|. We call E = E(H) edge set of H and its elements
edges. The function i = iH is the incidence function of H: For an edge e ∈ E, i(e) is the
set of vertices that are incident to e. A hyperedge is an edge e with |i(e)| ≥ 3, an ordinary
edge is one with |i(e)| = 2. Two distinct edges e and e ′ are parallel if i(e) = i(e ′). In this
thesis, we usually allow for parallel edges unless explicitly stated otherwise. A hypergraph
H is simple if none of its edges is contained in another edge, i.e., iH(e) 6⊆ iH(e

′) for all
distinct edges e, e ′ of H. A q-uniform hypergraph is a hypergraph H with |i(e)| = q for
all e ∈ E. Thus, a graph is just a 2-uniform hypergraph; in particular, all definitions
relevant to us regarding graphs can be obtained from their hypergraph counterparts by
considering 2-uniform hypergraphs. Throughout this thesis, we will consistently use the
notation H,H ′, H̃ etc. for hypergraphs; G,G ′, G̃ etc. will always refer to a graph unless
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explicitly stated otherwise. As usual, Kn denotes the complete graph on n vertices with
n ≥ 0, and Cn denotes an ordinary cycle as a 2-uniform simple hypergraph of order n with
n ≥ 3. A cycle is called odd or even depending on whether its order is odd or even. An
odd wheel is a graph that is obtained from an odd cycle by adding one vertex and joining
it to all others. A hyperwheel is a hypergraph that results from an edge by adding one
vertex and joining it to all others by ordinary edges.

If H is a hypergraph such that there exists an edge e ∈ E(H) with V(H) = iH(e) and
E(H) = {e}, we will briefly writeH = < e >. The hypergraphH is the empty hypergraph if
V(H) = E(H) = ∅, in this case we also write H = ∅. A hypergraph H ′ is a subhypergraph
of H, written H ′ ⊆ H, if V(H ′) ⊆ V(H), E(H ′) ⊆ E(H), and iH ′ = iH|E(H ′). If H ′ ⊆ H and
H ′ 6= H, then H ′ is said to be a proper subhypergraph of H and we briefly write H ′ ⊂ H.

Hypergraph Operations
There are various well known operations in order to create new hypergraphs from given
ones: The union of two subhypergraphs H1 and H2 of a hypergraph H is the hypergraph
H ′ = H1 ∪H2 with V(H ′) = V(H1) ∪ V(H2), E(H ′) = E(H1) ∪ E(H2) and iH ′ = iH|E(H ′); the
intersection of H1 and H2 is the hypergraph H ′ = H1 ∩H2 with V(H ′) = V(H1) ∩ V(H2),
E(H ′) = E(H1) ∩ E(H2), and iH ′ = iH|E(H ′).

Now let H1 and H2 be two disjoint hypergraphs, that is, V(H1) ∩ V(H2) = ∅ and
E(H1)∩E(H2) = ∅. Furthermore, for i ∈ {1, 2}, let vi ∈ V(Hi) and let v∗ 6∈ (V(H1)∪V(H2))\

{v1, v2}. We obtain a new hypergraph H with V(H) = ((V(H1) ∪ V(H1)) \ {v1, v2}) ∪ {v∗},
E(H) = E(H1) ∪ E(H2), and

iH(e) =

iHj(e) if e ∈ E(Hj), vj 6∈ iHj(e) (j ∈ {1, 2}),

(iHj(e) \ {vj}) ∪ {v∗} if e ∈ E(Hj), vj ∈ iHj(e) (j ∈ {1, 2}).

In this case we say that H is obtained from H1 and H2 by merging v1 and v2 to v∗. For
the purpose of improved clarity, we will usually identify the vertices v1, v2 and v∗.

Given a hypergraph H and a vertex set X ⊆ V(H) we define two new hypergraphs, both
having X as its vertex set. Firstly, H[X] is the subhypergraph of H satisfying

V(H[X]) = X, E(H[X]) = {e ∈ E | iH(e) ⊆ X}, and iH[X] = iH|E(H[X]).

We call H[X] the subhypergraph of H induced by X. Note that a vertex set X ⊆ V(H) is
called an independent set of H if H[X] has no edge. A hypergraph H ′ is called induced
subhypergraph of H if V(H ′) ⊆ V(H) and H ′ = H[V(H ′)].
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Secondly, H(X) is the hypergraph that is obtained by shrinking H to X, i.e., the hyper-
graph satisfying

V(H(X)) = X, E(H(X)) = {e ∈ E(H) | |iH(e) ∩ X| ≥ 2},

and
iH(X)(e) = iH(e) ∩ X for all e ∈ E(H(X)).

Those two hypergraphs naturally introduce the following ones: H− X = H[V(H) \ X]

and H÷ X = H(V(H) \ X). We say that H ÷ X is obtained by shrinking H at X (not
to be confused with shrinking H to X). If X = {v} is a singleton, we rather write H − v

and H ÷ v than H − X and H ÷ X. An example of shrinking a hypergraph at a vertex is
displayed in Figure 1.1. Note that for a graph G shrinking at a vertex set X coincides with
deleting the vertex X, i.e. G ÷ X = G − X for X ⊆ V(G). Given an edge set F ⊆ E(H),
let H− F = (V(H), E(H) \ F, iH−F) where iH−F = iH|E\F. Again, if F = {e} is a singleton
we prefer writing H − e rather than H − F. To obtain the reverse operations, let H ′ be a
proper subhypergraph of H and let v ∈ V(H) \ V(H ′), respectively e ∈ E(H) \ E(H ′) with
i(e) ⊆ V(H ′). Then, H ′ + v = H[V(H ′)∪ {v}] and H ′ + e = (V(H ′), E(H ′)∪ {e}, iH ′+e) where
iH ′+e = iH|E ′∪{e}. Note that for distinct vertices u and v of H it clearly holds true that

(H÷ u)÷ v = (H÷ v)÷ u. (1.1)

Lastly, for a simple hypergraph H and an integer t ≥ 1, let H ′ = tH be the hypergraph
obtained from H by replacing each edge of H by t parallel edges; we call H ′ the t-uniform
inflation of H.

Matchings and Connectivity
A matching of a hypergraph H is a subset M of E(H) such that each vertex v ∈ V(H) is
incident with at most one edge from M. A hypermatching M of H is perfect if for each
v ∈ V(H) there is an edge e ∈ M that contains v (i.e. v ∈ iH(e)).

Similar to graphs, there are various equivalent ways how to define connectivity. We say
that a hypergraph H is connected if H is non-empty and for every non-empty vertex set
X ⊆ V(H) there is at least one edge e ∈ E(H) such that iH(e) contains a vertex of X as well
as a vertex of V(H) \ X.

A (hyper)-path of length ℓ in H is a sequence P = (v0, e0, v1, e1, . . . , vℓ−1, eℓ−1, vℓ) of
distinct vertices v0, v1, . . . , vℓ and distinct edges e0, e1, . . . , eℓ−1 such that {vi, vi+1} ⊆ iH(ei)
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v

H H÷ v

FiG. 1.1. Shrinking a hypergraph H at the vertex v.

for i ∈ [0, ℓ − 1]. In this case we also say that P is a (v0, vℓ)-hyperpath and that P is a
hyperpath between v0 and vℓ. The vertices v1, v2, . . . , vℓ−1 are called inner vertices of
P. If P is a (u, v)-hyperpath for some vertices u, v and if w is an inner vertex of P, we
denote the subhyperpath of P between u and w by uPw and the one between w and v

by wPv. Moreover, we denote the length of a shortest (u, v)-hyperpath in H by distH(u, v).
If there is no hyperpath in H between the vertices u and v, we set distH(u, v) = ∞. It is
easy to see that a non-empty hypergraph H is connected if and only if there is a hyperpath
in H between any two of its vertices (which is equivalent to distH(u, v) ∈ N for all distinct
vertices u, v from H). A (connected) component of a hypergraph H is a maximal connected
subhypergraph of H.

A separating vertex set of a hypergraph H is a set S ⊆ V(H) such that H is the union
of two induced subhypergraphs H1 and H2 satisfying V(H1) ∩ V(H2) = S and |Hi| > |S| for
i ∈ {1, 2}. If S = {v} is a singleton, we say that v is a separating vertex of H. Clearly, if G
is a connected graph, then a vertex v of G is non-separating if and only if G− v is empty or
connected. This is not true in general for hypergraphs: take a hypergraph H =< e > with
|i(e)| ≥ 3. Then, every vertex v of H is non-separating but H− v is not connected. Instead,
it is easy to check that a vertex v of a connected hypergraph H is non-separating if and
only if the hypergraph H÷ v is empty or connected. Similar, a vertex set S ⊆ V(H) is non-
separating if and only if H÷ S is empty or connected. This indicates that for hypergraphs,
the shrinking operation might be the correct generalization of vertex deletion in the graph
case. Regarding edges, an edge e is a bridge of a hypergraph H if H − e has |iH(e)| − 1
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more components than H. Thus, an edge e is a bridge if and only if every vertex from iH(e)

belongs to a different component of H− e.
Similar to the graph case, however, is the definition of blocks: A block of a hypergraph H

is a maximal connected subhypergraph of H not containing a separating vertex. By B(H)

we denote the set of all blocks of H and, given a vertex v ∈ V(H), Bv(H) is the set of all
blocks B from B(H) with v ∈ V(B). Clearly, B(∅) = ∅ and every block of a non-empty
hypergraph H is a connected induced subhypergraph of H. If H contains only one block, we
also say that H is a block. As for graphs it is not difficult to show that any two distinct
blocks of a hypergraph H have at most one vertex in common, and a vertex of H is a
separating vertex of H if and only if it belongs to more than one block. An end-block of
H is a block that contains at most one separating vertex of H. It is important to note that
H has at least two end-blocks if H contains a separating vertex.

Degrees and Ordinary Neighbors
Let H be a hypergraph. A vertex v ∈ V(H) is incident with an edge e ∈ E(H) if v ∈ iH(e).
Moreover, two distinct vertices u, v of H are adjacent if there is an edge e ∈ E(H) such that
{u, v} ⊆ iH(e). In this case we say that u is a neighbor of v and vice versa. The ordinary
neighborhood of a vertex v in a hypergraph H is the set of all vertices u ∈ V(H) such that
there is an edge e with iH(e) = {u, v}; we denote it by NH(v). For a vertex set X ⊆ V(H),
let

EH(X) = {e ∈ E(H) | iH(e) ∩ X 6= ∅ and iH(e) ∩ (V(H) \ X) 6= ∅}.

If X = {v} is a singleton, we rather write EH(v) than EH({v}). In particular, we have

EH(v) = {e ∈ E(H) | v ∈ iH(e)}.

The degree of v in H is dH(v) = |EH(v)|. A regular and r-regular hypergraph is one whose
vertices all have degree r. As usual, δ(H) = minv∈V(H) dH(v) is the minimum degree of
H and ∆(H) = maxv∈V(H) dH(v) is the maximum degree of H. If H = ∅, then we define
δ(H) = ∆(H) = 0. For an ordinary edge e of H with iH(e) = {u, v}, we also write e = uv

and e = vu and say that e joins u and v. Given two distinct edges u and v of H, note
that E(H[{u, v}]) is the set of ordinary edges joining u and v. We define the multiplicity
of (u, v) in H as µH(u, v) = |E(H[{u, v}])|. Be aware that if v ∈ V(H), then every vertex
u ∈ V(H) \ {v} satisfies

dH÷v(u) = dH(u) − µH(u, v). (1.2)
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Degeneracy and Coloring Number
The concept of degeneracy is closely related to graph colorings. Following the definition
of LiCK and WHiTE [78], we say that a hypergraph H is k-degenerate, where k is a non-
negative integer, if every non-empty subgraph H ′ of H contains a vertex v with dH ′(v) ≤ k.
Moreover, H is strictly k-degenerate if the previous inequality is strict, i.e., if every
non-empty subgraph H ′ of H contains a vertex v with dH ′(v) < k. Obviously, H is strictly
k-degenerate if and only if H is (k − 1)-degenerate, but our results can be expressed more
naturally by using strict degeneracy; so we prefer this notation over the original one. Note
that H is strictly 0-degenerate if and only if H = ∅ and H is strictly 1-degenerate if and
only if H is edgeless. The strictly 2-degenerate graphs are precisely the forests. If we are
looking for the minimum integer k for which a hypergraph H is strictly k-degenerate, then
we call this integer coloring number col(H) of H. Thus,

col(H) = max
H ′⊆H

δ(H ′) + 1.

Often, the coloring number of a hypergraph H is defined in a different, yet equivalent way:
as the least integer k for which there is an ordering (v1, v2, . . . , vn) of the vertices of H such
that dH[{v1,v2,...,vi}](vi) + 1 ≤ k for all i ∈ [1, n]. For graphs, this definition goes back to
ERDŐS and HAjNAL [42]; SZEKERES and WiLF [113] were the first to examine the coloring
number of a graph as we define it and established it as an upper bound for the chromatic
number (see also (1.3)). The equivalence of both definitions can easily be checked as we
shall demonstrate here.

Let (v1, v2, . . . , vn) be any ordering of the vertices of a hypergraph H. Moreover, let H ′

be a subhypergraph of H with maximum minimum degree, and let i be the largest index
from [1, n] such that vi is contained in H ′. Then, H ′ ⊆ H[{v1, v2, . . . , vi}] and so

col(H) = δ(H ′) + 1 ≤ dH ′(vi) + 1 ≤ dH[{v1,v2,...,vi}](vi) + 1.

To obtain the converse, let (v1, v2, . . . , vn) be an ordering of the vertices of H such that vi
has minimum degree in the subhypergraph Hi = H−{vi+1, vi+2, . . . , vn} for i = n,n−1, . . . , 1

where Hn = H (a so called smallest last order of H). Then, for all i ∈ [1, n], we have

col(H) = max
∅̸=H ′⊆H

δ(H ′) + 1 ≥ δ(Hi) + 1 = dH[{v1,v2,...,vi}](vi) + 1.

Summarizing, we conclude the following proposition.
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Proposition 1.1. Let H be a non-empty hypergraph and let (v1, v2, . . . , vn) be a smallest
last order of H. Then,

col(H) = max
1≤i≤n

dH[{v1,v2,...,vi}](vi) + 1. ⋄⋄

For graphs, this way of computing the coloring number leads to a polynomial time algorithm
as pointed out by FiNCK and SACHS [45] and, independently, by MATULA [85].

A natural generalization of strict k-degeneracy is the following variable version. Given
a hypergraph H and a function h from V(H) to the set N0, we say that H is strictly h-
degenerate if every non-empty subhypergraph H ′ of H contains a vertex v with dH ′(v) <

h(v). Clearly, this includes the definition of being strictly k-degenerate by setting h(v) = k

for all vertices v of H. The concept of variable degeneracy was introduced by STiEBiTZ [109]
as a tool to prove a conjecture of THOMASSEN [114] regarding graph partitions under min-
imum degree constraints. Variable degeneracy was further examined by BORODiN, KOS-
TOCHKA, and TOFT in 2000 [23].

1.2. Partitions and Colorings of Hypergraphs

Based on our experience, (hyper-)graph colorists are divided into two groups: for some, a
coloring of a (hyper-)graph H is a partition of H into parts that satisfy certain conditions;
for the others, a coloring of H is a function that assigns each vertex of the hypergraph a
color according to some given rules. Of course, both approaches are completely right and
technically equivalent. However, since we like to work flexibly, we want to introduce both
ways and use the best fitting one depending on the situation.

Let H be a hypergraph. A partition or p-partition of H is a sequence (H1, H2, . . . , Hp)

of p ≥ 1 pairwise vertex disjoint induced subhypergraphs with

V(H) = V(H1) ∪ V(H2) ∪ · · · ∪ V(Hp);

we call the subhypergraphs H1, H2, . . . , Hp parts of the partition. Note that parts may also
be empty by definition; this is due to technical reasons.

A coloring of H with a finite color set Γ is a function φ : V(H) → Γ . If the color set’s
cardinality equals k, we also say that the coloring φ is a k-coloring of H. For each color
α ∈ Γ , the preimage

φ−1(α) = {v ∈ V(H) | φ(v) = α}
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is called color class of H with respect to φ. A subhypergraph of H is monochromatic
with respect to the coloring φ if all of its vertices belong to the same color class.

In many coloring problems like scheduling or the channel assignment problem not every
color is available for each vertex. Instead, each vertex v gets assigned a set (list) L(v) of
colors from which the vertices color must be chosen. To formalize this approach, a list-
assignment of a hypergraph H with color set Γ is a function L from V(H) to the power
set 2Γ . Given a list-assignment L of H with color set Γ , we say that a coloring φ of H is an
L-coloring of H if φ(v) ∈ L(v) for all v ∈ V(H).

As emphasized at the beginning of this section, the concepts of hypergraph partitions and
hypergraph coloring are two sides of the same coin. Let H be a hypergraph and let Γ = [1, p].
If φ is a coloring of H with color set Γ , then (H1, H2, . . . , Hp) with Hα = H[φ−1(α)] for α ∈ Γ

is a partition of H. Conversely, if (H1, H2, . . . , Hp) is a partition of H, then the function φ

with φ(v) = α if v ∈ V(Hα) is a coloring of H with color set Γ .
Colorings and partitions of hypergraphs become a subject of interest only when some

restrictions to the color classes, respectively to the parts of the partition, are imposed.
The probably most investigated type of colorings are proper colorings: A coloring or L-
coloring of a hypergraph H with color set Γ is called a proper coloring, respectively
a proper L-coloring of H if each color class is an independent set of H. Equivalently,
a coloring (respectively L-coloring) φ of H is a proper coloring (respectively proper L-
coloring) if |φ(iH(e))| ≥ 2 for all e ∈ E(H), i.e. every edge contains at least two vertices
of distinct colors. This coloring concept is also related to degeneracy; in a proper coloring,
each color class induces an edgeless subhypergraph and, therefore, a strictly 1-degenerate
subhypergraph. Consequently, a hypergraph H admits a proper p-coloring if and only if H
has a p-partition all of which parts are strictly 1-degenerate.

The chromatic number of a hypergraph H, denoted by χ(H), is the least integer k

such that H admits a proper k-coloring. Similar, the list-chromatic number of H (also
commonly known as choice number), denoted by χℓ(H), is the least integer k such that H
admits a proper L-coloring for each list-assignment L satisfying |L(v)| ≥ k for all v ∈ V(H).
Since χℓ(H) = k implies that H has a proper L-coloring for the constant list-assignment
L with L(v) = [1, k] for all v ∈ V(H), we obtain χ(H) ≤ χℓ(H). Furthermore, a simple
sequential coloring argument shows that

χ(H) ≤ χℓ(H) ≤ col(H) ≤ ∆(H) + 1. (1.3)

Note that the chromatic number and the list-chromatic number of a hypergraph H is equal



Preliminaries: Hypergraphs 14

to the chromatic number, respectively list-chromatic number of its underlying simple
hypergraph, that is, the hypergraph obtained from H by deleting all edges e ∈ E(H) for
which there exists an edge e ′ ∈ E(H) with iH(e

′) ⊂ iH(e) and then replacing all parallel
edges by a single edge.

1.3. Hypergraph Properties

We have seen above that in a proper coloring of a hypergraph, each color class induces a
strictly 1-degenerate subhypergraph. So wouldn’t it be natural also to examine colorings in
which each color class induces a strictly k-degenerate subhypergraph for some k ≥ 2? In fact,
we can get even more general and just require each color class to induce a subhypergraph
belonging to some prescribed hypergraph property. In Chapter 3, we will examine these
kind of colorings and show that one can prove generalized versions of famous theorems like
the ones of BROOKS and GALLAi if we only demand the hypergraph property to satisfy
two reasonable conditions. Let’s get to the definitions. By H we denote the class of
all hypergraphs. A hypergraph property P is a subclass of H that is closed under
isomorphisms. The hypergraph property P is smooth if the following two conditions hold.

(P1) P is hereditary, i.e., P is closed under induced subhypergraphs, and

(P2) P is non-trivial, i.e., P contains a non-empty hypergraph but is different from H.

Hereditary properties for graphs have been studied extensively, an interesting overview
can be found in [24]. Some important hereditary hypergraph properties that are smooth, in
particular, are the following:

O = {H ∈ H | H is edgeless},
Sk = {H ∈ H | ∆(H) ≤ k}, and
Dk = {H ∈ H | H is strictly (k+ 1)-degenerate}

with k ≥ 0. Consequently, a proper coloring of a hypergraph H is just a coloring such that
each color class induces a subhypergraph of H that belongs to O. Note that the two classes
O and D0 coincide.

For a smooth hypergraph property P, let

F(P) = {H ∈ H | H 6∈ P, but H− v ∈ P for all v ∈ V(H)},
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and let
d(P) = min{δ(H) | H ∈ F(P)}.

For instance, F(O) = {H ∈ H | H =< e > for some edge e} and d(O) = 1. Moreover,
F(Sk) contains the star on k+ 2 vertices and so d(Sk) = 1. Obviously, the class of (k+ 1)-
regular connected hypergraphs is contained in F(Dk), but a full characterization of F(Dk)

for k ≥ 1 has not yet been obtained. Still, it is an easy observation that d(Dk) = k+ 1.
The next proposition states some basic facts on hypergraph properties; the statements

are well-known for graphs and easily extend to hypergraphs.

Proposition 1.2. Let P be a smooth hypergraph property. Then, the following statements
hold:

(a) P contains K0 and K1.

(b) A hypergraph H belongs to F(P) if and only if each proper induced subhypergraph of
H belongs to P, but H does not.

(c) A hypergraph H does not belong toP if and only if H contains an induced subhypergraph
from F(P).

(d) The class F(P) is non-empty and d(P) is from N0.

(e) If a hypergraph H does not belong to P, but H − v ∈ P for some v ∈ V(H), then
dH(v) ≥ d(P). ⋄

Proof. Since P is non-trivial, P contains a non-empty hypergraph H. As P is hereditary, it
contains all induced subhypergraphs of H and, therefore, K0 and K1. Statement (b) follows
from (P1) and the definition of F(P) since H − v is a proper induced subhypergraph of H
for all v ∈ V(H). In order to prove (c), let H be a hypergraph. If H contains an induced
subhypergraph H ′ from F(P), then clearly H 6∈ P (by (P1)). Conversely, if H does not
belong to P, there is an induced subhypergraph H ′ of H such that H ′ 6∈ P and |H ′| is
minimum. Then, H ′ − v ∈ P for all v ∈ V(H ′) and H ′ belongs to F(P). Since P is
different from H (by (P2)), statement (d) is an immediate consequence of (c).

It remains to prove statement (e). To this end, let H 6∈ P be a hypergraph such that
H−v ∈ P for some v ∈ V(H). By (c), H contains an induced subhypergraph H ′ from F(P).
Then, H ′ contains v, since otherwise H ′ would be an induced subhypergraph of H − v and
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would therefore belong to P (by (P1)). Thus,

d(P) ≤ δ(H ′) ≤ dH ′(v) ≤ dH(v),

which proves (e). ■

1.4. Criticality

Criticality plays a vital role in the investigation of various hypergraph properties. Given
a hypergraph property P, a hypergraph H is called P-vertex-critical (respectively, P-
critical) if every proper induced subhypergraph (respectively, every proper subhypergraph)
belongs to P, but H itself does not. Clearly, every P-critical hypergraph is also P-vertex-
critical; yet the converse implication does not necessarily hold true. Note that if P is a
smooth hypergraph property, then a hypergraph H is P-vertex-critical if and only if H

does not belong to P and H − v ∈ P for all v ∈ V(H). Consequently, F(P) is the set of
P-vertex-critical hypergraphs. Moreover, a hypergraph H does not belong to P if and only
if H has a P-vertex-critical induced subhypergraph.

As mentioned in the introduction, the concept of criticality was first introduced and
investigated by DiRAC in the 1950s for the class of simple graphs and with respect to the
graph property consisting of all graphs G with χ(G) ≤ k for fixed k; see e.g. [35, 36, 37, 38,
39, 40].

1.5. Structure of the Following Chapters

In Chapter 2 we consider the following partition problem: given a hypergraph H and a
sequence f = (f1, f2, . . . , fp) of functions from V(H) to N0, we want to find a p-partition
(H1, H2, . . . , Hp) of H such that Hi is strictly fi-degenerate for all i ∈ [1, p] (a so called
f-partition of H). Such kind of partition is especially interesting as we can model many of
the common coloring problems by choosing f appropriately. For example, if fi ≡ 1 for all
i ∈ [1, p], then an f-partition of H corresponds to a proper p-coloring of the hypergraph (and
vice versa). Similarly, proper list-colorings and even generalized colorings regarding smooth
hypergraph properties can be designed by a suitable function f. Thus, by analyzing which
requirements in regard to f are sufficient for the existence of an f-partition, we can solve a lot
of questions related to hypergraph coloring. We shall prove that the condition f1(v)+f2(v)+

. . .+fp(v) ≥ dH(v) for all v ∈ V(H) is nearly sufficient and give a full characterization of the
hypergraphs H that are not f-partitionable under this requirement (see Theorem 2.3). This
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main result of Chapter 2 generalizes a theorem of BORODiN, KOSTOCHKA, and TOFT [23]
on f-partitions of simple graphs. Although the proof of our result is both technical as well
as quite exhausting, the theorem itself is a really nice meta result with multiple interesting
applications. The results of Chapter 2 as well as those in the first part of Chapter 3 are joint
work with MiCHAEL STiEBiTZ and have been published as Partitions of hypergraphs
under variable degeneracy constraints in Journal of Graph Theory [104].

In Chapter 3 we demonstrate how to obtain various well-known coloring results for graphs
and hypergraphs from Theorem 2.3 by choosing the correct function f. This includes the list
version of BROOKS’ Theorem for hypergraphs [72] (see Theorem 3.2), a BROOKS-type result
regarding the coloring number that was proved for graphs by BORODiN [20], respectively
BOLLOBÁS and MANVEL [16] (see Theorem 3.4’), and even a generalization of this result
that was obtained for graphs by MATAMALA [84] (see Theorem 3.8). Moreover, we obtain
a result on the (list-)point-partition number, i.e., on colorings of which every color class
induces a strictly s-degenerate subhypergraph (see Corollary 3.10). Sections 3.1 and 3.2
are the hypergraph-counterparts to the respective sections in the paper [23]; the proofs are
easy adaptations. The MATAMALA-related result in Section 3.3 is from the paper Vertex
partition of hypergraphs and maximum denegerate subhypergraphs [103], which is
also joint work with MiCHAEL STiEBiTZ and has been submitted to Electronic Journal
of Graph Theory and Applications.

Afterwards, we examine generalized hypergraph coloring as motivated in the previous
section: given a hypergraph H, a list-assignment L of H, and a smooth hypergraph property
P, a (P, L)-coloring of H is an L-coloring of H such that each color class induces a sub-
hypergraph belonging to P. We then use Theorem 2.3 in order to deduce a GALLAi-type
result regarding (P, L)-vertex-critical hypergraphs, i.e., vertex-critical hypergraphs with re-
spect to the property of having a (P, L)-coloring (see Theorem 3.13). This again leads
to a BROOKS-type theorem for generalized hypergraph coloring (see Theorem 3.16) and
a GALLAi-type bound for the number of edges in critical hypergraphs (see Section 3.5.3).
These results have been published as Generalized hypergraph coloring in Discussiones
Mathematicae Graph Theory [100].

In Chapter 4 we analyze DP-colorings of hypergraphs. DP-coloring is a new coloring
concept that has been introduced recently by DVOŘÁK and POSTLE [41] and, since then, has
aroused curiosity of many graph theorists. Their main idea was to generalize the list-coloring
concept in order to make advantage of classical proof techniques like vertex identification
that usually do not work for list-colorings. To this end, given a list-assignment L of a graph

http://dx.doi.org/10.1002/jgt.22575
http://dx.doi.org/10.1002/jgt.22575
https://arxiv.org/abs/1807.02308
https://arxiv.org/abs/1807.02308
https://doi.org/10.7151/dmgt.2168
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G, they construct an auxiliary graph G as follows: V(G) = {(v, α) | v ∈ V(G), α ∈ L(v)}

and E(G) = {(v, α)(v ′, α ′) | vv ′ ∈ E(G) and α = α ′}. Then, it is an easy observation that
G admits a proper L-coloring if and only if G has an independent transversal T , i.e., for
each vertex v ∈ V(G) exactly one of the vertices (v, α), α ∈ L(v), belongs to T and G[T ] is
edgeless. Note that for distinct vertices u, v ∈ V(G) the edges between the corresponding
vertices in G form a specific matching in this setting. By allowing any kind of matching
between the corresponding vertices, we get to the concept of DP-coloring. In Chapter 4, we
transfer the definition of DP-coloring to hypergraphs. Moreover, we obtain a BROOKS-type
result and also its degree version (see Corollary 4.9 and Theorem 4.10), thereby transferring
results by BERNSHTEYN, KOSTOCHKA, and PRON [14] as well as KiM and OZEKi [66] to
hypergraphs. Chapter 4 is based on the paper DP-degree colorable hypergraphs [101]
that has been published in Theoretical Computer Science.

In Chapter 5 we examine the connection between the chromatic number of a hypergraph
and its maximum local edge connectivity. Given two distinct vertices u, v of a hypergraph
H, the local edge connectivity λH(u, v) of u and v is the maximum number of edge-disjoint
(u, v)-hyperpaths; the maximum local edge connectivity λ(H) of H is the maximum local
edge connectivity over all possible pairs (u, v). As proved by TOFT in [117], every hypergraph
H satisfies χ(H) ≤ λ(H) + 1. Following up on that, we prove that, for λ(H) ≥ 3, χ(H) =

λ(H) + 1 if and only if some block of H belongs to a prediscribed hypergraph property
Hλ(H). Here, H3 is the smallest class of hypergraphs that contains all odd wheels and is
closed under so called HAjÓS joins and, for k ≥ 4, Hk is the smallest class of hypergraphs
containing all complete graphs of order k + 1 that is closed under taking HAjÓS joins.
Introduced in [54] for graphs, the concept of HAjÓS joins is a well known method for creating
infinite families of critical graphs and has been transferred to hypergraphs by TOFT [117].
The results displayed in Chapter 5 are from the paper Coloring hypergraphs of low
connectivity [105], which is joint work with MiCHAEL STiEBiTZ and BjARNE TOFT and
has been submitted to Journal of Combinatorics.

Large parts of the following chapters (and also of this chapter) are similar to those from
the corresponding papers or have been changed only slightly.

https://doi.org/10.1016/j.tcs.2019.09.010
https://arxiv.org/abs/1806.08567
https://arxiv.org/abs/1806.08567


Chapter 2

Partitions of Hypergraphs into
Degenerate Subhypergraphs

2.1. Introduction and Main Result

Let H be an arbitrary hypergraph. A function f : V(H) → N
p
0 is called vector function of

H. By fi we name the ith coordinate of f, i.e., f = (f1, f2, . . . , fp). The set of all vector
functions of H with p coordinates is denoted by Vp(H). For f ∈ Vp(H), an f-partition of H
is a p-partition (H1, H2, . . . , Hp) of H such that Hi is strictly fi-degenerate for all i ∈ [1, p].
If the hypergraph H admits an f-partition, then H is said to be f-partitionable. Since a
vector function f ∈ Vp(H) can naturally serve as vector function for any subhypergraph H ′

of H, we also denote the restriction of f to H ′ by f. Note that if H is f-partitionable, then
each of its subhypergraphs is f-partitionable, too.

Although the above definition might seem quite unimpressive at first glance, it is astonish-
ing how many coloring problems can be stated in terms of f-partitions. As a first example,
let us examine how to reduce the question of finding a proper list-coloring to finding an
f-partition. To this end, let H be a simple hypergraph and let L be a list-assignment for
H with color set Γ . By renaming the colors if necessary we may assume Γ = [1, p]. For
v ∈ V(H) and for i ∈ [1, p] let fi(v) = 1 if i ∈ L(v) and fi(v) = 0, otherwise (see also
Figure 2.1). Then, for any proper L-coloring φ of H, setting Hi = [φ−1(i)] leads to an f-
partition (H1, H2, . . . , Hp) of H. This is due to the fact that each Hi is strictly 1-degenerate
and that fi(v) = 1 for all v ∈ V(Hi). Conversely, given an f-partition (H1, H2, . . . , Hp) of H,
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we assign vertex v color i if v ∈ V(Hi) and thereby obtain a proper L-coloring of H. Thus,
finding an L-coloring of a hypergraph H is equivalent to finding an f-partition of H with f

defined as above.

{1, 2, 4}

{1, 3}

{2, 4}
{3, 4}

{1, 3, 4}{2, 3}

{1, 4} {2, 3, 4}

(H, L)

(1, 1, 0, 1)

(1, 0, 1, 0)

(0, 1, 0, 1)
(0, 0, 1, 1)

(1, 0, 1, 1)(0, 1, 1, 0)

(1, 0, 0, 1) (0, 1, 1, 1)

(H, f)

FiG. 2.1. Transforming a list-assignment L with color set [1, 4] into a function f.

As a consequence, results on the existence of f-partitions can be used in order to obtain
results in classic coloring theory, as well. But how difficult is it, to decide, whether a
hypergraph H is f-partitionable for a given vector function f? Since the determination of
the chromatic number of a graph is already NP-hard, yet just a special case of the f-partition
problem, this problem is NP-complete. Nevertheless, maybe some restrictions to the function
f could make the problem polynomial time solvable but still be non-trivial. In order to find
a suitable condition, we need to go back to an old result of LOVÁSZ [80], who was one of
the first to regard graph partitions under degree constraints. In 1966, he proved that, for
integers d1, d2, . . . , dp ≥ 0 and p ≥ 2, each simple graph G with dG(v) < d1 + d2 + . . .+ dp

for all v ∈ V(G) admits a p-partition (G1, G2, . . . , Gp) such that ∆(Gi) < di for all i ∈
[1, p]. A version for variable functions was published eleven years later by BORODiN and
KOSTOCHKA [22]. Although they formulated their result for graphs, the proof works for
hypergraphs, too. Since the proof is quite simple yet elegant, we include it in this thesis.

Theorem 2.1 (BORODiN and KOSTOCHKA, 1977). Let H be a hypergraph, and, for an in-
teger p ≥ 2, let f1, f2, . . . , fp be functions from V(G) to the set of positive integers. If

dH(v) < f1(v) + f2(v) + . . .+ fp(v)
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for all v ∈ V(H), then there is a partition (H1, H2, . . . , Hp) such that dHi
(v) < fi(v) for all

i ∈ [1, p] and all v ∈ V(Hi). ⋄

Proof. As the result for p > 2 follows from an easy induction, we may assume that p = 2.
We claim that a 2-partition (H1, H2) of H that minimizes

w(H1, H2) = |E(H1)|+ |E(H2)|+
∑

v∈V(H1)

f2(v) +
∑

v∈V(H2)

f1(v)

is the one that we are looking for. For otherwise, by symmetry, there is a vertex v ∈ V(H1)

such that dH1
(v) ≥ f1(v). Since dH(v) < f1(v) + f2(v), this implies that dH2

(v) < f2(v) and,
thus,

w(H1 − v,H2 + v) −w(H1, H2) = dH2
(v) − dH1

(v) + f1(v) − f2(v) < 0,

which is impossible. Thus, (H1, H2) is the desired partition. ■

As a consequence of the above theorem, if we require the hypergraph H to satisfy dH(v) <

f1(v)+ f2(v)+ . . .+ fp(v) for all v ∈ V(H), then H does not only admit an f-partition, but a
partition (H1, H2, . . . , Hp) such that for all i ∈ [1, p], every vertex of Hi has degree less than
its fi-value in Hi. But what happens if we do not require the inequality to be strict, i.e., if
we just request that dH(v) ≤ f1(v) + f2(v) + . . .+ fp(v) for all vertices v? Unfortunately, it
is not hard to find infinitely many examples of pairs (H, f) that meet this requirement such
that H is not f-partitionable. To see this, we regard BROOKS’ Theorem for hypergraphs,
which was obtained by JONES [64] in 1975.

Theorem 2.2 (JONES, 1975). Let H be a connected hypergraph. Then, χ(H) ≤ ∆(H) + 1

and equality holds if and only if H is a complete graph, an odd cycle, or consists of just one
hyperedge. ⋄

Since we have already demonstrated how to transform the list-coloring problem (and
therefore also the problem of finding a proper coloring) into the one of finding an f-partition,
Jones’ theorem immediately implies that complete graphs, odd cycles, and hypergraphs of
the form < e > for some hyperedge e together with appropriate functions f fulfill the above
degree condition, but are not f-partitionable. The good news, however, is that all counter-
examples can actually be created from those three basic types by the merging operation and,
therefore, may be characterized nicely. To this end, we introduce the following, recursively
defined class of configurations.

Let H be a connected hypergraph and let f ∈ Vp(H) be a vector-function for some p ≥ 1.
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We say that H is f-hard, or, equivalently, that (H, f) is a hard pair, if one of the following
four conditions hold:

(1) H is a block and there exists an index j ∈ [1, p] such that

fi(v) =

dH(v) if i = j,

0 otherwise

for all i ∈ [1, p] and for each v ∈ V(H). In this case, we say that H is a monoblock
or a block of type (M).

(2) H = tKn for some t ≥ 1, n ≥ 3 and there are integers n1, n2, . . . , np ≥ 0 with at least
two ni different from zero such that n1 + n2 + . . .+ np = n− 1 and that

f(v) = (tn1, tn2, . . . , tnp)

for all v ∈ V(H). In this case, we say that H is a block of type (K).

(3) H = tCn with t ≥ 1 and n ≥ 5 odd and there are two indices k 6= ℓ from the set [1, p]
such that

fi(v) =

t if i ∈ {k, ℓ},

0 otherwise

for all i ∈ [1, p] and for each v ∈ V(H). In this case, we say that H is a block of type
(C).

(4) There are two hard pairs (H1, f1) and (H2, f2) with f1 ∈ Vp(H1) and f2 ∈ Vp(H2)

such that H is obtained from H1 and H2 by merging two vertices v1 ∈ V(H1) and
v2 ∈ V(H2) to a new vertex v∗. Furthermore, it holds

f(v) =


f1(v) if v ∈ V(H1) \ {v

1},

f2(v) if v ∈ V(H2) \ {v
2},

f1(v1) + f2(v2) if v = v∗

for all v ∈ V(H). In this case we say that (H, f) is obtained from (H1, f1) and (H2, f2)

by merging v1 and v2 to v∗.

In order to develop a better feeling of how hard pairs may look like we refer the reader to
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Figure 2.2. An example of merging twice is displayed in Figure 2.3.

(C)

(M)

(K)

(4, 0)

(4, 0)

(4, 0) (4, 0)

(4, 0)

(4, 0)

(6, 0)(6, 0)

(6, 0)

(6, 0) (6, 0)

(6, 0)

(3, 3, 0)

(3, 3, 0)

(3, 3, 0) (3, 3, 0)

(3, 3, 0)

(0, 4, 2)(0, 4, 2)

(0, 4, 2) (0, 4, 2)

FiG. 2.2. A block of type (M), (K), and (C).

In the following section, we will show that if H is a hypergraph and f ∈ Vp(H) is a function
(p ≥ 1) the condition f1(v) + f2(v) + . . . + fp(v) ≥ dH(v) for all v ∈ V(H) is not sufficient
for the existence of an f-partition of H if and only if at least one component of H is f-hard.
Note that H is f-partitionable if and only if each component of H is f-partitionable. Thus,
it is satisfactory to consider only connected hypergraphs. The next result was proved by
BORODiN, KOSTOCHKA and TOFT [23] for the class of simple graphs. In the next section,
we will show how to extend it to hypergraphs.

Theorem 2.3. Let H be a connected hypergraph and let f ∈ Vp(H) be a vector function
with p ≥ 1 such that f1(v) + f2(v) + · · · + fp(v) ≥ dH(v) for all v ∈ V(H). Then H is not
f-partitionable if and only if (H, f) is a hard pair. ⋄

2.2. Proof of Theorem 2.3

We begin this section with an apologize to the reader: within the following, it will be
unavoidable to use also the letter G for hypergraphs in order to ensure readability. Never-
theless, this is the only section of this thesis in which G refers to a hypergraph, so we hope
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(3, 3, 0)

(3, 3, 0)

(3, 3, 0) (3, 3, 0)

(3, 3, 0)

(0, 0, 1)
(0, 0, 2)

(0, 0, 2)

(0, 0, 2)

(2, 2, 2)

(2, 2, 2)

(2, 2, 2)

(2, 2, 2)

(3, 3, 0)

(3, 3, 0)

(3, 3, 0) (3, 3, 0)
(2, 2, 2)

(2, 2, 2)(5, 5, 2)

(0, 0, 2)

(0, 0, 2)

(0, 0, 2)

(2, 2, 3)

FiG. 2.3. Merging hard pairs.

that the reader will forgive us the stylistic weakness. The next proposition—although fairly
trivial—will be used frequently in the following.

Proposition 2.4. Let H be a connected hypergraph, and let h ∈ V1(H). If h(v) = dH(v)

for all v ∈ V(H), then each proper subhypergraph of H is strictly h-degenerate. ⋄

The proof of Theorem 2.3 is divided into two parts. In the first part, we prove some
properties of hard pairs and show that any hard pair is not f-partitionable. The proof
of the next proposition can be done by induction on the number of blocks of H and is
straightforward.

Proposition 2.5. Let H be a connected hypergraph and let f ∈ Vp(H) be a vector function
with p ≥ 1 such that H is f-hard. Then, for each B ∈ B(H) there is a uniquely determined
function fB ∈ Vp(B) such that the following statements hold:

(a) (B, fB) is a hard pair of type (M), (K), or (C).

(b) f(v) =
∑

B∈Bv(H) fB(v) for all v ∈ V(H).

(c) fB(v) = f(v) for all non-separating vertices v of H belonging to B. ⋄

Note that the above proposition clearly implies that fB(v) ≤ f(v) holds coordinatewise.
The next proposition shows that f-hard hypergraphs are not f-partitionable.

Proposition 2.6. Let H be a connected hypergraph, and let f ∈ Vp(H) be a vector function
with p ≥ 1. If H is f-hard, then the following statements hold:

(a) f1(v) + f2(v) + . . .+ fp(v) = dH(v) for all v ∈ V(H).
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(b) If u 6= u ′ are two non-separating vertices contained in the same block of H, then either
f(u) = f(u ′) or fi(u) = fi(u

′) = 0 for all but one index i ∈ [1, p].

(c) H is not f-partitionable. ⋄

Proof. Statements (a) and (b) are simple consequences of Proposition 2.5. The proof of (c)
is by reductio ad absurdum. To this end, choose (H, f) such that

(1) H is f-hard,

(2) there is an f-partition (H1, H2, . . . , Hp) of H, and

(3) |H| is minimum with respect to (1) and (2).

Note that the empty hypergraph is the only hypergraph that is strictly 0-degenerate; thus,
if fi ≡ 0 for some i, then Hi = ∅ must hold. As a consequence, if (H, f) is of type (M),
there is an index j such that Hi = ∅ for all i ∈ [1, p] \ {j} and fj(v) = dH(v) for all v ∈ V(H).
Therefore, Hj is not strictly fj-degenerate, contradicting (2).

If (H, f) is of type (K), then H = tKn for some t ≥ 1, n ≥ 3 and there are integers
n1, n2, . . . , np such that n1 + n2 + . . . + np = n − 1 and f(v) = (tn1, tn2, . . . , tnp) for all
v ∈ V(H). Thus, Hi is a tKmi

for some mi ≥ 0 for all i ∈ [1, p]. Since Hi is strictly
fi-degenerate, it holds |Hi| = mi ≤ ni for all i ∈ [1, p]. Consequently, we obtain

|H| = |H1|+ |H2|+ . . .+ |Hp| ≤ n− 1,

which is impossible.
If (H, f) is of type (C), then H = tCn for some t ≥ 1 and n ≥ 5 odd, and there are two

indices k 6= ℓ from the set [1, p] such that fi(v) = t for i ∈ {k, ℓ} and fi(v) = 0, otherwise.
Then, (Hk, Hℓ) is a 2-partition of H and fk(v) = fℓ(v) = t for all v ∈ V(H). Since n is odd,
one of the parts, say Hk, contains two adjacent vertices that are joined by t parallel edges.
Therefore, Hk is not strictly fk-degenerate, a contradiction.

It remains to consider the case that (H, f) is obtained from two hard pairs (H1, f1) and
(H2, f2) by merging v1 and v2 to v∗. In order to simplify the proof, we assume v1 = v2 = v∗.
By (3), Hj is not fj-partitionable for j ∈ {1, 2}. Let Hj

i = Hj ∩Hi for i ∈ [1, p] and j ∈ {1, 2}.
By symmetry, we may assume v∗ ∈ V(H1). Since (H1, H2, . . . , Hp) is an f-partition of H,
it follows that H1

i is strictly f1i -degenerate and H2
i is strictly f2i -degenerate for all i ∈ [2, p].

As a consequence, for j ∈ {1, 2}, the hypergraph H
j
1 is not strictly f

j
1-degenerate and, thus,

there is a non-empty subhypergraph Gj ⊆ H
j
1 such that dGj(v) ≥ f

j
1(v) for all v ∈ V(Gj).
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Nevertheless, this implies that G = G1 ∪G2 is a non-empty subhypergraph of H1 such that
dG(v) ≥ f1(v) for all v ∈ V(G), a contradiction. This completes the proof. ■

Thus, the “if”-direction is proved. For the remaining part, we will need the following
notation. We say that (H, f) is a non-partitionable pair of dimension p if H is a
connected hypergraph, f ∈ Vp(H) is a vector function satisfying

f1(v) + f2(v) + . . .+ fp(v) ≥ dH(v)

for all v ∈ V(H), and H is not f-partitionable. The next two propositions describe charac-
teristics of non-partitionable pairs.

Proposition 2.7. Let (H, f) be a non-partitionable pair of dimension p, let z be a non-
separating vertex of H, and let j ∈ [1, p] such that fj(z) 6= 0. For the hypergraph H ′ = H÷ z,
define f ′ ∈ Vp(H ′) to be the vector function satisfying

f ′i(v) =

max{0, fj(v) − µH(z, v)} if i = j,

fi(v) otherwise

for all v ∈ V(H ′) and i ∈ [1, p]. Then, (H ′, f ′) is a non-partitionable pair of dimension p,
and in what follows, we write (H ′, f ′) = (H, f)/(z, j). ⋄

Proof. By symmetry, we may assume j = 1. Then, f1(z) ≥ 1 and H is not f-partitionable.
Thus, |H| ≥ 2 holds and H ′ = H ÷ z is connected. Assume that H ′ admits an f ′-partition
(H1, H2, . . . , Hp). To arrive at a contradiction, let H∗

1 = H[V(H1) ∪ {z}]. We show that H∗
1

is strictly f1-degenerate. To this end, choose a non-empty subhypergraph G∗ ⊆ H∗
1. Then,

H1 = H∗
1 ÷ z and G = G∗÷ z is a subhypergraph of H1. As H1 is strictly f ′1-degenerate, G is

strictly f ′1-degenerate, too. If G is non-empty, this implies that there is a vertex v satisfying
dG(v) < f ′1(v). But then, f ′1(v) > 0 and, by using (1.2), we obtain

dG∗(v) = dG(v) + µH(v, z) < f ′1(v) + µH(v, z) = f1(v),

and we are done. If G is empty, then V(G∗) = {z} and dG∗(z) = 0 < f1(z). Hence, H∗
1

is strictly f1-degenerate. As H∗
j = H[V(Hj)] is a subhypergraph of Hj for j ∈ [2, p], H∗

j is
strictly-fj-degenerate and, thus, the sequence (H∗

1, H
∗
2, . . . , H

∗
p) is an f-partition of H, which

is impossible. ■

By applying the above introduced reduction method, we obtain the following statements.
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Proposition 2.8. Let (H, f) be a non-partitionable pair of dimension p ≥ 1. Then, the
following statements hold:

(a) f1(v) + f2(v) + . . .+ fp(v) = dH(v) for all v ∈ V(H).

(b) If z is a non-separating vertex of H satisfying fj(z) 6= 0 for some j ∈ [1, p], then
fj(v) ≥ µH(z, v) holds for all v ∈ V(H) \ {z}.

(c) If |H| ≥ 2 and if u is an arbitrary vertex of H, then H − u admits an f-partition.
Furthermore, for any such f-partition (H1, H2, . . . , Hp) it holds fi(u) = dHi+u(u) for
all i ∈ [1, p] and EH(u) = EH1+u(u) ∪ EH2+u(u) ∪ . . . ∪ EHp+u(u). ⋄

Proof. The proof of statement (a) is by induction on the order n of H. For n = 1, the
statement is evident. Let n ≥ 2 and let v be an arbitrary vertex. Since H is connected,
there is a non-separating vertex z 6= v in H. Since

f1(z) + f2(z) + . . .+ fp(z) ≥ dH(z) ≥ 1,

it holds fj(z) ≥ 1 for some j ∈ [1, p]. By Proposition 2.7, the pair (H ′, f ′) = (H, f)/(z, j)

is non-partitionable, f ′i(v) = fi(v) for all i 6= j from the set [1, p] and, moreover, f ′j(v) =

max{0, fj(v) − µH(v, z)}. From the induction hypothesis it follows that

f ′1(v) + f ′2(v) + . . .+ f ′p(v) = dH ′(v).

Since f1(v) + f2(v) + . . .+ fp(v) ≥ dH(v), this leads to

dH(v) ≤ f1(v) + f2(v) + . . .+ fp(v)

≤ f ′1(v) + f ′2(v) + . . .+ f ′p(v) + µH(v, z)

= dH ′(v) + µH(v, z) = dH(v)

(see (1.2)), and the proof of (a) is complete.
The proof of (b) is by contradiction. Assume that there exist a non-separating vertex z

of H and a vertex v 6= z such that fj(z) 6= 0 and fj(v) < µH(v, z) for some j ∈ [1, p]. By
symmetry, we may assume j = 1. Then, (H ′, f ′) = (H, f)/(z, 1) is a non-partitionable pair
such that

f1(v) − µH(z, v) < 0 = f ′1(v)

and fi(v) = f ′i(v) for all i ∈ [2, p]. Using (1.2) and applying (a) to (H ′, f ′) as well as (H, f)
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leads to

dH(v) − µ(z, v) = dH ′(v) = f ′1(v) + f ′2(v) + . . .+ f ′p(v)

> f1(v) − µH(z, v) + f2(v) + . . .+ fp(v)

= dH(v) − µH(z, v),

which is impossible.
In order to prove (c), let u be an arbitrary vertex of H and let H ′ = H − u. Since H is

connected, each component G of H ′ contains a vertex u ′, which is a neighbor of u in H and,
so, f1(u ′) + f2(u

′) + . . . + fp(u
′) ≥ dH(u

′) > dG(u
′). Applying (a) to (G, f), this implies

that G is f-partitionable and, thus, H ′ is f-partitionable. Hence, there is an f-partition
(H1, H2, . . . , Hp) of H ′. Since H is not f-partitionable, we conclude that H ′

i = Hi + u is not
strictly fi-degenerate for each i ∈ [1, p]. Hence, there is a non-empty subhypergraph Gi of
H ′

i such that dGi
(v) ≥ fi(v) for all v ∈ V(Gi). Since Hi is strictly fi-degenerate, u ∈ V(Gi)

for all i ∈ [1, p]. Due to the fact that f1(u) + f2(u) + . . .+ fp(u) = dH(u) (by (a)) and

dH(u) ≥ dH ′
1
(u) + dH ′

2
(u) + . . .+ dH ′

p
(u),

it follows that

f1(u) + f2(u) + . . .+ fp(u) = dH(u)

≥ dH ′
1
(u) + dH ′

2
(u) + . . .+ dH ′

p
(u)

≥ dG1
(u) + dG2

(u) + . . .+ dGp(u)

≥ f1(u) + f2(u) + . . .+ fp(u),

which leads to fi(u) = dH ′
i
(u) for all i ∈ [1, p]. Furthermore, it follows

dH(u) = dH ′
1
(u) + dH ′

2
(u) + . . .+ dH ′

p
(u),

which clearly implies the last part of the statement. ■

Now we are able to prove the remaining part of Theorem 2.3.

Theorem 2.9. If (H, f) is a non-partitionable pair of dimension p ≥ 1, then H is f-hard.⋄
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Proof. The proof is by reductio ad absurdum. So let (H, f) be a smallest counterexample,
that is,

(1) (H, f) is a non-partitionable pair of dimension p ≥ 1,

(2) (H, f) is not a hard pair, and

(3) |H| is minimum subject to (1) and (2).

From Proposition 2.8(a) it then follows that

f1(v) + f2(v) + . . .+ fp(v) = dH(v) (2.1)

for all v ∈ V(H). Furthermore, |H| ≥ 2, for otherwise, (H, f) would be a hard pair of type
(M), contradicting (2). To arrive at a contradiction, we shall establish eight claims analyzing
the structure of the pair (H, f).

Claim 2.9.1. H is a block, that is, H has no separating vertex. ⋄

Proof. Suppose, to the contrary, that H has a separating vertex v∗. Then, H is the union of
two connected induced subhypergraphs H1 and H2 with V(H1)∩V(H2) = {v∗} and |Hj| < |H|

for j ∈ {1, 2}. By Proposition 2.8(c), H−v∗ admits an f-partition (H1, H2, . . . , Hp) satisfying
fi(v

∗) = dHi+v∗(v
∗) for all i ∈ [1, p] and

EH(v
∗) = EH1+v∗(v

∗) ∪ EH2+v∗(v
∗) ∪ . . . ∪ EHp+v∗(v

∗).

For i ∈ [1, p], we define H1
i = Hi ∩H1 and H2

i = Hi ∩H2. Then, Hi = H1
i ∪H2

i and

fi(v
∗) = dHi+v∗(v

∗) = dH1
i
+v∗(v

∗) + dH2
i
+v∗(v

∗) (2.2)

for all i ∈ [1, p]. For j ∈ {1, 2} let fj ∈ Vp(Hj) be the function satisfying

f
j
i(v) =

fi(v) if v ∈ V(Hj − v∗),

d
H

j
i
+v∗

(v∗) if v = v∗

for all v ∈ V(Hj) and all i ∈ [1, p]. By (2.1) and (2.2) together with Proposition 2.8(c), we
conclude that fj1(v) + f

j
2(v) + . . .+ f

j
p(v) = dHj(v) for each j ∈ {1, 2} and v ∈ V(Hj). If Hj is

not fj-partitionable for j ∈ {1, 2}, then, as (Hj, fj) satisfies (1) and since |Hj| < |H|, it follows
from (3) that Hj is fj-hard. Therefore, (H, f) is obtained from two hard pairs by merging two
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vertices, and so H is f-hard. Otherwise, by symmetry, we may assume that H1 admits an f1-
partition (H ′

1, H
′
2, . . . , H

′
p) and that v∗ ∈ V(H ′

1). Consider the p-partition (G1, G2, . . . , Gp)

of H, where G1 = H ′
1 ∪ (H2

1 + v∗) and Gi = H ′
i ∪ H2

i for i ∈ [2, p]. By construction, Gi is
strictly fi-degenerate for i ∈ [2, p]. We claim that G1 is strictly f1-degenerate. In order
to prove this, let G be a non-empty subhypergraph of G1. If G ⊆ H2

1, then dG(v) < f(v)

for some vertex v ∈ V(G) since H2
1 is strictly f1-degenerate. Otherwise, G ′ = G ∩ H ′

1 is a
non-empty subhypergraph of H ′

1 and, since H ′
1 is strictly f11-degenerate, there is a vertex

v ∈ V(G ′) such that dG ′(v) < f11(v). If v 6= v∗, then dG(v) = dG ′(v) < f11(v) = f1(v) and we
are done. Else, v = v∗ and it follows from (2.2) and from the definition of fj1 that

dG(v
∗) ≤ dG ′(v∗) + dH2

1
+v∗(v

∗) < f11(v
∗) + f21(v

∗) = f1(v
∗).

This shows that G1 is strictly f1-degenerate and, hence, H is f-partitionable, contradicting
the premise. Thus, the proof of the first claim is complete. □

Claim 2.9.2. If there exists a vertex z ∈ V(H) and an index j ∈ [1, p] such that fj(z) 6= 0,
then (H ′, f ′) = (H, f)/(z, j) is a non-partitionable pair and the following statements hold:

(a) (H ′, f ′) is a hard pair.

(b) fj(v) ≥ µH(v, z) for all v ∈ V(H) \ {z}. ⋄

Proof. Since H is a block (by Claim 2.9.1) and |H| ≥ 2, z is a non-separating vertex of H
and H ′ = H ÷ z 6= ∅. Since (H, f) is a non-partitionable pair (by (1)), (H ′, f ′) is a non-
partitionable pair, too (by Proposition 2.7). From (3) it then follows that (H ′, f ′) is a hard
pair. Statement (b) is a consequence of Proposition 2.8(b). □

Now let z ∈ V(H) be an arbitrary vertex. Since |H| ≥ 2 and since H is connected, there
is an index j ∈ [1, p] with fj(z) 6= 0 (by (2.1)). By symmetry, we may assume j = 1. Then,
(H ′, f ′) = (H, f)/(z, 1) is a hard pair (by Claim 2.9.2(a)). Furthermore, for all v ∈ V(H ′),
f1(v) ≥ µH(v, z) (by Claim 2.9.2(b)), and so

f ′(v) = (f1(v) − µH(z, v), f2(v), . . . , fp(v)). (2.3)

Claim 2.9.3. The hard pair (H ′, f ′) is not of type (M). ⋄

Proof. Assume, to the contrary, that (H ′, f ′) is of type (M). If n = 2 this implies that (H, f)

is of type (M) since otherwise (H, f) would clearly admit an f-partition. But then (H, f) is a
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hard pair, contradicting (2). Now let n ≥ 3. Since (H ′, f ′) is of type (M), there is an index
k ∈ [1, p] such that f ′k(v) = dH ′(v) and f ′i(v) = 0 for all i ∈ [1, p] \ {k} and for all v ∈ V(H ′).

Case A: Vertex z is contained in a hyperedge. Then, H − z is a proper subhypergraph
of H ′ = H ÷ z. Since each vertex v of H ′ satisfies dH ′(v) = f ′k(v), Proposition 2.4 implies
that H − z is strictly f ′k-degenerate and therefore strictly fk-degenerate. If k 6= 1, then
setting H1 = H[{z}], Hk = H − z, and Hi = ∅ for i ∈ [2, p] \ {k} gives us an f-partition of
H, which is impossible. Thus, k = 1. Moreover, by a similar argumentation it must hold
f(z) = (dH(z), 0, . . . , 0) and, thus, (H, f) is a hard pair of type (M), contradicting (2).

Case B: Vertex z is contained only in ordinary edges. Since H is a block, this implies
that the ordinary neighborhood N = NH(z) of z is non-empty. If k = 1, then (2.3) leads
to f2(v) = f3(v) = . . . = fp(v) = 0 for all v ∈ V(H ′). By Claim 2.9.2(b), it then follows
f2(z) = f3(z) = . . . = fp(z) = 0 and, thus, (H, f) is of type (M), a contradiction to (2).

It remains to consider the case that k 6= 1, say k = 2 (by symmetry). Then, f3(v) =

f4(v) = . . . = fp(v) = 0 and f2(v) = f ′2(v) = dH ′(v) > 0 for all v ∈ V(H ′). Since N is
non-empty, Claim 2.9.2(b) (applied on a vertex from N) implies that f2(z) > 0. Then,
(H ′, f ′′) = (H, f)/(z, 2) is a hard pair (by Claim 2.9.2(a)), too, and it holds

f ′′(v) = (f1(v), dH ′(v) − µH(v, z), 0, 0, . . . , 0)

for all v ∈ V(H ′). Assume that there is a vertex u ∈ V(H ′) \ N. Then, µH(u, z) = 0

and f ′′(u) = f ′(u) = (0, dH ′(u), 0, 0, . . . , 0). Since (H ′, f ′′) is a hard pair of type (M) (and
hence H ′ is a block), we conclude that (H ′, f ′′) is a hard pair of type (M) with f ′′(v) =

(0, dH ′(v), 0, 0, . . . , 0) for all v ∈ V(H ′). However, since f1(z) > 0, Claim 2.9.2(b) leads to
f1(v) > 0 for all v ∈ N and, thus, f ′′1 (v) = f1(v) > 0 for all v ∈ N, a contradiction. As a
consequence, N = V(H ′). Then, f1(z) > 0 and f2(v) = f ′2(v) = dH ′(v) > 0 for all v ∈ V(H ′).
By Claim 2.9.2(b), this leads to f1 and f2 being nowhere-zero in V(H). Let v ∈ V(H ′) be
an arbitrary vertex. Then, H2 = H− z− v is a proper subhypergraph of H ′ and, therefore,
strictly f ′2-degenerate (by Proposition 2.4). If H1 = H[{v, z}] is strictly f1-degenerate, then
(H1, H2,∅,∅, . . . ,∅) is an f-partition of H, which is impossible. Thus, H1 = H[{v, z}] is not
strictly f1-degenerate and, since min{f1(z), f1(v)} ≥ µH(v, z) ≥ 1 (by Claim 2.9.2(b)), this
leads to f1(z) = f1(v) = µH(v, z). Since v was chosen arbitrarily, this implies that there is an
integer m ≥ 1 such that m = µH(v, z) = f1(v) = f1(z) for all v ∈ V(H ′) = N. Since n ≥ 3,
N contains at least two vertices. We choose two different vertices from N, say u and v and
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show that µH(u, v) = m. Let H2 = H − u − v. We claim that H2 is strictly f2-degenerate.
To this end, let G be a non-empty subhypergraph of H2. If z is contained in G, then

dG(z) ≤ dH2
(z) = dH(z) − 2m < dH(z) −m = f2(z),

(as f1(z) = m and as f3(z) = f4(z) = . . . = fp(z) = 0) and we are done. If z is not contained
in G, then G is a proper subhypergraph of H ′ = H ÷ z = H − z. As dH ′(v) = f ′2(v) for all
v ∈ V(H ′), it follows from Proposition 2.4 that G is strictly f ′2-degenerate and, therefore,
strictly f2-degenerate. Consequently, H2 is strictly f2-degenerate. If H1 = H[{u, v}] is strictly
f1-degenerate, then (H1, H2,∅,∅, . . . ,∅) is an f-partition of H, which is impossible. Thus,
H1 is not strictly f1-degenerate and, as m = f1(u) = f1(v) ≥ µH(u, v) (by Claim 2.9.2(b)),
it follows that µH(u, v) = m.

Since u and v were chosen arbitrarily from N, we conclude that µH(u, v) = m for all
u 6= v from V(H). As a consequence, we obtain f2(v) ≥ m(n − 2) for all v ∈ V(H ′).
Assume that H contains a hyperedge e. Then, since z is contained only in ordinary edges,
e belongs to E(H ′). Moreover, regarding (H ′, f ′′) = (H, f)/(z, 2), it follows that (H ′, f ′′)

is a hard pair of type (M) (by Claim 2.9.2(a) and as H ′ contains e). Furthermore, as
f1(v) = f ′′1 (v) > 0 for all v ∈ V(H ′), it holds f ′′2 (v) = 0 for all v ∈ V(H ′) and, therefore,
f2(v) = m(n− 2) for all v ∈ V(H ′) and n = 3. However, this leads to |H ′| = n− 1 = 2 and,
thus, H ′ cannot contain any hyperedges, a contradiction. Hence, H does not contain any
hyperedges and, therefore, H = mKn and f2(v) = m(n− 2) for all v ∈ V(H ′). Since we have
dH(z) = m(n− 1) = f1(z)+ f2(z) = m+ f2(z) (by (2.1)), we conclude that f2(z) = m(n− 2)

and (H, f) is a hard pair of type (K), contradicting (2). This completes the proof. □

Claim 2.9.4. The hard pair (H ′, f ′) is not of type (K). ⋄

Proof. Assume, to the contrary, that (H ′, f ′) = (H, f)/(z, 1) is of type (K). Then, it holds
H ′ = tKn−1 for some t ≥ 1 and n ≥ 4 and there are integers n1, n2, . . . , np with at least two
ni different from zero such that n1+n2+. . .+np = n−2 and that f ′(v) = (tn1, tn2, . . . , tnp)

for all v ∈ V(H ′). By symmetry, we may assume n2 > 0 and, thus, f ′2(v) > 0 for all
v ∈ V(H ′). We distinguish between two cases.

Case A: EH(z) contains an ordinary edge. Then, the ordinary neighborhood N = NH(z)

of z is non-empty. Since f2(v) = f ′2(v) > 0 for all v ∈ N, it follows from Claim 2.9.2(b)
that f2(z) > 0. Let v ∈ N and let m = µH(v, z). Then, by (2.3), we have f(v) = (tn1 +

m, tn2, tn3, . . . , tnp). Since f2(z) > 0, Claim 2.9.2(a) implies that (H ′, f ′′) = (H, f)/(z, 2) is
also a hard pair, which can be only of type (M) or (K). Since H ′ is regular, we conclude
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that f ′′ is constant. Furthermore,

f ′′(v) = (tn1 +m, tn2 −m, tn3, . . . , tnp) 6= f ′(v)

and
f ′′(w) = (tn1 + µH(w, z), tn2 − µH(w, z), tn3, . . . , tnp)

for all w ∈ V(H ′) \ {v} (by Claim 2.9.2(b)). Consequently, µH(z, u) = m ≥ 1 for all
u ∈ V(H ′). Since (H ′, f ′′) is of type (M) or (K) and since all vertices of H ′ have degree
t(n − 2) in H ′, we furthermore conclude that m ≡ 0(mod t) and so m ≥ t. Finally, we
obtain that f1 as well as f2 are nowhere-zero in V(H).

Next we claim that H ÷ v is a block for all v ∈ V(H). Otherwise, there would exist a
vertex v ∈ V(H) different from z such that H ÷ v is not a block. Since z is joined to all
other vertices by ordinary edges, z would be the only possible separating vertex of H ÷ v.
However, as (H÷ z)÷ v = (H÷ v)÷ z, the hypergraph (H÷ v)÷ z is complete and therefore
connected, a contradiction.

Assume that there is a hyperedge e ∈ E(H). Then, z ∈ iH(e) and |iH(e)| = 3 since H ′

does not contain any hyperedges. Since n ≥ 4, there is a vertex x ∈ V(H) \ iH(e). As
H ÷ x is a block containing the hyperedge e, the hard pair (H, f)/(x, j) must be of type
(M) for j ∈ {1, 2}. Since µH(x, z) = m and since f1(z), f2(z) ≥ m (by Claim 2.9.2(b)), this
implies that f1(z) = f2(z) = m and f3(z) = f4(z) = . . . = fp(z) = 0. As a consequence,
f1(z) + f2(z) + . . .+ fp(z) = 2m < 3m ≤ dH(z), a contradiction.

Hence, there are no hyperedges in H. Then, H ′ = H÷ z = H− z and so µH(u, v) = t for
all u 6= v from V(H) \ {z}. Moreover, as µH(v, z) = m for all v ∈ V(H) \ {z} and since f1

and f2 are nowhere-zero, it holds min{f1(v), f2(v)} ≥ m (by Claim 2.9.2(b)). We show that
t = m and so H = tKn. Otherwise, t < m. As n ≥ 4, (H∗, f∗) = (H, f)/(x, 1) must be of
type (M) for any x ∈ V(H) \ {z}. However, since t < m it holds f∗1(v) = f1(v) − t > 0 and
f∗2(v) = f2(v) > 0 for all v ∈ V(H∗) \ {z} 6= ∅, a contradiction. Thus, m = t and so H = tKn.

To conclude the case, we show that (H, f) is of type (K), giving a contradiction to state-
ment (2). To this end, we choose two distinct vertices u and v in H. By Proposition 2.8(c),
H−u admits an f-partition (H1, H2, . . . , Hp) and fi(u) = dHi+u(u) = t|Hi| for every i ∈ [1, p].
By symmetry, we may assume v ∈ V(H1). Due to the fact that H1 is strictly f1-degenerate
and since f1(u) = dH1+u(u) > d(H1−v)+u(u), the hypergraph H ′

1 = (H1−v)+u is also strictly
f1-degenerate. Thus, (H ′

1, H2, . . . , Hp) is an f-partition of H − v satisfying |H ′
1| = |H1|. As

a consequence, fi(v) = t|Hi| for every i ∈ [1, p] (by Proposition 2.8(c)). In conclusion,
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fi(u) = fi(v) = t|Hi| for each i ∈ [1, p] and, since f1 and f2 are nowhere-zero, at least two
|Hi| are non-empty. Therefore, (H, f) is of type (K), contradicting (2).

Case B: EH(z) contains only hyperedges. This implies f(v) = f ′(v) = (tn1, tn2, . . . , tnp)

for all v ∈ V(H ′). First assume that there is a vertex v ∈ V(H ′) such that H ÷ v has a
separating vertex. Since (H÷ v)÷ z = (H÷ z)÷ v is complete, z is a non-separating vertex
of H̃ = H÷ v. Let B be the block of H̃ containing z. Due to the fact that any two distinct
vertices of V(H) \ {v, z} are either contained in an ordinary edge of H or in a hyperedge
of H together with z, they all are contained in the same block B ′ of H̃ and B ′ is a tKn−2.
Since H̃ has at least two blocks, this implies that B and B ′ are the only blocks of H̃ and
that there is exactly one separating vertex u in H̃. Moreover, we conclude that there is
a hyperedge e in H with iH(e) = {u, v, z}. Let x be a non-separating vertex of B ′. Then,
(H ′′, f ′′) = (H, f)/(x, 2) is a hard pair (since f2(x) = f ′2(x) > 0 and by Claim 2.9.2(a)). As
B ′ is a tKn−2 and as v is joined to all vertices from V(B ′)\{u} by ordinary edges (since H÷z

is a tKn−1), we conclude that H ′′ is a block, which contains the hyperedge e. Thus, (H ′′, f ′′)

is of type (M) and there is an index i ∈ [1, p] such that f ′′i (w) = dH ′′(w) > 0 and f ′′k (w) = 0

for all k ∈ [1, p] \ {i} and for all w ∈ V(H ′′). In particular, since f1(z) = f ′′1 (z) > 0, it holds
i = 1. Thus, f1(w) = f ′′1 (w) = dH ′′(w) > 0 and f ′′k (w) = 0 for all k ∈ [2, p] and for all
w ∈ V(H ′′). However, this also implies that f1(x) > 0 (since f1 = f ′1 is constant in V(H ′)).
By Claim 2.9.2(a), (H ′′, f∗) = (H, f)/(x, 1) again is a hard pair with f1(w) = dH ′′(w) and
fk(w) = 0 for all k ∈ [2, p] and for all w ∈ V(H ′) (as f1(z) = f∗1(z) > 0) . However, in this
case we obtain f∗2(v) = f2(v) > 0, a contradiction.

It remains to consider the case that H ÷ v is a block for all v ∈ V(H). Suppose first
that f(z) = (dH(z), 0, 0, . . . , 0) and let v ∈ V(H ′). Then, since f2(v) = f ′2(v) > 0 and by
Claim 2.9.2(a), the pair (H ′′, f ′′) = (H, f)/(v, 2) is a hard pair of type (M) with f ′′1 (u) =

dH ′′(u) > 0 for any u ∈ V(H ′′). Since f ′′1 (u) = f1(u) = f1(v) for any u ∈ V(H ′′) \ {z} (as
f1 is constant in V(H) \ {z}), this implies that f1(v) > 0 and (H ′′, f∗) = (H, f)/(v, 1) is a
hard pair of type (M). However, it holds f∗1(z) = f1(z) > 0 and f∗2(u) = f2(u) > 0 for all
u ∈ V(H ′′) \ {z}, which is impossible.

Now suppose that f(z) 6= (dH(z), 0, 0, . . . , 0). Then there is an index j 6= 1 such that
fj(z) > 0. Since EH(z) contains only hyperedges, this implies that (H, f)/(v, k) is not of type
(M) for any v ∈ V(H ′) and for any k ∈ [1, p] with fk(v) > 0. Thus, after shrinking H at any
vertex, no hyperedge remains. Nevertheless, since n ≥ 4, this is impossible. This completes
the proof. □

Claim 2.9.5. The hard pair (H ′, f ′) is not of type (C). ⋄
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Proof. Assume, to the contrary, that (H ′, f ′) = (H, f)/(z, 1) is of type (C) and, thus, H =

tCn−1 for some t ≥ 1, n ≥ 6 even. Moreover, there are two indices k 6= ℓ from [1, p] such
that f ′k(v) = f ′ℓ(v) = t and f ′j(v) = 0 for all j ∈ [1, p] \ {k, ℓ} and for all v ∈ V(H ′). By
symmetry, we may assume k = 2 and ℓ ∈ {1, 3}. If ℓ = 1, then we obtain

⊛ f ′(v) = (t, t, 0, 0, . . . , 0) and f(v) = (t+ µH(v, z), t, 0, 0, . . . , 0)

for all v ∈ V(H ′). If ℓ = 3, then

⊚ f ′(v) = (0, t, t, 0, 0, . . . , 0) and f(v) = (µH(v, z), t, t, 0, 0, . . . , 0)

for all v ∈ V(H ′). Similar to the proof of Claim 2.9.4, we distinguish between two cases.

Case A: EH(z) contains an ordinary edge. Then, the ordinary neighborhood N = NH(z)

of z is non-empty. Since f2(v) = f ′2(v) = t > 0 for all v ∈ V(H ′) (by (2.3)), this implies that
f2(z) > 0 (by Claim 2.9.2(b)) and so (H ′, f ′′) = (H, f)/(z, 2) is a hard pair of type (M) or
(C). If ⊛ holds, then

f ′′(v) = (t+ µH(v, z), t− µH(v, z), 0, 0, . . . , 0)

for all v ∈ V(H ′) and since µH(v, z) ≥ 1 for all v ∈ N this implies that (H ′, f ′′) is a bad pair
of type (M). Then we conclude that t − µH(v, z) = 0 for all v ∈ V(H ′) and so µH(v, z) = t

for all v ∈ V(H ′) and N = V(H ′). If ⊚ holds, we have

f ′′(v) = (µH(v, z), t− µH(v, z), t, 0, 0, . . . , 0)

for all v ∈ V(H ′) and again, since µH(v, z) ≥ 1 for all v ∈ N, this implies that (H ′, f ′′) is
a bad pair of type (C). Hence, in both cases we have µH(v, z) = t for all v ∈ V(H ′) and
N = V(H ′). Thus, we obtain

⊛̃ f(v) = (2t, t, 0, 0, . . . , 0) for all v ∈ V(H ′) (if ℓ = 1), or

⊚̃ f(v) = (t, t, t, 0, 0, . . . , 0) for all v ∈ V(H ′) (if ℓ = 3).

Since z is joined in H to all other vertices by ordinary edges and since H÷v÷z = H÷z÷v

is a path (with multiple edges) and therefore connected for any v ∈ V(H ′), H÷ v is a block
for all v ∈ V(H). As a consequence, for any vertex v ∈ V(H ′), the hard pair (H, f)/(v, 1)

must be of type (M). However, since for H either ⊛̃ or ⊚̃ holds, it is easy to check that this
is impossible.
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Case B: EH(z) contains only hyperedges. As a consequence, f(v) = f ′(v) for all v ∈ V(H ′).
We claim that H admits an f-partition. To this end, let e ∈ E(H) be an arbitrary hyperedge
of H, and let iH(e) = {x, y, z} (e must contain z since H ÷ z is a tCn−1). Then, since
H ′ = H ÷ z, the vertices x and y are adjacent in H ′. Let v1, v2, . . . , vn−1 be a cyclic order
of the vertices of H ′ = tCn−1 with x = v1 and y = vn−1. Then, we define H2 = H[{vi ∈
V(H ′) | i ≥ 1 odd}], Hℓ = H[{vi ∈ V(H ′) | i ≥ 2 even}], and Hj = ∅ for all j ∈ [1, p] \ {2, ℓ}.
Since dH2

(v1) = dH2
(vn−1) < t = f2(v1) = f2(vn−1), E(Hℓ) = ∅, and fℓ(v) = t for all

v ∈ V(H ′) (see ⊛, ⊚), the sequence (H1, H2, . . . , Hp) is an f-partition of H− z. As H1 is an
edgeless induced subhypergraph of H÷z, it follows that dH1+z(z) = 0 < f1(z), contradicting
Proposition 2.8(c). This proves the claim. □

Claim 2.9.6. For every vertex z ∈ V(H), H÷ z is not a block. ⋄

Proof. Suppose, to the contrary, that there exists a vertex z such that H÷ z is a block. Let
j ∈ [1, p] such that fj(z) > 0. Then, by Claim 2.9.2(a), (H ′, f ′) = (H, f)/(z, j) is a hard pair
and, since H ′ = H ÷ z is a block, (H ′, f ′) must be of type (M), (K), or (C). However, the
three above claims imply that this is not possible. □

Claim 2.9.7. For every vertex z ∈ V(H), H÷ z has exactly two end-blocks. ⋄

Proof. Assume, to the contrary, that there is a vertex z ∈ V(H) such that H ′ = H÷ z does
not have exactly two end-blocks. By Claim 2.9.6 this implies that H ′ has at least three
end-blocks.

Let T denote the block graph of H ′, that is, the simple graph having vertex set V(T) =

B(H ′) ∪ S, where S is the set of all separating vertices of H ′, and edge set E(T) = {vB | v ∈
S, B ∈ B(H ′) and v ∈ V(B)}. Note that T is a tree with bipartition (B(H ′), S) and the end-
blocks of H ′ coincide with the leaves of T . Since H ′ has at least three end-blocks, ∆(T) ≥ 3.
Let B be an arbitrary end-block of H ′. Since B is a leaf of T and ∆(T) ≥ 3, there is a unique
vertex xB ∈ V(T) such that xB is the only vertex of degree at least 3 in T belonging to the
subpath PB of T between xB and B. Moreover, there exists a unique subtree TB of T such
that T = TB ∪ PB and V(TB) ∩ V(PB) = {xB}. Finally, there is a unique vertex vB ∈ S such
that vB = xB or xBvB is an edge of PB.

Let B1, B2, B3 be three distinct end-blocks of H ′. For i ∈ [1, 3], let vi ∈ V(Bi) be the
only separating vertex of H ′ contained in Bi, let ui ∈ V(Bi) \ {vi}, let Vi be the set of
all vertices contained in a block of H ′ belonging to TBi

, and let B̃i = H[Vi ∪ {z}]. Since
H is a block, for each end-block B of H ′ there is an edge e ∈ EH(z) such that the vertex
set iH(e) − {z} belongs to B and contains a non-separating vertex of H ′. Consequently,
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B̃i is a block contained in H ÷ ui as an induced subhypergraph and, therefore, there is a
unique block Bi of H÷ ui containing B̃i. Furthermore, let (Hi, fi) = (H, f)/(ui, ji) for some
ji ∈ [1, p] satisfying fji(ui) > 0. Since (Hi, fi) is a hard pair (by Claim 2.9.2(a)), it follows
from Proposition 2.5 that (Hi, fi) resulted from hard pairs (B ′, fiB ′) (with B ′ ∈ B(Hi))
of type (M), (K), and (C) by merging them appropriately (Hi has at least two blocks by
Claim 2.9.6). Note that for i 6= j from [1, 3], the vertices ui and uj are not adjacent in H÷ z

and, therefore, not adjacent in H. As a consequence, the hard pair (Bi, fi
Bi) cannot be of

type (K) for i ∈ [1, 3]. Furthermore, for i ∈ [1, 3] and for j ∈ [1, 3] \ {i} vertex ui is not a
separating vertex of Hj contained in Bj and, together with Proposition 2.5, we conclude

⊛ f
j

Bj(ui) = fj(ui) = f(ui).

In the following, we consider the hard pairs (B1, f1
B1), (B

2, f2
B2), and (B3, f3

B3).

Case A: One of the three hard pairs, say (B1, f1
B1) is of type (C). Then, B1 = tCm for some

t ≥ 1,m ≥ 5 odd and by symmetry we may assume f1
B1(v) = (t, t, 0, . . . , 0) for all v ∈ V(B1).

Since B̃1 contains no separating vertex and as B1 is a tCm, B̃1 = B1. Furthermore, this
implies that z is joined to u2 and u3 by ordinary edges in H (since u1 and ui are not
adjacent in H ÷ z for i ∈ {2, 3}), that V(Bi) = {ui, vi} for i ∈ {2, 3} (as Bi is an end-block
of H ′ contained in B1), and that P1 = TB1

is a path and each block on P1 is a tK2 (as each
block on P1 is contained in B1 = tCm). Since f3

B3(u2) = f(u2) = f1
B1(u2) = (t, t, 0, 0, . . . , 0)

(by ⊛) and since (B3, f3
B3) is a hard pair (not of type (K)) with u2 ∈ V(B3) not being

a separating vertex of H3, we obtain that (B3, f3
B3) is a hard pair of type (C), too, and

that P3 = TB3
is a path and each block on P3 is a tK2. Analogously we can show that

(B2, f2
B2) is a hard pair of type (C) and that each block of the path P2 = TB2

is a tK2.
Since u1, u2 and u3 are not pairwise adjacent in H, this implies that B1 = tCm contains
exactly one separating vertex vB of H1 and that H is the union of the three (multi-)cycles
B1, B2, B3 with V(B1) ∩ V(B2) ∩ V(B3) = {z, vB} and ui 6∈ V(Bi). Let ℓi be the length of the
(z, vB)-(multi-)path in H containing the ordinary edge zui. Then,

|B1| = ℓ2 + ℓ3,

|B2| = ℓ1 + ℓ3, and
|B3| = ℓ1 + ℓ2.
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However, since |Bi| is odd for i ∈ [1, 3], we obtain

ℓ1 + ℓ2 ≡ ℓ1 + ℓ3 ≡ ℓ2 + ℓ3 ≡ 1 (mod p),

which is impossible.

Case B: All three hard-pairs (Bi, fi
Bi) (i ∈ [1, 3]) are of type (M). By symmetry, we

may assume that f1
B1(v) = (dB1(v), 0, 0, . . . , 0) for all v ∈ V(B1). Since the vertex u2 is

contained in B1 and B3, and since f1
B1(u2) = f1(u2) = f(u2) = f3

B3(u2) (by ⊛), we conclude
that f3

B3(v) = (dB3(v), 0, 0, . . . , 0) for all v ∈ V(B3). Analogously, regarding u3 ∈ V(B2), we
conclude that f2

B2(v) = (dB2(v), 0, 0, . . . , 0) for all v ∈ V(B2). As (Hi, fi) = (H, f)/(ui, ji),
this implies that ji = 1 for i ∈ [1, 3]. Furthermore, since z is a non-separating vertex of Hi

contained in Bi for all i ∈ [1, 3] (as Hi÷z = H÷ui÷z = H÷z÷ui is connected) and as ji = 1

for i ∈ [1, 3], it follows that f(z) = (dH(z), 0, 0, . . . , 0). Let v ∈ V(H) \ {z} be an arbitrary
vertex. We claim that f(v) = (dH(v), 0, 0, . . . , 0). Assume this is false. Then, by symmetry,
f2(v) > 0. Clearly, v belongs to B̃i for some i ∈ [1, 3], say v belongs to B̃1. Note that B̃1

is an induced subhypergraph of B1 ∈ B(Hi). If v is a non-separating vertex of H1, then it
holds f(v) = (dH(v), 0, 0, . . . , 0) (as j1 = 1, as f1(v) = f1

B1(v) = (dB1(v), 0, 0, . . . , 0) and by
(2.1)), contradicting our assumption. Otherwise, v = vB1

is a separating vertex of H1 and so
B̃1 = B1. As (H1, f1) results from merging hard pairs (by Proposition 2.5) and as f2(v) > 0,
this implies that v is contained in a block B ′ of H1 with V(B ′)∩ V(B1) = {v} and f2(w) > 0

for all w ∈ V(B ′). Let v ′ ∈ V(B ′) \ {v}. Then, v ′ is contained in a block belonging to the
subpath of the block graph T between vB1

and B1. But then, v ′ is a non-separating vertex
of Hj contained in B̃j for j ∈ {2, 3}. This however implies that fB2(v ′) = (dB2(v ′), 0, 0, . . . , 0),
a contradiction. Hence, the claim is proved and, thus, (H, f) is a hard pair of type (M),
contradicting (2). This settles case B. Thus, the proof of the claim is complete. □

Claim 2.9.8. There exists a sequence B1, B2, . . . , Bℓ of induced subhypergraphs of H and
a sequence u0, u1, . . . , uℓ−1 of distinct vertices of H with ℓ ≥ 4 such that the following
statements hold:

(a) Bi = tiK2 for i ∈ [2, ℓ] and some ti ≥ 1, B1 has no separating vertex, and |B1| ≥ 2.

(b) H = B1 ∪ B2 ∪ . . . ∪ Bℓ, for i ∈ [1, ℓ − 1] we have V(Bi) ∩ V(Bi+1) = {ui}, and
V(B1) ∩ V(Bℓ) = {u0}. ⋄

Proof. Let z be an arbitrary vertex of H. Then, H ÷ z has exactly two end-blocks (by
Claim 2.9.7) and, therefore, there is a uniquely determined sequence B1, B2, . . . , Bk of k ≥ 2
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uℓ−1

u1

u2 uℓ−3

uℓ−2. . .

u0

B1 B2 Bℓ−2

Bℓ−1

Bℓ

tℓ
t
ℓ−
1

t2 tℓ−2

FiG. 2.4. The structure of H.

blocks ofH÷z and a sequence u1, u2, . . . , uk−1 of distinct vertices such that V(Bi)∩V(Bi+1) =

{ui} for all i ∈ [1, k − 1] and H ÷ z = B1 ∪ B2 ∪ . . . ∪ Bk. In particular, B1 and Bk are the
end-blocks of H ÷ z. Let bz = max{|Bi| | i ∈ [1, k]}. Among all vertices z of H we may
choose one for which bz is maximum. Let Bj be a block of H÷ z with |Bj| = bz. Since H is
a block, there are vertices u0 ∈ V(B1) and uk ∈ V(Bk) which are non-separating vertices of
H÷ z and adjacent to z. Assume that there is an index i 6= j from the set [1, k] such that Bi

contains a non-separating vertex v of H÷ z different from u0 and uk. Then, it follows that
H ÷ v has a block B containing Bj as well as z and, thus, |B| > |Bj| = bz, a contradiction.
As a consequence, for each index i from the non-empty set [1, k] \ {j}, there exists an integer
ti ≥ 1 such that Bi = tiK2. To complete the proof, all we need to show is that z is not
adjacent to any vertex besides u0 and uk. By symmetry, we may assume that j 6= 1 and,
thus, B1 is a t1K2 for some t1 ≥ 1 and V(B1) = {u0, u1}. If there was a hyperedge e with
iH(e) = {z, u0, u1}, then clearly H÷u0 would still be a block, which is impossible. Thus, u0

is adjacent only to z and u1 and not contained in any hyperedge. As a consequence, if z is
adjacent to any vertex from (V(B1)∪V(B2)∪ . . .∪V(Bj)) \ {uj} other than u0 and uk, then
H÷u0 has a block B that contains Bj as well as z, giving a contradiction to the maximality
of |Bj|. Similarly, if z is adjacent to any vertex from (V(Bj)∪ V(Bj+1)∪ . . .∪ V(Bk)) \ {uj−1}

except uk (implying j 6= k), by a similar argumentation we conclude that H÷uk has a block
B containing Bj as well as z, again contradicting the maximality of |Bj|. Consequently, z is
only adjacent to u0 and uk. By setting Bk+1 = H[{z, uk}], Bk+2 = H[{z, u0}], uk+1 = z, and
by shifting the block-sequence and the vertex-sequence we obtain the statement. □

To conclude the proof of Theorem 2.9, we show that (H, f) is a hard pair, giving a
contradiction to statement (2). Consider the sequences B1, B2, . . . , Bℓ and u0, u1, . . . , uℓ−1
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as described in Claim 2.9.8 (see also Figure 2.4). For technical reasons, let uℓ = u0. Let
j ∈ [1, p] such that fj(uℓ−1) > 0, and consider the hard pair (H ′, f ′) = (H, f)/(uℓ−1, j). Then,
B1 is a block of H ′ = H÷ uℓ−1. Let f ′B1

be defined as in Proposition 2.5.
First we claim that (B1, f

′
B1
) is of type (M). If (B1, f

′
B1
) is of type (K), then |B1| ≥ 3 and

there is a vertex v ∈ V(B1) such that H ÷ v is a block, which is impossible. If (B1, f
′
B1
) is

of type (C), say B1 = tCm with m ≥ 5 odd, by symmetry we may assume that f ′B1
(v) =

(t, t, 0, 0, . . . , 0) for all v ∈ V(B1). Let P1 and P2 be the two disjoint (u0, u1)-(multi-)paths in
B1. As m ≥ 5, we may suppose that P2 has length at least three and so there is a vertex v on
P2 that is adjacent to u0 and not adjacent to u1. Then, as v is not adjacent to uℓ−1, we have
f(v) = f ′B1

(v) = (t, t, 0, 0, . . . , 0). Let (H∗, f1) = (H, f)/(v, 1) and (H∗, f2) = (H, f)/(v, 2).
Due to the fact that B1 = tCm , that Bi = tiK2 for i ∈ [2, ℓ], and that P∗ = P2 − u0 − v is a
path of length at least one, we conclude that the union P1∪B2∪B3∪ . . .∪Bℓ itself is a block
B∗ of H∗, and therefore, (B∗, f1B∗) and (B∗, f2B∗) are both hard pairs (of type (M) or (C)).
Note that H∗ = B∗ ∪ P∗ and u1 is the only separating vertex of H∗ contained in B∗. Hence,
fi(uℓ−1) = fiB∗(uℓ−1) and fi(u0) = fiB∗(u0) for i ∈ {1, 2, } (by Proposition 2.5(c)). However,
f1(u0) 6= f2(u0) but f1(uℓ−1) = f2(uℓ−1), contradicting Proposition 2.8(b). This proves the
claim that (B1, f

′
B1
) is of type (M).

As a consequence, there is an index j ′ ∈ [1, p] such that fj ′(v) = dB1
(v) = dH(v) and

fk(v) = 0 for k ∈ [1, p] \ {j ′} and for all v ∈ V(B1) \ {u0, u1}. Moreover, since (B1, f
′
B1
) is of

type (M), for v ∈ {u0, u1} the jth component of fB1
(v) equals the degree of v in B1 and so it

follows fj ′(v) ≥ dB1
(v) (as f(v) ≥ f1B(v) coordinatewise).

Recall that for i ∈ [2, ℓ], we have Bi = tiK2 and V(Bi) = {ui−1, ui}. Further recall that
there is an index j ∈ [1, p] such that fj(uℓ−1) > 0. By symmetry, we may assume that j = 1.
We claim that either

⊛ f(ui) = (ti + ti+1, 0, 0, . . . , 0) for all i ∈ [2, ℓ− 1], or

⊚ f(ui) = (t, t, 0, 0, . . . , 0) for all i ∈ [2, ℓ− 1] (except for symmetry) and Bi = tK2 for all
i ∈ [2, ℓ].

As f1(uℓ−1) > 0, by repeated application of Claim 2.9.2(b) we conclude that f1(ui) ≥
max{ti, ti+1} for i ∈ [2, ℓ− 1]. If there exists an index k 6= 1, say k = 2 (by symmetry) such
that f2(ui) > 0 for some i ∈ [2, ℓ− 1], then, similarly to above, we get f2(ui) ≥ max{ti, ti+1}

for i ∈ [2, ℓ − 1]. By (2.1), this implies ti = ti+1 = t as well as f(ui) = (t, t, 0, 0, . . . , 0) for
some t ≥ 1 and for all i ∈ [2, ℓ − 1], and so ⊚ holds. If fk(ui) = 0 for all k ∈ [2, p] and all
i ∈ [2, ℓ − 1], equation (2.1) implies that f(ui) = (ti + ti+1, 0, 0, . . . , 0) for all i ∈ [2, ℓ − 1]

and ⊛ holds.
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If ⊛ is satisfied, then by Claim 2.9.2(b) it holds f(v) = (dH(v), 0, 0, . . . , 0) for v ∈ {u0, u1}

and hence j ′ = 1 and (H, f) is a hard pair of type (M), contradicting (2).
Thus, it remains to consider the case that ⊚ holds. If |B1| = 2, then B1 = t1K2 for some

t1 ≥ 1. Then, again we conclude f(u0) = f(u1) = (t, t, 0, 0, . . . , 0) and so H = tCn and
f(v) = (t, t, 0, 0, . . . , 0) for all v ∈ V(H). Furthermore, n must be odd since otherwise H

would clearly admit an f-partition. Consequently, (H, f) is of type (C), which contradicts
(2).

Finally, assume that |B1| ≥ 3. Then, there is a vertex z ∈ V(B1) different from u0 and
u1 and fj ′(z) = f ′j ′(z) = dB1

(z) = dH(z) and fk(z) = 0 for k ∈ [1, p] \ {j ′}. As f(uℓ−1) =

(t, t, 0, 0, . . . , 0), it follows from Claim 2.9.2(b) that f1(u0) ≥ t > 0 and f2(u0) ≥ t > 0.
Since (H ′, f ′) = (H, f)/(uℓ−1, 1) and since (B1, f

′
B1
) is a hard pair of type (M), it must hold

f1(u0) = t and j ′ = 2. Therefore, we have f(z) = f ′(z) = (0, dH(z), 0, 0, . . . , 0). Moreover, as
f2(uℓ−1) = t > 0, (H ′, f ′′) = (H, f)/(uℓ−1, 2) is a hard pair, too, and (B1, f

′′
B1
) is a hard pair of

type (M). Consequently, it must hold f2(u0) = t and f ′′1 (v) > 0 for all v ∈ V(B1). However,
as f ′′1 (z) = f1(z) = f ′1(z) = 0, this is impossible. This completes the proof of Theorem 2.9
and, therefore, also Theorem 2.3 is proved. ■



Chapter 3

Generalized Colorings of Hypergraphs

3.1. Brooks’ Theorem for List-Colorings of Hypergraphs

Recall from the first chapter that the chromatic number, respectively list-chromatic number
of a hypergraph H is always less than or equal to the coloring number of H. In particular,
in (1.3), we obtained that

χ(H) ≤ χℓ(H) ≤ col(H) ≤ ∆(H) + 1.

The inequality χ(H) ≤ ∆(H)+ 1 naturally raises the question in which cases equality holds.
For simple graphs, the answer was given by BROOKS [26] in 1941. His famous Theorem 1
states that complete graphs and odd cycles are the only connected graphs, for which the
chromatic number is equal to the maximum degree plus one. For list-colorings, the solution
was found by ERDŐS, RUBiN, and TAYLOR [44] (see also Theorem 2) and, independently,
by ViZiNG [120]. A (slightly more general) degree-version was proved by ERDŐS, RUBiN,
and TAYLOR and, independently, by Borodin [19, 20].

Theorem 3.1 (ERDŐS, RUBiN, and TAYLOR, 1979). Let G be a connected simple graph and
let L be a list-assignment satisfying |L(v)| ≥ dG(v) for all v ∈ V(G). If G does not admit
a proper L-coloring, then |L(v)| = dG(v) for all v ∈ V(H) and each block of G is either a
complete graph or an odd cycle. As a consequence, χℓ(G) ≤ ∆(G) + 1 and equality holds if
and only if G is a complete graph or an odd cycle. ⋄
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It turns out that those theorems can be extended to hypergraphs, as well. An analogue to
BROOKS’ Theorem was given by JONES [64] in 1975 (see Theorem 2.2). BROOKS’ Theorem
for list-colorings of hypergraphs was obtained by KOSTOCHKA, STiEBiTZ, and WiRTH [72].

Theorem 3.2 (KOSTOCHKA, STiEBiTZ, and WiRTH, 1996). Let H be a connected simple
hypergraph and let L be a list-assignment satisfying |L(v)| ≥ dH(v) for all v ∈ V(H). If
H does not admit a proper L-coloring, then it holds |L(v)| = dH(v) for all v ∈ V(H) and
each block B of H is either a complete graph, an odd cycle, or B has just one edge. As
a consequence, χℓ(H) ≤ ∆(H) + 1 and equality holds if and only if H is either a complete
graph, an odd cycle, or if H contains just one edge. ⋄

How can we conclude the above theorem from Theorem 2.3? Recall from Section 2.1
that it is possible to transform the list-coloring problem to the one of finding an f-partition:
given a simple hypergraph H and a list-assignment L of H with color set Γ = [1, p], set
fi(v) = 1 if i ∈ L(v) and fi(v) = 0, otherwise. Then, H has a proper L-coloring if and
only if H is f-partitionable. Moreover, if we have |L(v)| ≥ dH(v) for all v ∈ V(H), then the
definition of f implies f1(v) + f2(v) + . . . + fp(v) = |L(v)| ≥ dH(v) for all v ∈ V(H). Thus,
if H does not admit a proper L-coloring, then (H, f) is a hard pair by Theorem 2.3 and
so each block of H is of type (M), (K) or (C), which proves the first part of Theorem 3.2.
Moreover, from Proposition 2.6(a) it follows that |L(v)| = f1(v)+ f2(v)+ . . .+ fp(v) = dH(v)

for all v ∈ V(H). In order to deduce the second part of the above theorem, we argue as
follows. If χℓ(H) = ∆(H)+1, then there is a list-assignment L satisfying |L(v)| = ∆(H) for all
v ∈ V(H) such that H does not admit a proper L-coloring. Consequently, it must hold that
dH(v) = |L(v)| = ∆(H) for all v ∈ V(H), and so H is ∆(H)-regular. Moreover, we already
know that each block of H is a complete graph, an odd cycle, or contains just one edge. But
then, as H is ∆(H)-regular, H can only consist of exactly one block, and we are done. On
the other hand, if H is a complete graph, an odd cycle, or if |E(H)| = 1, then it easy to see
that χℓ(H) = ∆+ 1.

3.2. Additional Degree Constraints

BORODiN [18] and, independently, BOLLOBÁS and MANVEL [16], proved another extension
of BROOKS’ Theorem for the class of simple graphs.

Theorem 3.3 (BORODiN, 1976/BOLLOBÁS and MANVEL, 1979). Let G be a connected sim-
ple graph with maximum degree ∆ ≥ 3 different from K∆+1. Let also k1, k2, . . . , kp be positive
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integers, p ≥ 2, such that k1+k2+. . .+kp ≥ ∆. Then, there is a p-partition (G1, G2, . . . , Gp)

of G such that col(G) ≤ ki whenever 1 ≤ i ≤ p. ⋄

Clearly, by setting k1 = k2 = . . . = kp = 1 one can immediately deduce BROOKS’
Theorem from the above theorem. However, BORODiN [20] generalized Theorem 3.3 even
further with the help of a simple argument. BOLLOBÁS and MANVEL [16] proved the same
extension independently.

Theorem 3.4 (BORODiN, 1979/BOLLOBÁS and MANVEL, 1979). Let G be a connected sim-
ple graph with maximum degree ∆ ≥ 3 different from K∆+1. Let also k1, k2, . . . , kp be positive
integers, p ≥ 2, such that k1+k2+. . .+kp ≥ ∆. Then, there is a p-partition (G1, G2, . . . , Gp)

of G satisfying col(G) ≤ ki and ∆(Gi) ≤ ki whenever 1 ≤ i ≤ p. ⋄

It turns out that it is possible to prove a similar result for arbitrary hypergraphs. For an
example of how such a partition may look like in the hypergraph case consider Figure 3.1.

Theorem 3.4’. Let H be a connected hypergraph having maximum degree ∆(H) = ∆ ≥ 1

that is not a tKn for some t, n ≥ 1 and not a tCn for t ≥ 1, n ≥ 5 odd. Let also k1, k2, . . . , kp

be positive integers, p ≥ 2, such that k1 + k2 + . . . + kp ≥ ∆. Then, there is a p-partition
(H1, H2, . . . , Hp) of H such that col(Hi) ≤ ki and ∆(Hi) ≤ ki whenever 1 ≤ i ≤ p. ⋄

The condition ∆(G) ≥ 3 in the simple case ensures that G is not an odd cycle. However,
since the hypergraphs of type (C) may have arbitrarily large maximum degree, we have to
exclude this case manually. Before we prove Theorem 3.4’, it is necessary to obtain the
following statement.

Proposition 3.5. If a hypergraph H is f-partitionable for some f ∈ Vp(H) with

f1(v) + f2(v) + . . .+ fp(v) ≥ dH(v)

for all v ∈ V(H), then there is an f-partition (H1, H2, . . . , Hp) of H such that dHi
(v) ≤ fi(v)

for all v ∈ V(Hi) and for all i ∈ [1, p]. ⋄

Proof. Given an arbitrary p-partition (H1, H2, . . . , Hp) of H, define its weight by

W(H1,H2,...,Hp) =

p∑
i=1

(
|E(Hi)|−

∑
v∈V(Hi)

fi(v)
)
.

If there is a v ∈ V(H) and two indices i 6= j from [1, p] such that v ∈ V(Hi), dHi
(v) ≥ fi(v)

and dHj+v(v) < fj(v), then shifting v from Hi to Hj decreases W(H1,H2,...,Hp). In order to
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belongs to V(H1)

belongs to V(H2)

∆(H) = 6

FiG. 3.1. A partition (H1, H2) of H such that col(Hi) ≤ 3 and ∆(Hi) ≤ 3 for i = 1, 2.

prove this, let H ′
i = Hi − v, H ′

j = Hj + v, and let H ′
k = Hk for all k ∈ [1, p] \ {i, j}. Then, for

W = W(H1,H2,...,Hp) and for W ′ = W(H ′
1
,H ′

2
,...,H ′

p)
it holds

W ′ −W = −dHi
(v) + fi(v) + dH ′

j
(v) − fj(v) < 0.

Let (H1, H2, . . . , Hp) be an f-partition of H that minimizes W(H1,H2,...,Hp). We claim that
(H1, H2, . . . , Hp) has the desired property. Otherwise there is an index i ∈ [1, p] and a
vertex v ∈ V(Hi) such that v ∈ V(Hi) and dHi

(v) > fi(v). As f1(v) + f2(v) + . . . + fp(v) ≥
dH(v), there is an index j ∈ [1, p] such that dHj+v(v) < fj(v). Thus, H ′

j = Hj + v is still
strictly fj-degenerate. Furthermore, H ′

i = Hi − v is strictly fi-degenerate as well, and by
the above observation, we obtain a new p-partition (H ′

1, H
′
2, . . . , H

′
p) with W(H ′

1
,H ′

2
,...,H ′

p)
<

W(H1,H2,...,Hp), a contradiction. ■

It is notable that the above proposition leads to a stronger version of Theorem 2.3.

Theorem 2.3’. Let H be a connected hypergraph, and let f ∈ Vp(H) be a vector function
with p ≥ 1 such that f1(v) + f2(v) + . . . + fp(v) ≥ dH(v) for all v ∈ V(H). Then, there is
an f-partition (H1, H2, . . . , Hp) of H such that dHi

(v) ≤ fi(v) for all v ∈ V(Hi) and for all
i ∈ [1, p] if and only if (H, f) is not a hard pair. ⋄
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Now we are able to prove Theorem 3.4’.

Proof of Theorem 3.4’. Let fi(v) = ki for all v ∈ V(H) and for each i ∈ [1, p]. Then,
f1(v) + f2(v) + . . . + fp(v) ≥ ∆(H) ≥ dH(v) and fi(v) ≥ 1 for all i ∈ [1, p] and for all
v ∈ V(Hi). Since p ≥ 2, this implies that (H, f) cannot be of type (M). Moreover, since H is
not a tKn for some t, n ≥ 1 nor a tCn for t ≥ 1 and n ≥ 5 odd, it is easy to see that (H, f)

is not a hard pair (see Proposition 2.5). Thus, by Theorem 2.3’, H admits an f-partition
(H1, H2, . . . , Hp) such that dHi

(v) ≤ fi(v) = ki for all v ∈ V(Hi) and each i ∈ [1, p]. In
particular, Hi is strictly ki-degenerate and, thus, col(Hi) ≤ ki for all i ∈ [1, p]. ■

3.3. Hypergraph Partitions and Maximum Degenerate Subhypergraphs

When examining proper colorings of hypergraphs, it is a natural question to ask whether it is
possible to find an optimal coloring such that one color class is a maximum independent set of
the hypergraph. Regarding this question in the graph case, CATLiN [31] and, independently,
GERENCSÉR [51] proved the following.

Theorem 3.6 (CATLiN, 1979/GERENCSÉR, 1965). Let G be a connected simple graph with
maximum degree ∆ ≥ 3 different from K∆+1. Then, there is a ∆-coloring of G in which one
color class is a maximum independent set. ⋄

Hence, given a graph G as in the above theorem, there is a partition (G1, G2) of G such
that G1 is a maximum independent set and G2 does not contain a K∆. Consequently, we can
destroy all K∆’s in G by deleting an appropriate maximum independent set from G. The
cases ∆(G) = 3, 4, 5 were further examined by CATLiN and LAi [32]. In 2007, MATAMALA [84]
obtained a result that not only connects Theorem 3.3 of BORODiN/BOLLOBÁS and MANVEL
with Theorem 3.6, but strengthens both of them (as well as the results of CATLiN and
LAi [32]).

Theorem 3.7 (MATAMALA, 2007). Let G be a connected simple graph with maximum degree
∆ ≥ 3 different from K∆+1 and let d1, d2 be positive integers with d1+d2 ≥ ∆. Then, there is a
partition (G1, G2) of G such that G1 is a maximum order induced subgraph with col(G1) ≤ d1

and col(G2) ≤ d2. ⋄

Note that CATLiN’s theorem follows from the above theorem by setting d1 = 1 and
d2 = ∆ − 1. It shows that with the help of Theorem 2.3, we can obtain a generalization of
MATAMALA’s result.
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Theorem 3.8. Let H be a hypergraph and let f ∈ Vp(H) be a vector function of H with
p ≥ 2 such that f1(v) + f2(v) + . . . + fp(v) ≥ dH(v) for all v ∈ V(H). Furthermore, assume
that if H ′ is a component of H, then (H ′, f) is not a hard pair. Then, there is a partition
(H1, H2, . . . , Hp) of H such that H1 is a maximum order strictly f1-degenerate subhypergraph
of H, and for i ∈ [2, p − 1], the hypergraph Hi is a maximum order strictly fi-degenerate
subhypergraph of H− (V(H1) ∪ V(H2) ∪ · · · ∪ V(Hi−1)). ⋄

For the proof of the above theorem we will use the following key lemma.

Lemma 3.9. Let H be a hypergraph and let f ∈ Vp(H) be a vector function of H with p ≥ 2

such that f1(v) + f2(v) + · · · + fp(v) ≥ dH(v) for all v ∈ V(H). If H is f-partitionable,
then there is an f-partition (H1, H2, . . . , Hp) of H such that H1 is a maximum order strictly
f1-degenerate subhypergraph of H.

Proof. The lemma’s proof is by reductio ad absurdum. Let F denote the set of tuples
(H1, H2, . . . , Hp, H

∗
1, H

∗
2) such that

(1) (H1, H2, . . . , Hp) is an f-partition of H,

(2) H∗
1 is a maximum order strictly f1-degenerate subhypergraph of H, and

(3) H∗
2 = H− V(H∗

1).

Furthermore, let f ′ = (f2, f3, . . . , fp) and let h = f2+f3+· · ·+fp. By assumption, H admits an
f-partition and, obviously, contains a maximum order strictly f1-degenerate subhypergraph.
Hence, F is non-empty.

Claim 3.9.1. Let (H1, H2, . . . , Hp, H
∗
1, H

∗
2) ∈ F be an arbitrary tuple. Then, the following

statements hold:

(a) Let v ∈ V(H∗
2) be an arbitrary vertex. Then, there is a hypergraph H ′ ⊆ H∗

1 + v with
dH ′(w) ≥ f1(w) for all w ∈ V(H ′) and each such hypergraph contains the vertex v.
As as a consequence, dH∗

2
(v) ≤ f2(v) + f3(v) + . . .+ fp(v) = h(v) for all v ∈ V(H∗

2).

(b) The hypergraph H∗
2 is not f ′-partitionable and any non-f ′-partitionable component K

of H∗
2 is h-regular (i.e. dK(w) = h(w) for all w ∈ V(K)) and contains a vertex v∗

from H1.

(c) Let K be a non-f ′-partitionable component of H∗
2 and let v∗ ∈ V(K)∩V(H1). Moreover,

let H ′ ⊆ H∗
1 + v∗ be a hypergraph with dH ′(w) ≥ f1(w) for all w ∈ V(H ′). Then, H ′

contains a vertex w∗ from V(H) \ V(H1).
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(d) Let K be a non-f ′-partitionable component of H∗
2 and let v∗ ∈ V(K)∩V(H1). Moreover,

let H ′ ⊆ H∗
1 + v∗ be a hypergraph with dH ′(w) ≥ f1(w) for all w ∈ V(H ′) and

let u∗ be a vertex that is adjacent to v∗ in H ′. Then, H̃1 = H∗
1 + v∗ − u∗ is a

maximum order strictly f1-degenerate subhypergraph of H and with H̃2 = H∗
2 +u∗− v∗

we have (H1, H2, . . . , Hp, H̃1, H̃2) ∈ F. Furthermore, H̃2 has at most as many non-
f ′-partitionable components as H∗

2 and if equality holds, then u∗ is contained in a
non-f ′-partitionable component of H̃2. ⋄

Proof. For the proof of (a) let v ∈ V(H∗
2) be an arbitrary vertex. Since H∗

1 is a maximum
order strictly f1-degenerate subhypergraph of H, the hypergraph H∗

1 + v is not strictly f1-
degenerate and, thus, there is a subhypergraph H ′ of H∗

1 + v such that dH ′(w) ≥ f1(w) for
all w ∈ V(H ′). As H1 is strictly f1-degenerate, H ′ contains the vertex v and so dH∗

1
(v) ≥

dH ′(v) ≥ f1(v). As dH∗
1
(v) + dH∗

2
(v) ≤ dH(v) ≤ f1(v) + f2(v) + . . . + fp(v), this implies that

dH∗
2
(v) ≤ f2(v) + f3(v) + . . .+ fp(v), which proves statement (a).

For the proof of (b) assume that H∗
2 admits an f ′-partition (H ′

2, H
′
3, . . . H

′
p). Then, the

tuple (H∗
1, H

′
2, H

′
3, . . . , H

′
p) is an f-partition of H such that H∗

1 is a maximum order strictly
f1-degenerate subhypergraph of H, contradicting the assumption that the lemma is wrong.
Hence, H∗

2 is not f ′-partitionable, i.e., H∗
2 has at least one non-f ′-partitionable component.

Now let K be a component of H∗
2 that is not f ′-partitionable. Then, by (a) and by Proposi-

tion 2.8(a), dK(v) = dH∗
2
(v) = f2(v)+ f3(v)+ . . .+ fp(v) for all v ∈ V(K), i.e., K is h-regular.

As H− V(H1) is f ′-partitionable, K clearly contains a vertex v∗ from H1. This proves (b).
For the proof of (c) and (d), let H ′ ⊆ H∗

1 + v∗ be a hypergraph with dH ′(w) ≥ f1(w) for
all w ∈ V(H ′) (which exists by (a)). By (a), H ′ contains the vertex v∗. As H1 is strictly
f1-degenerate, H ′ contains a vertex w∗ from V(H) \V(H1), which proves (c). Now let u∗ be
a vertex that is adjacent to v∗ in H ′. Then, dH∗

2
(v∗) = dK(v

∗) = f2(v
∗)+ f3(v

∗)+ . . .+ fp(v
∗)

(by (b)), dH∗
1
(v∗) ≥ dH ′(v∗) ≥ f1(v

∗), and dH∗
1
(v∗) + dH∗

2
(v∗) ≤ dH(v

∗) ≤ f1(v
∗) + f2(v

∗) +

. . .+ fp(v
∗). As a consequence, we have dH∗

1
(v∗) = f1(v

∗) and so dH∗
1
(v∗) = dH ′(v∗). Hence,

dH∗
1
−u∗(v∗) < f1(v

∗). As H∗
1 − u∗ ⊆ H∗

1 and H∗
1 is strictly f1-degenerate, this implies that

H∗
1 + v∗ −u∗ is strictly f1-degenerate as well and so H̃1 = H∗

1 + v∗ −u∗ is a maximum order
strictly f1-degenerate subhypergraph of H. Note that K − v∗ is f ′-partitionable (as K is h-
regular by (b) and by Proposition 2.4) and soH∗

2−v∗ has one non-f ′-partitionable component
less than H∗

2. Clearly, H̃2 = H∗
2 − v∗ + u∗ may have only one more non-f ′-partitionable

component than H∗
2 − v∗ and if so, u∗ must be contained in this component. Since H̃1 is

a maximum order strictly f1-degenerate subhypergraph of H, (H1, H2, . . . , Hp, H̃1, H̃2) ∈ F

and the proof is complete. □
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Let (H1, H2, . . . , Hp, H
∗
1, H

∗
2) ∈ F be an arbitrary tuple. Since we assume that the lemma

is false, |H1| < |H∗
1 |. By Claim 3.9.1(b), H∗

2 is not f ′-partitionable and so there is a non-f ′-
partitionable component of H∗

2. Let K(H1,H2,...,Hp,H
∗
1
,H∗

2
) denote the set of non-f ′-partitionable

components of H∗
2. Then, by Claim 3.9.1(c), for any K ∈ K(H1,H2,...,Hp,H

∗
1
,H∗

2
) we have V(K)∩

V(H1) 6= ∅. Let

V(H1,H2,...,Hp,H
∗
1
,H∗

2
) =

∪
K∈K(H1,H2,...,Hp,H∗

1
,H∗

2
)

(V(K) ∩ V(H1)).

Moreover, let T(H1,H2,...,Hp,H
∗
1
,H∗

2
) denote the set of all tupels (v∗, H ′, w∗) such that v∗ ∈

V(H1,H2,...,Hp,H
∗
1
,H∗

2
), H ′ is a subhypergraph of H∗

1+v∗ with dH ′(w) ≥ f1(w) for all w ∈ V(H ′)

and w∗ ∈ V(H ′) \ V(H1). By Claim 3.9.1(a),(c), each vertex v∗ ∈ V(H1,H2,...,Hp,H
∗
1
,H∗

2
) is

contained in some tuple from T(H1,H2,...,Hp,H
∗
1
,H∗

2
).

Now we choose (H1, H2, . . . , Hp, H
∗
1, H

∗
2) ∈ F such that

(1) |H1 ∩H∗
1 | is maximum.

(2) |K(H1,H2,...,Hp,H
∗
1
,H∗

2
)| is minimum subject to (1).

(3) m = min{distH ′(v∗, w∗) | (v∗, H ′, w∗) ∈ T(H1,H2,...,Hp,H
∗
1
,H∗

2
)} is minimum subject to

(1),(2).

Let (v∗, H ′, w∗) ∈ T(H1,H2,...,Hp,H
∗
1
,H∗

2
) such that distH ′(v∗, w∗) = m. If m = 1, then w∗ is

in H ′ adjacent to v∗ and it follows from Claim 3.9.1(d) that H̃1 = H∗
1+v∗−w∗ is a maximum

order strictly f1-degenerate subgraph of H. Moreover, |V(H1) ∩ V(H̃1)| > |V(H1) ∩ V(H∗
1)|,

contradicting (1). Hence, m ≥ 2. Let u∗ be a vertex that is adjacent to v∗ in H ′ and is
contained in a shortest (v∗, w∗)-hyperpath of H ′. As m ≥ 2 and by (3), u∗ ∈ V(H1). By
Claim 3.9.1(d), H̃1 = H1 + v∗ − u∗ is a maximum order strictly f1-degenerate subhyper-
graph of H and H̃2 = H2 + u∗ − v∗ has at most |K(H1,H2,...,Hp,H

∗
1
,H∗

2
)| non-f ′-partitionable

components. By (2), H̃2 has exactly |K(H1,H2,...,Hp,H
∗
1
,H∗

2
)| non-f ′-partitionable components

implying (by Claim 3.9.1(d)) that u∗ is contained in a non-f ′-partitionable component K of
H̃2. Then, (H1, H2, . . . , Hp, H̃1, H̃2) ∈ F is a tuple satisfying (1) and (2) and (u∗, H ′, w∗) ∈
T(H1,H2,...,Hp,H̃1,H̃2)

with distH ′(u∗, w∗) < distH ′(v∗, w∗) = m, contradicting (3). This proves
the lemma. ■

Proof of Theorem 3.8. Let (H, f) be as described in the theorem. Then, since for any
component H ′ of H the hypergraph H ′ is not f-hard, it follows from Theorem 2.3 that H is
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f-partitionable. Then, by Lemma 3.9, H admits an f-partition (H1, H2, . . . , Hp) such that
H1 is a maximum order strictly f1-degenerate subhypergraph. Now let H ′ = H−V(H1). We
claim that f2(v)+f3(v)+. . .+fp(v) ≥ dH ′(v) for all v ∈ V(H ′). Otherwise, f2(v)+f3(v)+. . .+

fp(v) < dH ′(v) for some v ∈ V(H ′) and, as f1(v) + f2(v) + . . .+ fp(v) ≥ dH(v), we conclude
dH1

(v) < f1(v). As a consequence, H1+v is a strictly f1-degenerate subhypergraph of H with
|H1+v| > |H1|, contradicting the maximality of H1. Hence, f2(v)+f3(v)+. . .+fp(v) ≥ dH ′(v)

for all v ∈ V(H ′). Let f ′ = (f2, f3, . . . , fp). Since (H2, H3, . . . , Hp) is an f ′-partition of H ′, we
may once again apply Lemma 3.9, which leads to an f ′-partition (H ′

2, H
′
3, . . . , H

′
p) of H ′ such

that H ′
2 is a maximum order strictly f2-degenerate subhypergraph. By repeated application

of the above arguments we eventually obtain the demanded f-partition. ■

The next Theorem is the counter-part to MATAMALA’s Theorem 3.7 and can easily be
deduced from Theorem 2.3 and Theorem 3.8.

Theorem 3.7’. Let H be a connected hypergraph with maximum degree ∆ ≥ 1. Moreover,
let d1, d2, . . . , dp be positive integers, p ≥ 2, such that d1+d2+ . . .+dp ≥ ∆. Then, there is
a partition (H1, H2, . . . , Hp) of H such that H1 is a maximum order subhypergraph of H with
col(H1) ≤ d1, and for i ∈ [2, p − 1], the hypergraph Hi is a maximum order subhypergraph
of H − ((V(H1)) ∪ V(H2) ∪ · · · ∪ V(Hi−1)) with col(Hi) ≤ di, unless H is a tKn for some
t, n ≥ 1, di = tni for some ni ≥ 1, i ∈ [1, p], and d1 + d2 + . . . + dp = t(n − 1) = ∆, or
H = tCn for t ≥ 1 and n ≥ 3 odd, p = 2, and di = t for i ∈ {1, 2}. ⋄

3.4. Point-partition Number

The point-partition number χs(H) of a hypergraph H (with s ≥ 0) is the minimum
number k such that H admits a k-coloring in which each color class induces an s-degenerate
subhypergraph of H. Thus, χ0(H) corresponds to the chromatic number of H. Furthermore,
the list-point partition number χsℓ(H) of a hypergraph H is the least integer k such that
for any list-assignment L fulfilling |L(v)| ≥ k for all v ∈ V(H), there is an L-coloring of
H such that each color class induces an s-degenerate subhypergraph. The point-partition
number was originally introduced by LiCK and WHiTE [79] for simple graphs; BOLLOBÁS
and MANVEL [16] later used the term s-chromatic number for χs. It is notable that for
a graph G, the point arboricity of G is defined as the least number k of forests forming a
k-partition of G and, thus, corresponds to χ1(G).

If we consider Theorem 3.4’, by setting k1 = k2 = . . . = kp = s + 1, we obtain that the
point-partition number χs(H) is at most p if H is a connected hypergraph with maximum
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degree ∆ ≥ 1 different from tKn with t, n ≥ 1 and tCn for t ≥ 1 and n ≥ 3 odd such that
p(s+ 1) = k1 + k2 + . . .+ kp ≥ ∆. For simple graphs, these cases were originally solved by
KRONK and MiTCHEM [76] and MiTCHEM [87].

Let H be a hypergraph and let L be an arbitrary list-assignment of H. We say that H is
(L, s)-colorable if there is an L-coloring of H such that each color class induces a strictly
s-degenerate subhypergraph. As a simple consequence of Theorem 2.3, we shall prove a
list-version of the above result:

Theorem 3.10. Let s be a positive integer, let H be a connected hypergraph, and let L be a
list-assignment satisfying |L(v)| ≥ ∆(H)/s for each v ∈ V(H). Then, H is not (L, s)-colorable
if and only if the following two conditions are fulfilled:

(a) H = tKn with 1 ≤ t ≤ s and t(n − 1) ≡ 0(mod s), or H = sCn with n ≥ 5 odd, or H

is an s-regular hypergraph.

(b) There is a color set Γ such that L(v) = Γ for all v ∈ V(H) and |Γ | = ∆(H)/s. ⋄

Proof. If H = K1 and, hence, ∆(H) = 0, the statement is evident. Thus, we may assume
∆(H) ≥ 1. Let Γ =

∪
v∈V(H) L(v). By renaming the colors if necessary, we get Γ = [1, p] with

p ≥ 1. Let f ∈ Vp(H) be the function with

fi(v) =

s if i ∈ L(v),

0 otherwise

for all i ∈ [1, p]. Then,

p∑
i=1

fi(v) = |L(v)|s ≥ ∆(H) ≥ dH(v) (3.1)

for all v ∈ V(H). Clearly, H is not (L, s)-colorable if and only if H does not admit an
f-partition. Thus, by (3.1) and Theorem 2.3, H is not (L, s)-colorable if and only if (H, f) is
a hard pair.

First assume that H and L satisfy (a) and (b). Then it is easy to check that (H, f) is a
hard pair and so H is not (L, s)-colorable. Conversely, assume that H is not (L, s)-colorable.
Then (H, f) is a hard pair, which implies, in particular, that |L(v)|s = ∆(H) = dH(v) for all
v ∈ V(H) (by (3.1) and Proposition 2.6(a)), and so H is ∆-regular. If ∆(H) = s, then H is
an s-regular connected hypergraph and, hence, each proper subhypergraph of H is strictly
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s-degenerate (by Proposition 2.4). Since H is not (L, s)-colorable, this clearly implies that
there is a color α such that L(v) = {α} for all v ∈ V(H), and we are done. Otherwise,
∆(H)/s ≥ 2 and so for each vertex v ∈ V(H) there are two indices i 6= j from [1, p] such that
fi(v) = s and fj(v) = s. Consequently, no end-block of H is a mono-block and, since H is
∆-regular, this implies that H itself is a block and so (H, f) is either of type (K) or (C). In the
first case, H = tKn for some t ≥ 1, n ≥ 3 and there are integers n1, n2, . . . , np with at least
two ni different from zero such that n1+n2+ . . .+np = n−1 and f(v) = (tn1, n2, . . . , tnp)

for all v ∈ V(H). Since every coordinate of f(v) is either s or zero, this is only possible if
t(n − 1) ≡ 0(mod s) and if 1 ≤ t ≤ s. In the second case, H = sCn with n ≥ 5 odd and
f(v) = (s, s, 0, . . . , 0) (except for symmetry). As the vector function f is constant in both
cases, we easily deduce that the list-assignment L is constant, too, and |L(v)| = ∆/s for all
v ∈ V(H). ■

The final question that we want to address in this section is if it is possible to obtain
a degree version of the above result. For s = 1, this corresponds to Theorem 3.2; the
characterization of the “uncolorable” list-assignments was given by BORODiN [19, 20] for
graphs and by KOSTOCHKA and STiEBiTZ [70] for hypergraphs. Unfortunately, we did not
succeed in extending the result for s ≥ 2, except for s = 2 and the class of graphs.

Theorem 3.11. Let s ∈ {1, 2}, let G be a connected graph with |G| ≥ 2, and let L be a list-
assignment satisfying |L(v)| ≥ dG(v)/s for each v ∈ V(G). Then, G is not (L, s)-colorable if
and only if the following two conditions are fulfilled:

(a) If B ∈ B(G), then B = tKn with 1 ≤ t ≤ s and t(n− 1) ≡ 0(mod s), or B = sCn with
n odd, or B is s-regular.

(b) For each B ∈ B(G), there is a set ΓB of ∆(B)/s colors such that for every v ∈ V(G),
the sets ΓB with B ∈ Bv(G) are pairwise disjoint and L(v) =

∪
B∈Bv(G) ΓB. ⋄

Proof. As in the previous proof let Γ be the set of colors used in the union of all lists L(v)

and assume Γ = [1, p]. Moreover, define f ∈ Vp(G) with

fi(v) =

s if i ∈ L(v),

0 otherwise

for all i ∈ [1, p]. Then, f1(v) + f2(v) + . . .+ fp(v) ≥ |L(v)|s ≥ dG(v) for all v ∈ V(G). Again,
G is not (L, s)-colorable if and only if (G, f) is a hard pair.
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If G and L satisfy (a) and (b), it is easy to check that (G, f) is a hard pair and so G is
not (L, s)-colorable. Now assume that G is not (L, s)-colorable. Then (G, f) is a hard pair
and it follows from Proposition 2.6(a) that |L(v)|s = dG(v) for all v ∈ V(G). Moreover, by
Proposition 2.5(a)(b), for each B ∈ B(G) there is a uniquely determined function fB ∈ Vp(B)

such that (B, fB) is of type (M),(K), or (C) and that f(v) =
∑

B∈Bv(G) fB(v) for all v ∈ V(G).
We claim that fB(v) ∈ {0, 2}p whenever B ∈ B(G) and v ∈ V(B). The prove is by induction
on the number m of blocks of G. For m = 1, the claim trivially holds. So assume m ≥ 2.
Let B be an end-block of G and let v be the only separating vertex of G contained in B.
Furthermore, let G ′ = G − (V(B) \ {v}) and let f ′(w) = f(w) for all w ∈ V(G ′) \ {v} and
f ′(v) = f(v) − fB(v). Then, (G ′, f ′) is a hard pair with f ′(w) ∈ {0, 2}p for all w ∈ V(G ′) \ {v}

and f ′(v) ∈ {0, 1, 2}p. If f ′(v) ∈ {0, 2}p, then also fB(v) ∈ {0, 2}p and we are done by induction.
So assume that one coordinate of f ′(v) equals 1. Then, the same coordinate of fB(v) is also
1. Consequently, (B, fB) is a mono-block (block of type (M)). Thus, dB(v) = 1 and, as
G is a graph and B is a block, B = K2, which is impossible. This proves the claim that
fB(v) ∈ {0, 2}p whenever B ∈ B(G) and v ∈ V(B). With the help of similar arguments as in
the proof of Theorem 3.10, it is now easy to see that G and L satisfy (a) and (b). ■

The reason why the above theorem does not hold for larger s, respectively for hypergraphs
with s ≥ 2, is that the mono-blocks do not need to be regular in this case. Figure 3.2
displays s-regular counter-examples for graphs with s = 3 and s = 4 and for hypergraphs
with s = 2. If L ≡ {1} is the constant list-assignment, the three pictured (hyper-)graphs
H satisfy |L(v)| ≥ dH(v)/s = 1 for all v ∈ V(H), but are not (L, s)-colorable, yet there are
blocks not satisfying statement (a) of the theorem. Note that it is possible to prove the
“if”-part of the above theorem if we forbid B = tKn and B = tCn for all n ≥ 1 and 1 ≤ t ≤ s

and replace the phrase “B is s-regular” with “∆(B) ≤ s”.

3.5. P-coloring Problem

3.5.1. Colorings with Respect to Hypergraph Properties

As mentioned in Section 1.3, we can use hypergraph properties in order to generalize the
ordinary coloring concept for hypergraphs. For instance, a proper coloring of a hypergraph
H is a coloring of H in which each color class induces a subhypergraph belonging to the
property O of edgeless hypergraphs. Of course, we can replace O with any other property.
In this section, we aim to generalize this approach. To this end, let P be an arbitrary
hypergraph property. Moreover, let H be a hypergraph, and let Γ be a color set. A coloring
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s = 3 s = 4 s = 2

FiG. 3.2. Counter-examples to Theorem 3.11 for s = 3, 4 and for hypergraphs with s = 2, where
L ≡ {1} is the constant list-assignment.

φ : V(H) → Γ is a P-coloring of H if each color class induces a subhypergraph of H

belonging to P. Furthermore, the P-chromatic number χ(H : P) of H is the least integer
k such that H admits a P-coloring with color set [1, k]. Similar, given a list-assignment
L : V(H) → 2Γ , a (P, L)-coloring of H is an L-coloring φ of H such that H[φ−1(α)] ∈ P for
all α ∈ Γ . If H admits a (P, L)-coloring, we also say that H is (P, L)-colorable. Finally,
we define the P-list-chromatic number χℓ(H : P) of H as the least integer k such that
H is (P, L)-colorable for all list-assignments L with |L(v)| ≥ k for all v ∈ V(H). From the
definition it immediately follows that

χ(H) = χ(H : O), χℓ(H) = χℓ(H : O), χs(H) = χ(H : Ds), and χsℓ(H) = χℓ(H : Ds).

As the reader will recall from Section 1.3, a smooth hypergraph property is a hypergraph
property, which is hereditary and non-trivial. If P is a smooth hypergraph property, then
K0, K1 ∈ P (by Proposition 1.2), which implies that

χ(H : P) ≤ χℓ(H : P) ≤ |H|

for all hypergraphs H. Moreover, it holds

χℓ(H : P) − 1 ≤ χℓ(H− v : P) ≤ χℓ(H : P)
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for all hypergraphs H and for each vertex v ∈ V(H). The second inequality is obvious. In
order to obtain the first inequality, assume that χℓ(H,P) = k, but χℓ(H − v : P) ≤ k − 2

for some vertex v ∈ V(H), that is, H− v is (P, L ′)-colorable for each list-assignment L ′ such
that |L ′(u)| ≥ k − 2 for all u ∈ V(H − v). Now let L be an arbitrary list-assignment of H
with |L(u)| ≥ k− 1 for all u ∈ V(H). Then, we may assign v an arbitrary color α from L(v)

and set L ′(u) = L(u) \ {α} for all u ∈ V(H) \ {v}. As a consequence, L ′ is a list-assignment
of V(H − v) such that |L ′(u)| ≥ k − 2 for all u ∈ V(H − v) and, thus, H − v admits an
L ′-coloring, which leads to an L-coloring of H. Since L was chosen arbitrarily, this implies
that χℓ(H : P) ≤ k− 1, a contradiction.

Let L be a list-assignment of a hypergraph H. We say that H is (P, L)(-vertex)-critical
if H − v is (P, L)-colorable for all v ∈ V(H), but H itself is not. Recall from Section 1.3
that, for a smooth hypergraph property P,

F(P) = {H | H 6∈ P, but H− v ∈ P for all v ∈ V(H)},

and
d(P) = min{δ(H) | H ∈ F(P)}.

Proposition 3.12. Let P be a smooth graph property with d(P) = r, let H be a non-empty
hypergraph, and let L be a list-assignment of H. If H is (P, L)-critical, then the following
conditions hold:

(a) dH(v) ≥ r|L(v)| for all v ∈ V(H).

(b) Let v be a vertex of H with dH(v) = r|L(v)|, and let φ be a (P, L)-coloring of H − v

with color set Γ . Moreover, for α ∈ L(v), let

Hα,v = H[φ−1(α) ∪ {v}] and dα = dHα,v(v)

Then, dα = r for all α ∈ L(v) and EH(v) =
∪

α∈L(v) EHα,v(v). ⋄

Proof. Let v be an arbitrary vertex of H. Since H is (P, L)-critical, there is a (P, L)-coloring
φ of H−v. As H is not (P, L)-colorable, Hα,v = H[φ−1(α)∪ {v}] is not in P for all α ∈ L(v),
and thus, by Proposition 1.2(e),

r = d(P) ≤ dHα,v(v) = dα
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for each α ∈ L(v). Consequently, we obtain

dH(v) ≥
∑

α∈L(v)

dα ≥ r|L(v)|.

This proves (a). If v is a vertex of H with dH(v) = r|L(v)|, then the above inequalities
immediately imply that r = dα for all α ∈ L(v) and that EH(v) =

∪
α∈L(v) EHα,v(v), which

proves (b). ■

Let P be a smooth hypergraph property with d(P) = r, let H be a hypergraph, and let L
be a list-assignment of H such that H is (P, L)-critical. Then, we know from Proposition 3.12
that dH(v) ≥ r|L(v)| for all v ∈ V(H). This gives us a natural way to divide the vertices
of H into two classes: high vertices and low vertices. A vertex v is a low vertex of H if
dH(v) = r|L(v)| and a high vertex, otherwise. By V(H,P, L), we denote the set of low
vertices of H. Moreover, we call H(V(H,P, L)) the low-vertex hypergraph with respect
to (H,P, L). Note that H(V(H,P, L)), contrary to the case for graphs, is not necessarily
a subhypergraph of H. The main result of this section is a GALLAi-type theorem that
characterizes the structure of the low-vertex hypergraph. For simple graphs, it was obtained
in 1995 by BOROWiECKi, DRGAS-BURCHARDT and MiHÓK [25]. We say that a hypergraph
H is a brick if H = tCn for some t ≥ 1 and n ≥ 3 odd or H = tKn for some t, n ≥ 1.

Theorem 3.13. Let P be a smooth hypergraph property with d(P) = r, let H be a non-
empty hypergraph, and let L be a list-assignment of H such that H is (P, L)-critical and
F = H(V(H,P, L)) is non-empty. If B is a block of F, then B is a brick, or B ∈ F(P) and
B is r-regular, or B ∈ P and ∆(B) ≤ r. ⋄

The proof of Theorem 3.13 is presented in the next subsection. Before that, we want to
discuss some applications of the above theorem; the first one deals with proper colorings.
To this end, let us introduce an important class of hypergraphs: a connected hypergraph is
a GALLAi tree if each of its block is a complete graph, an odd cycle, or consists of just
one hyperedge. Moreover, a GALLAi forest is a hypergraph all of whose components are
GALLAi trees. We want to stress the fact that if H is a GALLAi forest, then H is a simple
hypergraph and, for all v ∈ V(H), the hypergraph H÷ v is a GALLAi forest, too.

Theorem 3.14. Let H be a hypergraph, and let L be a list-assignment of H such that H

is (O, L)-critical. Then, the low vertex hypergraph F = H(V(H,O, L) is a GALLAi forest
(possibly empty). ⋄
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Proof. Recall from Section 1.3 that d(O) = 1 and that F(O) is the class of connected
hypergraphs having just one edge. If v ∈ V(F) is a low vertex, then it follows from Propo-
sition 3.12(b) that any pair of distinct edges e, e ′ ∈ EH(v) satisfy iH(e) ∩ iH(e

′) = {v}. As a
consequence, F is a simple hypergraph and Theorem 3.13 implies that F is a GALLAi forest.■

Note that the above theorem implies GALLAi’s Theorem 3 by setting L(v) = [1, k − 1]

for all v ∈ V(H). Hypergraphs that are (O, L)-critical for a given list-assignment L are also
called list-(vertex-)critical hypergraphs. THOMASSEN [115] proved Theorem 3.14 for list-
critical simple graphs; for list-critical simple hypergraphs it was proved by KOSTOCHKA,
STiEBiTZ, and WiRTH [72].

Now, we shall demonstrate how to use Theorem 3.13 in order to obtain a BROOKS-type
result for the P-chromatic number as well as for the P-list-chromatic number. To this end,
let P be a smooth hypergraph property. A hypergraph H is (χℓ,P)(-vertex)-critical if
χℓ(H

′ : P) < χℓ(H : P) for each proper induced subhypergraph H ′ of H. Note that H is
(χℓ,P)-critical if and only if χℓ(H− v : P) = χℓ(H : P) − 1 for each vertex v ∈ V(H).

Lemma 3.15. If P is a smooth hypergraph property with d(P) = r ≥ 1, then the following
statements hold:

(a) For each hypergraph H there is a (χℓ,P)-critical induced subhypergraph H ′ such that
χℓ(H

′ : P) = χℓ(H : P).

(b) If H is a (χℓ,P)-critical hypergraph with χℓ(H : P) = k, then δ(H) ≥ r(k − 1).
Moreover, if U = {v ∈ V(H) | dH(v) = r(k − 1)} is non-empty, then each block B of
H(U) is a brick, or B ∈ F(P) and B is r-regular, or B ∈ P and ∆(B) ≤ r.

(c) For each hypergraph H it holds χℓ(H : P) ≤ ∆(H)
r

+ 1. ⋄

Proof. Let H ′ be an induced subhypergraph of H with χℓ(H
′ : P) = χℓ(H : P) whose order

is minimum; this hypergraph clearly fulfills statement (a). To prove (b), let H be a (χℓ,P)-
critical hypergraph with χℓ(H : P) = k and let U = {v ∈ V(H) | dH(v) = r(k − 1)}. Then,
there exists a list-assignment L of H with |L(v)| = k− 1 for all v ∈ V(H) such that H is not
(P, L)-colorable, but H − v is (P, L)-colorable for each v ∈ V(H). As a consequence, H is
(P, L)-critical and, by Proposition 3.12(a), it holds δ(H) ≥ r(k − 1) and U = V(H,P, L).

Applying Theorem 3.13 then leads to each block B of H(U) having the structure that is
required in (b).

For the proof of (c), let H be an arbitrary hypergraph with χℓ(H : P) = k. By (a), H
contains a (χℓ,P)-critical induced subhypergraph H ′ such that χℓ(H ′ : P) = χℓ(H : P). By
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(b), H ′ has minimum degree at least r(k − 1) and we conclude ∆(H) ≥ ∆(H ′) ≥ δ(H ′) ≥
r(k− 1) and, hence, χℓ(H : P) ≤ ∆(H)

r
+ 1. ■

We say that a hypergraph property P is additive if P is closed under vertex disjoint
unions. This means that a non-empty hypergraph H is in P if and only if each component
of H is in P. If we also require P to be smooth, then each hypergraph H from F(P) is
connected and it holds d(P) ≥ 1 (since K0, K1 ∈ P by Proposition 1.2(a)).

Recall that O is the class of edgeless hypergraphs. The property O obviously is non-trivial,
hereditary and additive, and O is contained in each property P that is smooth and additive
(by Proposition 1.2(a)). As a consequence, each hypergraph H satisfies

χℓ(H : P) ≤ χℓ(H : O) = χℓ(H)

for any smooth and additive hypergraph property P. With the help of Lemma 3.15 we are
able to deduce a BROOKS-type result for smooth and additive hypergraph properties. This
theorem was proved for simple graphs in [25].

Theorem 3.16. Let P be a non-trivial, hereditary and additive hypergraph property with
d(P) = r and let H be a connected hypergraph. Then,

χℓ(H : P) ≤
⌈
∆(H)

r

⌉
+ 1,

and if equality holds, then H = tK(kr+t)/t for some integers t ≥ 1, k ≥ 0, or H is a tCn for
t = r, n ≥ 3 odd, or H is r-regular and H ∈ F(P). ⋄

Proof. Let H be an arbitrary connected hypergraph. If ∆(H) is not divisible by r, then
the statement follows directly from Lemma 3.15(c) (in particular, equality cannot hold).
Thus, we may assume ∆(H) = kr for some integer k ≥ 0 and so χℓ(H : P) ≤ k + 1 (by
Lemma 3.15(c)). If χℓ(H : P) ≤ k, there is nothing left to show. Otherwise, we have χℓ(H :

P) = k + 1. Then, by Lemma 3.15(a),(b), H contains a (χℓ,P)-critical subhypergraph H ′

satisfying χℓ(H
′ : P) = k+1 and δ(H ′) ≥ kr. As H is connected and as ∆(H ′) ≤ ∆(H) = kr,

this implies that H = H ′ and, hence, H is kr-regular and (χℓ,P)-critical. Thus, H = H(U),
where U = {v ∈ V(H) | dH(v) = rk} and, by Lemma 3.15(b), each block B of H is a brick, or
B ∈ F(P) and B is r-regular, or B ∈ P and ∆(B) ≤ r. As H itself is kr-regular, this clearly
implies that H is a block.

If H = tKn with t, n ≥ 1, then dH(v) = t(n − 1) = kr and thus n = kr+t
t

. Hence, we are
done. If H = tCn for some t ≥ 1 and n ≥ 3 odd, we have kr = 2t ≥ 2. In the case k = 1,
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it follows that χℓ(H : P) = 2 and r = 2t. As H is (χℓ,P)-critical, this implies that H is in
F(P) and H is r-regular. For k ≥ 2, we argue as follows. Since χℓ(H : P) ≤ χℓ(H) ≤ 3 and
as χℓ(H : P) = k + 1, it follows that χℓ(H : P) = 3, k = 2 and, thus, r = t. Hence, we are
done. If H ∈ F(P) and H is r-regular, then k = 1 (as H is kr-regular), and we are done,
too. Finally, if H ∈ P and ∆(H) ≤ r, then χℓ(H : P) = 1, but k = 1, contradicting the
premise that χℓ(H : P) = k+ 1. This completes the proof. ■

To conclude this subsection, we present a generalized version of ERDŐS, RUBiN, and
TAYLOR’s Theorem 3.1, respectively the hypergraph version by KOSTOCHKA, STiEBiTZ and
WiRTH (see Theorem 3.2).

Theorem 3.17. Let P be a non-trivial, hereditary and additive hypergraph property with
d(P) = r, and let H be a connected hypergraph. Moreover, let L be a list-assignment of H
such that r|L(v)| ≥ dH(v) for all v ∈ V(H). Then, H is (P, L)-colorable, unless dH(v) = |L(v)|

for all v ∈ V(H) and each block B of H is a brick, or B ∈ F(P) is r-regular, or B ∈ P and
∆(B) ≤ r. ⋄

Proof. If H is (P, L)-colorable, there is nothing left to show. Suppose that H is not (P, L)-
colorable. Then, there is a (P, L)-critical subhypergraph H ′ of H. By Proposition 3.12(a),
dH ′(v) ≥ r|L(v)| for all v ∈ V(H ′) and, thus, dH ′(v) = dH(v) = r|L(v)| for all v ∈ V(H ′). As
H is connected, this implies that H ′ = H, i.e., H is (P, L)-critical. Moreover, it follows that
dH(v) = r|L(v)| for all v ∈ V(H) and so V(H) = V(H,P, L). Applying Theorem 3.13 then
completes the proof. ■

If we set P = O in the above theorem, we have d(P) = 1 and so the condition r|L(v)| ≥
dH(v) for all v ∈ V(H) is the same as the requirement |L(v)| ≥ dH(v) in Theorem 3.2.
Moreover, F(O) corresponds to the class of hypergraphs H with H =< e > for some edge e.
Since the only connected non-empty hypergraph H from O with ∆(H) ≤ 1 is the complete
graph K1, the statement of Theorem 3.2 immediately follows from Theorem 3.17 if we restrict
ourselves to simple hypergraphs.

3.5.2. Proof of Theorem 3.13

For the reader’s convenience, let us recall Theorem 3.13.

Theorem 3.13. Let P be a smooth hypergraph property with d(P) = r, let H be a non-
empty hypergraph, and let L be a list-assignment of H such that H is (P, L)-critical and



Generalized Colorings of Hypergraphs 60

F = H(V(H,P, L)) is non-empty. If B is a block of F, then B is a brick, or B ∈ F(P) and
B is r-regular, or B ∈ P and ∆(B) ≤ r. ⋄

Proof. Once again, the proof is based on Theorem 2.3. The main idea is, given a block B

of H(V(H,P, L)) and a (P, L)-coloring φ of H − V(B), to define a function f such that φ

cannot be extended to a (P, L)-coloring of H if and only if B is not f-partitionable. Then
we apply Theorem 2.3 to (B, f) and analyze the three types of blocks (M), (K), and (C) that
may occur. These will be exactly the blocks as described in Theorem 3.13. Let’s get into
the proof.

Let B be an arbitrary block of F = H(V(H,P, L)). Since H is (P, L)-critical, there is a
(P, L)-coloring φ of H − V(B) with a set Γ of p colors. By renaming the colors we may
assume Γ = [1, p]. Let Hi = H[φ−1(i)] for each i ∈ [1, p]. Then, for v ∈ V(B), we define the
vector function f : V(B) → N

p
0 as follows. For each v ∈ V(B), let fi(v) = max{0, r−dHi+v(v)}

if i ∈ L(v), and fi(v) = 0, otherwise.
We claim that B is not f-partitionable. Assume, to the contrary, that B admits an f-

partition (H ′
1, H

′
2, . . . , H

′
p). Then, for i ∈ [1, p] let H̃i = H[V(Hi) ∪ V(H ′

i)]. Obviously,
(H̃1, H̃2, . . . , H̃p) is a partition of H. Note that v ∈ V(H̃i) implies that i ∈ L(v) (since
fi(v) ≥ 1 for v ∈ V(H ′

i)). If H̃i ∈ P for all i ∈ [1, p], it follows that H is (P, L)-colorable,
a contradiction. As a consequence, there is an i ∈ [1, p] such that H̃i 6∈ P. By Propo-
sition 1.2(c), there exists an induced subhypergraph H ′ of H̃i such that H ′ ∈ F(P) and,
thus, δ(H ′) ≥ d(P) = r. Since Hi is in P but H ′ is not, H ′ contains a vertex of H ′

i.
Thus, the hypergraph H ′′ = H ′

i[V(H
′) ∩ V(H ′

i)] is non-empty. However, since H ′
i is strictly

fi-degenerate, there is a vertex v in H ′′ such that dH ′′(v) < fi(v) = r − dHi+v(v) and thus
dH ′(v) ≤ dH ′′(v) + dHi+v(v) < r, a contradiction. Hence, B is not f-partitionable.

Since dH(v) = r|L(v)| for all v ∈ V(B), we obtain that

p∑
i=1

fi(v) =
∑
i∈L(v)

fi(v) ≥
∑
i∈L(v)

(r− dHi+v(v))

= dH(v) −
∑
i∈L(v)

dHi+v(v) ≥ dB(v)

for all v ∈ V(B). Thus, by Theorem 2.3 and as B is a block, (B, f) is of type (M), (K) or (C).
If (B, f) is not of type (M), then B is a brick and we are done. Thus assume that (B, f) is of
type (M). Then, there is exactly one index i such that fi(v) = dB(v) for all v ∈ V(B) and
fj(v) = 0 for j 6= i from the set [1, p]. As a consequence, dHj+v(v) ≥ r for all j ∈ L(v) \ {i}

and thus, dB(v) ≤ r for all v ∈ V(B). If B ∈ P, we have ∆(B) ≤ r and there is nothing left
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to show. If B 6∈ P, then by Proposition 1.2(c), B contains an induced subhypergraph B ′

from F(P). Since dB(v) ≤ r for all v ∈ V(B) and since δ(B ′) ≥ d(P) = r, we conclude that
B = B ′ and dB(v) = r for all v ∈ V(B). Consequently, B ∈ F(P) and B is r-regular. This
completes the proof. ■

3.5.3. A Gallai-type Bound for the Degree Sum of Critical Hypergraphs

The topic of finding lower bounds for the number of edges, respectively the degree sum of
critical graphs and hypergraphs with respect to some coloring concept has already been
examined extensively in the past. Given a hypergraph H, let d(H) =

∑
v∈V(H) dH(v) denote

the degree-sum over all vertices of H. Note that, contrary to the graph case, d(H) coincides
with

∑
e∈E(H) |iH(e)| but usually not with 2|E(H)|. Regarding proper colorings of simple

graphs, GALLAi [49] proved that for a (k + 1)-critical graph G 6= Kk+1, that is, a graph,
which has chromatic number k+1, but each proper subgraph has chromatic number at most
k (see also the introduction), it holds

d(G) ≥ k|G|+
k− 2

k2 + 2k− 2
|G|

if k ≥ 3. For simple hypergraphs, an even stronger bound was proved by KOSTOCHKA
and STiEBiTZ [70]. MiHÓK and ŠKREKOVSKi [86] proved a GALLAi-type bound for the
case of (P, L)-critical simple graphs. In this subsection, with the help of STiEBiTZ and
KOSTOCHKA’s approach, we aim to show a similar inequality for (P, L)-critical hypergraphs,
provided that all lists have same size and the low vertex hypergraph is simple. To this end,
for δ, n ∈ N, we define

a(δ, n) = δn+
δ− 2

δ2 + 2δ− 2
n.

We shall prove the following theorem.

Theorem 3.18. Let P be a smooth additive hypergraph property with d(P) = r ≥ 1, let
k ≥ 2, and let δ = kr ≥ 3. Furthermore, let H be a (P, L)-critical hypergraph, where L

is a list-assignment of H with |L(v)| = k for all v ∈ V(H). If the low vertex hypergraph
H(V(H,P, L)) is simple and each of its components is distinct from Kδ+1, then d(H) ≥
a(δ, |H|). ⋄

At this point, the reader might wonder if we could make life easier by just assuming
that the hypergraph itself is simple. Unfortunately, however, the shrinking operation may
still lead to parallel edges in this case. Thus, since it will be crucial for us that the low
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vertex hypergraph is simple, we really do need this technical assumption. At least in the
case of P = O, the low vertex hypergraph of any (P, L)-critical hypergraph is simple (see
[70]). Before proving the above theorem, let us deduce a simple corollary. For that purpose,
let H be a (χℓ,P)-critical hypergraph with χℓ(H : P) = k + 1. Then, δ(H) ≥ rk (by
Lemma 3.15(b)) and we set V(H,P, χℓ) = {v ∈ V(H) | dH(v) = rk}. As before, we call
H(V(H,P, χℓ)) the low-vertex hypergraph of H. As H is (χℓ,P)-critical with χℓ(H :

P) = k + 1, there is a list-assignment L of H with |L(v)| = k for all v ∈ V(H) such that H

is (P, L)-critical. Furthermore, we have V(H,P, χℓ)) = V(H,P, L) and so the next result
easily follows from the above theorem.

Corollary 3.19. Let P be a smooth additive hypergraph property with d(P) = r ≥ 1,
let k ≥ 2, and let δ = kr ≥ 3. Furthermore, let H be a (χℓ,P)-critical hypergraph with
χℓ(H : P) = k + 1. If the low vertex hypergraph H(V(H,P, χℓ)) is simple and each of its
components is distinct from Kδ+1, then d(H) ≥ a(δ, |H|). ⋄

Surely by now, the question has arisen why the restrictions for k, δ, and H are imposed. To
answer this, let P be a smooth additive hypergraph property with d(P) = r ≥ 1, let k ≥ 1

and let δ = kr. First, we assume k = 1. Then, δ = r and a(δ, n) > rn provided that r ≥ 3.
Moreover, the class of (χℓ,P)-critical hypergraphs H with χℓ(H : P) = k + 1 = 2 coincides
with the class F(P) (by Proposition 1.2(b)). Here, however, the inequality d(H) ≥ a(δ, |H|)

is not true for infinitely many hypergraphs H and certain properties P. For instance, let
P = Dr−1 be the class of strictly r-degenerate hypergraphs. Then, it is easy to check that
d(Dr−1) = r and that F(Dr−1) contains all r-regular connected hypergraphs and each such
simple hypergraph H coincides with its low vertex hypergraph, but d(H) = r|H| < a(δ, |H|)

for r ≥ 3. Therefore, in the following we demand that k ≥ 2, and so δ ≥ 2. If δ = 2, then
a(δ, n) = rn and the inequality d(H) ≥ a(δ, |H|) holds for every (χℓ,P)-critical hypergraph
with χℓ(H : P) = k+ 1. Hence, as of now we may suppose δ ≥ 3. Lastly, it is important to
note that if H = Kδ+1, then H is its own low-vertex hypergraph and, clearly, d(H) < a(δ, |H|)

for δ ≥ 3; thus the bound is not true in this case.
The remaining part of this section is dedicated to the proof of Theorem 3.18, which is

done via three lemmas. At first, we show that the bound always holds if a specific condition
is fulfilled (see Lemma 3.20). Of course, this is only useful if the condition is true and so we
subsequently prove that this is always the case. Most parts of the next three lemmas are
similar to those in the paper by KOSTOCHKA and STiEBiTZ [70]. Since all considered low
vertex hypergraphs are supposed to be simple, the structures described in Theorem 3.13
can be simplified. Therefore, we say that a connected simple hypergraph H is a GALLAi-
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P-tree if each block B of H is a complete graph, or B is a cycle of odd length, or B ∈ F(P)

and B is r-regular, or B ∈ P and ∆(B) ≤ r.

Lemma 3.20. Let P be a smooth additive hypergraph property with d(P) = r ≥ 1, let k ≥ 2,
and let δ = kr ≥ 3. Furthermore, let H be a connected hypergraph with δ(H) ≥ δ. We define

U = {v ∈ V(H) | dH(v) = δ}, rδ = δ− 1+
2

δ
,

and
σ = |U|rδ − d(H(U)).

If each component of H(U) is a GALLAi-P-tree distinct from Kδ+1 and σ ≥ 0, then

d(H) ≥ a(δ, n). ⋄⋄

Proof. First we claim U 6= V(H). Otherwise, H = H(U) would be a δ-regular GALLAi-P-
tree (by assumption), and this is only possible if H = Kδ+1 (as δ > r and δ ≥ 3). Hence,
U 6= V(H). If U = ∅, we obtain d(H) ≥ (δ + 1)n ≥ a(δ, n) and there is nothing left to
prove. Thus, we may assume U 6= ∅. Then,

d(H) = δ|U|+
∑

v∈V(H)\U

dH(v)

≥ d(H−U) + 2δ|U|− d(H(U))

= d(H−U) + σ+ (2δ− rδ)|U|

= d(H−U) + σ+ (δ+ 1−
2

δ
)|U|

≥ (δ+ 1−
2

δ
)|U|.

On the other hand, it is obvious that d(H) ≥ (δ+ 1)n− |U|, and so we obtain

d(H) + d(H)(δ+ 1−
2

δ
) ≥ (δ+ 1−

2

δ
)|U|+ (δ+ 1)(δ+ 1−

2

δ
)n

− |U|(δ+ 1−
2

δ
)

= (δ+ 1)(δ+ 1−
2

δ
)n.

By solving the inequation for d(H), we easily deduce the required result. ■
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Thus, the only remaining question is if σ ≥ 0 is always fulfilled. That this is indeed the
case is proved in the next two lemmas. As in the above lemma, let rδ = δ − 1 + 2

δ
and, for

an arbitrary hypergraph H, let

σ(H) = |H|rδ − d(H).

Furthermore, let Tδ denote the class of GALLAi-P-trees distinct from Kδ+1 whose maximum
degree is at most δ. Lastly, for T ∈ Tδ and for an end-block B of T , we define

TB = T − (V(B) \ {x}),

where x denotes the only separating vertex of T in B (if T has only one block choose an
arbitrary vertex x of V(T)).

Lemma 3.21. Let T ∈ Tδ and let δ ≥ 3. Then, the following statements hold:

(a) If B ∈ B(T), then σ(B) = 2 if B = Kδ and σ(B) ≥ rδ otherwise.

(b) If B is an end-block of T , then σ(T) = σ(TB) + σ(B) − rδ. ⋄

Proof. If B is a Kb for some b ∈ {1, 2, . . . , δ}, then

σ(B) = b(rδ − b+ 1)

≥ rδ, if 1 ≤ b ≤ δ− 1, and

= 2, if b = δ.

Otherwise, if B is a cycle of odd length with at least 5 vertices, then it is easy to check that

σ(B) = |B|(rδ − 2) ≥ 5(rδ − 2) ≥ rδ.

If B =< e > for some edge e, then σ(B) = |iT (e)|(rδ − 1) ≥ rδ (as rδ ≥ 2).
It remains to consider the case that B is a block with ∆(B) ≤ r that is not of the above

mentioned types. This implies, in particular, that |B| ≥ 3. If k ≥ 3, then rk ≥ 2r + 1 and
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we conclude

σ(B) = |B|(rk− 1+
2

rk
) −

∑
v∈V(B)

dB(v)

≥ |B|(rk− 1+
2

rk
) − |B|r

= |B|(r(k− 1) − 1+
2

rk
)

≥ 2rk− 2r− 2+
4

rk

= rδ + rk− 2r− 1+
2

rk
≥ rδ.

Otherwise, k = 2 and, since δ ≥ 3, we have r ≥ 2. Then, since |B| ≥ 3, we get

σ(B) ≥ |B|(r(k− 1) − 1+
2

rk
)

≥ 3rk− 3r− 3+
6

rk

= rδ + 2rk− 3r− 2+
4

rk
≥ rδ,

as 2rk = 4r ≥ 3r+ 2. Due to the fact that TB and B share exactly one vertex, statement (b)
is evident. ■

Following GALLAi [49], we say that a hypergraph is an εδ-hypergraph if each separating
vertex belongs to exactly two blocks, one being a Kδ and the other one being of the form
< e > for some edge e, and if each non-separating vertex is contained in a block, which is
a Kδ. An example of an εδ-hypergraph with δ = 4 is given in Figure 3.3.

Lemma 3.22. Let T ∈ Tδ and let δ ≥ 4. Then, σ(T) ≥ 2 if T is an εδ-hypergraph and
σ(T) ≥ rδ, otherwise. ⋄

Proof. The proof is by induction on the number m of blocks of T . If m = 1, the statement
follows immediately from Lemma 3.21. Assume m ≥ 2. If T is an εδ-hypergraph, then
TB is not an εδ-hypergraph for any end-block B of T and, by Lemma 3.15 we have σ(T) ≥
σ(TB) + σ(B) − rδ ≥ 2 (as σ(TB) ≥ rδ by the induction hypothesis).

If T is not an εδ-hypergraph, assume that T has a block B of the form B =< e >. Then,
clearly e is a bridge of T . For x ∈ iT (e), let Tx denote the component of T − iT (e) containing
x. As T is not an εδ-hypergraph, Tx is not an εδ-hypergraph for at least one x ∈ iT (e).
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FiG. 3.3. An ε4-hypergraph.

Moreover, rδ ≥ δ− 2 ≥ 2. By applying the induction hypothesis, we conclude

σ(T) =
∑

x∈iT (e)

σ(Tx) − |iT (e)| ≥ 2(|iT (e)|− 1) + rδ − |iT (e)| ≥ rδ.

If T has no block of the form < e >, then no block of T is a Kδ. Let B be an end-block
of T . Then, TB is not a εδ-hypergraph and, by the induction hypothesis and Lemma 3.21,
σ(T) = σ(TB) + σ(B) − rk ≥ rk. ■

Now we shall finally prove Theorem 3.18.

Proof of Theorem 3.18. Let P, r, k, δ and H and L be defined as in Theorem 3.18. Fur-
thermore, let U = {v ∈ V(H) | dH(v) = δ}. Since H is (P, L)-critical and |L(v)| = k for all
v ∈ V(H), the set U coincides with V(H,P, L) and so H(U) is the low vertex hypergraph.
Then, each component of H(U) is a GALLAi tree (by Theorem 5.2) and no component of
H(U) is a Kδ+1 (by assumption). Thus, each component H ′ of H(U) belongs to Tδ and,
hence, σ(H ′) ≥ 2 by Lemma 3.22. As a consequence, σ(H(U)) ≥ 0 and, by Lemma 3.20, we
conclude d(H) ≥ a(δ, |H|). ■



Chapter 4

DP-coloring of Hypergraphs

4.1. Introduction

DP-coloring is a very recent concept by DVOŘÁK and POSTLE [41] that, nevertheless, has
found plenty of attention within the last four years (see, for instance, [10, 11, 12, 14, 15,
17, 66]). Searching for the term “DP-coloring” on arXiv already provides over 50 related
papers (status as of June 2020). So what makes this concept such worthwhile examining?
As DVOŘÁK and POSTLE point out in their inital paper [41], a difficulty in proving results on
list-coloring is that the common technique of vertex identification usually does not work. By
way of example, they recall the proof that every planar graph G admits a proper 5-coloring:
let G be a counter-example of minimum order and choose a vertex v ∈ V(G) of degree at
most five. If dG(v) = 4, then any proper coloring of G − v extends to a proper coloring of
G. Hence suppose dG(v) = 5. Then, as G is planar, there are two non-adjacent neighbors
u and w of v. Let G ′ be the graph that results from G − v by identifying u and w to a
vertex u∗. Then, G ′ is planar with |G ′| < |G| and, therefore, admits a proper 5-coloring φ.
By assigning the vertices u and w the color φ(u∗), we get a proper 5-coloring of G− v such
that at most four distinct colors appear in the neighborhood of v, and so G admits a proper
5-coloring, which is impossible.

Nevertheless, regarding list-colorings, the lists might differ for each vertex and so vertex
identification is not possible. In order to overcome this difficulty, DVOŘÁK and POSTLE
transform the problem of finding a list-coloring to the one of finding a large independent
set in an auxiliary graph. Since the definition of the auxiliary graph is contained in our
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definition of the auxiliary hypergraph, we only mention the hypergraph case.
Let H be a hypergraph. A cover of H is a pair (X,H) consisting of a map X and a

hypergraph H such that the following conditions are fulfilled:

(C1) X : V(H) → 2V(H) is a function that assigns each vertex v ∈ V(H) a vertex set
Xv = X(v) ⊆ V(H) such that the sets Xv with v ∈ V(H) are pairwise disjoint.

(C2) H is a hypergraph with V(H) =
∪

v∈V(H) Xv such that Xv is an independent set of
H, and for each edge e ∈ E(H) there is a possibly empty (hyper-)matching Me in
H[

∪
v∈iH(e) Xv] with |iH(ẽ) ∩ Xv| = 1 for all v ∈ iH(e) and for all ẽ ∈ Me. Moreover,

E(H) =
∪

e∈E(H)Me.

Xv1 Xv2 Xv3 Xv4 Xv5 Xv6

v1 v2 v3 v4 v5 v6

H

(X,H)

FiG. 4.1. A cover (X,H) of a hypergraph H.

An example of how a cover may look like is given in Figure 4.1. Now let (X,H) be a
cover of H. A vertex set T ⊆ V(H) is a transversal of (X,H) if |T ∩ Xv| = 1 for each
vertex v ∈ V(H). An independent transversal of (X,H) is a transversal of (X,H), which
is an independent set of H. An independent transversal of (X,H) is also called an (X,H)-
coloring of H; the vertices of H are called colors. We say that H is (X,H)-colorable
if H admits an (X,H)-coloring. Let f : V(H) → N0 be a function. Then, H is said to be
DP-f-colorable if H is (X,H)-colorable for any cover (X,H) of H satisfying |Xv| ≥ f(v)

for all v ∈ V(H). When f(v) = k for all v ∈ V(H), the term becomes DP-k-colorable.
The DP-chromatic number χDP(H) is the least integer k ≥ 0 such that H is DP-k-
colorable. Recently, BERNSHTEYN and KOSTOCHKA [13] also introduced the DP-chromatic
number of a hypergraph in an equivalent but slightly different way. Initially, DVOŘÁK
and POSTLE named their concept correspondence coloring, the name DP-coloring is due
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to BERNSHTEYN, KOSTOCHKA, and PRON [14] as an appreciation for the inventors. Most
papers that have appeared since then seem to use the term DP-coloring (maybe due to its
catchyness). A similar concept to DP-coloring of graphs was obtained independently by
FRAiGNAUD, HEiNRiCH, and KOSOWSKi [46].

So how can we transform the problem of finding a proper list-coloring to DP-colorings?
To answer this, let H be a hypergraph and let L be a list-assignment for H. Let (X,H) be
a cover of H as follows:

• For v ∈ V(H), let Xv = {(v, x) | x ∈ L(v)} and let V(H) =
∪

v∈V(H) Xv.

• For any set S = {(v1, x1), (v2, x2), . . . , (vℓ, xℓ)} of vertices from H, there is an edge e ′ ∈
E(H) with iH(e

′) = S if and only if in H there is an edge e with iH(e) = {v1, v2, . . . , vℓ}

and if x1 = x2 = . . . = xℓ.

It is easy to check that (X,H) is indeed a cover of H. Furthermore, if φ is a proper
L-coloring of H, then T = {(v,φ(v)) | v ∈ V(H)} clearly is an independent transversal of
(X,H) and so H is (X,H)-colorable. If conversely T is an independent transversal of (X,H),
then T = {(v, xv) | v ∈ V(H)} and it is easy to see that the mapping v 7→ xv is a proper
L-coloring of H. Thus, H admits a proper L-coloring if and only if H is (X,H)-colorable.
Furthermore, we clearly have |Xv| = |L(v)| for all v ∈ V(H). Consequently, if k ≥ 0 is an
integer, then H is k-list-colorable if H is DP-k-colorable and, in particular, χℓ(H) ≤ χDP(H).

Thus, proper list-coloring is just a special case of DP-coloring. However, the definition
of a cover is significantly more general than the setting for proper list-colorings and the
list-chromatic number and the DP-chromatic number may differ. For instance, it is not
difficult to check that the hypergraph H in Figure 4.1 satisfies χℓ(H) = 2, but admits no
independent transversal for the given cover and, hence, χDP(H) ≥ 3. So is it at all possible
to obtain non-trivial results for DP-coloring and, in particular, to use the advantages of
DP-coloring in order to prove new results for the list-chromatic number? The answer is yes,
for example, DVOŘÁK and POSTLE [41] proved that every planar graph without cycles of
lengths four to eight has list-chromatic number at most three, thereby answering a question
by BORODiN [21]. Also, it shows that the coloring number is an upper bound for the DP-
chromatic number. To obtain this, we use a sequential coloring method as described in
Algorithm 1.

Clearly, if |Xvi | ≥ dH[{v1,v2,...,vi}](vi)+ 1 for all i ∈ [1, n], in step 5 there is always a possible
choice for xi and, thus, the algorithm terminates with an (X,H)-coloring of H. This is due
to the fact that for each edge e ∈ E(H) with vi ∈ iH(e) ⊆ {v1, v2, . . . , vi} and for any set of
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Algorithm 1 Sequential coloring algorithm
1: Input: hypergraph H and cover (X,H) of H.
2: Choose an arbitrary vertex order (v1, v2, . . . , vn) of H.
3: Let T = ∅.
4: for all i = 1, 2, . . . , n do
5: Choose a vertex (color) xi from Xvi such that E(H[T ∪ {xi}]) = ∅.
6: Let T = T ∪ {xi}.
7: end for
8: Return: Independent transversal T .

fixed colors
{xk | xk ∈ Xvk , vk ∈ iH(e), k ∈ [1, i− 1]},

at most one color from Xvi is prohibited. Hence, in Xvi , at most dH[v1,v2,...,vi](vi) vertices are
forbidden. As a consequence, if f(v) ≥ dH(v)+ 1 for all v ∈ V(H), then H is DP-f-colorable.
If we apply Algorithm 1 to a smallest last order (v1, v2, . . . , vn) of H, the algorithm returns
an independent transversal provided that |Xvi | ≥ col(H) for all i ∈ [1, n] (by Proposition 1.1
and the above argumentation). Therefore, χDP(H) ≤ col(H) and, summarizing, we obtain

χ(H) ≤ χℓ(H) ≤ χDP(H) ≤ col(H) ≤ ∆(H) + 1. (4.1)

Our aim is to obtain a BROOKS-type result for DP-colorings of hypergraphs, i.e., to
characterize the hypergraphs H for which χDP(H) = ∆(H) + 1 holds. Clearly, if H is an odd
cycle, we have χ(H) = ∆(H)+1 = 3 and, thus, equality holds. To see that χDP(H) = 3 holds
for even cycles as well, we construct an appropriate cover of H, following [14]. Assume that
V(H) = [1, n] with n ≥ 2 even and E(H) = {uv | u, v ∈ V(H) and u − v ≡ 1(mod n)}. Let
(X,H) be the cover of H with Xv = {v}× {1, 2} for all v ∈ V(H) and E(H) = {(u, i)(v, j) | |u−

v| = 1 and i = j; or {u, v} = {1, n} and i − j ≡ 1 (mod 2)}. Then, (X,H) is a cover of
H with |Xv| = 2 for all v ∈ V(H). Moreover, H = C2n and (X,H) has no independent
transversal. The cover for n = 4 is displayed in Figure 4.2. As emphasized in [14], the fact
that χDP(Cn) = 3 for all n ≥ 2 and not only for odd n ≥ 3 marks an important difference
between the DP-chromatic number and the list-chromatic number.

4.2. DP-degree Colorable Hypergraphs

We say that a hypergraph H is DP-degree colorable if H is (X,H)-colorable whenever
(X,H) is a cover of H such that |Xv| ≥ dH(v) for all v ∈ V(H). Regarding graphs, BERN-
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Xv1 Xv2 Xv3 Xv4

v1 v2 v3 v4

FiG. 4.2. The cover admits no independent transversal and so χDP(C4) = 3.

SHTEYN, KOSTOCHKA, and PRON [14] proved that a connected graph G is not DP-degree
colorable if and only if each block of G is a tKn or a tCn for some integers t, n ≥ 1. Of
course, when dealing with DP-coloring, it is not only of interest to characterize the non
DP-degree colorable graphs, but also the corresponding “bad” covers. This was done by KiM
and OZEKi [66] (see Theorem 4.7). The aim of this section is to give the corresponding
characterizations for DP-degree-colorable hypergraphs.

A feasible configuration is a triple (H,X,H) consisting of a connected hypergraph H

and a cover (X,H) of H. A feasible configuration is said to be degree-feasible if |Xv| ≥
dH(v) for each vertex v ∈ V(H). Furthermore, (H,X,H) is colorable ifH is (X,H)-colorable,
otherwise it is called uncolorable.

The next proposition lists some basic properties of feasible configurations; the proofs are
straightforward and left to the reader. Recall that for distinct vertices u, v of a hypergraph
H, we denote by µH(u, v) the number of ordinary edges of H that are incident with both u

and v.

Proposition 4.1. Let (H,X,H) be a feasible configuration. Then, the following statements
hold:

(a) For distinct vertices u, v of H, the hypergraph H[Xu ∪ Xv] is a bipartite graph with
parts Xu and Xv whose maximum degree is at most µH(u, v). Furthermore, for every
vertex v ∈ V(H) and every vertex x ∈ Xv, we have dH(x) ≤ dH(v).

(b) Let H ′ be a spanning subhypergraph of H. Then, (H,X,H ′) is a feasible configuration.
If (H,X,H) is colorable, then (H,X,H ′) is colorable, too. Furthermore, (H,X,H) is
degree-feasible if and only if (H,X,H ′) is degree feasible. ⋄
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The above proposition leads to the following concept. We say that a feasible configuration
(H,X,H) isminimal uncolorable if (H,X,H) is uncolorable, but (H,X,H−e) is colorable
for each e ∈ E(H). Clearly, if |H| ≥ 2 and if H̃ is the edgeless spanning hypergraph of H,
then (G,X, H̃) is colorable. Thus, it follows from the above Proposition that if (H,X,H) is
an uncolorable feasible configuration, then there is a spanning subhypergraph H ′ of H such
that (H,X,H ′) is a minimal uncolorable feasible configuration. Furthermore, if (H,X,H) is
a minimal uncolorable feasible configuration, then H clearly is a simple hypergraph.

In order to characterize the class of minimal uncolorable degree-feasible configurations,
we firstly need to introduce three basic types of degree-feasible configurations. To this end,
we need some more definitions. As usual, for n, t ≥ 1, by K(n,t) we denote the complete n-
partite graph all of whose partite sets have t vertices. In particular, K(2,t) is the complete
bipartite graph Kt,t. Given a hypergraph H, by A(H) we denote the set of all two-subsets
{u, v} ⊆ V(H) such that µH(u, v) > 0, i.e., the set of all two-subsets {u, v} that are joined
by at least one ordinary edge in H.

We say that (H,X,H) is a K-configuration if H = tKn for some integers t, n ≥ 1

and if (X,H) is a cover of H such that for every vertex v ∈ V(H), there is a partition
(X1

v, X
2
v, . . . , X

n−1
v ) of Xv satisfying the following conditions:

• For every i ∈ [1, n − 1], the graph Hi = H[
∪

v∈V(H) X
i
v] is a K(n,t) whose partite sets

are the sets Xi
v with v ∈ V(H), and

• H = H1 ∪H2 ∪ . . . ∪Hn−1.

It is an easy exercise to check that each K-configuration is a minimal uncolorable degree-
feasible configuration. Note that for n = 1, we have H = K1, X = ∅, and H = ∅.

Next we define the so called C-configurations. We say that (H,X,H) is an odd C-
configuration if H = tCn for some integers t ≥ 1 and n ≥ 5 odd and if (X,H) is a cover
of H such that for every vertex v ∈ V(H), there is a partition (X1

v, X
2
v) of Xv satisfying the

following conditions:

• For every i ∈ {1, 2} and for every set {u, v} ∈ A(H), the graph Hi
{u,v}

= H[Xi
u ∪Xi

v] is a
Kt,t whose partite sets are Xi

u and Xi
v, and

• H is the union of all graphs Hi
{u,v}

with i ∈ {1, 2} and {u, v} ∈ A(H).

It is easy to verify that any odd C-configuration is a minimal uncolorable degree-feasible
configuration.
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We call (H,X,H) an even C-configuration if H = tCn for some integers t ≥ 1, n ≥ 4

even and if (X,H) is a cover of H such that for every vertex v ∈ V(H), there is a partition
(X1

v, X
2
v) of Xv and a set {w,w ′} ∈ A(H) satisfying the following conditions:

• For every i ∈ {1, 2} and for every set {u, v} ∈ A(H) different from {w,w ′}, the graph
Hi

{u,v}
= H[Xi

u ∪ Xi
v] is a Kt,t whose partite sets are Xi

u and Xi
v,

• H1
{w,w ′} = H[X1

w ∪ X2
w ′ ] is a Kt,t whose partite sets are X1

w and X2
w ′ ,

• H2
{w,w ′} = H[X2

w ∪ X1
w ′ ] is a Kt,t whose partite sets are X2

w and X1
w ′ , and

• H is the union of all graphs Hi
{u,v}

with i ∈ {1, 2} and {u, v} ∈ A(H).

Again, it is easy to check that any even C-configuration is a minimal uncolorable degree-
feasible configuration. By a C-configuration we mean either an even or an odd C-
configuration. An example of a K- and a C-configuration is given in Figure 4.3.

Finally, we say that (H,X,H) is an E-configuration if H =< e > for some hyperedge
e, if |Xv| = 1 for each v ∈ V(H) and if H ∼= H. Clearly, each E-configuration is a minimal
uncolorable degree-feasible configuration.

H1

H2

H3

Kt,t

FiG. 4.3. A K- and an odd C-configuration.

We will show that we can construct any minimal uncolorable degree-feasible configuration
from these three basic configurations using the following operation.
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Let (H1, X1,H1) and (H2, X2,H2) be two feasible configurations, which are disjoint, that
is, V(H1) ∩ V(H2) = ∅ and V(H1) ∩ V(H2) = ∅. Furthermore, let H be the hypergraph
obtained from H1 and H2 by merging two vertices v1 ∈ V(H1) and v2 ∈ V(H2) to a new
vertex v∗. Finally, let H = H1 ∪H2 and let X : V(H) → 2V(H) be the mapping such that

Xv =

X1
v1

∪ X2
v2

if v = v∗,

Xi
v if v ∈ V(Hi) \ {vi} and i ∈ {1, 2}

for v ∈ V(H). Then, (H,X,H) is a feasible configuration and we say that (H,X,H) is
obtained from (H1, X1,H1) and (H2, X2,H2) by merging v1 and v2 to v∗.

Since dH(v
∗) = dH1(v1) + dH2(v2), it follows that (H,X,H) is degree-feasible if both

(H1, X1,H1) and (H2, X2,H2) are degree-feasible. Figure 4.4 displays a configuration that is
obtained from an even C-configuration and an E-configuration by merging two vertices.

H

(X,H)

FiG. 4.4. The configuration results from merging a C- with an E- configuration at the colored vertex.

Now we define the class of constructible configurations as the smallest class of fea-
sible configurations that contains each K-configuration, each C-configuration and each E-
configuration and that is closed under the merging operation. Thus, if (H,X,H) is a con-
structible configuration, then each block ofH is a tKn for t ≥ 1, n ≥ 1, a tCn for t ≥ 1, n ≥ 3,
or of the form < e > for some edge e. A block B of H is called a DP-brick if B = tKn

for some t ≥ 1, n ≥ 1 or if B = tCn for some t ≥ 1, n ≥ 3. Moreover, we say that B is a
DP-hyperbrick, if B is either a DP-brick or B =< e > for some edge e. The main result
of this chapter is a follows.
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Theorem 4.2. Let (H,X,H) be a degree-feasible configuration. Then, (H,X,H) is minimal
uncolorable if and only if (H,X,H) is constructible. ⋄

4.3. Proof of Theorem 4.2

4.3.1. Necessary Tools

The structure of the proof strongly resembles the one of the proof of Theorem 2.3. In
particular, we again use the method of reducible configurations. Fortunately, it is signifi-
cantly easier to deal with DP-colorings than with variable degeneracy and so it won’t take
18 pages this time. Still, we first need various propositions. The next one describes the
block-configurations of constructible configurations; the proof can be done by induction on
the number of blocks and is left to the reader.

Proposition 4.3. Let (H,X,H) be a constructible configuration. Then, for each block
B ∈ B(G) there is a uniquely determined cover (XB,HB) of B such that the following
statements hold:

(a) For each block B ∈ B(H), the triple (B,XB,HB) is a K-configuration, C-configuration,
or E-configuration.

(b) The hypergraphs HB with B ∈ B(H) are pairwise disjoint and H = ∪B∈B(H)HB.

(c) For every vertex v ∈ V(H) we have Xv =
∪

B∈Bv(H) X
B
v . ⋄

The next proposition is key in order to obtain our main result, it describes the reduction
method that allows us to use induction on the number of vertices of H. Similar propositions
to the next two propositions were proved by BERNSHTEYN, KOSTOCHKA, and PRON for
graphs in [14]. Recall that, given a hypergraph H and a vertex v ∈ V(H), the set NH(v)

denotes the ordinary neighborhood of v, i.e., the set of vertices u with µH(u, v) > 0.

Proposition 4.4. Let (H,X,H) be a feasible configuration with |H| ≥ 2, let v be a non-
separating vertex of H, and let x ∈ Xv be a color. We define a cover of the hypergraph
H ′ = H÷ v as follows. For u ∈ V(H ′) let

X ′
u = Xu \NH(x)

and let H ′ be the hypergraph with V(H ′) =
∪

u∈V(H ′) X
′
u,

E(H ′) = {e | e ∈ E(H), |iH(e) \ {x}| ≥ 2, and (iH(e) \ {x}) ⊆ V(H ′)},
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and
iH ′(e) = iH(e) \ {x}

for all e ∈ E(H ′). Then, (H ′, X ′,H ′) is a feasible configuration, and in what follows we
write (H ′, X ′,H ′) = (H,X,H)/(v, x). Moreover, the following statements hold:

(a) If (H,X,H) is degree-feasible, then (H ′, X ′,H ′) is degree-feasible, too.

(b) If (H,X,H) is uncolorable, then (H ′, X ′,H ′) is uncolorable, too. ⋄

Proof. Clearly, (X ′,H ′) is a cover of H ′ and, hence, (H ′, X ′,H ′) is a feasible configuration.
Moreover, for u ∈ V(H ′) it holds dH ′(u) = dH(u) − µH(u, v) and |NH(x) ∩ Xu| ≤ µH(u, v)

(see (1.2) and Proposition 4.1). Thus, we obtain

|X ′
u| = |Xu|− |NH(x) ∩ Xu| ≥ |Xu|− µH(u, v).

As |Xu| ≥ dH(u), this leads to |X ′
u| ≥ dH ′(u) and (H ′, X ′,H ′) is degree-feasible. Furthermore,

if T ′ is an independent transversal of (X ′,H ′), then T = T ′∪{x} is an independent transversal
of (X,H). This proves (b). ■

Using the above introduced reduction method, we obtain the following.

Proposition 4.5. Let (H,X,H) be an uncolorable degree-feasible configuration. Then, the
following statements hold:

(a) |Xv| = dH(v) for all v ∈ V(H).

(b) For each non-separating vertex z of H and each vertex v 6= z of H, |NH(x) ∩ Xv| =

µH(v, z) for all x ∈ Xz.

(c) Every hyperedge e of H is a bridge of H and, therefore, < e > is a block of H. As a
consequence, there are no parallel hyperedges in H.

(d) If H is a block, then H is regular, and for distinct vertices u, v of H, the hypergraph
H[Xu ∪ Xv] is a µH(u, v)-regular bipartite graph whose partite sets are Xu and Xv.

(e) For each vertex v ∈ V(H) there is an independent set T in H satisfying |T ∩ Xu| = 1

for all u ∈ V(H) \ {v}.
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Proof. We prove (a) by induction on the order of H. If H consists of only one vertex v,
then Xv = ∅ and H = ∅. Thus, (a) is fulfilled. Now assume |H| ≥ 2 and choose an
arbitrary vertex v of H. As H is connected, there is a non-separating vertex z 6= v in H

and Xz 6= ∅. Let x ∈ Xz. Then, (H ′, X ′,H ′) = (H,X,H)/(z, x) is an uncolorable degree-
feasible configuration (by Proposition 4.4). Applying the induction hypothesis then leads
to |X ′

v| = dH ′(v) and we conclude

dH ′(v) = |X ′
v| = |Xv|− |NH(x) ∩ Xv|

≥ |Xv|− µH(v, z) ≥ dH(v) − µH(v, z) = dH ′(v).

This implies |Xv| = dH(v) and |NH(x) ∩ Xv| = µH(v, z); thus, (a) is proved. The same
argument can be applied in order to prove (b).

For the proof of (c) assume that some hyperedge e ∈ E(H) is not a bridge of H. Then, for
some vertex v ∈ iH(e), the hypergraph H ′ = (V(H), E(H), iH ′) with iH ′(e) = iH(e) \ {v} and
iH ′(e ′) = iH(e

′) for e ′ ∈ E(H) \ {e} is connected. Let X ′ = X and let H ′ be the hypergraph
with vertex set V(H) and edge set (E(H) \Me)∪M ′

e, whereas M ′
e denotes the restriction of

Me to the vertices of
∪

u∈iH(e)\{v} Xu. Clearly, (H ′, X ′,H ′) is a degree-feasible configuration.
However, (a) implies that |X ′

v| = |Xv| = dH(v) > dH ′(v) and so, again by (a), (H ′, X ′,H ′) is
colorable. Hence, there is an independent transversal T ′ of (H ′, X ′,H ′). We claim that T ′ is
also an independent transversal of (H,X,H). Otherwise, by construction of H ′ there would
be an edge ẽ ∈ E(H) with v ∈ iH(ẽ) ⊆ T ′. But then, iH ′(ẽ − v) ⊆ T ′ and so T ′ is not an
independent transversal of H ′, a contradiction. Hence, T ′ is an independent transversal of
(H,X,H) and so (H,X,H) is colorable, which is impossible. This settles the case (c).

In order to prove (d), assume that H is a block. If H =< e > for some hyperedge e,
then H is regular and the statement clearly holds. Thus, by (c), we may assume that H

does not contain any hyperedge. Let u, v be distinct vertices of H. Then, H[Xu ∪ Xv] is
a µH(u, v)-regular bipartite graph with parts Xu and Xv (by (b)). This is only possible if
|Xu| = |Xv|. By (a), this leads to dH(u) = dH(v) and (d) is proved.

Finally, for the proof of (e), let v be an arbitrary vertex of H. Let U be the vertex set
of a component of H − v, let X ′ be the restriction of X to U, and let H ′ = H[

∪
u∈U Xu].

Then, (H[U], X ′,H ′) is a degree-feasible configuration and, as H is connected, it holds |Xu| =

dH(u) > dH[U](u) for at least one vertex u ∈ U. Hence, there is an independent transversal
TU of (X ′,H ′) (by (a)). Let T be the union of the independent transversals TU over all
components H[U] of H− v. Clearly, T is an independent set of H such that |T ∩Xw| = 1 for
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all w ∈ V(H) \ {v}. This proves (e). ■

Finally, we connect the concept of being minimal uncolorable with the merging operation.

Proposition 4.6. Let (H,X,H) be obtained from two disjoint degree-feasible configurations
(H1, X1,H1) and (H2, X2,H2) by merging v1 ∈ V(H1) and v2 ∈ V(H2) to a new vertex v∗.
Then, (H,X,H) is a degree-feasible configuration and the following conditions are equivalent:

(a) Both (H1, X1,H1) and (H2, X2,H2) are minimal uncolorable.

(b) (H,X,H) is minimal uncolorable. ⋄

Proof. First we show that (a) implies (b). Assume that (H,X,H) is colorable. Then, there is
an independent transversal T of (X,H), that is, an independent set of H such that |T∩Xu| = 1

for all u ∈ V(H). As Xv∗ = Xv1 ∪ Xv2 , this implies (by symmetry) that |T ∩ Xv1 | = 1. As a
consequence, T 1 = T ∩ V(H1) is an independent transversal of (X1,H1) and so (H1, X1,H1)

is colorable, a contradiction to (a). Thus, (H,X,H) is uncolorable. Let e ∈ E(H) be an
arbitrary edge. By the structure of H = H1 ∪ H2, we may assume that e ∈ E(H1). Due
to the fact that (H1, X1,H1) is minimal uncolorable, there is an independent transversal
T 1 of the cover (X1,H1 − e). Since (H2, X2,H2) is also minimal uncolorable and as H2 is
connected, it follows from Proposition 4.5(e) that there is an independent set T 2 in H2

satisfying |T 2∩X2
u| = 1 for all u ∈ V(H2)\ {v2}. However, as H = H1∪H2 and H1∩H2 = ∅,

the set T = T 1 ∪ T 2 is an independent transversal of (X,H − e) and so (H,X,H − e) is
colorable. Thus, (b) holds.

In order to prove that (a) can be deduced from (b), we only need to show that (H1, X1,H1)

is minimal uncolorable (by symmetry). First assume that (H1, X1,H1) is colorable, that is,
(X1,H1) has an independent transversal T 1. Since (H,X,H) is minimal uncolorable and
connected and as H2−Xv2 is a subhypergraph of H, Proposition 4.5(e) implies that there is
an independent set T 2 in H2−Xv2 such that |T 2∩X2

u| = 1 for all u ∈ V(H2)\{v2}. Then again,
T = T 1 ∪ T 2 is an independent transversal of (X,H), contradicting (b). Thus, (H1, X1,H1)

is uncolorable. Now let e ∈ E(H1) be an arbitrary edge. Then, as (H,X,H) is minimal
uncolorable, there is an independent transversal T of (X,H− e) and T 1 = T ∩V(H1) clearly
is an independent transversal of (X1,H1). Consequently, (H1, X1,H1 − e) is colorable and
the proof is complete. ■

4.3.2. The Main Proof

Before proving it, let us again state the main result of this chapter.
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Theorem 4.2. Let (H,X,H) be a degree-feasible configuration. Then, (H,X,H) is minimal
uncolorable if and only if (H,X,H) is constructible. ⋄

Proof. If (H,X,H) is constructible, then (H,X,H) is minimal uncolorable (by Proposi-
tion 4.6 and as each K,C and E-configuration is a minimal uncolorable degree-feasible
configuration). Let (H,X,H) be a minimal uncolorable degree-feasible configuration. We
prove that (H,X,H) is constructible by induction on the order of H. Clearly, if |H| = 1,
then X = ∅, H = ∅ and (H,X,H) is a K-configuration. So assume that |H| ≥ 2. By
Proposition 4.5(a), it holds

|Xv| = dH(v) (4.2)

for each vertex v ∈ V(H). We distinguish between two cases.
Case 1: H contains a separating vertex v∗. Then, H is the union of two connected

induced subhypergraphs H1 and H2 with V(H1) ∩ V(H2) = {v∗} and |Hj| < |H| for j ∈ {1, 2}.
For j ∈ {1, 2}, by Tj we denote the set of all independent sets T of H such that |T ∩ Xv| = 1

for all v ∈ V(Hj). By Proposition 4.5(e), both T1 and T2 are non-empty. For j ∈ {1, 2},
let Xj be the set of all vertices of Xv∗ that do not occur in any independent set from Tj.
We claim that Xv∗ = X1 ∪ X2. For otherwise, there is a vertex u ∈ Xv∗ \ (X1 ∪ X2). Then,
u is contained in two independent sets T j ∈ Tj with (j ∈ {1, 2}) and T = T 1 ∪ T 2 is be
an independent transversal of (X,H). This is due to the fact that each hyperedge of H is
contained in Hj for some j ∈ {1, 2} and that for u ∈ V(H1) \ {v∗} and v ∈ V(H2) \ {v∗} we
have µH(u, v) = 0 and so H[Xu ∪ Xv] is edgeless (by Proposition 4.1(a)). Thus, (H,X,H)

is colorable, a contradiction. Consequently, Xv∗ = X1 ∪ X2, as claimed. For j ∈ {1, 2}, let
(Xj,Hj) be a cover of Hj as follows. For v ∈ V(Hj), let

Xj
v =

Xv if v 6= v∗

Xj if v = v∗,

and let Hj = H[
∪

v∈V(Hj) X
j
v]. Then, (Hj, Xj,Hj) is a feasible configuration and, by definition

of Xj = X
j
v∗ , (Hj, Xj,Hj) is uncolorable. Moreover, for each vertex v ∈ V(Hj) \ {v∗} it

holds |Xv| = dH(v) = dHj(v) (by (4.2)). As (Hj, Xj,Hj) is uncolorable, it follows from
Proposition 4.5(a) that |X

j
v∗ | ≤ dHj(v∗) for j ∈ {1, 2}. Since Xv∗ = X1 ∪ X2 = X1

v∗ ∪ X2
v∗ we

conclude from (4.2) that

|X1
v∗ |+ |X2

v∗ | ≥ |X1
v∗ ∪ X2

v∗ | = |Xv∗ | = dH(v
∗) = dH1(v∗) + dH2(v∗),
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and, thus, |Xj
v∗ | = dHj(v∗) and X1

v∗∩X2
v∗ = ∅. Hence, (Hj, Xj,Hj) is a degree-feasible configu-

ration. Moreover, H ′ = H1∪H2 is a spanning subhypergraph of H and V(H1)∩V(H2) = ∅.
So, (H,X,H ′) is a degree-feasible configuration (by Proposition 4.1(b)) and (H,X,H ′) is ob-
tained from two isomorphic copies of (H1, X1,H1) and (H2, X2,H2) by the merging operation.
Clearly, (H,X,H ′) is uncolorable. Otherwise, there would exist an independent transversal
T of (X,H ′) and, by symmetry, T would contain a vertex of X1

v∗ . But then, T 1 = T ∩ V(H1)

would be an independent transversal of (X1,H1), which is impossible. As (H,X,H) is mini-
mal uncolorable and as H ′ is a spanning subhypergraph of H, this implies that H = H ′ and
(H,X,H) is obtained from two isomorphic copies of (H1, X1,H1) and (H2, X2,H2) by the
merging operation. By Proposition 4.6, both (H1, X1,H1) and (H2, X2,H2) are minimal un-
colorable (and also degree-feasible). Applying the induction hypotheses leads to (Hj, Xj,Hj)

being constructible for j ∈ {1, 2}, and so (H,X,H) is constructible. Thus, the first case is
complete.
Case 2: H is a block. If H contains any hyperedge e, then it follows from Proposi-

tion 4.5(c) that H =< e > and (H,X,H) is not colorable if and only if (H,X,H) is an
E-configuration. Thus, in the following we may assume that H does not contain any hy-
peredges. We prove that (H,X,H) is either a K-configuration or a C-configuration. This is
done via a sequence of four claims.

Claim 4.6.1. Let v be an arbitrary vertex of H, let x ∈ Xv be an arbitrary color, and let
(H ′, X ′,H ′) = (H,X,H)/(v, x). Then, there is a spanning subhypergraph H̃ of H ′ such that
(H ′, X ′, H̃) is minimal uncolorable. Moreover, (H ′, X ′, H̃) is constructible and so each block
of H ′ = H− v is a DP-brick. ⋄

Proof. Since |H| ≥ 2 and H is connected, Xv 6= ∅ (by (4.2)). Thus, (H ′, X ′,H ′) =

(H,X,H)/(v, x) is an uncolorable degree-feasible configuration (by Proposition 4.4) and,
therefore, there is a spanning subhypergraph H̃ of H ′ such that (H ′, X ′, H̃) is minimal un-
colorable. Then, the induction hypothesis implies that (H ′, X ′, H̃) is constructible, and, as
H ′ = H− v, this particularly implies that each block of H ′ is a DP-brick (since H does not
contain any hyperedge). □

By a multicycle or multipath we mean a graph that can be obtained from a cycle,
respectively a path, by replacing each edge e of the cycle or path by a set of te parallel
edges, where te ≥ 1. Given integers s, t ≥ 1, we say that a graph G is an (s, t)-multicycle
if G can be obtained from an even cycle C by replacing each edge of a perfect matching of
C by a set of s parallel edges and each other edge of C by a set of t parallel edges. Clearly,
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each (s, t)-multicycle is r-regular with r = s+ t. Moreover, if G is a regular multicycle, then
either G = tCn for some integers t ≥ 1 and n ≥ 3, or G is an (s, t)-multicycle for some
integers s, t ≥ 1.

Claim 4.6.2. The graph H is a DP-brick. ⋄

Proof. Since H is a block, Proposition 4.5(d) implies that H is r-regular for some integer
r ≥ 1. For every vertex v of H, each block of H − v is a DP-brick (by Claim 4.6.1). Let S

denote the set of all vertices v of H such that H− v is a block. Then, for every vertex v ∈ S,
H − v is a DP-brick and, therefore, regular. As H is regular, too, for v ∈ S there must be
an integer tv ≥ 1 such that µH(u, v) = tv for all u ∈ V(H) \ {v}. As a consequence, if S is
non-empty, then S = V(H) and it clearly holds tv = t for all v ∈ V(H). Thus, H = tKn with
n = |H|. It remains to consider the case that S = ∅. Let v be an arbitrary vertex of H.
Then, H− v has at least two end-blocks and each block of H− v is a DP-brick and therefore
regular. Let B be an arbitrary end-block of H−v. Then, B is tB-regular for some tB ≥ 1 and
B contains exactly one separating vertex vB of H− v. As H is r-regular, there is an integer
sB such that µH(u, v) = sB for all vertices u ∈ V(B) \ {vB}. As a consequence, |B| = 2,
since otherwise every vertex of B − vB belongs to S and so S 6= ∅, which is impossible.
Hence, B = tBK2, r = tB + sB, V(B) = {v ′, vB}, and NH(v

′) = {v, vB}. Repeating the above
argumentation with v ′ instead of v proves that H is a multicycle. Since H is regular, this
implies that either H = tCn with t ≥ 1 and n ≥ 3, or H is an (s, t)-multicycle with s 6= t.
If H = tCn, we are done. We prove that H cannot be an (s, t)-multicycle by reductio ad
absurdum. By symmetry, we may assume 1 ≤ s < t. By (4.2), for each vertex v we have
|Xv| = s + t. Let v ∈ V(H). Then, H − v is a multipath and one end-block of H − v, say B,
is a tK2. Then, B consists of two vertices u and w with dH−v(u) = t and dH−v(w) = s+ t.
Let x ∈ Xv be an arbitrary color and set (H ′, X ′,H ′) = (H,X,H)/(v, x). Then, there is a
spanning subgraph H̃ ofH ′ such that (H ′, X ′, H̃) is constructible (by Claim 4.6.1). Moreover,
(4.2) together with Proposition 4.3 implies that |X ′

u| = t, |X ′
w| = s + t and that there is a

subset X1
w of X ′

w such that |X1
w| = t and H1 = H[X ′

u ∪ X1
w] is a Kt,t with parts X ′

u and X1
w.

The graph H1 is a subgraph of H2 = H[Xu∪Xw], and H2 is a t-regular bipartite graph with
parts Xu and Xw (by Proposition 4.5(d)). Since |Xu| = |Xw| = s + t and 1 ≤ s < t, this is
impossible and the claim is proved. □

By Claim 4.6.2, H is either a tKn with t ≥ 1 and n ≥ 2, or H = tCn with t ≥ 1 and n ≥ 4.
In order to complete the proof we show that in the first case, (H,X,H) is a K-configuration,
and, in the second case, (H,X,H) is a C-configuration.
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Claim 4.6.3. If H = tKn for integers t ≥ 1, n ≥ 2, then (H,X,H) is a K-configuration. ⋄

Proof. Since (H,X,H) is minimal uncolorable, for each vertex v of H and each pair u,w of
distinct vertices of H, it holds

(a) |Xv| = t(n− 1) and H[Xu ∪ Xw] is a t-regular bipartite graph with parts Xu and Xw

(by (4.2) and by Proposition 4.5(d)). If n = 2, then H has exactly two vertices, say u and
w, and H[Xu ∪ Xw] is a Kt,t (by (a)), and so (H,X,H) is a K-configuration as claimed.

Now assume that n ≥ 3. Let v be an arbitrary vertex of H, and let x ∈ Xv be an arbitrary
color. Moreover, let (H ′, X ′,H ′) = (H,X,H)/(v, x). Then, there is a spanning subgraph
H̃ of H ′ = H − (Xv ∪ NH(x)) such that (H ′, X ′, H̃) is a constructible configuration (by
Claim 4.6.1). As H ′ = H − v = tKn−1, (H ′, X ′, H̃) is a K-configuration. Consequently, for
every vertex u ∈ V(H), there is a partition (X1

u, X
2
u, . . . , X

n−2
u ) of X ′

u = Xu \NH(x) such that,
for i ∈ [1, n− 2],

(b) the graph Hi = H̃[
∪

u∈V(H ′) X
i
u] is a K(n−1,t) whose partite sets are the sets Xi

u with
u ∈ V(H ′), and H̃ = H1 ∪H2 ∪ . . . ∪Hn−2.

For u ∈ V(H ′) let Xn−1
u = Xu \ X ′

u. Then, for every vertex u ∈ V(H ′), |Xn−1
u | = t and

(X1
u, X

2
u, . . . , X

n−1
u ) is a partition of Xu. Since H̃ is a spanning subgraph of H ′, it follows

from (a) and (b) that Hi is an induced subgraph of H (for i ∈ [1, n− 2]), and the graph

Hn−1 = H[
∪

u∈V(H ′)

Xn−1
u ]

is a K(n−1,t) whose partite sets are the sets Xn−1
u with u ∈ V(H ′). Moreover,

H − Xv = H1 ∪H2 ∪ . . . ∪Hn−1 and NH(x) = V(Hn−1).

Since the color x ∈ Xv was chosen arbitrarily, this implies that for each x ∈ Xv there is an
index i ∈ [1, n−1] such that NH(x) = V(Hi), and, by (a) and (b), for each index i ∈ [1, n−1]

there are exactly t colors x from Xv such that NH(x) = V(Hi). As a consequence, there is a
partition (X1

v, X
2
v, . . . , X

n−1
v ) of Xv such that |Xi

v| = t and NH(x) = V(Hi) for x ∈ Xi
v and for

i ∈ [1, n− 1]. Hence, for i ∈ [1, n], the graph

Hi = H[
∪

u∈V(H)

Xi
u]
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is a K(n,t) whose partite sets are the sets Xi
u with u ∈ V(H), and, moreover, H = H1 ∪H2 ∪

. . . ∪Hn. Thus, (H,X,H) is a K-configuration. □

Claim 4.6.4. If H = tCn for integers t ≥ 1, n ≥ 4, then (H,X,H) is a C-configuration. ⋄

Proof. Since (H,X,H) is minimal uncolorable, for each vertex v ∈ V(H) and each two-set
{u,w} ∈ A(H), it holds

(a) |Xv| = 2t and H[Xu ∪ Xw] is a t-regular bipartite graph with parts Xu and Xw

(by (4.2) and by Proposition 4.5(d)). Let v be an arbitrary vertex of H, and let x ∈ Xv be
an arbitrary color. Moreover, let (H ′, X ′,H ′) = (H,X,H)/(v, x). Then, there is a spanning
subgraph H̃ of H ′ = H−(Xv ∪NH(x)) such that (H ′, X ′, H̃) is a constructible configuration
(by Claim 4.6.1). Since H ′ = H − v = tPn−1, the vertices of H ′ can be arranged in a
sequence, say v1, v2, . . . , vn−1, such that two vertices are adjacent in H ′ if and only if they
are consecutive in the sequence. Note that NH(v) = {v1, vn−1} and each block of H ′ is a
tK2. We claim that for each vertex u of H ′ there is a partition (X1

u, X
2
u) of Xu such that the

following conditions hold:

(b) For every i ∈ {1, 2} and every k ∈ [1, n − 2], the graph Hi
k = H[Xi

vk
∪ Xi

vk+1
] is a Kt,t

whose partite sets are Xi
vk

and Xi
vk+1

.

(c) The graph H − Xv is the union of all graphs Hi
k with i ∈ {1, 2} and k ∈ [1, n− 2].

(d) If n is even, then NH(x) = X1
v1

∪ X2
vn−1

, or NH(x) = X2
v1

∪ X1
vn−1

.

(e) If n is odd, then NH(x) = X1
v1

∪ X1
vn−1

, or NH(x) = X2
v1

∪ X2
vn−1

.

For k ∈ [1, n − 2], the graph Bk = H[{vk, vk+1}] is a block of H ′. Clearly, B(H ′) =

{B1, B2, . . . , Bn−2} and the only end-blocks of H ′ are B1 and Bn−2. Since (H ′, X ′, H̃) is a
constructible configuration and since each block of H ′ is a tK2, it follows from Proposi-
tion 4.3 that for each k ∈ [1, n− 2] there is a uniquely determined cover (X̃k, H̃k) of Bk such
that

• H̃k is a Kt,t with parts X̃k
vk

and X̃k
vk+1

,

• H̃ is the disjoint union of the graphs H̃1, H̃2, . . . , H̃n−2,

• X ′
v1

= X̃1
v1
, X ′

vk
= X̃k−1

vk
∪ X̃k

vk
for k ∈ [2, n− 2], and X ′

vn−1
= X̃n−2

vn−1
.
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Since {vk, vk+1} ∈ A(H) for k ∈ [1, n−2], it follows from (a) that H̃k is an induced subgraph
of H. Let X̃0

v1
= Xv1 \ X ′

v1
and X̃n−1

vn−1
= Xvn−1

\ X ′
vn−1

.Then, both sets X̃0
v1

and X̃n−1
vn−1

have
exactly t elements, and NH(x) = X̃0

v1
∪ X̃n−1

vn−1
. Furthermore, we conclude from (a) that, for

k ∈ [1, n− 2],

• the graph H[X̃k−1
vk

∪ X̃k+1
vk+1

] is a Kt,t with parts X̃k−1
vk

and X̃k+1
vk+1

.

If n is even, we set

(X1
v1
, X1

v2
, . . . , X1

vn−1
) = (X̃1

v1
, X̃1

v2
, X̃3

v3
, X̃3

v4
, . . . , X̃n−3

vn−3
, X̃n−3

vn−2
, X̃n−1

vn−1
),

and
(X2

v1
, X2

v2
, . . . , X2

vn−1
) = (X̃0

v1
, X̃2

v2
, X̃2

v3
, X̃4

v4
, X̃4

v5
, . . . , X̃n−2

vn−2
, X̃n−2

vn−1
).

If n is odd, let

(X1
v1
, X1

v2
, . . . , X1

vn−1
) = (X̃1

v1
, X̃1

v2
, X̃3

v3
, X̃3

v4
, . . . , X̃n−2

vn−2
, X̃n−2

vn−1
),

and
(X2

v1
, X2

v2
, . . . , X2

vn−1
) = (X̃0

v1
, X̃2

v2
, X̃2

v3
, . . . , X̃n−3

vn−3
, X̃n−3

vn−2
, X̃n−1

vn−1
).

By using (a) and Proposition 4.5(b), it is easy to check that, for every vertex u of H ′,
(X1

u, X
2
u) is a partition of Xu such that the conditions (b), (c), (d), and (e) are satisfied.

Since the color x ∈ Xv was chosen arbitrarily, it follows from (a) and Proposition 4.5(b)
that there is a partition (X1

v, X
2
v) of Xv such that |X1

v| = |X2
v| = t and the following conditions

hold:

• If n is even, then NH(x) = X1
v1

∪ X2
vn−1

for all x ∈ X1
v and NH(x) = X2

v1
∪ X1

vn−1
for all

x ∈ X2
v.

• If n is odd, then NH(x) = X1
v1

∪ X1
vn−1

for all x ∈ X1
v and NH(x) = X2

v1
∪ X2

vn−1
for all

x ∈ X2
v.

Clearly, this implies that (H,X,H) is a C-configuration, and the claim is proved. □

This settles Case 2. Hence, in both cases we showed that (H,X,H) is a constructible
configuration and the proof of the theorem is complete. ■

As mentioned earlier, KiM and OZEKi [66] characterized the “bad” covers for non-DP-
degree colorable graphs; many ideas of their proof are similar to ours. In our terminology,
they proved the following:
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Theorem 4.7 (KiM and OZEKi, 2019). Let G be a graph and let (G,X,G) be a degree-
feasible configuration. Then, G is not (X,G)-colorable if and only if for each block B ∈ B(G)

there is a cover (XB,GB) of B such that the following statements hold:

(a) For every block B ∈ B(G), the triple (B,XB,GB) is a K-configuration, or a C-
configuration.

(b) The graphs GB with B ∈ B(G) are pairwise disjoint and G ⊇
∪

B∈B(G) GB.

(c) For each vertex v ∈ V(G) it holds Xv =
∪

B∈B(G),v∈V(B) X
B
v . ⋄

In particular, if G itself is a block it follows from their theorem that (G,X,G) is either a
K-, or a C-configuration. Thus, by using their result, we could omit Claim 4.6.3 and 4.6.4.
However, for the reader’s convenience, the entire proof is displayed so that the reader receives
a complete presentation how both the characterization of the “bad” blocks as well as the
corresponding “bad” covers in the hypergraph and the graph case can be done simultaneously.

4.4. A Brooks-type Theorem for χDP

The next two corollaries are direct consequences of Theorem 4.2 and Proposition 4.3. The
second corollary is the degree version of BROOKS’ Theorem for DP-coloring of hypergraphs
and thereby extends ERDŐS, RUBiN and TAYLOR’S Theorem 3.1 as well as KOSTOCHKA,
STiEBiTZ and WiRTH’S Theorem 3.2.

Corollary 4.8. Let (H,X,H) be a degree-feasible configuration. If (H,X,H) is minimal
uncolorable, then for each block B ∈ B(H) there is a uniquely determined cover (XB,HB) of
B such that the following statements hold:

(a) For every block B ∈ B(H), (B,XB,HB) is a K-configuration, C-configuration, or E-
configuration.

(b) The hypergraphs HB with B ∈ B(H) are pairwise disjoint and H =
∪

B∈B(H)HB.

(c) For each vertex v ∈ V(H) it holds Xv =
∪

B∈B(H),v∈V(B) X
B
v . ⋄

Corollary 4.9. A connected hypergraph H is not DP-degree-colorable if and only if each
block of H is a DP-hyperbrick. ⋄

To conclude this chapter, we prove a BROOKS-type theorem for DP-colorings of hyper-
graphs. For graphs, the theorem was proved by BERNSHTEYN, KOSTOCHKA, and PRON [14].
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Theorem 4.10. Let H be a connected hypergraph. Then, χDP(H) ≤ ∆(H) + 1 and equality
holds if and only if H is a DP-hyperbrick. ⋄

Proof. It follows from (4.1) that χDP(H) ≤ ∆(H) + 1. Moreover, it is obvious that every
DP-hyperbrick H satisfies χDP(H) = ∆(H) + 1, just take a K-, C-, or E-configuration. Now
assume that χDP(H) = ∆(H) + 1. Then, there is a cover (X,H) of H such that |Xv| ≥ ∆(H)

for all v ∈ V(H) and H is not (X,H)-colorable. Hence, (H,X,H) is an uncolorable degree-
feasible configuration and there is a spanning subhypergraph H ′ of H such that (H,X,H ′)

is minimal uncolorable. Then, H is regular (by Proposition 4.5(a)) and each block of H is
a DP-hyperbrick (by Theorem 4.2). As every DP-hyperbrick is regular, this implies that H
has only one block and, therefore, is a DP-hyperbrick. This completes the proof. ■



Chapter 5

Coloring Hypergraphs of Low
Connectivity

In this chapter we only examine proper colorings of hypergraphs. As the chromatic number
of a hypergraph is not affected by parallel edges, it is sufficient to examine only hypergraphs
in which parallel edges are absent. This offers several benefits: we may now regard a
hypergraph as a pair H = (V, E) where E is a subset of the power set 2V and i(e) = e for all
edges e ∈ E(H). Hence, for a vertex v ∈ V(H), we have EH(v) = {e ∈ E(H) | v ∈ e} and, for
a vertex set X ⊆ V(H), we obtain

EH(X) = {e ∈ E(H) | e ∩ X 6= ∅ and e ∩ (V(H) \ X) 6= ∅}.

Note that EH(X) = EH(V(H) \ X). In addition, many other concepts can be simplified, too.
For instance, the subhypergraph H[X] of H induced by X is the hypergraph with vertex set
V(H[X]) = X and edge set E(H[X]) = {e ∈ E(H) | e ⊆ X}. Nonetheless, we need to make a
minor adjustment to the shrinking operation. Now, shrinking a hypergraph H to a vertex
set X ⊆ V(H) results in a hypergraph H(X) with vertex set V(H(X)) = X and edge set

E(H(X)) = {e ∩ X | e ∈ E(H) and |e ∩ X| ≥ 2}.

Thus, unlike in the previous chapters, all parallel edges that would occur while shrinking
get replaced by a single edge. Again, let H÷ X = H(V(H) \ X). We would like to point out



Coloring Hypergraphs of Low Connectivity 88

that it is still possible that an edge is contained in another; a hypergraph H is simple if and
only if this is forbidden. Since graphs are 2-uniform hypergraphs, all graphs considered in
this chapter are assumed to be simple.

The aim of this chapter is to examine the relation between the chromatic number of
a hypergraph and its local edge connectivity. Let H be a hypergraph with at least two
vertices. The local edge connectivity λH(u, v) of distinct vertices u, v in the hypergraph
H is the maximum number of edge-disjoint (u, v)-hyperpaths of H. The maximum local
edge connectivity of a hypergraph H is

λ(H) = max{λH(u, v) | u, v ∈ V(H), u 6= v}.

If H has at most one vertex, we set λ(H) = 0. The local edge connectivity is an important
parameter for hypergraphs. For instance, it is well known that MENGER’s Theorem also
holds for hypergraphs (see [47, Theorem 2.5.28] and [67]). It states the following.

Theorem 5.1. If H is a hypergraph and u, v are distinct vertices of H, then

λH(u, v) = min{|EH(X)| | u ∈ X ⊆ V(H) \ {v}}.

But what is the connection between the local edge connectivity and an optimal proper
coloring of a hypergraph? By a result of TOFT [117], each hypergraph H satisfies χ(H) ≤
λ(H) + 1. As the maximum degree ∆(H) of H is a trivial upper bound for λ(H), this
immediately raises the question if there is a related BROOKS-type result, i.e., if it is possible
to find a nice characterization of the class of hypergraphs for which equality hold. In this
chapter, we show that for all values of λ(H) except for λ(H) = 2 there is indeed such a
characterization (the case λ(H) = 2 is still open). To this end, we use a famous construction
by HAjÓS [54], which was extended to hypergraphs by TOFT [116].

Let H1 and H2 be two vertex disjoint hypergraphs and, for i ∈ {1, 2}, let ei ∈ E(Hi)

and vi ∈ ei. Then, we create a new hypergraph H by deleting e1 and e2, identifying
the vertices v1 and v2 to a new vertex v∗, and adding a new edge e∗ ∈ E(H) either with
e∗ = (e1 ∪ e2) \ {v1, v2} or with e∗ = (e1 ∪ e2 ∪ v∗) \ {v1, v2}. Then, H is a HAjÓS join of H1

and H2 and we write H = (H1, v1, e1)▽(H2, v2, e2) or, briefly, H = H1▽H2. Figure 5.1 shows
the two possible HAjÓS joins of two K4.

For an integer k ≥ 3 we define a class Hk of hypergraphs as follows. Let H3 be the
smallest class of hypergraphs that contains all odd wheels and is closed under taking HAjÓS
joins. Moreover, for k ≥ 4, let Hk be the smallest class of hypergraphs that contains all
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v∗

e∗

v∗

e∗

FiG. 5.1. The two possible HAjÓS joins of two K4.

complete graphs of order k+ 1 and is closed under taking HAjÓS joins.
Recall that a block of a hypergraph H is a maximal connected subhypergraph of H that

does not contain a separating vertex. It is well known that any two blocks of H have at
most one vertex in common. In particular,

χ(H) = max{χ(B) | B is a block of H}. (5.1)

This is due to the fact that if we have optimal proper colorings of the blocks of H, then, by
permuting the colors in the blocks, we can create an optimal proper coloring of H.

The next theorem is the main result of this chapter and generalizes BROOKS’ Theorem
for hypergraphs (see Theorem 2.2). The graph-counterpart was proved by ABOULKER,
BRETTELL, HAVET, MARX, and TROTiGNON [1] for graphs G with λ(G) = 3 and by STiEBiTZ
and TOFT [111] for λ(G) ≥ 4.

Theorem 5.2. Let H be a hypergraph with λ(H) ≥ 3. Then, χ(H) ≤ λ(H) + 1 and equality
holds if and only if H has a block belonging to the class Hλ(H). ⋄

Note that for λ(H) ∈ {0, 1}, it is obvious that a connected hypergraph H satisfies χ(H) =

λ(H) + 1 if and only λ(H) = 0 and H = K1, or λ(H) = 1 and each block of H consists of
just one edge. The case λ(H) = 2 has not yet been solved in a satisfactory way, that is, we
do not know with certainty what H2 is. In the graph case, however, H2 just consists of all
cycles having odd length.

5.1. Connectivity of Critical Hypergraphs

In order to prove Theorem 5.2, we use the concept of critical hypergraphs. Critical
graphs were introduced by DiRAC in his Ph.D. thesis and the resulting papers [38] and [39].
His concept was extended to hypergraphs by LOVÁSZ [81]. We say that a hypergraph H is
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(k + 1)-critical or, briefly, critical if χ(H) = k + 1, but χ(H ′) ≤ k for any proper subhy-
pergraph H ′ of H. Note that, unlike in Section 3.5 where we only regarded vertex-critical
hypergraphs, H ′ does not have to be an induced subhypergraph of H. Critical hypergraphs
are a useful concept in chromatic number theory as many problems can be reduced to
critical hypergraphs. In particular, each hypergraph H contains a critical hypergraph H ′

with χ(H ′) = χ(H). The next two propositions state some well known facts about critical
hypergraphs.

Proposition 5.3. Let H be a hypergraph with δ(H) ≥ 1, and let k ≥ 1 be an integer. Then,
H is (k+ 1)-critical if and only if χ(H− e) ≤ k < χ(H) for each edge e ∈ E(H). ⋄

It is easy to see that K1 is the only 1-critical hypergraph and that the only 2-critical
hypergraphs are the connected hypergraphs that contain only one edge. Regarding graphs,
it is also easy to obtain that the only 3-critical graphs are the odd cycles. However, it seems
unlikely that there is a good characterization of 3-critical hypergraphs as even the decision
whether a given hypergraph H satisfies χ(H) ≤ 2 is NP-complete (see [82]).

Proposition 5.4. Let H be a (k+ 1)-critical hypergraph for some integer k ≥ 1. Then, the
following statements hold:

(a) δ(H) ≥ k, in fact each vertex v is contained in k edges having pairwise only v in
common.

(b) λH(u, v) ≥ k for distinct vertices u, v ∈ V(H).

(c) H is a block.

(d) H is a simple hypergraph. ⋄

Statement (a) follows from the fact that there is a proper coloring of H − v with color
set Γ = [1, k]. This coloring, however, cannot be extended to a proper k-coloring of H, and
therefore for each color α ∈ Γ there is an edge in EH(v) where all vertices have color α,
except v. This proves (a). Statement (b) was proved by TOFT in [116]; we also give a proof
in Theorem 5.10. Statement (c) is a direct consequence of (5.1), and (d) is obvious.

Similar to Section 3.5, where we examined (P, L)-vertex-critical hypergraphs, Proposi-
tion 5.4(a) leads to a classification of the vertices of critical hypergraphs. Let H be a
(k+ 1)-critical hypergraph. Then, a vertex is said to be a low vertex of H if it has degree
k in H, and a high vertex, otherwise. Thus, each high vertex of H has degree at least
k + 1 in H. Clearly, every (k + 1)-critical hypergraph H satisfies χ(H − v) < χ(H) for all
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v ∈ V(H). As a consequence, H is also (O, L)-vertex-critical, where L is the list-assignment
with L(v) = [1, k] for all v ∈ V(H) and so the set VL of low vertices of H coincides with
V(H,O, L). Thus, it follows from Theorem 3.14 that the low vertex hypergraph H(VL)

of H, i.e., the subhypergraph of H that results from shrinking H to the set VL, is a GALLAi
forest. Recall that a connected hypergraph is a GALLAi tree if each of its blocks is a
complete graph, an odd cycle, or consists of just one hyperedge, and that a GALLAi forest
is a hypergraph whose components are all GALLAi trees.

GALLAi [48] characterized the critical graphs having exactly one high vertex. A similar
characterization holds for hypergraphs; however, we only need the following easy observa-
tion. Recall that a hyperwheel is a hypergraph obtained from a (hyper-)edge by adding a
new vertex and joining it to all others by ordinary edges.

Lemma 5.5. Let H be a (k+1)-critical hypergraph for some integer k ≥ 2. If H has exactly
one high vertex, then either H has a separating vertex set of size 2, or k = 2 and H is a
hyperwheel, or k = 3 and H is an odd wheel. ⋄

Proof. Let v be the only high vertex of H. Then, VL = V(H) \ {v} is the set of low vertices
of H and H(VL) = H÷ v. By Theorem 3.14, H(VL) is a GALLAi forest. As H is a block (by
Proposition 5.4(c)), H(VL) is connected and therefore a GALLAi tree. Let B be an end-block
of H(VL). If B is not the only block of H(VL), then H(VL) has a separating vertex u and {v, u}

is a separating vertex set of H, so we are done. Otherwise, H(VL) = B, where B is a complete
graph, an odd cycle, or consists of just one hyperedge. In particular, B is regular. We claim
that EH(v) contains only ordinary edges. Assume, to the contrary, that EH(v) contains a
hyperedge e. Then, as H is simple (by Proposition 5.4(d)), we have dB(w) = dH(w) = k

for all w ∈ e \ {v}, and so B is k-regular. As each low vertex of H has degree k in H, it
follows that EH(v) contains only hyperedges. Since v is a high vertex of H, this implies that
|B| ≥ 3 and B is a complete graph or an odd cycle and, so, |e ′| = 3 for all e ′ ∈ EH(v). Let
H ′ be the hypergraph that results from H by replacing e with the ordinary edge vw for one
vertex w ∈ e \ {v}. Clearly, χ(H) ≤ χ(H ′). Moreover, H ′ is connected (as H is a block and
|B| ≥ 3) and we have dH ′(u) = k − 1 for the vertex u ∈ e \ {v,w}, and dH ′(u ′) = k for all
u ′ ∈ VL \ {u}. This implies that H ′ is strictly k-degenerate and so the coloring number of
H ′ is at most k. Then, by (1.3),

χ(H) ≤ χ(H ′) ≤ col(H ′) ≤ k,

which is impossible. This proves the claim that EH(v) contains only ordinary edges.
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As a consequence, H(VL) = H[VL]. Since H(VL) is a GALLAi tree consisting only of the
block B, this block B is regular of degree k − 1 and v is joined to each vertex of B by an
ordinary edge. Then, |B| ≥ dH(v) ≥ k + 1 and so k = 2 and B consists of just one edge, or
k = 3 and B is an odd cycle. Thus, k = 2 and H is a hyperwheel, or k = 3 and H is an odd
wheel, as claimed. ■

As was previously noted, a critical graph is connected and contains no separating vertex.
DiRAC [38] as well as GALLAi [48] characterized critical graphs having a separating vertex
set of size 2. The next theorem is the hypergraph counterpart. For a hypergraph H, by
COk(H) we denote the set of all proper k-colorings of H, i.e., all proper colorings of H with
color set [1, k].

Theorem 5.6. Let H be a (k+1)-critical hypergraph for an integer k ≥ 2, and let S ⊆ V(H)

be a separating vertex set of H satisfying |S| ≤ 2. Then S is an independent set of H consisting
of two vertices, say v and w, and H÷ S has exactly two components H1 and H2. Moreover,
if Hi = H[V(Hi) ∪ S] for i ∈ {1, 2}, we can adjust the notation so that for a coloring
φ1 ∈ COk(H1) we have φ1(v) = φ1(w). Then, the following statements hold:

(a) Each coloring φ ∈ COk(H1) satisfies φ(v) = φ(w) and each coloring φ ∈ COk(H2)

satisfies φ(v) 6= φ(w).

(b) The hypergraph H ′
1 = H1+vw obtained from H by adding the edge vw is (k+1)-critical.

(c) The hypergraph H ′
2 obtained from H2 by identifying v and w is (k+ 1)-critical. ⋄

Proof. Since H is (k + 1)-critical with k ≥ 2, the separating set S consists of exactly two
elements, say S = {v,w}. Then, H is the union of two induced subhypergraphs H1 and H2

with V(H1)∩V(H2) = {v,w} and |Hi| > 2 for i ∈ {1, 2}. Since Hi is a proper subhypergraph
of H, there is a coloring φi ∈ COk(Hi) (i ∈ {1, 2}). Then, for one coloring, say φ1, we have
φ1(v) = φ1(w) and for φ2, we have φ2(v) 6= φ2(w). For otherwise, we could permute the
colors in one coloring such that φ1(v) = φ2(v) and φ1(w) = φ2(w) so that φ1 ∪ φ2 would
be a proper k-coloring of H, which is impossible. Consequently, S is an independent set of
H. Furthermore it follows that each coloring φ ∈ COk(H1) satisfies φ(v) = φ(w) and each
coloring φ ∈ COk(H2) satisfies φ(v) 6= φ(w). Hence, (a) is proved.

For the proof of (b), let H ′
1 = H1 + vw. Then, it follows from (a) that χ(H ′

1) ≥ k+ 1. Let
e be an arbitrary edge of H ′

1. We show that H ′
1 − e admits a proper k-coloring. If e = vw,

this is evident. Otherwise, e ∈ E(H1) and there is a proper k-coloring φ of H − e. By (a),
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it follows that φ(v) 6= φ(w) and so φ induces a proper k-coloring of H ′
1 − e. Hence, H ′

1 is
(k+ 1)-critical (see Proposition 5.3).

In order to prove (c), let H ′
2 be the hypergraph obtained from H2 by identifying v and w

to a new vertex v∗. Then, by (a), χ(H ′
2) ≥ k + 1. Let e be an arbitrary edge of H ′

2 and let
e ′ be a corresponding edge of H2. Then, H − e ′ admits a proper k-coloring φ and, by (a),
φ(v) = φ(w) and so φ induces a proper k-coloring of H ′

2 − e. Hence, H ′
2 is (k+ 1)-critical.

Finally, we obtain that

H÷ S = (H1 ÷ S) ∪ (H2 ÷ S) = (H ′
1 ÷ S) ∪ (H ′

2 ÷ v∗).

Since S is not an independent set of H ′
1 and since H ′

1 is critical, H ′
1 ÷ S is connected.

Moreover, since H ′
2 is critical, H ′

2 ÷ v∗ is connected. This proves that H÷ S has exactly two
components H1 and H2 as claimed and the proof is complete. ■

Theorem 5.7. Let H = (H1, v1, e1)▽(H2, v2, e2) be a HAjÓS join of two hypergraphs H1

and H2, and let k ≥ 2 be an integer. Then, the following statements hold:

(a) If both H1 and H2 are (k+ 1)-critical, then H is (k+ 1)-critical.

(b) If H is (k+ 1)-critical and k ≥ 3, then both H1 and H2 are (k+ 1)-critical. ⋄

Proof. For the proof of (a), assume that both H1 and H2 are (k + 1)-critical. First we
claim that χ(H) ≥ k + 1. For otherwise, there is a coloring φ ∈ COk(H). Then, there
are vertices x 6= y from e∗ such that φ(x) 6= φ(y) and at least one vertex, say x, satisfies
φ(x) 6= φ(v∗). By symmetry, we may assume x ∈ V(H1). However, then the mapping φ1

with φ1(u) = φ(u) for all u ∈ V(H1) \ {v1} and φ1(v1) = φ(v∗) is a proper k-coloring of
H1 and, thus, χ(H1) ≤ k, a contradiction. Hence, χ(H) ≥ k + 1. In order to see that H

is (k + 1)-critical, let H ′ = H − e for some edge e ∈ E(H). If e = e∗, then, as H1 and
H2 are critical, we can create a proper k-coloring φ of H ′ by choosing proper k-colorings
φ1 of H1 − e1 and φ2 of H2 − e2, permuting the colors such that φ1(v1) = φ2(v2), and
setting φ(u) = φi(u) if u ∈ V(Hi). If e 6= e∗, then e ∈ E(Hi) for some i ∈ {1, 2}, say
e ∈ E(H1). Then, H1 − e admits a proper k-coloring φ1 and there is a vertex u ∈ e1 with
φ1(u) 6= φ1(v1). Moreover, H2 − e2 admits a proper k-coloring φ2 and all vertices from e2

have the same color. Again by permuting the colors it is easy to see that one can create a
proper k-coloring of H. Thus H is (k+ 1)-critical, and (a) is proved.

In order to prove (b) assume that H is (k+1)-critical with k ≥ 3. By symmetry, it suffices
to show that H1 is (k + 1)-critical, as well. Clearly, if χ(H1) ≤ k, then there is a proper
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k-coloring φ1 of H1 with φ1(u) = α 6= β = φ1(v1) for at least one u ∈ e1. Moreover, as H
is (k+ 1)-critical and since k ≥ 3, there is a proper k-coloring of H− e∗ and hence a proper
k-coloring φ2 of H2−e2 such that φ2(v2) = β and φ2(u

′) 6= α for at least one u ′ ∈ e2 \ {v2}.
Then, the union of the colorings φ1 and φ2 is be a proper k-coloring of H, a contradiction.
Thus, χ(H1) ≥ k+ 1. Similarly, one can show that χ(H2) ≥ k+ 1. Now let H ′

1 = H1 − e for
some e ∈ E(H1). If e = e1, then the restriction of any proper k-coloring φ of H−e∗ to V(H1)

is a proper k-coloring of H ′
1 and we are done. If e 6= e1, then there is a proper k-coloring φ

of H − e. If φ(u) 6= φ(v∗) for at least one u ∈ e∗ ∩ V(H1), we are done. Otherwise, there
is a vertex u ∈ e ∩ V(H2) with φ(u) 6= φ(v∗) and the restriction of φ to V(H2) is a proper
k-coloring of H2, a contradiction to χ(H2) ≥ k+ 1. This proves (b). ■

Note that (b) does not hold for k = 2, not even in the graph case as demonstrated for
example by a cycle C7 being obtained as HAjÓS join of two cycles C4.

Let H be a connected hypergraph, v ∈ V(H), and e ∈ E(H). Then, {v, e} is a separating
set (consisting of one edge and one vertex) if v is a separating vertex of H − e (no matter
whether v ∈ e or not).

Theorem 5.8. Let H be a (k+ 1)-critical hypergraph with k ≥ 3. If H has a separating set
consisting of one edge and one vertex, then H is a HAjÓS join of two hypergraphs. ⋄

Proof. There is a vertex v∗ ∈ V(H) and an edge e∗ ∈ E(H) such that H− e∗ = H1 ∪H2 with
V(H1) ∩ V(H2) = {v∗} and |Hi| ≥ 2 for i ∈ {1, 2}. As H is a block (by Proposition 5.4(c)),
e∗ ∩V(Hi) 6= ∅ for i ∈ {1, 2}. For i ∈ {1, 2}, let ei = (e∗ ∩V(Hi))∪ {v∗}. If we can show that
ei 6∈ E(H), then H is the HAjÓS join of H1+e1 and H2+e2, and we are done. By symmetry,
assume that e1 ∈ E(H). As H is (k+1)-critical, there is a proper k-coloring φ of H−e∗ and
all vertices from e∗ have the same color α. Moreover, as e1 ∈ E(H), v∗ has a color β 6= α.
Since k ≥ 3, there is a color γ 6∈ {α,β}. By coloring all vertices from H2 having color α with
γ and vice versa, we obtain a proper k-coloring of H, a contradiction. This completes the
proof. ■

The next theorem examines decompositions of (k+ 1)-critical hypergraphs having a sep-
arating edge set of size k. A separating edge set of a hypergraph H is a set F ⊆ E(H)

such that H − F has more components than H. If F is a separating edge set and there is
no proper subset of F that is also a separating edge set, then F is said to be a minimal
separating edge set. It is well known that if F is a minimal separating edge set of a
connected hypergraph H, then F = EH(X) for some non-empty proper subset X of V(H). A
hypergraph H is k-edge-connected for an integer k ≥ 1 if |H| ≥ 2 and H− F is connected
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for any set F ⊆ E(H) with |F| ≤ k−1. Consequently, MENGER’s Theorem 5.1 implies that H
is k-edge-connected if and only if the minimum local edge connectivity over all pairs (u, v)
of distinct vertices of H is at least k. Thus, it follows from Proposition 5.4(b) that every
(k+ 1)-critical hypergraph is k-edge-connected.

Now let H be an arbitrary hypergraph. An edge cut of H is a triple (X, Y, F) such that
X is a non-empty proper subset of V(H), Y = V(H) \X, and F = EH(X) = EH(Y). If (X, Y, F)
is an edge cut of H, by XF (respectively YF) we denote the set of vertices of X (respectively
Y) that are incident to some edge of F. An edge cut (X, Y, F) of H is non-trivial if |XF| ≥ 2

and |YF| ≥ 2.
That a (k + 1)-critical graph is k-edge-connected was proved by Dirac [39]. A charac-

terization of (k + 1)-critical graphs having a separating edge set of size k was given by
TOFT [117] and, independently, by GALLAi (oral communication to Bjarne TOFT). GALLAi
used the following lemma about complements of bipartite graphs. The clique number
ω(G) of a graph G is the maximum integer n such that Kn is a subgraph of G. A graph
G is perfect if each induced subgraph G ′ of G satisfies χ(G ′) = ω(G ′). It is well known
that complements of bipartite graphs are perfect. For the reader’s convenience we repeat
the proof of the following lemma from [111].

Lemma 5.9. Let G be a graph and let k ≥ 3 be an integer. Suppose that (A,B, F ′) is an
edge cut of G such that |F ′| ≤ k and A as well as B are cliques of G with |A| = |B| = k. If
χ(G) ≥ k+ 1, then |F ′| = k and F ′ ⊆ EG(v) for some vertex v of G.

Proof. The graph G is perfect and so ω(G) = χ(G) ≥ k + 1. Consequently, G contains a
clique X with |X| = k+ 1. Let s = |A∩X| and hence k+ 1− s = |B∩X|. Since |A| = |B| = k,
this implies that s ≥ 1 and k + 1 − s ≥ 1. Since X is a clique of H, the set E ′ of edges of
G joining a vertex of A ∩ X with a vertex of B ∩ X satisfies E ′ ⊆ F ′ and |E ′| = s(k + 1 − s).
Clearly, the function g(s) = s(k + 1 − s) is strictly concave on the real interval [1, k] as
g ′′(s) = −2. Since g(1) = g(k) = k, we conclude that g(s) > k for all s ∈ (1, k). Since
g(s) = |E ′| ≤ |F ′| ≤ k, this implies that s = 1 or s = k. In both cases we obtain that
E ′ = F ′ ⊆ EG(v) for some vertex v of G and |E ′| = |F ′| = k. ■

Theorem 5.10. Let H be a (k + 1)-critical hypergraph with k ≥ 2, and let F ⊆ E(H) be a
separating edge set of H with |F| ≤ k. Then, |F| = k and there is an edge cut (X, Y, F) of H
satisfying the following properties:

(a) Every proper k-coloring φ of H[X] satisfies |φ(XF)| = 1, every proper k-coloring φ of
H[Y] satisfies |φ(YF)| = k and for every color i ∈ [1, k] there is an edge e ∈ F such that
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φ(e ∩ Y) = {i}.

(b) Each vertex of YF is incident to exactly one edge of F.

(c) If |XF| ≥ 2, then the hypergraph H1 obtained from H[X] by adding the hyperedge with
vertex set XF is (k+ 1)-critical.

(d) The hypergraph H2 obtained from H[Y] by adding a new vertex v and adding for each
edge e ∈ F the new edge (e \ X) ∪ {v} is (k+ 1)-critical. ⋄

Proof. We may assume that F is a minimal separating edge set of H and, hence, there exists
an edge cut (X, Y, F) of H. Since H is (k + 1)-critical, for every set Z ∈ {X, Y} there is a
coloring φZ ∈ COk(H[Z]). Now we construct an auxiliary graph G as follows. The vertex
set of G consists of two disjoint cliques A and B with |A| = |B| = k, say A = {a1, a2, . . . , ak}

and B = {b1, b2, . . . , bk}. The edge set of G consists of the edges of the cliques A and B

and an additional edge set F ′ ⊆ EG(A) = EG(B). An edge aibj belongs to F ′ if and only if
there is an edge e ∈ F such that φX(e ∩ X) = {i} and φY(e ∩ Y) = {j}. Then |F ′| ≤ k and we
claim that χ(G) ≥ k + 1. For otherwise, there exists a coloring φ ′ ∈ COk(G) and we may
assume that φ ′(ai) = i and φ ′(bj) = π(j) for a permutation π ∈ Sk. Then φ ′

Y = π ◦ φY

belongs to COk(H[Y]) and the function φX ∪ φ ′
Y belongs to COk(H), which is impossible.

This proves the claim that χ(G) ≥ k+ 1. From Lemma 5.9 it then follows that |F ′| = k and
F ′ ⊆ EG(v) for some vertex v ∈ V(G) = A ∪ B. By symmetry, we may assume that v ∈ A.
Then, |F ′| = |F| and we conclude that |φX(XF)| = 1 (since otherwise |F ′| < |F| by definition
of F ′ and as F ′ ⊆ EG(v)) and so XF is an independent set of H. Moreover, it follows that
|φY(YF)| = k and for every color i ∈ [1, k] there is an edge e ∈ F such that φY(e ∩ Y) = {i}.
If φ ∈ COk(H[X]) we can apply the same argument to the colorings φ and φY , which leads
to |φ(XF)| = 1. Similar, if φ ∈ COk(H[Y]), we apply the same argument to the colorings φX

and φ, and obtain |φ(YF)| = k. This proves (a) and (b).
For the proof of (c) assume that |XF| ≥ 2 and let H1 be the hypergraph obtained from

H[X] by adding the hyperedge with vertex set XF. By (a), χ(H1) ≥ k + 1. Let e be an
arbitrary edge from H1. We show that H1 − e has a proper k-coloring. If e = XF, this
is evident. Otherwise, e belongs to H[X] and since H is (k + 1)-critical, there is a proper
k-coloring φ of H− e. Clearly, φ induces a proper k-coloring of H[Y] and we conclude from
(a) that |φ(XF)| ≥ 2. Hence, φ induces a proper k-coloring of H1 − e. Consequently, H1 is
(k+ 1)-critical (see Proposition 5.3).

In order to prove statement (d) let H2 be the hypergraph obtained from H[Y] by adding a
new vertex v and adding for each edge e ∈ F the new edge (e\X)∪{v}. By (a), χ(H2) ≥ k+1.
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Let e be an arbitrary edge of H2. We show that H2 − e admits a proper k-coloring. Let
e ′ be the corresponding edge of e in H. Then, e ′ ∈ F ∪ E(H[Y]). As H is (k + 1)-critical,
there is a proper k-coloring φ of H− e ′ and, by (a), |φ(XF)| = 1. Hence, φ induces a proper
k-coloring of H2 − e and we are done. ■

5.2. Proof of Theorem 5.2

Let H be a hypergraph with λ(H) ≥ 3. Then, H contains a critical hypergraph H ′ with
χ(H) = χ(H ′). Furthermore, χ(H ′) ≤ λ(H ′) + 1 (by Proposition 5.4(b), respectively by
Theorem 5.10 and Theorem 5.1). As λ is a monotone hypergraph parameter, i.e., λ(H̃) ≤
λ(H) for any subhypergraph H̃ ⊆ H, it follows χ(H) ≤ λ(H) + 1 and the first part of the
main result is proved.

It remains to be shown that χ(H) = λ(H) + 1 if and only if some block of H belongs to
Hλ(H). We will show that the critical subhypergraph H ′ is a block of H which belongs to
Hλ(H). For an integer k ≥ 2, let Ck denote the class of hypergraphs H such that H is a
critical hypergraph with chromatic number k + 1 and with λ(H) ≤ k. We first prove that
Ck = Hk.

Theorem 5.11. Let k ≥ 3 be an integer. Then, the two classes Ck and Hk coincide. ⋄

Proof. The proof of Theorem 5.11 is divided into five claims. Proving the following claim
is straightforward and therefore left to the reader.

Claim 5.11.1. The odd wheels belong to the class C3 and the complete graphs of order k+1

belong to the class Ck. ⋄

Claim 5.11.2. Let k ≥ 3 be an integer, and let H = H1▽H2 be a HAjÓS join of two
hypergraphs H1 and H2. Then, H belongs to the class Ck if and only if both H1 and H2

belong to the class Ck. ⋄

Proof. Let H = (H1, v1, e1)▽(H2, v2, e2), let v∗ be the new vertex, and let e∗ be the new edge
of H. First suppose that H1 and H2 are from Ck. Then, by Theorem 5.7, H is (k+1)-critical.
In order to show that λ(H) ≤ k let u and u ′ be distinct vertices of H and let p = λH(u, u

′).
Then, there is a system P of p edge disjoint (u, u ′)-hyperpaths in H. If u and u ′ are both
from H1, then only one hyperpath P of P may contain vertices from H2 (distinct from v∗).
In this case, P contains the vertex v∗ as well as the edge e∗. Let u∗ ∈ V(H1) be the vertex
from P such that u∗ and e∗ are consecutive in P. Then, replacing the subhyperpath u∗Pv∗
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of P by the hyperpath P ′ = (u∗, e1, v1) leads to a system of p edge disjoint (u, u ′)-paths in
H1, and, thus, p ≤ λH1

(u, u ′) ≤ k. The same argument can be used if u, u ′ ∈ V(H2). It
remains to consider the case that one vertex, say u, belongs to H1 and the other vertex u ′

belongs to H2. By symmetry we may assume that u 6= v∗. Again at most one hyperpath P

of P uses the edge e∗ and all other hyperpaths of P contain the vertex v∗(= v1 = v2). As
before, let u∗ be the vertex from V(H1) such that u∗ and e∗ are consecutive in P and let
P ′ = (u∗, e1, v1). If we replace P by the hyperpath uPu∗+P ′, then we obtain p edge disjoint
(u, v1)-hyperpaths in H1, and thus, p ≤ λH1

(u, v1) ≤ k. Hence, λ(H) ≤ k and so H ∈ Ck.
Now suppose that H ∈ Ck. As k ≥ 3, it follows from Theorem 5.7(b) that both H1 and

H2 are (k + 1)-critical hypergraphs. It remains to be shown that λ(Hi) ≤ k for i ∈ {1, 2}.
By symmetry, it is sufficient to prove that λ(H1) ≤ k. Let u and u ′ be distinct vertices of
H1 and let p = λH1

(u, u ′). Then, there is a system P of p edge disjoint (u, u ′)-hyperpaths
in H1. At most one hyperpath P of P may contain the edge e1. If v1 and e1 are not
consecutive in P, replacing e1 by e∗ leads to a system of p edge-disjoint (u, u ′)-hyperpaths
of H and so p ≤ λH(u, u

′) ≤ k and we are done. So assume that v1 and e1 are consecutive
in P. Let u ′′ be a vertex from e2 \ {v2}. As H2 is critical, Proposition 5.4(b) implies that
there is a (u ′′, v2)-hyperpath P ′, which does not contain the edge e2. So, replacing the edge
e1 in P by the sequence e∗P ′, we get p edge-disjoint (u, u ′)-hyperpaths of H, and hence,
p ≤ λH(u, u

′) ≤ k. Thus, λ(H1) ≤ k and the claim is proved. □

The next claim is a direct consequence of Claims 5.11.1 and 5.11.2.

Claim 5.11.3. Let k ≥ 3 be an integer. Then, Hk is a subclass of Ck. ⋄

Claim 5.11.4. Let k ≥ 3 be an integer, and let H be a hypergraph from Ck. If H does not
admit a separating vertex set of size at most 2, then either k = 3 and H is an odd wheel, or
k ≥ 4 and H is a complete graph of order k+ 1. ⋄

Proof. The proof is by contradiction; we consider a counter-example H with minimum order
|H|. Then, H ∈ Ck having no separating set of size at most 2 and either k = 3 and H is not
an odd wheel, or k ≥ 4 and H is not a complete graph of order k + 1. First we show that
the set VH of high vertices of H contains at least two vertices. If VH = ∅, then, as H is a
block and as k ≥ 3, it follows from Theorem 3.14 that H is a complete graph of order k+ 1,
a contradiction. If |VH| = 1, then Lemma 5.5 implies that k = 3 and H is an odd wheel, a
contradiction. Thus, |VH| ≥ 2. Let u and v be distinct high vertices of H. As H ∈ Ck, it
follows from Proposition 5.4(b) that λ(H) = k and, therefore, H contains a separating edge
set F with |F| = k, which separates u and v. From Theorem 5.10 it follows that there is an
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edge cut (X, Y, F) satisfying the four properties of that theorem. Since F separates u and
v, we may assume that u ∈ X and v ∈ Y. As u is a high vertex and H has no separating
vertex set of size at most two, it follows that |XF| ≥ 3. Now we consider the hypergraph H1

obtained from H[X] by adding the hyperedge e with vertex set XF. By Theorem 5.10(c), H1

is (k + 1)-critical. As H has no separating vertex set of size at most 2 and since |XF| ≥ 3,
H1 neither has.

Now we claim that λ(H1) ≤ k. To this end, let x and y be distinct vertices of H1 and
let P be a set of p = λH1

(x, y) edge disjoint (x, y)-hyperpaths of H1. Then, at most one
hyperpath P contains the edge e. The hyperpath P contains a subhyperpath P ′ = (z, e, z ′).
Then, there is a (z, z ′)-hyperpath P∗ in H containing only edges of F and H[Y]. This follows
from Theorem 5.10(d). By replacing the hyperpath P ′ by P∗ we obtain a system of p edge-
disjoint (x, y)-hyperpaths in H and so p ≤ λH(x, y) ≤ k. Hence, λ(H1) ≤ k and so H1 ∈ Ck.
Clearly, |H1| < |H| and either k = 3 and H1 is not an odd wheel, or k ≥ 4 and H1 is not
a complete graph of order k + 1. This gives a contradiction to the choice of H. Thus, the
claim is proved. □

Claim 5.11.5. Let k ≥ 3 be an integer, and let H be a hypergraph from Ck. If H has a
separating vertex set of size 2, then H = H1▽H2 is the HAjÓS join of two hypergraphs H1

and H2, which both belong to Ck. ⋄

Proof. If H has a separating set consisting of one edge and one vertex, then Theorem 5.8
implies that H is the HAjÓS join of two hypergraphs H1 and H2. By Claim 5.11.2 it then
follows that both H1 and H2 belong to Ck and we are done. It remains to consider the
case that H does not contain a separating set consisting of one edge and one vertex. By
assumption, there is a separating vertex set of size 2, say S = {v,w}. Then, Theorem 5.6
implies that H ÷ S has exactly two components H1 and H2 such that the hypergraphs
Hi = H[V(Hi)∪ S] with i ∈ {1, 2} satisfy the three properties of this theorem. In particular,
we get that H ′

1 = H1 + vw is a (k + 1)-critical hypergraph. By Proposition 5.4(b) it then
follows that λH ′

1
(v,w) ≥ k implying that λH1

(v,w) ≥ k−1. As H ∈ Ck, λH(v,w) ≤ k, which
implies that λH2

(v,w) ≤ 1. Since H2 is connected, this implies that H2 has a separating
edge e. But then, {v, e} or {w, e} is a separating set of H consisting of one edge and one
vertex, a contradiction. □

As a consequence of Claim 5.11.4 and Claim 5.11.5, we conclude that the class Ck is
contained in the class Hk and so Ck = Hk, as claimed. ■
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Proof of Theorem 5.2. In order to complete the proof of Theorem 5.2, let H be a hy-
pergraph with λ(H) = k and k ≥ 3. As shown at the beginning of the section, we have
χ(H) ≤ k+1. If one block B of H belongs to Hk, then B ∈ Ck (by Theorem 5.11) and hence
χ(H) = k+ 1 (by (5.1)).

Assume conversely that χ(H) = k+1. Then, H contains a critical subhypergraph H ′ such
that χ(H ′) = k + 1. Since λ(H ′) ≤ λ(H) ≤ k, H ′ ∈ Ck. By Proposition 5.4(c), H ′ contains
no separating vertex. We claim that H ′ is a block of H. Otherwise, H ′ would be a proper
subhypergraph of a block B of H. This implies that there are distinct vertices v and w in H ′

which are joined by a hyperpath P of H satisfying E(P)∩E(H ′) = ∅. Since λH ′(v,w) ≥ k (by
Proposition 5.4(c)), this implies that λH(v,w) ≥ k+1 and thus λ(H) ≥ k+1, a contradiction.
This proves the claim that H ′ is a block of H. As Ck = Hk by Theorem 5.11, it follows that
H ′ ∈ Hk. This completes the proof of the theorem.

5.3. Splitting Operation

In this section, we want to characterize the (k+ 1)-critical hypergraphs having a separating
edge set of size k. As we have already demonstrated in Theorem 5.10, these hypergraphs
can be decomposed into smaller critical hypergraphs. We now want to introduce a reverse
operation, called splitting. Let H1 and H2 be two disjoint hypergraphs, let ẽ ∈ E(H1) and
ṽ ∈ V(H2). Furthermore, let s : EH2

(ṽ) → 2ẽ be a mapping such that s(e) 6= ∅ for all
e ∈ EH2

(ṽ) and ∪
e∈EH2

(ṽ)

s(e) = ẽ.

Now let H be the hypergraph with vertex set V(H) = V(H1) ∪ (V(H2) \ {ṽ}) and edge set

E(H) = (E(H1) \ {ẽ}) ∪ (E(H2) \ EH2
(v)) ∪ {(e− {ṽ}) ∪ s(e) | e ∈ EH2

(ṽ)}.

We then say that H is obtained from H1 and H2 by splitting the vertex ṽ into the edge
ẽ, and we briefly write H = S(H1, ẽ, H2, ṽ, s). If |s(e)| = 1 for all e ∈ EH2

(ṽ), we call the
splitting s a simple splitting. An example of splitting is displayed in Figure 5.2.

Theorem 5.12. Let H1 and H2 be two disjoint (k+1)-critical hypergraphs with k ≥ 2, let ẽ ∈
E(H1), and let ṽ ∈ V(H2) be a low vertex of H2. Then the hypergraph H = S(H1, ẽ1, H2, ṽ, s)

is (k+ 1)-critical, too, and F = EH(V(H1)) is a separating edge set of size k. ⋄
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ẽ

ṽ

FiG. 5.2. The hypergraph on the right is obtained from splitting the vertex ṽ into the edge ẽ.

Proof. Since ṽ is a low vertex of H2 and so EH2
(ṽ) is a separating edge set of size k, for each

coloring φ ∈ COk(H2 − ṽ) and for each color i ∈ [1, k] there is an edge e ∈ EH2
(ṽ) with

φ(e \ {ṽ}) = {i} (by Theorem 5.10). Furthermore, in each proper k-coloring φ of H1 − ẽ,
the edge ẽ is monochromatic with respect to φ. Consequently, χ(H) ≥ k+ 1. It remains to
show that χ(H − e) ≤ k for all edges e ∈ E(H). If e ∈ E(H1), then H1 − e admits a proper
k-coloring φ1 in which the edge ẽ is not monochromatic. Hence, we can choose any proper
k-coloring φ2 of H2 − ṽ and permute the colors such that φ1 ∪φ2 is a proper k-coloring of
H− e (see Lemma 5.9). If e 6∈ E(H1), we choose the corresponding edge e ′ ∈ E(H2). Then,
there is a coloring φ2 ∈ COk(H2 − e ′). Combining φ2 with a coloring φ1 ∈ COk(H1 − ẽ)

results in a proper k-coloring of H− e. Thus, H is (k+ 1)-critical (see Proposition 5.3). By
construction, F is a separating edge set with |F| = dH2

(ṽ) = k. This completes the proof. ■

Combining Theorem 5.6 with the next results provides a characterization of (k+1)-critical
hypergraphs having a separating vertex set of size 2.

Theorem 5.13. Let H1 and H2 be two disjoint (k + 1)-critical hypergraphs with k ≥ 2,
let ẽ ∈ E(H1) be an ordinary edge of H1, and let ṽ ∈ V(H2) be an arbitrary vertex. Let
H = S(H1, ẽ, H2, ṽ, s) and let H ′

2 = H[(V(H2) \ {ṽ}) ∪ ẽ]. If χ(H ′
2) ≤ k, then H is a (k + 1)-

critical hypergraph and ẽ is a separating vertex set of H of size 2. ⋄

Proof. Let ẽ = uw andH ′
1 = H1−ẽ. Then, H is the union of the two induced subhypergraphs

H ′
1 and H ′

2 with V(H ′
1)∩V(H ′

2) = {u,w} and |H ′
i | > 2 as |Hi| ≥ k+ 1 ≥ 3. So S = {u,w} is a

separating set of H. Furthermore, H1 is obtained from H ′
1 by adding the edge uw, and H ′

2

is obtained from H2 by identifying u and v to the new vertex ṽ. Since χ(H2) = k + 1 and
χ(H ′

2) ≤ k, each coloring φ2 ∈ COk(H
′
2) satisfies φ2(u) 6= φ2(w). Since H1 is (k+1)-critical

and H ′
1 = H1 − uw, each coloring φ1 ∈ COk(H

′
1) satisfies φ1(u) = φ1(w). Consequently,

χ(H) ≥ k+ 1. Now let e be an arbitrary edge of H. It remains to show that χ(H− e) ≤ k.
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First assume that e belongs to H ′
1 and hence to H1. As H1 is (k + 1)-critical, there is a

coloring φ1 ∈ COk(H1 − e) and so φ1(u) 6= φ1(w). There is a coloring φ2 ∈ COk(H
′
2)

and φ2(u) 6= φ2(w). By permuting colors if necessary, φ1 ∪ φ2 is a proper k-coloring of
H − e. Now assume that e belongs to H ′

2 and let e ′ be the corresponding edge of H2.
As H2 is (k + 1)-critical, there is a coloring φ2 ∈ COk(H2 − e ′) which leads to a coloring
φ ′

2 ∈ COk(H
′
2 − e) such that φ ′

2(u) = φ ′
2(w) = φ2(ṽ). As H1 is (k + 1)-critical, there is

a coloring φ1 ∈ COk(H1 − ẽ) and so φ1(u) = φ1(w). By permuting colors if necessary,
φ1∪φ ′

2 yields a proper k-coloring of H−e. Hence H is (k+1)-critical (by Proposition 5.3).■

x1 x2

H1

xxx

H2

FiG. 5.3. Two 4-critical graphs.

There are (k+ 1)-critical graphs H2 and vertices v of H2 such that the resulting graph H ′
2

obtained from H2 by splitting v into an independent set of size at least 2 satisfies χ(H ′
2) ≥

k+ 1; in this case H ′
2 is (k+ 1)-critical, too. An example with k = 3 is shown in Figure 5.3;

both graphs H1 and H2 are 4-critical and H1 is obtained from H2 by splitting x into the
vertex set {x1, x2}. The graph H1 is a HAjÓS join of the form H1 = (K4▽K4)▽K4 and hence
4-critical. That H2 is 4-critical can also easily be checked by hand using Proposition 5.3.

Both Theorems 5.12 and 5.13 are special cases of a more general theorem about the
splitting operation for critical hypergraphs. The proof of the next result is almost the same
as the proof of the former theorem.

Theorem 5.14. Let H1 and H2 be two disjoint (k + 1)-critical hypergraphs with k ≥ 2,
let ẽ ∈ E(H1) be an arbitrary edge of H1, and let ṽ ∈ V(H2) be an arbitrary vertex. Let
H = S(H1, ẽ, H2, ṽ, s) and let H ′

2 = H[(V(H2) \ {ṽ}) ∪ ẽ]. Assume that for every coloring
φ ∈ COk(H[ẽ]) with |φ(ẽ)| ≥ 2 there is a coloring φ ′ ∈ COk(H

′
2) such that φ ′|ẽ = φ. Then,

H is a (k+ 1)-critical hypergraph. ⋄

A slightly weaker version of the above theorem has already been proved by TOFT [116];
he only considered the case when H2 is a critical graph and s is a simple splitting. Then,
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the resulting critical hypergraph H has one hyperedge less. By repeated application of the
splitting operation one can finally obtain a critical graph.

Let H1, H2, ẽ, ṽ, H and H ′
2 as in Theorem 5.14. As H1 is critical, H1 is a simple hypergraph

(by Proposition 5.4(d)). Hence, ẽ is an independent set of H as well as of H ′
2 and H[ẽ] =

H ′
2[ẽ]. We then say that H ′

2 is obtained from H2 by splitting ṽ into the independent set ẽ,
and write H ′

2 = S(H2, ṽ, ẽ, s).
Let H be a (k + 1)-critical hypergraph with k ≥ 2, and let v be a vertex of H. We say

that v is a universal vertex of H, if for every hypergraph H ′ = S(H, v, X, s), where X is a
set, and every coloring φ ′ ∈ COk(H

′[X]) with |φ ′(X)| ≥ 2 there is a coloring φ ∈ COk(H)

with φ|X = φ ′.
Theorem 5.14 then implies that if H1 and H2 are disjoint (k+1)-critical hypergraphs, and

ṽ is a universal vertex of H2, then any hypergraph H obtained from H1 and H2 by splitting ṽ

into an edge ẽ of H2 is a (k+ 1)-critical hypergraph, too. However, a good characterization
of universal vertices in critical hypergraphs or graphs seems not available. From the proof
of Theorem 5.12 it follows that any low vertex of a (k + 1)-critical hypergraph with k ≥ 2

is universal. Further cases were given by TOFT in [117] and [116].
Next to the HAjÓS construction there is another construction for critical hypergraphs,

first used by DiRAC for critical graphs (see GALLAi [48, (2.1)]). Let H1 and H2 be two
disjoint hypergraphs, and let H be the hypergraph obtained from the union H1 ∪ H2 by
adding all ordinary edges between H1 and H2, that is, V(H) = V(H1) ∪ V(H2) and E(H) =

E(H1) ∪ E(H2) ∪ {uv | u ∈ V(H1), v ∈ V(H2)}. We call H the DiRAC sum, or the join
of H1 and H2 and write H = H1 ⊠H2. Then, it is straightforward to show that χ(H) =

χ(H1) + χ(H2), and, moreover, H is critical if and only if both H1 and H2 are critical. For
example, KCn,p = Kn⊠C2p+1 is a (n+ 3)-critical graph and, as proved by TOFT [116], each
high vertex of KCn,p is universal. These graphs enable us to construct from any (k + 1)-
critical hypergraph with k ≥ 3 and copies of KCk−2,p a (k + 1)-critical graph. Note that if
H = S(H1, ẽ, H2, ṽ, s) and s is a simple splitting, then dH2

(ṽ) ≥ |ẽ|. One popular example
of a critical graph obtained from a critical hypergraph was presented by TOFT [117]. For
i ∈ {1, 2}, let Hi be a connected hypergraph with one edge ei of size 2p + 1, so Hi is a
2-critical hypergraph. Then the DiRAC sum H ′ = H1 ⊠ H2 is a 4-critical hypergraph. If
we now apply the splitting operation with two copies of the odd wheels KC1,p and the high
vertex v, that is, we first construct H̃ = S(H ′, e1, KC1,p, v, s) with a simple splitting s and
then H = S(H̃, e2, KC1,p, v, s

′) with a simple splitting s ′, then the resulting graph H is a
4-critical graph of order n = 8p+ 4 and with m = (2p+ 1)2 + 8p+ 4 = 1

16
n2 +n edges, i.e.,

H has many edges. The constant 1
16

has not been improved.



Coloring Hypergraphs of Low Connectivity 104

5.4. Concluding Remarks

Surprisingly, we are not able to characterize the hypergraphs with λ = 2 and χ = 3. If H2

denotes the smallest class of hypergraphs that contains all hyperwheels and is closed under
taking HAjÓS joins, then it is easy to show that H2 is contained in the class C2 of 3-critical
hypergraphs with λ ≤ 2. As proved in Claim 5.11.4 if H belongs to Ck with k ≥ 3 and H

has no separating vertex set of size at most 2, then H is a base graph of Hk, that is, either
k = 3 and H is an odd wheel or k ≥ 4 and H is a Kk+1. However, there are hypergraphs in
C2 that do not have a separating vertex set of size at most 2, but that are different from
hyperwheels. Examples of such 3-critical hypergraphs can be obtained as follows. Let T be
an arbitrary rooted tree such that the root has degree at least 2 and the distance between
the leafs of T and the root all have the same parity. If H is the hypergraph obtained from T

by adding the hyperedge consisting of the leafs of T , then it is easy to check that H ∈ C2.
If the non-leaf vertices of T have degree at least 3, then H has no separating vertex set of
size at most 2; one such hypergraph is shown in Figure 5.4. On the other hand, H belongs
to H2, and we do not know any hypergraph belonging to C2, but not to H2. If H ∈ C2

then H has a separating edge set of size 2, and according to Theorem 5.10 the hypergraph
H can be decomposed into two 3-critical hypergraphs H1 and H2. It can easily be shown
that λ(Hi) ≤ 2 for i ∈ {1, 2} implying that both H1 and H2 belong to C2. The problem is
the converse splitting operation.

FiG. 5.4. A member in C2 without a separating vertex set of size 2.

It seems likely that one can obtain a polynomial time algorithm from the proof of The-
orem 5.2, which, given a hypergraph H with λ(H) ≤ k and k ≥ 3, either finds a proper
k-coloring of H or a block belonging to Hk. We did not explore this question.
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Colorings of Digraphs



Chapter 6

Preliminaries: Digraphs

The topics and results presented within the next three chapters are joint work with JØRGEN
BANG-JENSEN, THOMAS BELLiTTO, and MiCHAEL STiEBiTZ. The results of Chapter 7 have
been published under the title On DP-coloring of digraphs in Journal of Graph Theory
(see [6]); Chapter 8 reflects the outcomes of the paper Hajós and Ore constructions for
digraphs, which has been published in The Electronic Journal of Combinatorics (see [7]).
Most parts of the following three chapters strongly resemble their counterparts in the cor-
responding papers or have been taken over one-to-one.

6.1. Basic Digraph Terminology

The digraph terminology used in this thesis is mostly based on the book of BANG-JENSEN
and GUTiN [8]. A digraph D = (V(D), A(D)) consists of a finite set V(D) of so called
vertices and a finite set A(D) of ordered pairs of distinct vertices of D, so called arcs of
the digraph D. Accordingly, V(D) is the vertex set of D and A(D) is the arc set of D.
The size of the vertex set of D is called the order of D; we denote it by |D|. If a = (u, v) is
an arc of D with end-vertices u and v, we say that u is the initial vertex of a and v is the
terminal vertex of a. For the sake of readability, we write a = uv instead of a = (u, v).
Note that our definition neither allows for loops (i.e., arcs of which initial and terminal
vertex coincide) nor parallel arcs (i.e., two or more arcs with the same initial vertex and the
same terminal vertex). However, it may happen that there are two arcs going in opposite
directions between two vertices; in this case, we say that the two arcs are opposite. Two

https://doi.org/10.1002/jgt.22535
https://doi.org/10.37236/8942
https://doi.org/10.37236/8942
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vertices u and v are adjacent if at least one of uv and vu belongs to A(D), we then also
say that u is a neighbor of v and vice versa. A vertex and an arc are incident if the
vertex is either initial vertex or terminal vertex of the arc. If uv ∈ A(D), then v is an
out-neighbor of u and u is an in-neighbor of v. Let N+

D(v) (respectively N−
D(v)) denote

the set of out-neighbors (respectively set of in-neighbors) of v in D. If X, Y ⊆ V(D),
then AD(X, Y) denotes the set of arcs from A(D) having initial vertex in X and terminal
vertex in Y. Hence, |N+

D(v)| = |AD({v}, V(D) \ {v})| and |N−
D(v)| = |AD(V(D) \ {v}, {v})|.

Degree Concepts for Digraphs
Due to the directedness of arcs, there are a few degree concepts for digraphs that naturally
arise. First of all, the out-degree d+

D(v) of v in a digraph D is the number of arcs whose
initial vertex is v and so d+

D(v) = |N+
D(v)|. Similarly, the in-degree d−

D(v) = |N−
D(v)| of v in

D is the number of arcs whose terminal vertex is v. Moreover, the total degree dD(v) of v
in D is the sum of in-degree and out-degree of v, i.e. dD(v) = d+

D(v)+d−
D(v). A vertex v of D

is EULERian if d+
D(v) = d−

D(v). We say that the digraph D is EULERian if every vertex of
D is EULERian. As usual, ∆+(D) = maxv∈V(D) d

+
D(v) denotes themaximum out-degree of

D and ∆−(D) = maxv∈V(D) d
−
D(v) denotes the maximum in-degree of D. Unsurprisingly,

∆(D) = maxv∈V(D) dD(v) is the maximum total degree of D. By substituting max with
min in the previous three sentences we obtain the definitions of minimum out-degree
δ+(D), minimum in-degree δ−(D), and minimum total degree δ(D) of D.

Subdigraphs and Induced Subdigraphs
Let D be a digraph. A subdigraph D ′ of D is a digraph fulfilling V(D ′) ⊆ V(D) and
A(D ′) ⊆ A(D); we then write D ′ ⊆ D. The subdigraph D ′ is a proper subdigraph of
D (written D ′ ⊂ D) if V(D ′) ⊂ V(D) or A(D ′) ⊂ A(D). If X ⊆ V(D), then D[X] denotes
the subdigraph of D induced by X, i.e., V(D[X]) = X and A(D[X]) = AD(X,X). A
subdigraph D ′ of D is induced if there exists a vertex set X ⊆ V(D) such that D ′ = D[X].
Conversely, D− X = D[V(D) \ X] denotes the subdigraph of D that results from D by
deleting all vertices of X as well as all incident arcs from D. If X = {v} is a singleton, we
prefer writing D− v instead of D− {v}.

Paths, Cycles, and Connectivity
A directed path of length ℓ ≥ 0 is a digraph P with vertex set V(P) = {v0, v1, . . . , vℓ} and
arc set A(P) = {v0v1, v1v2, . . . , vℓ−1vℓ} where all of the vi are pairwise distinct; we also say
that P is a directed path from v0 to vℓ. A directed cycle of length ℓ+1 ≥ 2 is a digraph C

that results from a directed path of length ℓ from v0 to vℓ by adding the arc vℓv0. A directed
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cycle of length 2 is called digon. In digraph theory, it is often interesting to examine digon-
free digraphs and, in particular, tournaments: a tournament is a digraph that results from
a complete graph by orienting each edge, that is, replacing the edge between any pair of
vertices u, v by either the arc uv or vu.

The underlying graph G(D) of a digraph D is the simple graph with V(G(D)) = V(D)

and {u, v} ∈ E(G(D)) if and only if at least one of uv and vu belongs to A(D). The digraph
D is (weakly) connected if G(D) is connected. A separating vertex of a connected
digraph D is a vertex v ∈ V(D) such that D− v is not connected. Moreover, a block of D
is a maximal connected subdigraph B of D such that B contains no separating vertex. As
previously, B(D) denotes the set of blocks of D and, for v ∈ V(D), Bv(D) denotes the
set of blocks of D containing v. Note that the vertex sets of the blocks of D are exactly
the vertex sets of the blocks of G(D). The complement of D is the digraph D with
V(D) = V(D) and A(D) = {uv | u, v ∈ V(D) and uv 6∈ A(D)}. Clearly, D is connected if D
is not connected, but the converse does not hold true in general.

By taking into account the orientation of arcs, we obtain a second connectivity concept.
We say that the digraph D is strongly connected if there exists a directed path in D

between any pair of distinct vertices of D. Obviously, every strongly connected digraph is
also connected but the converse does not always hold true.

If D is a digraph and C is a cycle in the underlying graph G(D), we denote by DC the
maximal subdigraph of D satisfying G(DC) = C. A bidirected graph is a digraph that can
be obtained from a simple graph G by replacing each edge by two opposite arcs; we denote
it by D(G). A bidirected complete graph is also called a complete digraph. Note that if
D = D(G) is a bidirected graph, then G(D) = G.

6.2. Colorings of Digraphs

In this thesis’ first part, we have exhaustively examined colorings of hypergraphs. Those
were mappings such that each hyperedge of the respective hypergraph contains at least two
vertices of distinct colors. In particular, we have seen that this coloring approach generalizes
the usual one for graphs as it forces vertices to have distinct colors if they are joined by an
edge. Now, is there a reasonable coloring concept for digraphs that generalizes the usual
graph coloring method, too? Certainly, given a digraph D, we could just define a coloring of
D to be a coloring of the underlying graph G(D). In this instance, however, there is no point
in studying digraph colorings, as everything would be settled by investigating colorings of
undirected graphs. Instead, in 1982, NEUMANN-LARA [94] came up with another concept
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that takes into account the orientation of edges. According to him, an (acyclic) coloring
of a digraph D is a mapping from the vertex set V(D) to a color set Γ such that each color
class induces an acyclic subdigraph of D, i.e., a subdigraph that does not contain any
directed cycles. If |Γ | = k, we call such a coloring an (acyclic) k-coloring of D and say
that D is k-colorable if D admits such a k-coloring. The dichromatic number →→→χ(D) of
a digraph D is the smallest integer k such that D is k-colorable. Here again, this concept
generalizes the usual concept for graphs. This is due to the fact that every acyclic set in
a bidirected graph D is also an independent set of D. Hence, any acyclic coloring of a
bidirected graph D induces a proper coloring of its underlying graph and vice versa, and so
the dichromatic number of a bidirected graph and the chromatic number of its underlying
graph coincide, that is, if G is a simple graph, then

→→→
χ(D(G)) = χ(G). (6.1)

Since the introduction of this digraph coloring concept, various well known results for graph
coloring have been transferred to the digraph setting. As in the previous chapters, we will
especially focus on BROOKS’ Theorem and related research.

A first step towards BROOKS’ Theorem was already made in the inital paper by NEUMANN-
LARA [94]. He proved the following, simple theorem (see also Section 8.1).

Theorem 6.1 (NEUMANN-LARA, 1982). Let D be a digraph. Then,

→→→
χ(D) ≤ min{∆−(D), ∆+(D)}+ 1. ⋄⋄

For many years, NEUMANN-LARA’s digraph coloring concept did not receive much atten-
tion. Only after it was rediscovered by MOHAR [88], more people started to investigate the
dichromatic number (see, for instance, [2, 5, 56, 57, 58, 89, 90, 106]). In 2010, MOHAR
finally published BROOKS’ Theorem for digraphs. Although he proved a slightly different
version, it is equivalent to the following theorem (see also Section 8.1).

Theorem 6.2 (MOHAR, 2010). Let D be a connected digraph. Then, D satisfies →→→χ(D) ≤
max{∆−(D), ∆+(D)}+ 1 and equality holds if and only if D is

(a) a directed cycle of length ≥ 2, or

(b) a bidirected cycle of odd length ≥ 3, or

(c) a bidirected complete graph. ⋄
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Following up on this, HARUTYUNYAN and MOHAR [58] examined list-colorings of digraphs.
Given a digraph D, some color set Γ , and a function L : V(D) → 2Γ (which we still call list-
assignment), an L-coloring of D is a function φ : V(D) → Γ such that φ(v) ∈ L(v) for all
v ∈ V(D) and D[φ−1({α})] contains no directed cycle for each α ∈ Γ (if such a coloring exists,
we say that D is L-colorable). HARUTYUNYAN and MOHAR [58] extended ERDŐS, RUBiN
and TAYLOR’s Theorem 3.1 to digraphs, thereby obtaining a generalization of Theorem 6.2.

Theorem 6.3 (HARUTYUNYAN and MOHAR, 2011). Let D be a connected digraph, and let
L be a list-assignment such that |L(v)| ≥ max{d+

D(v), d
−
D(v)} for all v ∈ V(D). Suppose that

D is not L-colorable. Then, the following statements hold:

(a) D is EULERian and |L(v)| = max{d+
D(v), d

−
D(v)} for all v ∈ V(D).

(b) If B ∈ B(D), then B is a directed cycle of length ≥ 2, or B is a bidirected complete
graph, or B is a bidirected cycle of odd length ≥ 5.

(c) For each B ∈ B(D) there is a set ΓB of ∆+(B) colors such that for every v ∈ V(D),
the sets ΓB with B ∈ Bv(D) are pairwise disjoint and L(v) =

∪
B∈Bv(D) ΓB. ⋄

While HARUTYUNYAN and MOHAR originally only proved statements (a) and (b) of the
above theorem, it is possible to deduce the theorem in the form presented here from Theo-
rem 3.11, as we shall demonstrate. For the reader’s convenience, let us recall Theorem 3.11.
As defined in Chapter 3, given a graph G, a list-assignment L of G, and a non-negative
integer s, the graph G is (L, s)-colorable if there is an L-coloring of G such that every color
class induces a strictly s-degenerate subgraph of G.

Theorem 3.11. Let s ∈ {1, 2}, let G be a connected graph with |G| ≥ 2, and let L be a list-
assignment satisfying |L(v)| ≥ dG(v)/s for each v ∈ V(G). Then, G is not (L, s)-colorable if
and only if the following two conditions are fulfilled:

(a) If B ∈ B(G), then B = tKn with 1 ≤ t ≤ s and t(n− 1) ≡ 0(mod s), or B = sCn with
n odd, or B is s-regular.

(b) For each B ∈ B(G), there is a set ΓB of ∆(B)/s colors such that for every v ∈ V(G),
the sets ΓB with B ∈ Bv(G) are pairwise disjoint and L(v) =

∪
B∈Bv(G) ΓB. ⋄

Proof of Theorem 6.3. For v ∈ V(D), let ℓ(v) = max{d+
D(v), d

−
D(v)} and let L be a list-

assignment as described in the theorem. Note that |L(v)| ≥ ℓ(v) for all v ∈ V(D). Now, we
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create an auxiliary graph G as follows: let V(G) = V(D) and, for each arc uv ∈ A(D) add
an edge between the vertices u and v in G. Then, between any pair of distinct vertices of G
there are at most two parallel edges, and dG(v) = dD(v) ≤ 2ℓ(v) for all v ∈ V(G). Clearly,
if there is an (L, 2)-coloring of G, then every color class induces a forest in G and, therefore,
an acyclic subdigraph of D, contradicting the premise. Hence, G is not (L, 2)-colorable
and it follows from Theorem 3.11 that if B ∈ B(G), then B = tKn with t ∈ {1, 2} and
t(n − 1) ≡ 0(mod 2), B = 2Cn with n odd, or B is 2-regular. Moreover, Theorem 3.11(b)
implies that dG(v) = dD(v) = 2ℓ(v) = 2|L(v)| for all v ∈ V(G) and so statements (a) and (c)
of Theorem 6.3 hold true. As D is EULERian, an easy induction on the number of blocks of
D shows that each block of D is EULERian, too (as every block of G is regular and as it is
not possible that all but one vertices of a block are EULERian). Consequently, if B ∈ B(G)

is 2-regular, then the corresponding block of B(D) is a directed cycle. Similarly, if B = 2Cn

with n odd, then B corresponds to a bidirected cycle of odd length n. Finally, if B = tKn,
we claim that t = 2 and, hence, B corresponds to a bidirected complete graph, or that
t = 1, n = 3 and B corresponds to a directed cycle in D. Clearly, this claim is equivalent to
the statement that no block of D is a tournament of odd order at least five.

So assume, to the contrary, that there is a block B of D, which is a tournament of
order n with n ≥ 5 odd. Let ΓB be as described in statement (c) of Theorem 6.3. Then,
|ΓB| = (n− 1)/2 and ΓB ⊆ L(v) for all v ∈ V(B). We claim that B admits an acyclic coloring
with color set ΓB. To this end, we choose a vertex v ∈ V(B) and two distinct out-neighbors
u,w ∈ V(B) of v (which exist since n ≥ 5 and d+

D(v) = (n−1)/2 ≥ 2). Clearly, B[{u, v,w}] is
acyclic and so we assign the three vertices u, v and w the same color α from ΓB. Afterwards,
we group the remaining vertices into (n− 1)/2− 1 pairs and assign each pair a unique color
from ΓB \ {α}. As B contains no digon, this leads to an acyclic coloring φB of B with color
set ΓB, as claimed. In order to derive at a contradiction, we prove that we can extend this
coloring φB to an L-coloring of D. For that purpose, let v ∈ V(B) be an arbitrary vertex,
and let Dv be the component of D − (V(B) \ {v}) containing v. Similarly, let Gv be the
component of G− (V(B) \ {v}) containing v. Note that V(Dv) = V(Gv). Moreover, let Lv be
the list-assignment of Dv (and, therefore, of Gv) with Lv(v) = L(v) \ ΓB and Lv(w) = L(w)

for w ∈ V(Dv) \ {v}. If v is not a separating vertex of D, then Gv = K1 and Lv(v) = ∅
and so Gv is not (Lv, 2)-colorable. If, however, v is a separating vertex of D, then |Gv| ≥ 2,
|Lv(w)| ≥ dGv(w)/s for all w ∈ V(Gv) and Gv and Lv satisfy statements (a) and (b) of
Theorem 3.11. As a consequence, Gv is not (Lv, 2)-colorable in both cases. Now let L ′

v be
the list assignment of Dv (and Gv) with L ′

v(w) = L(w) = Lv(w) for all w ∈ V(Dv) \ {v}

and L ′
v(v) = L(v) \ (ΓB \ φB(v)) = Lv(v) ∪ {φB(v)}. If v is not a separating vertex of D,
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then Gv = K1, L ′
v(v) = {φB(v)}, and φv with φv(v) = φB(v) clearly is an (L ′

v, 2)-coloring
of Gv and, therefore, and L ′

v-coloring of Dv. Now assume that v is a separating vertex of
D. Then |Gv| ≥ 2, |L ′

v(v)| > dGv(v)/s, and |L ′
v(w)| ≥ dGv(w)/s for all w ∈ V(Gv) \ {v}. By

Theorem 3.11, Gv admits an (L ′
v, 2)-coloring φv and, as Gv is not (Lv, 2)-colorable, we have

φv(v) = φB(v). Consequently, φv is an L ′
v-coloring of Dv. As D = B∪

∪
v∈V(B)Dv and since

the digraphs Dv are pairwise disjoint, it follows that φ =
∪

v∈V(B)φv is an L-coloring of D,
which is impossible. This proves the claim that no block of D is a tournament of odd order
at least five and so the theorem’s proof is complete. ■

It is natural to wonder if the requirement |L(v)| ≥ min{d+
D(v), d

−
D(v)} for all v ∈ V(D) is

already sufficient for implying the above statement. That this is not the case was shown by
HARUTYUNYAN and MOHAR [58] in the same paper; they designed an easy counter-example
on four vertices, which is depicted in Figure 6.1. Note that, for better readability, we will
always display opposite arcs as one arc with arrowheads in both directions. HARUTYUNYAN
and MOHAR [58] further proved that it is even NP-complete to decide whether a planar
digraph satisfying this condition is L-colorable, or not.

{1, 2}

{1} {1}

{1, 2}

FiG. 6.1. ([58]) A non-L-colorable digraph with |L(v)| ≥ min{d+(v), d−(v)} that is not EULERian.

6.3. Focus of our Research

When we became attentive to the paper of HARUTYUNYAN and MOHAR [58], we immediately
thought about how it would be possible to transfer DP-colorings to digraphs. Obviously,
directed cycles needed to play a key role, which led us to the following, quite intuitive
approach. Given a digraph D, a cover (X,D) consists of a mapping X and a digraph D
nearly as before, but for each arc uv we add a directed matching from the corresponding
vertex set Xu to Xv (i.e. a matching in which all initial vertices are in Xu and all terminal
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vertices are in Xv), instead of an undirected matching as we did in Chapter 4. Then, an
(X,D)-coloring of D is an acyclic transversal of (X,D), i.e., a transversal that does not
induce any directed cycles in D. The exact definition of covers and DP-coloring of digraphs
is given in Chapter 7. Moreover, there it is proved that DP-colorings of bidirected graphs
and DP-colorings of its underlying graphs coincide. Finally, we obtain a BROOKS-type
theorem for the DP-chromatic number.

This served us as motivation to investigate digraph coloring in more detail. To date, many
questions and subjects in digraph coloring are still wide open and we decided to take a deeper
look at critical digraphs. A digraph D is critical and k-critical if →→→χ(D) = k but →→→χ(D ′) < k

for each proper subdigraph D ′ of D. NEUMANN-LARA already considered critical digraphs
in his inital paper [94] (he called them minimal k-chromatic) and proved that critical
digraphs are strongly connected and have no separating vertices. In Chapter 8, we prove a
GALLAi-type result for critical digraphs. Afterwards, we regard a classical construction for
critical graphs, the HAjÓS join, and transfer his most famous theorem, stating that each
graph of chromatic number at least k contains a HAjÓS-constructible graph, i.e., a simple
graph that can be obtained from copies of Kk by applying the HAjÓS join and identifying
non-adjacent vertices, to digraphs. Following up on that, we introduce the ORE join and
prove the counterpart of a well-known theorem of URQHUART [119], which states that every
simple graph of chromatic number at least k not only contains a HAjÓS-constructible digraph
but itself is HAjÓS-constructible.

Nonetheless, there is still a lot to be done. A collection of interesting open problems and
possible ways how to approach those is presented in Chapter 9.



Chapter 7

DP-coloring of Digraphs

Although the reader might still have good memories from the first part of this thesis, let
us briefly recall the concept of DP-coloring. The main idea was to generalize the list-
coloring concept by transforming the problem of finding an L-coloring of a graph G to that
of finding an independent transversal in an auxiliary graph G with vertex set {(v, α) | v ∈
V(G), α ∈ L(v)} and edge set {(v, α)(v ′, α ′) | vv ′ ∈ E(G) and α = α ′}. Then, each edge uv of
G corresponds to a particular matching in G. By allowing for arbitrary matchings instead,
we end up with so called covers of G. In the next section, we will transfer this definition
to digraphs and examine the relation between DP-colorings of bidirected graphs and those
of their underlying graphs. Afterwards, we will prove the digraph version of Theorem 4.2
(see Theorem 7.5), which characterizes DP-degree colorable digraphs. This will also lead to
a generalization of Theorem 6.3 (see Theorem 7.13). Before going on to the next section,
note that a matching in a digraph D is a set M of arcs of D with no common end-vertices.
A matching in D is perfect if it contains |D|

2
arcs.

7.1. The DP-dichromatic Number

Let D be a digraph. A cover of D is a pair (X,D) satisfying the following conditions:

(C1) D is a digraph and X : V(D) → 2V(D) is a function that assigns to each vertex
v ∈ V(D) a vertex set Xv = X(v) ⊆ V(D) such that the sets Xv with v ∈ V(D) are
pairwise disjoint.
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(C2) We have V(D) =
∪

v∈V(D) Xv and each Xv is an independent set of D. For each arc
a = uv ∈ A(D), the arcs from AD(Xu, Xv) form a possibly empty matching Ma in
D[Xu ∪ Xv]. Furthermore, the arcs of D are A(D) =

∪
a∈A(D)Ma.

Now let (X,D) be a cover of D. A vertex set T ⊆ V(D) is a transversal of (X,D) if
|T ∩ Xv| = 1 for each vertex v ∈ V(D). An acyclic transversal of (X,D) is a transversal
T of (X,D) such that D[T ] contains no directed cycle. An acyclic transversal of (X,D) is
also called an (X,D)-coloring of D; the vertices of D are called colors. We say that D

is (X,D)-colorable if D admits an (X,D)-coloring. Let f : V(D) → N0 be a function.
Then, D is said to be DP-f-colorable if D is (X,D)-colorable for every cover (X,D) of
D satisfying |Xv| ≥ f(v) for all v ∈ V(D) (we will call such a cover an f-cover). If D is
DP-f-colorable for a function f such that f(v) = k for all v ∈ V(D), then we say that D

is DP-k-colorable. The DP-dichromatic number →→→χDP(D) is the smallest integer k ≥ 0

such that D is DP-k-colorable.
In the following, we want to examine the relation between DP-colorings of bidirected

graphs and those of their underlying graphs. For the reader’s convenience, let us recall the
essential definitions regarding simple graphs from Section 4.1.

Let G be a simple graph. A cover of G is a pair (X,G) satisfying (C1) and (C2) where
we suppress the orientations, i.e., in particular, the matching Me associated to an edge
e = uv ∈ E(G) is an (undirected) matching of G between Xu and Xv (and G is therefore an
undirected graph). An (X,G)-coloring of G is an independent transversal T of (X,G),
i.e., T is a transversal of (X,G) such that G[T ] is edgeless. The definitions of DP-f-colorable,
DP-k-colorable and the DP-chromatic number are analogous.

Theorem 7.1. A bidirected graph D is DP-f-colorable if and only if its underlying graph
G(D) is DP-f-colorable. ⋄

Proof. We prove the two implications separately. First assume that D is DP-f-colorable.
In order to show that G = G(D) is DP-f-colorable, let (X,G) be an f-cover of G and
let D = D(G) be the bidirected graph associated to G. Then, (X,D) is an f-cover of D.
By assumption, there is an acyclic transversal T of (X,D). As D is bidirected, T is an
independent transversal of (X,G) and so G is DP-f-colorable.

The converse implication is less obvious since even if D is bidirected, its covers do not
necessarily have to be. We prove the implication’s contraposition. To this end, let f be such
that D is not DP-f-colorable. We show that G(D) is also not DP-f-colorable. Let (X,D)

be an f-cover of D for which D is not (X,D)-colorable such that the number of opposite
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arcs in D is maximum. If D is a bidirected graph, then it is not difficult to check that
(X,G(D)) is an f-cover of G(D) such that G(D) is not (X,G(D))-colorable, and we are done.
Otherwise, D is not a bidirected graph, and hence there are distinct vertices u and v from
D with xuxv ∈ A(D) but xvxu 6∈ A(D) for some vertices xu ∈ Xu, xv ∈ Xv. Let (X,D ′) be
the f-cover of D obtained from (X,D) by replacing Mwu by the opposite of Muw for every
vertex w adjacent to u. Clearly, the number of opposite arcs in D ′ is larger than in D and
so there must exist an acyclic transversal T of (X,D ′) (by the choice of (X,D)). Then, T is
also a transversal of (X,D), and, since D is not (X,D)-colorable, D[T ] contains a directed
cycle C. As D − Xu is isomorphic to D ′ − Xu, it follows from the choice of T that C must
contain a vertex x ∈ Xu. Hence, there exists a vertex w adjacent to u in D and a vertex
x ′ ∈ Xw such that xx ′ ∈ Muw and x ′ ∈ T . Since the digraph D ′ contains both the arcs xx ′

and x ′x, D ′[{x, x ′}] is a digon and, hence, D ′[T ] also contains a directed cycle, contradicting
the choice of T . This completes the proof. ■

What makes the dichromatic number especially reasonable is that the dichromatic number
of a bidirected graph coincides with the chromatic number of its underlying graph. Theorem
7.1 implies that this also holds true for DP-colorings:

Corollary 7.2. The DP-dichromatic number of a bidirected graph is equal to the DP-
chromatic number of its underlying graph. ⋄

As we have already examined for hypergraphs, DP-colorings are of special interest because
they constitute a generalization of list-colorings: Let D be a digraph, Γ be a color set, and
let L : V(D) → 2Γ be a list-assignment. We define a cover (X,D) of D as follows: let
Xv = {v} × L(v) for all v ∈ V(D), V(D) =

∪
v∈V(D) Xv, and A(D) = {(v, α)(v ′, α ′) | vv ′ ∈

A(D) and α = α ′}. It is obvious that (X,D) indeed is a cover of D. Moreover, if φ is an
L-coloring of D, then T = {(v,φ(v)) | v ∈ V(D)} is an acyclic transversal of (X,D). On
the other hand, given an acyclic transversal T = {(v1, α1), . . . , (vn, αn)} of D, we obtain an
L-coloring of D by coloring the vertex vi with αi for i ∈ [1, n]. Thus, finding an L-coloring
of D is equivalent to finding an acyclic transversal of (X,D). Hence, the list-dichromatic
number →→→χℓ(D) of D, which is the smallest integer k such that D admits an L-coloring for
every list-assignment L satisfying |L(v)| ≥ k for all v ∈ V(D), is always at most the DP-
dichromatic number →→→χDP(D). Moreover, by using a sequential coloring algorithm similar to
Algorithm 1, it is easy to verify that →→→χDP(D) ≤ min{∆+(D), ∆−(D)} + 1. Hence, we obtain
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the following sequence of inequalities:

→→→
χ(D) ≤ →→→

χℓ(D) ≤ →→→
χDP(D) ≤ min{∆+(D), ∆−(D)}+ 1. (7.1)

7.2. DP-degree Colorable Digraphs

In Chapter 4, we have characterized DP-degree colorable hypergraphs (Theorem 4.2) and
thereby obtained a generalization of KiM and OZEKi’s Theorem [66] regarding DP-degree
colorable graphs. In the following, we will similarly examine DP-degree colorable digraphs.

We say that a digraphD is DP-degree colorable ifD is (X,D)-colorable whenever (X,D)

is a cover of D such that |Xv| ≥ max{d+
D(v), d

−
D(v)} for all v ∈ V(D). In the following, we will

give a characterization of the non-DP-degree-colorable digraphs as well as a characterization
of the edge-minimal corresponding “bad” covers (see Theorem 7.5). Clearly, it suffices to do
this only for connected digraphs.

A feasible configuration is a triple (D,X,D) consisting of a connected digraph D and
a cover (X,D) of D. A feasible configuration (D,X,D) is said to be degree-feasible if
|Xv| ≥ max{d+

D(v), d
−
D(v)} for each vertex v ∈ V(D). Furthermore, (D,X,D) is colorable if

D is (X,D)-colorable, otherwise it is called uncolorable. The next proposition lists some
basic properties of feasible configurations; the proofs are straightforward and left to the
reader.

Proposition 7.3. Let (D,X,D) be a feasible configuration. Then, the following statements
hold:

(a) For every vertex v ∈ V(D) and every vertex x ∈ Xv, we have d+
D(x) ≤ d+

D(v) and
d−
D(x) ≤ d−

D(v).

(b) Let D ′ be a spanning subdigraph of D. Then, (D,X,D ′) is a feasible configuration.
If (D,X,D) is colorable, then (D,X,D ′) is colorable, too. Furthermore, (D,X,D) is
degree-feasible if and only if (D,X,D ′) is degree-feasible. ⋄

The above proposition leads to the following concept. We say that a feasible configuration
(D,X,D) isminimal uncolorable if (D,X,D) is uncolorable, but (D,X,D−a) is colorable
for each arc a ∈ A(D). As usual, D − a denotes the digraph obtained from D by deleting
the arc a. Clearly, it follows from the above Proposition that if (D,X,D) is an uncolorable
feasible configuration, then there is a spanning subdigraph D ′ of D such that (D,X,D ′) is
a minimal uncolorable feasible configuration.
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In order to characterize the class of minimal uncolorable degree-feasible configurations,
we first need to introduce three basic types of degree-feasible configurations.

We say that (D,X,D) is a K-configuration if D is a complete digraph of order n for
some n ≥ 1, and (X,D) is a cover of D such that the following conditions hold:

• |Xv| = n− 1 for all v ∈ V(D),

• for each v ∈ V(D) there is a labeling x1v, x
2
v, . . . , x

n−1
v of the vertices of Xv such that

Di = D[{xiv | v ∈ V(D)}] is a complete digraph for i ∈ [1, n− 1], and

• D = D1 ∪ D2 ∪ . . . ∪ Dn−1.

An example of a K-configuration with n = 4 is given in Figure 7.1. It is an easy exercise
to check that each K-configuration is a minimal uncolorable degree-feasible configuration.
Note that for |D| = 1, we have Xv = ∅ for the only vertex v ∈ V(D) and D = ∅ (and so
there is no transversal of (X,D)).

We say that (D,X,D) is a DC-configuration if D is a directed cycle of length n ≥ 2 and
(X,D) is a cover such that Xv = {xv} for all v ∈ V(D) and A(D) = {xvxu | vu ∈ A(D)}. Note
that in this case, D is a copy of D. Clearly, each DC-configuration is a minimal uncolorable
degree-feasible configuration.

We say that (D,X,D) is an odd C-configuration if D is a bidirected cycle of odd length
≥ 5 and (X,D) is a cover of D such that the following conditions are fulfilled:

• |Xv| = 2 for all v ∈ V(D),

• for each v ∈ V(D) there is a labeling x1v, x
2
v of the vertices of Xv such that A(D) =

{xivx
i
w | vw ∈ A(D) and i ∈ {1, 2}}.

Note that Di = D[{xiv | v ∈ V(D)}] is a bidirected cycle in D and D = D1 ∪D2. It is easy to
verify that every odd C-configuration is a minimal uncolorable degree-feasible configuration.

We call (D,X,D) an even C-configuration if D is a bidirected cycle of even length ≥ 4,
(X,D) is a cover of D, and there is an arc uu ′ ∈ A(D) such that:

• |Xv| = 2 for all v ∈ V(D),

• for each v ∈ V(D) there is a labeling x1v, x
2
v of the vertices of Xv such that A(D) =

{xivx
i
w | {v,w} 6= {u, u ′}, vw ∈ A(D), and i ∈ {1, 2}} ∪ {x1ux

2
u ′ , x

2
ux

1
u ′ , x

2
u ′x

1
u, x

1
u ′x

2
u}
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X1 X2 X3 X4

X1 X2 X3 X4

1 2 3 4 1 2 3 4

FiG. 7.1. A K-configuration and an even C-configuration for digraphs.

Again, it is easy to check that every even C-configuration is a minimal uncolorable degree-
feasible configuration. By a C-configuration we either mean an even or an odd C-
configuration.

Our aim is to show that we can construct every minimal uncolorable degree-feasible
configuration from the three basic configurations by using the following operation. Let
(D1, X1,D1) and (D2, X2,D2) be two feasible configurations, which are disjoint, that is,
V(D1) ∩ V(D2) = ∅ and V(D1) ∩ V(D2) = ∅. Furthermore, let D be the digraph obtained
from D1 and D2 by identifying two vertices v1 ∈ V(D1) and v2 ∈ V(D2) to a new vertex v∗.
Finally, let D = D1 ∪ D2 and let X : V(D) → 2V(D) be the mapping such that

Xv =

X1
v1

∪ X2
v2

if v = v∗,

Xi
v if v ∈ V(Di) \ {vi} and i ∈ {1, 2}

for v ∈ V(D). Then, (D,X,D) is a feasible configuration and we say that (D,X,D) is
obtained from (D1, X1,D1) and (D2, X2,D2) by merging v1 and v2 to v∗.

Now we define the class of constructible configurations as the smallest class of fea-
sible configurations that contains each K-configuration, each DC-configuration and each
C-configuration and that is closed under the merging operation. We say that a digraph is
a DP-brick if it is either a complete digraph, a directed cycle, or a bidirected cycle. Thus,
if (D,X,D) is a constructible configuration, then each block of D is a DP-brick. The next
proposition is straightforward and left to the reader.
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Proposition 7.4. Let (D,X,D) be a constructible configuration. Then, for each block
B ∈ B(D) there is a uniquely determined cover (XB,DB) of B such that the following
statements hold:

(a) For each block B ∈ B(D), the triple (B,XB,DB) is a K-configuration, a DC-configuration,
or a C-configuration.

(b) The digraphs DB with B ∈ B(D) are pairwise disjoint and D =
∪

B∈B(D)DB.

(c) For every vertex v from V(D) we have Xv =
∪

B∈Bv(D)

XB
v . ⋄

Our aim is to prove that the class of constructible configurations and the class of minimal
uncolorable degree-feasible configurations coincide. This leads to the following theorem.

Theorem 7.5. Suppose that (D,X,D) is a degree-feasible configuration. Then, (D,X,D)

is minimal uncolorable if and only if (D,X,D) is constructible. ⋄

When we take another look at the definitions of K-configuration and C-configuration in
Section 4.2 of Chapter 4, it is not difficult to see a connection to the current definitions. In
fact, we obtain the definition of K-configuration and C-configuration in the simple undirected
case (i.e. for t = 1) by taking a (directed) K-, respectively C-configuration (D,X,D) and
regarding the underlying graphs, i.e. (G(D), X,G(D)), instead (see also Figure 7.2 as a quick
reminder). On this basis, we will use Theorem 4.2 as a tool in order to prove Theorem 7.5.

X1 X2 X3 X4

X1 X2 X3 X4 X5

1 2 3 4 1 2 3 4 5

FiG. 7.2. A K-configuration and a C-configuration for simple graphs.

In the following, given a feasible configuration (D,X,D), we will often fix a vertex
v ∈ V(D) and regard the feasible configuration (D ′, X ′,D ′), where D ′ = D − v, X ′ is
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the restriction of X to V(D) \ {v} and D ′ = D−Xv. For the sake of readability, we will write
(X ′,D ′) = (X,D)/v.

First we state some important facts about minimal uncolorable degree-feasible configu-
rations. Recall that the digraph D of a degree-feasible configuration (D,X,D) is connected
by definition.

Proposition 7.6. Let (D,X,D) be a degree-feasible configuration. If (D,X,D) is uncol-
orable, then the following statements hold:

(a) |Xv| = d+
D(v) = d−

D(v) for all v ∈ V(D). As a consequence, D is EULERian.

(b) Let v ∈ V(D) and let (X ′,D ′) = (X,D)/v. Then, there is an acyclic transversal of
(X ′,D ′).

(c) Let v ∈ V(D) and let T be an acyclic transversal of (X ′,D ′) = (X,D)/v. Moreover,
let T+ =

∪
u∈N+

D
(v)(Xu ∩ T) and let T− =

∪
u∈N−

D
(v)(Xu ∩ T). Then, the arcs from

ED(Xv, T
+) form a perfect matching in D[Xv ∪ T+] and the arcs from ED(T

−, Xv) form
a perfect matching in D[Xv ∪ T−]. ⋄

Proof. (a) The proof is by induction on the order of D. The statement is clear if |D| =

1 as in this case Xv = ∅ for the only vertex v of D. Now assume that |D| ≥ 2. By
assumption, |Xv| ≥ max{d+

D(v), d
−
D(v)} for all v ∈ V(D). Hence, it suffices to show |Xv| ≤

min{d+
D(v), d

−
D(v)} for all v ∈ V(D). Suppose, to the contrary, that there is a vertex v ∈ V(D)

with |Xv| > min{d+
D(v), d

−
D(v)}, say |Xv| > d−

D(v) (by symmetry). Let D ′ = D − v and let
(X ′,D ′) = (X,D)/v. We claim that D ′ is not (X ′,D ′)-colorable. Otherwise, there would be
an acyclic transversal T of (X ′,D ′). As |Xv| > d−

D(v) it follows from (C2) that there is a vertex
x ∈ Xv such that x ′x 6∈ A(D) for all x ′ ∈ T . Consequently, T ∪ {x} is an acyclic transversal of
(X,D) as x has no in-neighbor in D[T ∪ {x}], that is, (D,X,D) is colorable, a contradiction.
Thus, D ′ is not (X ′,D ′)-colorable, as claimed. Hence, D ′ contains a connected component
D ′′ such that (D ′′, X ′′,D ′′) is uncolorable, where X ′′ is the restriction of X ′ to V(D ′′) and
D ′′ = D ′[

∪
v∈V(D ′′) Xv]. By applying the induction hypothesis to (D ′′, X ′′,D ′′) we conclude

that |Xw| = d+
D ′′(w) = d−

D ′′(w) for all w ∈ D ′′. As D is connected, there is a vertex w ∈ D ′′

that is adjacent to v in D. By symmetry, we may assume wv ∈ A(D). But then,

d+
D ′′(w) = |Xw| ≥ max{d+

D(w), d−
D(w)} ≥ d+

D ′′(w) + 1,

which is impossible. This proves (a).
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(b) For this proof, let D ′ = D − v and let (X ′,D ′) = (X,D)/v. Let D ′′ be an arbitrary
component of D ′, let X ′′ be the restriction of X ′ to V(D ′′), and let D ′′ = D[

∪
u∈V(D ′′) Xu].

Then, (D ′′, X ′′,D ′′) is a degree-feasible configuration. As D is connected, there is at least
one vertex u ∈ V(D ′′) that is in D adjacent to v, say uv ∈ A(D). By (a), this implies
|Xu| = d+

D(u) > d+
D ′′(u). Again by (a), we conclude that (D ′′, X ′′,D ′′) is colorable, i.e.,

(X ′′,D ′′) admits an acyclic transversal TD ′′ . Let T be the union of the sets TD ′′ over all
components D ′′ of D− v. Then, T is an acyclic transversal of (X ′,D ′).

(c) For the proof, we first assume that there is a vertex x ∈ Xv such that no vertex of T is
an out-neighbor of x in D. Then, similarly to the proof of (a), we conclude that T ∪ {x} is an
acyclic transversal of (X,D), a contradiction. Hence, each vertex x ∈ Xv has in D at least
one out-neighbor belonging to T . Moreover, for each vertex u ∈ N+

D(v) and for the unique
vertex x ′ ∈ T ∩ Xu there may be at most one vertex x ∈ Xv with xx ′ ∈ A(D) (by (C2)). As
|Xv| = d+

D(v) = |N+
D(v)|, this implies that for each vertex x ∈ Xv there is exactly one vertex

x ′ ∈ T with xx ′ ∈ A(D). Thus, the arcs from Xv to T+ =
∪

u∈N+
D
(v)(Xu ∩ T) are a perfect

matching in D[Xv ∪ T+] as claimed. Using a similar argument, it follows that ED(T
−, Xv) is

a perfect matching in D[Xv ∪ T−]. ■

The next proposition shows the usefulness of the merging operation.

Proposition 7.7. Let (D1, X1,D1) and (D2, X2,D2) be two disjoint feasible configurations,
and let (D,X,D) be the configuration that is obtained from (D1, X1,D1) and (D2, X2,D2) by
merging two vertices v1 ∈ V(D1) and v2 ∈ V(D2) to a new vertex v∗. Then, (D,X,D) is a
feasible configuration and the following statements are equivalent:

(a) Both (D1, X1,D1) and (D2, X2,D2) are minimal uncolorable degree-feasible configura-
tions.

(b) (D,X,D) is a minimal uncolorable degree-feasible configuration. ⋄

Proof. First we show that (a) implies (b). Clearly, (D,X,D) is degree-feasible. Assume that
(D,X,D) is colorable. Then, there is an acyclic transversal T of (X,D). As Xv∗ = Xv1 ∪Xv2 ,
this implies that at least one of v1 and v2 (by symmetry, we can assume it is v1) satisfies
|T ∩Xv1 | = 1. Thus, T 1 = T ∩V(D1) is an acyclic transversal of (X1,D1) and so (D1, X1,D1)

is colorable, a contradiction to (a). This proves that (D,X,D) is uncolorable. Now let
a ∈ A(D) be an arbitrary arc. By symmetry, we may assume a ∈ A(D1). Since (D1, X1,D1)

is minimal uncolorable, there is an acyclic transversal T 1 of (X1,D1−a). Since (D2, X2,D2)

is also uncolorable and degree-feasible, there is an acyclic transversal T 2 of (X2,D2)/v2 (by
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Proposition 7.6(b)). However, as D = D1 ∪ D2 and D1 ∩ D2 = ∅, the set T = T 1 ∪ T 2 is an
acyclic transversal of (X,D − a) and so (D,X,D − a) is colorable. Thus, (b) holds.

To prove that (b) implies (a), we first show that (D1, X1,D1) is minimal uncolorable.
Assume that (D1, X1,D1) is colorable, that is, (X1,D1) has an acyclic transversal T 1. Since
(D,X,D) is a minimal uncolorable degree-feasible configuration and as D2−Xv2 is a proper
subdigraph ofD−Xv∗ , there is an acyclic transversal T 2 of (X2,D2)/v2 (by Proposition 7.6(b)).
Then again, T = T 1 ∪ T 2 is an acyclic transversal of (X,D), contradicting (b). Thus,
(D1, X1,D1) is uncolorable. Now let a ∈ A(D1) be an arbitrary arc. Then, as (D,X,D)

is minimal uncolorable and a ∈ A(D), there is an acyclic transversal T of (X,D − a) and
T 1 = T∩V(D1) clearly is an acyclic transversal of (X1,D1−a). Consequently, (D1, X1,D1−a)

is colorable. This shows that (D1, X1,D1) is minimal uncolorable. By symmetry (D2, X2,D2)

is minimal uncolorable, too.
It remains to show that (Dj, Xj,Dj) is degree-feasible for j ∈ {1, 2}. As (D,X,D) is an

uncolorable degree-feasible configuration, Proposition 7.6(a) implies that

|Xv| = d+
D(v) = d−

D(v) for all v ∈ V(D). (7.2)

Consequently, each vertex from Dj − vj is EULERian in Dj. Since∑
u∈V(Dj)

d+
Dj(u) =

∑
u∈V(Dj)

d−
Dj(u) = |A(Dj)|

is the number of arcs of Dj, it follows that d+
Dj(v

j) = d−
Dj(v

j), and so Dj is EULERian for
j ∈ {1, 2}. Moreover, it follows from (7.2) that |Xv| = d+

D(v) = d+
Dj(v) = d−

Dj(v) for all
v ∈ V(Dj) \ {vj} and j ∈ {1, 2}. If |Xvj | < d+

D(v
j) for some j ∈ {1, 2}, then |Xv3−j | > d+

D(v
3−j)

and so (D3−j, X3−j,D3−j) would be colorable by Proposition 7.6(a), a contradiction. Hence,
(Dj, Xj,Dj) is degree-feasible for j ∈ {1, 2}. ■

In order to prove Theorem 7.5, we need some more tools. The first one, which will be
frequently used in the following, is the so-called shifting operation. Let (D,X,D) be a
minimal uncolorable degree-feasible configuration, let D ′ = D − v for some v ∈ V(D), and
let T be an acyclic transversal of (X ′,D ′) = (X,D)/v (which exists by Proposition 7.6(b)).
Then it follows from Proposition 7.6(c) that for each vertex x ∈ Xv there is exactly one
vertex x ′ ∈ T with xx ′ ∈ A(D) and exactly one vertex x ′′ ∈ T with x ′′x ∈ A(D). Let v ′ and
v ′′ be the vertices from V(D) such that x ′ ∈ Xv ′ and x ′′ ∈ Xv ′′ . Then, T ′ = T \ {x ′}∪ {x} and
T ′′ = T \ {x ′′}∪ {x} are acyclic transversals of (X,D)/v ′ and (X,D)/v ′′, respectively, since in
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D[T ′] (respectively D[T ′′]) the vertex x has no out-neighbor (respectively no in-neighbor)
and, hence, x cannot be contained in a directed cycle. We say that T ′ (respectively T ′′)
evolves from T by shifting the color x ′ (respectively x ′′) to x. Of course, the shifting
operation may be applied repeatedly. The next proposition can be easily deduced from
Proposition 7.6 by applying the shifting operation. The statements of the proposition are
illustrated in Figure 7.3.

Proposition 7.8. Let (D,X,D) be a minimal uncolorable degree-feasible configuration, let
v ∈ V(D), and let T be an acyclic transversal of (X ′,D ′) = (X,D)/v. Then, the following
statements hold:

(a) For every vertex x ∈ Xv we have |N+
D(x) ∩ T | = 1 and |N−

D(x) ∩ T | = 1.

(b) Let u ∈ N+
D(v) and let Xu ∩ T = {xu}. Then, there is a vertex x ∈ Xv such that

xxu ∈ A(D) and N−
D(xu) ∩ T = ∅.

(c) Let w ∈ N−
D(v) and let Xw ∩ T = {xw}. Then, there is a vertex x ∈ Xv such that

xwx ∈ A(D) and N+
D(xw) ∩ T = ∅. ⋄

v

x

··
·

··
·

··
·

v u

x

··
·

xu

··
·

··
·

– vertices of T

v w

x

··
·

xw

··
·

··
·

FiG. 7.3. Forbidden configurations for (D,X,D).

Proof. Statement (a) is a direct consequence of Proposition 7.6(c). In order to prove (b) let
u ∈ N+

D(v) and let Xu ∩ T = {xu}. Again from Proposition 7.6(c) it follows that there is a
vertex x ∈ Xv with xxu ∈ A(D). Now assume that there is a vertex x ′ ∈ N−

D(xu)∩ T . Let T ′

be the transversal of (X,D)/u that evolves from T by shifting xu to x. Then, both x ′ and
x are in-neighbors of xu in D and so |N−

D(xu) ∩ T ′| ≥ 2, a contradiction to (a). This proves
(b). By symmetry, (c) follows. ■
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Proposition 7.9. Let (D,X,D) be a minimal uncolorable degree-feasible configuration and
let u, v ∈ V(D) such that there are opposite arcs between u and v. Then, D[Xu ∪ Xv] is a
bidirected graph. ⋄

Proof. Suppose the statement is false. Then there are vertices xu ∈ Xu and xv ∈ Xv with
xuxv ∈ A(D) and xvxu 6∈ A(D). Since (D,X,D) is minimal uncolorable, there is an acyclic
transversal T of (X,D− xuxv). Furthermore, T must contain both xu and xv as otherwise T

would be an acyclic transversal of (X,D), a contradiction. Then, T ′ = T \ {xv} is an acyclic
transversal of (X ′,D ′) = (X,D)/v. As u ∈ N+

D(v), it follows from Proposition 7.8(b) that
there is a vertex x ∈ Xv with xxu ∈ A(D). Since xvxu 6∈ A(D), x 6= xv. Let T∗ be the
transversal that evolves from T ′ by shifting xu to xv. Then, xu has an in-neighbor x∗ from
T∗ in D (by Proposition 7.8(a)) and x∗ 6∈ Xv (since xvxu 6∈ A(D)). Moreover, x∗ is contained
in the transversal T̃ that evolves from T ′ by shifting xu to x and so {x, x∗} ⊆ N−

D(xu) ∩ T̃ .
Consequently, |N−

D(xu) ∩ T̃ | > 1, which contradicts Proposition 7.8(a). Hence x = xv, and
so xvxu ∈ A(D), a contradiction. ■

In particular, the above proposition implies the following, concerning the shifting opera-
tion. Let (D,X,D) be a minimal uncolorable degree-feasible configuration, let v ∈ V(D) and
let T be an acyclic transversal of (X ′,D ′) = (X,D)/v (which exists by Proposition 7.6(b)).
Then the above proposition together with Proposition 7.8(b)(c) implies that for each vertex
u that is in D adjacent to v and for the unique vertex xu ∈ Xu ∩ T there is exactly one
vertex xv ∈ Xv that is in D adjacent to xu. Hence, xv is the unique vertex from Xv to which
we can shift the color xu. Thus, in the following we may regard the shifting operation as an
operation in the digraph D rather than in D and write u→ v in order to express that we
shift the color from the corresponding vertex xu to xv.

As another consequence of Proposition 7.9 we easily obtain the following corollary.

Corollary 7.10. Let (D,X,D) be a degree-feasible minimal uncolorable configuration such
that D is a bidirected graph. Then D is a bidirected graph, too. ⋄

Having all those tools available, we are finally ready to prove our main theorem.

7.3. Proof of Theorem 7.5

This subsection is devoted to the proof of Theorem 7.5, which we recall for convenience.

Theorem 7.5. Suppose that (D,X,D) is a degree-feasible configuration. Then, (D,X,D)

is minimal uncolorable if and only if (D,X,D) is constructible. ⋄
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Proof. If (D,X,D) is constructible, then (D,X,D) is minimal uncolorable (by Proposition 7.7
and as each K-, DC-, and C-configuration is a minimal uncolorable degree-feasible configu-
ration).

Now let (D,X,D) be a minimal uncolorable degree-feasible configuration. We prove that
(D,X,D) is constructible by induction on the order of D. If |D| = 1, then V(D) = {v},
Xv = ∅ and D = ∅ and so (D,X,D) is a K-configuration. If |D| = 2, then |D| = 2 and
(D,X,D) is uncolorable if and only if both D and D are copies of D(K2). Thus, we may
assume that |D| ≥ 3. By Proposition 7.6(a),

|Xv| = d+
D(v) = d−

D(v) for all v ∈ V(D). (7.3)

We distinguish between two cases.
Case 1: D contains a separating vertex v∗. Then, D is the union of two connected

induced subdigraphs D1 and D2 with V(D1) ∩ V(D2) = {v∗} and |Dj| < |D| for j ∈ {1, 2}.
By equation (7.3), all vertices from Dj except from v∗ are EULERian in Dj (for j ∈ {1, 2}).
However, since ∑

u∈V(Dj)

d+
Dj(u) =

∑
u∈V(Dj)

d−
Dj(u) = |A(Dj)|

is the number of arcs of Dj, it follows that d+
Dj(v

∗) = d−
Dj(v

∗) and so Dj is EULERian for
j ∈ {1, 2}. For j ∈ {1, 2}, by T j we denote the set of all subsets T of D with |T ∩Xv| = 1 for all
v ∈ V(Dj) and |T ∩Xu| = 0 for all u ∈ V(D3−j) \ {v∗} such that D[T ] is acyclic. As (D,X,D)

is uncolorable and degree-feasible, both T 1 and T 2 are non-empty (by Proposition 7.6(b)).
Moreover, for j ∈ {1, 2}, let Xj be the set of all vertices of Xv∗ that do not occur in any set from
T j. We claim that Xv∗ = X1∪X2. For otherwise, there is a vertex x ∈ Xv∗ \ (X1∪X2). Then,
x is contained in two sets T 1 ∈ T 1 and T 2 ∈ T 2, and so T = T 1 ∪ T 2 is an acyclic transversal
of (X,D). Thus, (D,X,D) is colorable, a contradiction. Consequently, Xv∗ = X1 ∪ X2. For
j ∈ {1, 2}, we define a cover (Xj,Dj) of Dj as follows. For v ∈ V(Dj), let

Xj
v =

Xv if v 6= v∗

Xj if v = v∗,

and let Dj = D[
∪

v∈V(Dj) X
j
v]. Then, (Dj, Xj,Dj) is an uncolorable feasible configuration for

j ∈ {1, 2}: Suppose w.l.o.g. that (D1, X1,D1) has an acyclic transversal T . Then T is in
T 1, but T contains a vertex x ∈ X1

v∗ = X1, which is impossible. Furthermore, for each
vertex v ∈ V(Dj) \ {v∗}, equation (7.3) implies that |Xv| = d+

D(v) = d+
Dj(v). As (Dj, Xj,Dj) is
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uncolorable and Dj is connected, it follows from Proposition 7.6(a) that |Xj
v∗ | ≤ d+

Dj(v
∗) for

j ∈ {1, 2}. Since Xv∗ = X1 ∪ X2 = X1
v∗ ∪ X2

v∗ , we conclude from (7.3) that

|X1
v∗ |+ |X2

v∗ | ≥ |X1
v∗ ∪ X2

v∗ | = |Xv∗ | = d+
D(v

∗) = d+
D1(v

∗) + d+
D2(v

∗),

and, thus, |Xj
v∗ | = d+

Dj(v
∗)(= d−

Dj(v
∗)) and X1

v∗ ∩ X2
v∗ = ∅. Consequently, (Dj, Xj,Dj) is a

degree-feasible configuration. Moreover, D ′ = D1 ∪ D2 is a spanning subdigraph of D and
V(D1) ∩ V(D2) = ∅. So, (D,X,D ′) is a degree-feasible configuration that is obtained from
two isomorphic copies of (D1, X1,D1) and (D2, X2,D2) by the merging operation. Clearly,
(D,X,D ′) is uncolorable. Otherwise, there would exist an acyclic transversal T of (X,D ′)

and by symmetry we may assume that T would contain a vertex of X1
v∗ . But then, T 1 =

T ∩ V(D1) would be an acyclic transversal of (X1,D1), contradicting that (D1, X1,D1) is
uncolorable. As (D,X,D) is minimal uncolorable and as D ′ is a spanning subhypergraph
of D, this implies that D = D ′ and (D,X,D) is obtained from two isomorphic copies of
(D1, X1,D1) and (D2, X2,D2) by the merging operation. Then, by Proposition 7.7, both
(D1, X1,D1) and (D2, X2,D2) are minimal uncolorable. Applying the induction hypothesis
leads to (Dj, Xj,Dj) being constructible for j ∈ {1, 2}, and so (D,X,D) is constructible. Thus,
the proof of the first case is complete.

Case 2: D is a block. Then, since |D| ≥ 3, each vertex of D is contained in a cycle
of the underlying graph G(D). We prove that (D,X,D) is a K-, DC- or C-configuration
by examining the cycles that may occur in G(D) and showing that those always force the
structure of (D,X,D) to be as claimed. This is done via a sequence of claims. In the first
three claims we analyze the case where D contains a digon and show that in this case, both
D and D are bidirected. Then, we can apply Theorem 4.2 to the undirected configuration
(G(D), X,G(D)) in order to deduce that (D,X,D) is a K- or C-configuration. Afterwards,
we analyze the case that D does not contain any digons and prove that this implies that
(D,X,D) is a DC-configuration. Recall that if C is a cycle in the underlying graph G(D),
then DC is the maximal subdigraph of D such that G(DC) = C.

Claim 7.5.1. Let C be a cycle of length 3 in the underlying graph G(D). If DC is not a
directed cycle, then V(C) induces a complete digraph in D. ⋄

Proof. Let v1, v2, v3 be the vertices of C. By symmetry, assume that {v3v1, v1v2, v3v2} ⊆
A(D). We prove that v1v3 ∈ A(D). Let T be an acyclic transversal of (X ′,D ′) = (X,D)/v1,
let xj be the unique vertex from Xvj∩T (for j ∈ {2, 3}) and let x1 ∈ Xv1 such that x3x1 ∈ A(D)

(such a vertex exists by Proposition 7.8(c)). Then, by Proposition 7.8(c), x3x2 6∈ A(D).
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Furthermore, by Proposition 7.8(a), x1 must have an out-neighbor x in T . Assume that
x ∈ T \ {x2, x3}. Then we can shift v3 → v1, v2 → v3 and v1 → v2 and get a new acyclic
transversal T ′ of (X ′,D ′). Moreover, if x ′

2 is the vertex from Xv2 ∩ T ′, due to the shifting we
have x1x ′

2 ∈ A(D). Since T\(Xv2∪Xv3) = T ′\(Xv2∪Xv3) we concludeN+
D(x1)∩T ′ ⊇ {x ′

2, x} and
so |N+

D(x1) ∩ T ′| ≥ 2, contradicting Proposition 7.8(a) (see Figure 7.4). Hence, x ∈ {x2, x3}.
If x = x2 (and so x ′

2 = x2), then starting from T and then shifting v3 → v1 and v2 → v3

leads to an acyclic transversal T∗ of (X,D)/v2 such that |N−
D(x2)∩ T∗| ≥ 2, in contradiction

to Proposition 7.8(a). Thus, x = x3 and so x1x3 ∈ A(D). However, this implies v1v3 ∈ A(D)

(by (C2)), as claimed. By symmetry we conclude that D[V(C)] is a complete digraph and
the proof is complete. □

v1 v2 v3
· · ·
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·
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·
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··
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x

··
·

··
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·
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x
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··
·

v1 → v2

FiG. 7.4. (D,X,D) before and after shifting v3 → v1, v2 → v3 and v1 → v2.

Claim 7.5.2. Let C be an induced cycle in the underlying graph G(D). If DC contains a
digon, then DC is a bidirected cycle. ⋄

Proof. Assume, to the contrary, that DC is not bidirected. Then (by symmetry) we can
choose a cyclic ordering v1, v2, . . . , vp of the vertices of C such that v1v2, v2v1 and v1vp are
arcs of D and that vpv1 6∈ A(D). Let T be an acyclic transversal of (X ′,D ′) = (X,D)/v1. For
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i ∈ [2, p] let xi be the vertex from Xvi∩T . By Proposition 7.8(b) and Proposition 7.9, there is
a vertex x ∈ Xv1 that is joined to x2 by opposite arcs and a vertex x ′ ∈ Xv1 with x ′xp ∈ A(D).
Moreover, by Proposition 7.8(a), x 6= x ′. By shifting the vertices v2 → v1, v3 → v2, . . . , vp →
vp−1 counterclockwise on the cycle C we obtain from Proposition 7.8(c) that x has an out-
neighbor x ′

p in Xp. If we further shift v1 → vp, we get a new acyclic transversal T ′ of (X ′,D ′)

such that x ′
p ∈ T ′. By Proposition 7.8(a), there must exist a vertex y ∈ T ′ with yx ∈ A(D).

As x2 is the unique in-neighbor of x from T , since v1 has no neighbors besides v2 and vp

from V(C), and as the shifting only affected vertices from C, we conclude that y ∈ Xv2∪Xvp .
However, since xx ′

p ∈ A(D), it follows from Proposition 7.8(a) that x2 6∈ T ′. Hence, y ∈ Xvp

and so vpv1 ∈ A(D), a contradiction. □

Claim 7.5.3. Suppose that D contains a digon. Then, D is bidirected. ⋄

Proof. Assume, to the contrary, that D is not bidirected. As D is a block this implies that
in the underlying graph G(D) there is a cycle C of minimum length such that DC contains a
digon but is not bidirected. Since C has minimum length, we conclude that C is an induced
cycle of G(D), but then it follows from Claim 7.5.2 that DC is bidirected, a contradiction.
This proves the claim. □

Suppose that D contains at least one digon. Then, D is bidirected (by Claim 7.5.3) and
it follows from Corollary 7.10 that D is bidirected, too. Consequently, (G(D), X,G(D)) is a
degree-feasible configuration. Furthermore, an acyclic transversal of (X,D) is an indepen-
dent transversal of (X,G(D)) and vice versa, and it easy to check that (G(D), X,G(D)) is
minimal uncolorable (as (D,X,D) is minimal uncolorable). Then, as G(D) is a block, it
follows from Theorem 4.2 that (G(D), X,G(D)) is a K- or a C-configuration. As a conse-
quence, (D,X,D) is a K- or a C-configuration and there is nothing left to show. Hence,
from now on we may assume the following:

D does not contain a digon. (7.4)

In the remaining part of the proof we will show that under the assumption (7.4), the
configuration (D,X,D) is a DC-configuration.

Claim 7.5.4. The underlying graph G(D) does not contain K4. ⋄

Proof. Otherwise, G(D) contains a cycle C such that DC is not a directed cycle. Hence,
by Claim 7.5.1, D would contain a complete digraph on three vertices, which contradicts
(7.4). □
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Recall that K−
4 denotes the (undirected) graph that results from K4 by deleting any edge.

Claim 7.5.5. The underlying graph G(D) does not contain any induced K−
4 . ⋄

Proof. Assume that G(D) contains an induced K−
4 , say G̃ = G(D̃). Then, by (7.4) and

Claim 7.5.1, V(D̃) = {v1, v2, v3, v4} and A(D̃) = {v1v2, v1v3, v2v4, v3v4, v4v1}. Let T be an
acyclic transversal of (X ′,D ′) = (X,D)/v1, and for i ∈ [2, 4] let xi ∈ Xvi ∩ T . Then it
follows from Proposition 7.8(b),(c) that there are vertices x, x ′ ∈ Xv1 with x ′x2 ∈ A(D)

and xx3 ∈ A(D). By Proposition 7.8(a), x 6= x ′. By shifting v3 → v1, we obtain that x4

has an in-neighbor x ′
3 ∈ Xv3 (by Proposition 7.8(c)). We claim that x ′x ′

3 ∈ A(D). To see
this, starting from T , we can shift v3 → v1, v4 → v3, v2 → v4 and then v1 → v2 and obtain
another acyclic transversal T ′ of (X ′,D ′) with x ′

3 ∈ T ′. Then, x ′ must have an out-neighbor
y in T ′ (by Proposition 7.8(a)). However, as x 6= x ′, we deduce that y 6∈ Xv2 . As we
only shifted along vertices of D̃, we conclude that y 6∈ T ′ \ (X2 ∪ X3 ∪ X4) (since otherwise
{y, x2} ⊆ |N+

D(x
′) ∩ T |, which leads to a contradiction to Proposition 7.8(a)). Moreover, as

v1v4 6∈ A(D), this implies that y ∈ Xv3 and so y = x ′
3. Hence, x ′x ′

3 ∈ A(D), as claimed.
But now, starting from T we can shift v3 → v1, v4 → v3 and v1 → v4 and obtain an acyclic
transversal T∗ of (X ′,D ′) that contains both x2 and x ′

3. As a consequence, |N+
D(x

′)∩T∗| ≥ 2,
which contradicts Proposition 7.8(a). This proves the claim. □

Claim 7.5.6. Let C be an induced cycle of the underlying graph G(D). Then, DC is a
directed cycle. ⋄

Proof. The proof is by reductio ad absurdum. Then, we can choose a cyclic ordering of
the vertices of C, say v1, v2, . . . , vp, such that {v1v2, v1vp} ⊆ A(D). Furthermore, let T be
an acyclic transversal of (X ′,D ′) = (X,D)/v1 and, for i ∈ [2, p] let xi ∈ Xvi ∩ T . Then, by
Proposition 7.8(a),(b), there are vertices x 6= x ′ from Xv1 with xx2 ∈ A(D) and x ′xp ∈ A(D).
Moreover, by shifting vp → v1, vp−1 → vp, . . . , v2 → v3 clockwise around C, we obtain that
x ′ has an out-neighbor x ′

2 ∈ Xv2 (by Proposition 7.8(c)). We claim that x3x
′
2 ∈ A(D).

Assume, to the contrary, that x3x
′
2 6∈ A(D) and let T ′ be the transversal that results from

T by shifting v2 → v1. Then, x ′
2 must have an in-neighbor y in T ′ (by Proposition 7.8(a))

and y 6∈ Xvi for i ∈ [1, p] (as x3x
′
2 6∈ A(D), as x ′ 6∈ T ′ and as C is an induced cycle).

If instead, starting from T , we shift the vertices vp → v1, vp−1vp, . . . , v2 → v3, we obtain
an acyclic transversal T∗ of (X,D)/v2 that contains both x ′ as well as y, contradicting
Proposition 7.8(a) (as x ′

2 has the two in-neighbors x ′, y in T∗). Thus, x3x ′
2 ∈ A(D) and

hence v3v2 ∈ A(D). As a consequence, there is also a vertex x ′
3 6= x3 from Xv3 such that

x ′
3x2 ∈ A(D). Now we can shift v2 → v1 and obtain an acyclic transversal of (X,D)/v2. By
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repeating the same argumentation as above we conclude that x ′
3x4 ∈ A(D). Now, we can

iterate this procedure for the remaining vertices of C and obtain the following:

DC is alternating, i.e. the vertices from DC alternatively have two
in-neighbours and two out-neighbours in DC.

(7.5)

Note that this implies, in particular, that C is even. Moreover, we conclude that for i ∈ [2, p]

there are vertices xi 6= x ′
i from Xvi such that the following holds:

• There is an acyclic transversal T of (X ′,D ′) = (X,D)/v1 that contains the vertices
x2, x3, . . . , xp, and

• {xx2, x
′x ′

2, xx
′
p, x

′xp} ⊆ A(D) and for i ∈ [2, p− 2] we have xi+1x
′
i, x

′
i+1xi ∈ A(D).

Note that (beginning from T) by shifting v2 → v1, v3 → v2, . . . vp → vp−1 counterclockwise
around C and then shifting v1 → vp we obtain an acyclic transversal T ′ of (X ′,D ′) that
contains the vertices x ′

2, x
′
3, . . . , x

′
p.

Since (D,X,D) is minimal uncolorable, D[T ∪ {x}] contains a directed cycle that must
contain x, say Cx. Moreover, by Proposition 7.8(a) and since xx2 ∈ A(D), x and x2 are
consecutive on Cx. Let z denote the vertex different from x2 such that x and z are consecutive
on Cx. Then, z 6∈ {x3, x4, . . . , xp}. This is due to the fact that C is an induced cycle in G(D)

(and so v1vi 6∈ A(D) for i ∈ [3, p − 1]) and that xx ′
p ∈ A(D) and, therefore, xxp 6∈ A(D).

Moreover, we obtain the following:

Cx is an induced directed cycle of D[T ∪ {x}] and
no vertex from Cx is adjacent to any vertex from T \ V(Cx).

(7.6)

Otherwise, starting from T we could shift the vertices around Cx and would obtain vertices
v∗ ∈ V(D), x∗ ∈ Xv∗ ∩ V(Cx) and an acyclic transversal T∗ of (X,D)/v∗ such that the
neighbors of x∗ on Cx are in T∗ and such that x∗ has another in- or out-neighbor in T∗,
contradicting Proposition 7.8(a). Finally, we conclude that

no vertex from {x3, x4, . . . , xp} is in V(Cx). (7.7)

Assume, to the contrary, that there is an index i 6= 2 with xi ∈ V(Cx). Then, as C is induced
and since xixi+1 as well as xi−1xi are not arcs of D, both neighbors of xi in Cx must be from
V(D)\{x2, x3, . . . , xp}. But then, starting from T we can shift x2 → x, x3 → x2, . . . , xi → xi−1
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and obtain an acyclic transversal T̃ of (X,D)/vi such that xi either has two in- or out-
neighbors from T̃ , contradicting Proposition 7.8(a).
By analogous arguments we conclude that D[T ′ ∪ {x}] contains a directed cycle C ′

x and x

and x ′
p are consecutive on C ′

x. Furthermore, if z ′ denotes the vertex different from x ′
p such

that x and z ′ are consecutive on C ′
x, we have z 6∈ {x ′

2, x
′
3, . . . , x

′
p−1}. Moreover, the following

holds:

C ′
x is an induced directed cycle of D[T ′ ∪ {x}] and

no vertex from C ′
x is adjacent to any vertex from T ′ \ V(C ′

x)
(7.8)

and

no vertex from {x ′
2, x

′
3, . . . , x

′
p−1} is in V(C ′

x). (7.9)

Since T \ {x2, x3, . . . , xp} = T ′ \ {x ′
2, x

′
3, . . . , x

′
p}, it follows from Proposition 7.8(a) that z = z ′.

Let y denote the vertex from Cx different from x such that x2 and y are consecutive on Cx and
let y ′ denote the vertex from C ′

x different from x such that x ′
p and y ′ are consecutive on C ′

x.
From (7.7) and (7.9) we obtain that y and y ′ are from T\{x2, x3, . . . , xp} = T ′\{x ′

2, x
′
3, . . . , x

′
p}.

Combining (7.6) and (7.8) with the fact that z is contained in both Cx as well as Cx ′ then
leads to y = y ′ and to D[V(Cx) \ {x2}] = D[V(C ′

x) \ {x ′
p}] being an induced directed path

of D. Let v ∈ V(D) denote the vertex such that y ∈ Xv. Then we have v2v ∈ A(D)

and vpv ∈ A(D) and so {v1, v2, vp, v} either induces a K−
4 in G(D) (which is impossible

by Claim 7.5.5) or a cycle C ′ of length 4 in G(D) such that DC ′ is non-alternating in D,
contradicting (7.5). This proves the claim. □

Claim 7.5.7. All cycles in G(D) are induced, i.e., no cycle has a chord. ⋄

Proof. Let C be a cycle in G(D). We prove that C cannot contain a chord by induction on
the length p of C. If p = 4, then C has no chord as otherwise, the vertices of C would either
induce a K4 or a K−

4 in G(D), contradicting Claim 7.5.4 or Claim 7.5.5. Now assume p ≥ 5.
If C has a chord, say uv ∈ E(G), then the edge uv divides the cycle C into two smaller
cycles C1 and C2. Then it follows from the induction hypothesis that neither C1 nor C2 has
a chord. Hence, C1 and C2 are induced cycles of G(D), and Claim 7.5.6 implies that DC1

and
DC2

are directed cycles. Furthermore, uv is the only chord of C, since otherwise G[V(C)]

would contain a smaller cycle than C whose edges would have no cyclic orientation in D,
contradicting Claim 7.5.6. By symmetry, suppose that uv ∈ A(D). Then, in DC the vertex
u has two in-neighbors, and the vertex v has two out-neighbors, say w and w ′. Moreover, by
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symmetry, C1 contains the vertices u, v, and w and C2 contains the vertices u, v, and w ′. Let
T be an acyclic transversal of (X,D)/v and let u1 ∈ Xu ∩ T , w1 ∈ Xw ∩ T , and w ′

1 ∈ Xw ′ ∩ T .
Furthermore we choose a cyclic ordering of the vertices of C such that w is the left neighbor
of v and w ′ is the right neighbor. Then, there are vertices v1, v2, v3 ∈ Xv with v1w1, v2w

′
1

and u1v3 ∈ A(D) (by Proposition 7.8(b),(c)). Furthermore, by Proposition 7.8(a), v1 6= v2.
By shifting w → v and the remaining vertices of C (except v) counterclockwise around C,
we get an acyclic transversal T ′ of (X,D)/w ′ with v1 ∈ T ′. Thus, by Proposition 7.8(c),
there is a vertex w ′

2 ∈ Xw ′ with v1w
′
2 ∈ A(D). In particular, w ′

2 6= w ′
1 (as v1 6= v2). By

similar argumentation, v2 has an out-neighbor w2 6= w1 from Xw (see Figure 7.5).

w v w ′
· · ·

u
· · ·· · ·

C1 C2

C

v1

v2

v3

··
·

w1

w2

··
·

w ′
1

w ′
2

··
·

u1

··
·

··
·

··
·

··
·

– vertices of T

FiG. 7.5. Setting up (D,X,D).

Now we claim that v3 6∈ {v1, v2}. Assume that v3 = v1. Then, starting from T , we can
shift each vertex from C2 counterclockwise (beginning with u → v) around C2 (which gives
us a transversal of (X,D)/w ′ containing v1) and, afterwards shift v → w ′. Then we get an
acyclic transversal T∗ of (X,D)/v that contains w1 as well as w ′

2 and so |N+
D(v1)∩ T∗| ≥ 2, a

contradiction to Proposition 7.8(a). Hence, v3 6= v1. By repeating the argumentation with
C1 instead of C2 we conclude that v3 6= v2. Clearly, v3 has an out-neighbor w ′

3 ∈ Xw ′ and an
out-neighbor w3 ∈ Xw (shift clockwise around C2, respectively C1). This is also illustrated in
Figure 7.6. By (C2) and since v3 6∈ {v1, v2}, the vertex w ′

3 is neither w ′
1 nor w ′

2. Now finally,
starting from T , we shift each vertex (beginning with u → v, i.e. u1 → v3) counterclockwise
around C2 such that we get an acyclic transversal of (X,D)/w ′ and, afterwards, we shift
v → w ′ (i.e. v3 → w ′

3). This gives us an acyclic transversal T̃ of (X,D)/v with w ′
3 ∈ T̃ . We
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claim that v2 has no out-neighbor in T̃ (which would contradict Proposition 7.8(a)). As uv is
the unique chord of C, we conclude that w 6∈ V(C2) and so w1 ∈ T̃ . Since v1w1 ∈ A(D), (C2)
implies that v2w1 6∈ A(D). Furthermore, the out-neighbor of v2 from T̃ must be contained
in

∪
v ′∈V(C2)

Xv ′ as w ′
1 is the out-neighbor of v2 from T and since we only shifted around C2.

But since C2 has no chords and since vu 6∈ A(D), the out-neighbor of v2 from T̃ can only be
the vertex from Xw ′ ∩ T̃ , that is, w ′

3. However, v3w ′
3 ∈ A(D) and so v2w

′
3 6∈ A(D). Thus, v2

has no out-neighbor from T̃ , a contradiction. This proves the claim. □

w v w ′
· · ·

u
· · ·· · ·

C1 C2

C

v1

v2

v3

··
·

w1

w2

w3

··
·

w ′
1

w ′
2

w ′
3

··
·

u1
··

·

··
·

··
·

··
·

– vertices of T

FiG. 7.6. Including the neighbors of v3.

The remaining part of the proof is straightforward: As D is a block, G(D) contains an
induced cycle C. Then, DC is a directed cycle by Claim 7.5.6. We claim that D = DC.
Otherwise, there would be a vertex v ∈ V(D) \ V(C). Moreover, since D and therefore
G(D) is a block, there are two internally disjoint paths P and P ′ in G(D) from v to vertices
w 6= w ′ such that V(P)∩V(C) = {w} and V(P ′)∩V(C) = {w ′}. Since all cycles of G(D) are
induced (by Claim 7.5.7), w and w ′ are not consecutive in C. Let PC and P ′

C denote the two
internally disjoint paths between w and w ′ contained in C. Then, P, P ′ together with PC,
respectively P, P ′ together with P ′

C form induced cycles C1 and C2 of G(D). Since DC is a
directed cycle, either DC1

or DC2
is not a directed cycle, contradicting Claim 7.5.6. Hence,

D = DC, i.e., D is a directed cycle. As (D,X,D) is a minimal uncolorable degree-feasible
configuration, we easily conclude that (D,X,D) is a DC-configuration. This completes the
proof of the theorem. ■
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7.4. A Brooks-type Theorem for DP-colorings of Digraphs

The next two statements are direct consequences of Theorem 7.5 and Proposition 7.4. In
particular, Theorem 7.13 is a generalization of Theorem 6.3.

Corollary 7.12. Let (D,X,D) be a degree-feasible configuration. If (D,X,D) is minimal
uncolorable, then for each block B ∈ B(D) there is a uniquely determined cover (XB,DB) of
B such that the following statements hold:

(a) For every block B ∈ B(D), the triple (B,XB,DB) is a K-configuration, a DC-configuration,
or a C-configuration.

(b) The digraphs DB with B ∈ B(D) are pairwise disjoint and D =
∪

B∈B(D)DB.

(c) For each vertex v ∈ V(D) it holds Xv =
∪

B∈Bv(D) X
B
v . ⋄

Theorem 7.13. A connected digraph D is not DP-degree-colorable if and only if for every
block B of D one of the following cases occurs:

(a) B is a directed cycle of length ≥ 2.

(b) B is a bidirected cycle of length ≥ 3.

(c) B is a bidirected complete graph. ⋄

To conclude this chapter adequately, we deduce a BROOKS-type theorem for DP-colorings
of digraphs. For undirected graphs, the theorem was proved by BERNSHTEYN, KOSTOCHKA,
and PRON [14]. Note that the upcoming theorem generalizes the BROOKS-type Theorem 6.2
by Mohar as →→→χ(D) ≤ →→→

χDP(D) for every digraph D by (7.1).

Theorem 7.14. Let D be a connected digraph. Then, →→→χDP(D) ≤ max{∆+(D), ∆−(D)} + 1

and equality holds if and only if D is

(a) a directed cycle of length ≥ 2, or

(b) a bidirected cycle of length ≥ 3, or

(c) a bidirected complete graph. ⋄
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Proof. As mentioned earlier, →→→χDP(D) ≤ max{∆+(D), ∆−(D)} + 1 is always true. Moreover,
if D satisfies (a),(b), or (c), then →→→

χDP(D) = max{∆(D)+, ∆−(D)} + 1, take a C-, DC-,
or K-configuration. Now assume →→→

χDP(D) = max{∆+(D), ∆−(D)} + 1. Then, there is a
cover (X,D) of D such that |Xv| ≥ max{∆+(D), ∆−(D)} for all v ∈ V(D) and D is not
(X,D)-colorable. Hence, (D,X,D) is an uncolorable degree-feasible configuration and there
is a spanning subdigraph D ′ of D such that (D,X,D ′) is minimal uncolorable. Then,
|Xv| = d+

D(v) = d−
D(v) for all v ∈ V(D) (by Proposition 7.6(a)) and each block of D satisfies

(a),(b) or (c) (by Theorem 7.13). Thus, |Xv| = max{∆+(D), ∆−(D)} for all v ∈ V(D) and we
conclude that D has only one block and, therefore, satisfies (a), (b) or (c). This completes
the proof. ■

7.5. Ohba’s Conjecture for DP-colorings of Digraphs

In [97], OHBA conjectured that for graphs with few vertices compared to their chromatic
number, the chromatic number and the list-chromatic number coincide. This conjecture
was recently proved by NOEL, REED, and WU [96].

Theorem 7.15 (OHBA’s Conjecture). For every graph G satisfying χ(G) ≥ (|G|− 1)/2, we
have χ(G) = χℓ(G). ⋄

Regarding digraphs, BENSMAiL, HARUTYUNYAN and LE [9] came up with a simple trans-
formation in order to obtain the directed version of OHBA’s Conjecture from the undirected
case.

Theorem 7.16 (BENSMAiL, HARUTYUNYAN and LE, 2018). For every digraph D satisfying→→→
χ(D) ≥ (|D|− 1)/2, we have →→→χ(D) =

→→→
χℓ(D). ⋄

It is easy to see that OHBA’s Conjecture does not hold if we take DP-colorings instead
of list-colorings neither in the undirected nor in the directed case (just take C4, or the
bidirected C4, respectively). However, BERNSHTEYN, KOSTOCHKA, and ZHU [15] proved
the following, sharp, bound.

Theorem 7.17 (BERNSHTEYN, KOSTOCHKA, and ZHU, 2017). For n ∈ N, let r(n) denote
the minimum r ∈ N such that every graph G with |G| = n and χ(G) ≥ r satisfies χDP(G) =

χ(G). Then,

n− r(n) = Θ(
√
n). ⋄⋄
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By combining the ideas from [9] with a similar technique to the one used in the proof of
Theorem 7.1, we obtain the following theorem.

Theorem 7.18. Let D be a digraph and let (V1, V2, . . . , Vk) be a partition of V(D) such
that D[Vi] contains no directed cycle for i ∈ [1, k]. Furthermore, let G be the complete
multipartite graph with classes V1, V2 . . . , Vk. Then, →→→χDP(D) ≤ χDP(G). ⋄

Proof. Let χDP(G) = ℓ. Suppose that there is an ℓ-cover (X,D) of D such that (X,D)

contains no acyclic transversal. We define an ℓ-cover (XG,G) of G as follows. Let XG = X,
and let E(G) be the set of all edges xvxw such that there are indices i, j ∈ [1, k] with i < j

and vertices v ∈ Vi, w ∈ Vj with xv ∈ Xv, xw ∈ Xw, and xvxw ∈ A(D). As χDP(G) = ℓ, there
is an independent transversal TG of (XG,G). As (X,D) contains no acyclic transversal, D[TG]

contains a directed cycle C. Let V ′ = {v ∈ V(D) | Xv ∩ C 6= ∅}. Then, D[V ′] contains a
directed cycle, as well. Since Vi is acyclic for all i ∈ [1, k], this implies that there are indices
i < j from [1, k] and vertices v ∈ Vi, w ∈ Vj such that vw ∈ A(D[V ′]), Xv∩TG = {xv} ∈ V(C),
Xw ∩ TG = {xw} ∈ V(C), and xvxw ∈ A(D). Consequently, xvxw ∈ E(G[TG]) and so TG is not
an independent transversal of (XG,G), a contradiction. This completes the proof. ■

Corollary 7.19. For n ∈ N, let r(n) denote the minimum r ∈ N such that every digraph
D with |D| = n and →→→χ(D) ≥ r satisfies →→→χDP(D) =

→→→
χ(D). Then,

n− r(n) = Θ(
√
n). ⋄⋄

Proof. That n − r(n) = O(
√
n) follows from the fact that for each bidirected digraph D

we have →→→χDP(D) = χDP(G(D)) (by Corollary 7.2) and from Theorem 7.17. The fact that
n− r(n) = Ω(

√
n) can easily be deduced by combining Theorems 7.17 and 7.18. ■



Chapter 8

Critical Digraphs

8.1. Introduction

As we have already examined in Chapter 3, critical graphs are one of the main tools for
proving coloring results. Introduced by DiRAC in his doctoral thesis [35], who intended
to use them for proving the Four-Color-Conjecture, critical graphs could not really serve
their original purpose, but, nevertheless, have countless applications. However, not much
is known about critical digraphs. Recall that a digraph D is critical and k-critical if→→→
χ(D) = k, but →→→χ(D ′) < k for each proper subdigraph D ′ of D. Since removing an arc or a
vertex from a digraph decreases the dichromatic number at most by one, it is easy to see
that every digraph D contains a →→→χ(D)-critical subdigraph. The next proposition goes back
to NEUMANN-LARA [94] (the exact formulation is from [71, Prop. 1]) and states some basic
facts on critical digraphs. The proofs are straightforward and left to the reader.

Proposition 8.1. Let k ≥ 1 be an integer and let D be a k-critical digraph. Then, the
following statements hold:

(a) If v ∈ V(D) and if φ is a (k−1)-coloring if D−v, then for each α ∈ [1, k−1] the color
class φ−1(α) contains an out-neighbor of v and an in-neighbor of v. As a consequence,
|φ(N+

D(v))| = |φ(N−
D(v))| = k− 1.

(b) Each vertex v ∈ V(D) satisfies min{d−
D(v), d

+
D(v)} ≥ k− 1.
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(c) For each arc a = uv ∈ A(D) and for each (k − 1)-coloring φ of D − a, there is a
monochromatic directed path from v to u with respect to φ.

(d) |D| ≥ k and equality holds if and only if D = D(Kk).

(e) If k = 1 then |D| = 1, and if k = 2 then D is a directed cycle. ⋄

In order to emphasize the usefulness of the concept of criticality, let us give an astonish-
ingly short proof of Theorem 6.1, which we recall for convenience.

Theorem 6.1. Let D be a digraph. Then,

→→→
χ(D) ≤ min{∆−(D), ∆+(D)}+ 1. ⋄

Proof. Let k =
→→→
χ(D). Then, D contains a k-critical digraph D ′ and, by Proposition 8.1(b),

we have min{d+
D ′(v), d

−
D ′(v)} ≥ k− 1 for all v ∈ V(D ′). As a consequence,

min{∆+(D), ∆−(D)} ≥ min{∆+(D ′), ∆−(D ′)} ≥ k− 1 =
→→→

χ(D) − 1,

which settles the proof. ■

Moreover, MOHAR [90] formulated his BROOKS-type Theorem (see Theorem 6.2) using
critical digraph terminology:

Theorem 8.2 (MOHAR, 2010). Let D be a k-critical digraph with k ≥ 2 in which each
vertex satisfies d+

D(v) = d−
D(v) = k− 1. Then, one of the following cases occurs:

(a) k = 2 and D is a directed cycle, or

(b) k = 3 and D is a bidirected cycle of odd length ≥ 3, or

(c) k ≥ 4 and D is a bidirected complete graph of order k. ⋄

Even if it does not appear so at first sight, Theorem 6.2 is equivalent to the above theorem:

Theorem 6.2. Let D be a connected digraph. Then, →→→χ(D) ≤ max{∆−(D), ∆+(D)}+ 1 and
equality holds if and only if D is

(a) a directed cycle of length ≥ 2, or

(b) a bidirected cycle of odd length ≥ 3, or
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(c) a bidirected complete graph. ⋄

Proof of the equivalence. As the digraph D from Theorem 8.2 satisfies χ(D) = k =

max{∆−(D), ∆+(D)}+ 1, Theorem 8.2 immediately follows from Theorem 6.2.
The converse is less obvious: from Theorem 6.1 we obtain →→→χ(D) ≤ max{∆−(D), ∆+(D)}+1.

Moreover, it is easy to check that if D is a directed cycle, a bidirected cycle of odd length, or
a bidirected complete graph, then →→→χ(D) = max{∆−(D), ∆+(D)}+1. It remains to be proved
that if →→→χ(D) = max{∆−(D), ∆+(D)}+ 1, then D satisfies (a),(b), or (c) of Theorem 6.2. To
this end, let D be a minimal counter-example, that is:

(1) →→→
χ(D) = max{∆−(D), ∆+(D)}+ 1,

(2) D neither satisfies (a), (b), nor (c), and

(3) |A(D)| is minimum with respect to (1) and (2).

Let k =
→→→
χ(D). Then, by (3), →→→χ(D − a) = k − 1 for any a ∈ A(D) and so D is k-critical.

Note that k ≥ 2 as D(K1) is the only 1-critical digraph. From Proposition 8.1(b) it follows
that

min{d−
D(v), d

+
D(v)} ≥ k− 1 = max{∆−(D), ∆+(D)}

for all v ∈ V(D) and so we have d+
D(v) = d−

D(v) for each vertex v ∈ V(D). Then, by
Theorem 8.2, D satisfies (a),(b), or (c), which is impossible. This completes the proof. ■

Now let D be a k-critical digraph. As we have already utilized, min{d−
D(v), d

+
D(v)} ≥ k−1

for every vertex v of D. This again gives us a way to classify the vertices of D as we did in
Chapters 3 and 5. A vertex v ∈ V(D) is a low-vertex of D if d+

D(v) = d−
D(v) = k− 1 and a

high vertex of D, otherwise. The low vertex subdigraph DL of D is the digraph that is
induced by the set of low vertices of D. In the next section, we will transfer GALLAi’s well-
known Theorem 3, which describes the structure of the low vertex subgraph of a k-critical
graph, to digraphs (see Theorem 8.3’).

Later in this chapter, we will try to analyze the structure of a k-critical digraph as a whole.
Let

→→→
CRI(k) denote the class of k-critical digraphs and CRI(k) denote the class of k-critical

graphs, respectively. Then, it is easy to see that
→→→

CRI(0) = {∅},
→→→

CRI(1) = {K1}, and
→→→

CRI(2)
consists of all directed cycles. Nevertheless, it is not even known which digraphs

→→→
CRI(3)

consists of; unlike in the undirected case, where it follows from KÖNiG’s characterization of
bipartite graphs [68] that CRI(3) coincides with the class of all odd cycles. So, how can we



Critical Digraphs 141

possibly try to describe the structure of k-critical digraphs for k ≥ 3? In Chapter 5, we have
examined a method for creating an infinite class of critical hypergraphs (see Theorem 5.7),
the so called HAjÓS join. Initially, HAjÓS developed the HAjÓS join only for graphs [54];
he proved that a simple graph G has chromatic number at least k if and only if it contains
a subgraph that can be obtained from Kk’s by applying HAjÓS joins and identifying non-
adjacent vertices. As these two operations preserve the chromatic number, it immediately
follows that every k-critical graph can be constructed from copies of Kk by those operations.
In Section 8.3, we introduce the digraph version of HAjÓS’ operation, the directed and the
bidirected HAjÓS join. Moreover, we transfer his result to digraphs (see Theorem 8.8’).
In Section 8.4 eventually, we prove the digraph counterpart to a strengthening of HAjÓS’
theorem due to URQUHART [119] (see Theorem 8.17).

8.2. A Gallai-type Theorem for Critical Digraphs

Recall from the introduction, respectively from Chapter 5 that we classified the vertices of
a k-critical graph G into two groups: high vertices and low vertices. The subgraph GL of G
induced by the low vertices of G, i.e., the vertices of G having degree k − 1 in G, is called
low-vertex subgraph of G. GALLAi [48] (see also Theorem 3) proved that the blocks of
the low vertex subgraph have a specific structure:

Theorem 8.3 (GALLAi, 1963). Let GL be the low vertex subgraph of a k-critical graph G.
Then, each block of GL is a complete graph or an odd cycle. ⋄

Looking back at Theorems 6.2 and 6.3, we recall that we have always had three kinds
of ’bad’ blocks in the digraph setting; directed cycles, bidirected cycles of odd length, and
bidirected complete graphs. Thus, it comes without surprise that we will see the same kind
of blocks in the low vertex subdigraph. Somewhat surprising, however, is the fourth kind
of block that may occur:

Theorem 8.3’. Let DL be the low vertex subdigraph of a k-critical digraph D. Then, each
block B of DL satisfies at least one of the following statements:

(a) B consists of just one single arc.

(b) B is a directed cycle of length ≥ 2.

(c) B is a bidirected cycle of odd length ≥ 3.

(d) B is a bidirected complete graph. ⋄
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For the proof of Theorem 8.3’, we once again need Theorem 6.3, which we recall for
convenience.

Theorem 6.3 (HARUTYUNYAN and MOHAR, 2011). Let D be a connected digraph, and let
L be a list-assignment such that |L(v)| ≥ max{d+

D(v), d
−
D(v)} for all v ∈ V(D). Suppose that

D is not L-colorable. Then, the following statements hold:

(a) D is EULERian and |L(v)| = max{d+
D(v), d

−
D(v)} for all v ∈ V(D).

(b) If B ∈ B(D), then B is a directed cycle of length ≥ 2, or B is a bidirected complete
graph, or B is a bidirected cycle of odd length ≥ 5.

(c) For each B ∈ B(D) there is a set ΓB of ∆+(B) colors such that for every v ∈ V(D),
the sets ΓB with B ∈ Bv(D) are pairwise disjoint and L(v) =

∪
B∈Bv(D) ΓB. ⋄

The next proposition states some important facts that will be needed for the proof of
Theorem 8.3’.

Proposition 8.4. Let DL be the low vertex subdigraph of a k-critical digraph D. Moreover,
given a vertex v ∈ V(DL), let φ be a (k− 1)-coloring of D− v with color set Γ = [1, k− 1].
Then the following statements hold:

(a) Each color from Γ appears exactly once in N+
D(v) and in N−

D(v).

(b) If u ∈ V(DL) is adjacent to v, then uncoloring u and coloring v with the color of u
leads to a (k− 1)-coloring of D− u. ⋄

Proof. Suppose (by symmetry) that there is a color α ∈ Γ such that α does not appear in
N+

D(v). Then, coloring v with α cannot create a monochromatic cycle in D (as v has no
out-neighbor with color α) and, thus, D would be (k − 1)-colorable, a contradiction. As
d+
D(v) = k− 1 = |Γ |, this proves (a).
For the proof of (b), assume (by symmetry) that uv ∈ A(D). Then it follows from (a)

that after uncoloring u, vertex v has no in-neighbor with color φ(u) and so coloring v with
color φ(u) cannot create a monochromatic cycle. ■

If the reader still remembers details of the previous chapter, he or she might become
suspicious of statement (b) of the above proposition. Indeed, the procedure described there
strongly resembles the shifting operation that we used in order to prove Theorem 7.5. The
only difference makes the absence of a cover digraph and so we have to shift in the original
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digraph, instead. Thus, in the following, we will call the procedure that is depicted in
Proposition 8.4(b) shifting the color from u to v and briefly write u → v.

Now let D be a k-critical digraph, let C be a (not necessarily directed) cycle in DL and
let v ∈ V(C). Moreover, let φ be a (k− 1)-coloring of D− v and let u and w be the vertices
such that u, v and w are consecutive in C. Then, beginning with u → v, we can shift each
vertex of C, one after another, clockwise and obtain a new (k − 1)-coloring of D − v (see
Figure 8.1). Similar, beginning with w → v, we can shift each vertex of C counter-clockwise
and obtain a third (k−1)-coloring of D−v. The main idea for this goes back to GALLAi [48];
we will use this observation frequently in the following.

w

v

u v4

v3

1
w

v

u v4

v3

u → v

2
w

v

u v4

v3

v4 → u

3

w

v

u v4

v3

v3 → v4

4
w

v

u v4

v3

w → v3

5
w

v

u v4

v3

v → w

6

FiG. 8.1. The black (uncolored) vertex denotes the clockwise shifting around a cycle.

Proof of Theorem 8.3’. Let DL be the low vertex subdigraph of a k-critical digraph D

and let B be an arbitrary block of DL. If |B| = 1, then B = D(K1) and we are done. If
|B| = 2, then either B consists of just one arc or B is a bidirected complete graph and so
there is nothing to show. Thus, we may assume |B| ≥ 3.

Claim 8.4.1. For all vertices v ∈ V(B) we have d+
B (v) = d−

B (v), i.e., B is EULERian. ⋄

Proof. For otherwise, we may assume that d+
B (v) < d−

B (v) for some v ∈ V(B). Let φ be a
(k−1)-coloring of D−v. Since d+

D(v) = d−
D(v) = k−1, it follows from Proposition 8.4(a) that

there is a color α that appears in N−
B (v) but not in N+

B (v). Let u be the vertex from N−
B (v)

with φ(u) = α. Note that Proposition 8.4(a) furthermore implies that there is a vertex in
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v ′ ∈ N+
D(v) ∩ (V(D) \ V(B)) that has color α. First we show that d+

B (v) = 0. Suppose, to
the contrary, that d+

B (v) > 0 and let w be an out-neighbor of v in DL. Then, in B there
is a (not-necessarily directed) induced cycle C such that u, v and w are consecutive on C.
Beginning with u → v, we shift all vertices of C clockwise and obtain a new (k− 1)-coloring
φ ′ of D−v with φ ′(w) = α. Since no vertex from V(D)\V(C) took part in the shifting, we
have φ ′(v ′) = φ(v ′) = α and so α appears twice in N+

D(v), contradicting Proposition 8.4(a).
This proves that d+

B (v) = 0.
Let again C be an (undirected) induced cycle in B such that u and v are consecutive

on C and let w be the other neighbor of v in C. Then, w is also an in-neighbor of v (as
d+
B (v) = 0). Thus, it follows from Proposition 8.4(a) that φ(w) 6= φ(u), say φ(w) = β.

Moreover, we obtain that the vertices of C (except from v) are colored alternately with β and
α. Otherwise, there are two consecutive vertices x, x ′ on C such that {φ(x), φ(x ′)} 6= {α,β}.
Then we can shift the colors around the vertices of C such that u gets color φ(x) and w

gets color φ(x ′) and obtain a (k − 1)-coloring φ ′ of D − v with {φ ′(u), φ ′(w)} 6= {α,β},
which contradicts Proposition 8.4(a) as C is induced and so no neighbors of v besides u and
w take part in the shifting.

As a consequence, C has odd length. Now let v = v1, w = v2, v3, . . . , u = vr, v1 be a
cyclic ordering of the vertices of C. We claim that v3v2 6∈ A(D). Assume, to the contrary,
v3v2 ∈ A(D). Then, we can shift w → v and obtain a coloring φ ′ of D−w with φ ′(v) = β

and φ ′(v3) = α. In particular, v3 is the only in-neighbor of w that has color α with respect
to φ ′. On the other hand, beginning from φ with u → v, we can shift every vertex besides
v clockwise around C (the last shift is w → v3) and get a (k − 1)-coloring φ∗ of D − w

with φ∗(v) = α and φ∗(v3) = β. As vw 6∈ A(D) and as C is induced, it follows that w has
no in-neighbor that has color α with respect to φ∗, a contradiction. Hence, v3v2 6∈ A(D)

and so v2v3 ∈ A(D). By repeating this argumentation, we obtain that vi+1vi 6∈ A(D) but
vivi+1 ∈ A(D) for i ≥ 2 even and that vivi+1 6∈ A(D) but vi+1vi ∈ A(D) for i ≥ 3 odd. In
particular, this leads to vrv 6∈ A(D), a contradiction. This proves the claim. □

Now let φ be a (k− 1)-coloring of D− B with color set Γ = [1, k− 1]. For v ∈ V(B), let

L(v) = Γ \φ(N+
D(v) \ V(B)).

Then, as d+
D(v) = d−

D(v) = k − 1 = |Γ | and since d+
B (v) = d−

B (v) by Claim 8.4.1, we have
|L(v)| ≥ max{d+

B (v), d
−
B (v)} for all v ∈ V(B). Moreover, B is not L-colorable, as the union

of any L-coloring of B with φ would clearly lead to a (k − 1)-coloring of D. Hence, we can
apply Theorem 6.3 and so B is a directed cycle, or an odd bidirected cycle, or a bidirected
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complete graph, as claimed. ■

In the undirected case, GALLAi [48] showed that the only blocks of the low vertex graph
are complete graphs or odd cycles. Although for digraphs the directed cycles arise naturally,
it was quite unexpected that there may also be blocks that consist of just one arc. That
this indeed may happen is illustrated in Figure 8.2, where a 4-critical digraph is displayed;
here the low vertex subdigraph consists of every vertex except the vertex v. The reader
might wonder how we came up with this example as it is not fully trivial to see that the
digraph is 4-critical: In fact, the digraph is the so called HAjÓS join of two bidirected K4,
which is the main topic of the next section. Note that it is even possible to create infinite
families of digraphs D such that there are blocks of DL consisting of just a single arc just by
performing a HAjÓS join between to copies of the bidirected Kk. If the reader already wants
to know how the HAjÓS construction works, we recommend having a look at Theorem 8.7.

v

DL

FiG. 8.2. Here, one block of DL consists of just one arc.

GALLAi used the characterization of the low vertex subgraph of critical graphs that he
obtained in [48] to establish a lower bound for the number of edges of critical graphs. We
can apply the same approach to achieve a similar bound for the number of arcs in critical
digraphs.

Theorem 8.5. Let D be a (k+ 1)-critical digraph with k ≥ 3 and without digons. Then

2|A(D)| ≥
(
2k+

k

3k+ 1

)
|D|.

Proof. Let V = V(D) and let n = |V |. For a set X ⊆ V , let a(X) denote the number of arcs
of D[X]. Furthermore, let

R =

(
2k+

k

3k+ 1

)
.

Our aim is to show that 2a(V) ≥ Rn. If |DL| = 0, then every vertex v of D satisfies
d+
D(v) + d−

D(v) ≥ 2k + 1, which leads to 2a(V) ≥ (2k + 1)n ≥ Rn, and we are done. So
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assume that |DL| ≥ 1. Since D has no digons, it follows from Theorem 8.3’ that each block
of DL consists of an isolated vertex, or exactly one arc, or is a directed cycle of length at
least three.

Now we claim that 3|DL| ≥ 2|A(DL)|. It suffices to prove this claim for each component of
DL separately. Thus, we may assume that DL is connected. The proof of the inequality is by
induction on the number of blocks of DL. If DL itself is a block, the statement clearly holds.
If DL consists of more than one block, let B be an end-block of DL, i.e., B is a block of DL

containing exactly one separating vertex vB of DL. Now let D ′
L = DL − (V(B) \ {vB}). Then,

by the induction hypothesis, we have 3|D ′
L| ≥ 2|A(D ′

L)|. As B either consists of exactly one
arc or is a directed cycle of length ℓ ≥ 3, we have 3(|B|− 1) − 2|A(B)| ≥ 0. This leads to

3|DL| = 3|D ′
L|+ 3(|B|− 1) ≥ 2|A(DL)|− 2|A(B)|+ 3(|B|− 1) ≥ 2|A(DL)|,

which proves the claim.
Since every vertex of U = V(DL) has total degree 2k in D (i.e., d+

D(v) + d−
D(v) = 2k for

all v ∈ U) and since k ≥ 3, we obtain that

2a(V) = 2a(W) + 4k|U|− 2a(U) ≥ 4k|U|− 2a(U) ≥ (4k− 3)|U| ≥ 3k|U|.

On the other hand, since every vertex in W has total degree at least 2k + 1 and since
n = |U|+ |W|, we have

2a(V) ≥ 2kn+ |W| ≥ (2k+ 1)n− |U|.

Adding the first inequality to the second inequality multiplied with 3k yields

2a(V)(3k+ 1) ≥ 3k(2k+ 1)n,

and, as 3k(2k+ 1) = 2k(3k+ 1) + k, we conclude

2a(V) ≥
(
2k+

k

3k+ 1

)
n = Rn.

Thus, the proof is complete. ■
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8.3. Construction of Critical Digraphs

In Figure 8.2 we have already seen that it might be useful to know some ways how to create
critical digraphs. In this section, we will present two methods on how to do so, the DiRAC
join and the directed and bidirected HAjÓS join. Note that, given a simple graph G, it
follows from (6.1) that

G is k-critical (with respect to χ) if and only if D(G) is k-critical. (8.1)

Now let D1 and D2 be two disjoint digraphs. Let D be the digraph obtained from the
union D1 ∪ D2 by adding all possible arcs in both directions between D1 and D2, i.e.,
V(D) = V(D1)∪ V(D2) and A(D) = A(D1)∪A(D2)∪ {uv, vu | u ∈ V(D1) and v ∈ V(D2)}.
We say that D is the DiRAC join of D1 and D2 and denote it by D = D1 ⊠D2. The proof
of the next theorem is quite simple and therefore left to the reader.

Theorem 8.6 (DiRAC Construction). Let D = D1 ⊠D2 be the DiRAC join of two disjoint
non-empty digraphs D1 and D2. Then, →→→χ(D) =

→→→
χ(D1) +

→→→
χ(D2) and D is critical if and only

if both D1 and D2 are critical. ⋄

Unlike in Chapter 5, the HAjÓS join is usually a tool for undirected graphs that can be
used to create infinite families of k-critical graphs, see e. g. [54]. For digraphs, an equivalent
construction was defined by HOSHiNO and KAWARABAYASHi in [60]. Let D1 and D2 be two
disjoint digraphs and select an arc u1v1 of D1 as well as an arc v2u2 of D2. Let D be the
digraph obtained from the union D1 ∪D2 by deleting both arcs u1v1 and v2u2, identifying
the vertices v1 and v2 to a new vertex v, and adding the arc u1u2. We say that D is the
(directed) HAjÓS join of D1 and D2 and write D = (D1, v1, u1)▽(D2, v2, u2) or, briefly,
D = D1▽D2. Recall that for the undirected HAjÓS join of two undirected graphs G1 and
G2, we just choose two edges u1v1 ∈ E(G1) and u2v2 ∈ E(G2) and perform exactly the same
procedure as described above (except for the orientations). Statement (c) of the following
theorem has already been mentioned in [60, Proposition 2].

Theorem 8.7 (HAjÓS Construction). Let D = D1▽D2 be the HAjÓS join of two disjoint
non-empty digraphs D1 and D2. Then, the following statements hold:

(a) →→→
χ(D) ≥ min{→→→χ(D1),

→→→
χ(D2)}.

(b) If →→→χ(D1) =
→→→
χ(D2) = k and k ≥ 2, then →→→

χ(D) = k.

(c) If both D1 and D2 are k-critical and k ≥ 2, then D is k-critical.
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v1

u1

v2

u2

v

u1 u2

FiG. 8.3. The Hajós join of two directed cycles of length 3.

(d) If D is k-critical and k ≥ 2, then both D1 and D2 are k-critical. ⋄

Proof. Suppose that D = (D1, v1, u1)▽(D2, v2, u2) and let v denote the vertex that is ob-
tained from identifying v1 and v2. To simplify the proof, we assume that v = v1 = v2. For
the proof of (a) let →→→χ(D) = k and let φ be a k-coloring of D. For i ∈ {1, 2}, let φi denote
the restriction of φ to Di, where φi(vi) = φ(v). We claim that either φ1 is a k-coloring of
D1 or φ2 is a k-coloring of D2. Otherwise, in D1 there is a monochromatic directed cycle
C1 that contains the arc u1v1 (as D1−u1v1 is a subdigraph of D and therefore k-colorable).
Similar, in D2 there exists a monochromatic cycle C2 that contains the arc v2u2. But then,
C1 ∪C2−u1v1− v2u2+u1u2 is a monochromatic directed cycle in D, a contradiction. This
proves (a).

In order to prove (b), let →→→χ(D1) =
→→→
χ(D2) = k. By (a), →→→χ(D) ≥ k. Thus, it suffices to

show that →→→χ(D) ≤ k. For i ∈ {1, 2}, let φi be a k-coloring of Di. By permuting the colors if
necessary we obtain φ1(v1) = φ2(v2). For w ∈ V(D) let

φ(w) =


φ1(w) if w ∈ V(D1),

φ2(w) if w ∈ V(D2), and
φ1(v1) if w = v.

We claim that φ is a k-coloring of D. For otherwise, D would contain a monochromatic
directed cycle C with {u1, u2, v} ⊆ V(C) and u1u2 ∈ A(C). But then, (C ∩D1) + u1v1 is a
monochromatic directed cycle in D1, which is impossible.

For the proof of (c) it suffices to show that →→→χ(D − a) < k for all a ∈ A(D) (by (b)). If
a = u1u2, then choosing (k− 1)-colorings of D1 −u1v1 and D2 − v2u2 that assign the same
color to v1 and v2 and taking the union of those colorings clearly leads to a (k− 1)-coloring
of D − a. Let a ∈ A(D) \ {u1u2}. By symmetry, we may assume that a ∈ A(D1). Then,
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there is a (k − 1)-coloring φ1 of D1 − a and a (k − 1)-coloring φ2 of D2 − v2u2 such that
φ1(v1) = φ2(v2). We claim that taking the union of those colorings gives us a (k − 1)-
coloring of D − a. Suppose, to the contrary, that there exists a monochromatic cycle C in
D − a. Then C contains the arc u1u2 and (C ∩ D1) + u1v1 is a monochromatic cycle in
D1 − a, which is impossible. Hence, D is k-critical, as claimed.

To prove statement (d) first assume that →→→χ(D1) ≤ k− 1. Then there is a (k− 1)-coloring
φ1 of D1. Since D is k-critical, there furthermore exists a (k− 1)-coloring φ2 of D2 − v2u2

with φ2(v2) = φ1(v1) and the union of φ1 and φ2 leads to a (k − 1)-coloring of D (by the
same arguments as in (c)). Hence, →→→χ(D1) ≥ k and, by symmetry, we obtain →→→

χ(D2) ≥ k. In
order to complete the proof, it suffices to show that →→→χ(Di − a) < k for i ∈ {1, 2} and for
a ∈ A(Di). By symmetry, we may assume that i = 1. If a = u1v1, then

→→→
χ(D1 − a) < k as

D1 −a is a proper subdigraph of D and therefore (k− 1)-colorable. Let a ∈ A(D1) \ {u1v1}.
Then, there is a (k− 1)-coloring φ of D−a. We claim that the restriction of φ to V(D1) is
a (k − 1)-coloring of D1 − a. For otherwise, in D1 − a there would exist a monochromatic
directed cycle C1 that contains the arc u1v1. Since

→→→
χ(D2) ≥ k, the restriction of φ to V(D2)

creates a monochromatic directed cycle C2 in D2 that contains the arc u2v2. However,
C1 ∪ C2 − u1v1 − v2u2 + u1u2 is a monochromatic directed cycle in D − a with respect to
φ, a contradiction. This completes the proof. ■

Another common operation for graphs and digraphs is the identification of independent
sets. Let D be a digraph and let I be a non-empty independent set of D, i.e., D[I] has
no arcs. Then, we can create a new digraph H from D − I by adding a new vertex v and
adding all arcs from v to N+

D(I) =
∪

u∈IN
+
D(u) and all arcs from N−

D(I) =
∪

u∈IN
−
D(u) to

v. We say that H is obtained from D by identifying I with v, or briefly by identifying
independent vertices and write H = D/(I → v) (briefly H = D/I). It is obvious that any
k-coloring of D/I can be extended to a k-coloring of D by coloring each vertex of I with the
color of v. Thus, →→→χ(D/I) ≥ →→→

χ(D).
We define the class of HAjÓS-k-constructible digraphs as the smallest family of di-

graphs that contains all bidirected complete graphs of order k and is closed under HAjÓS
joins and identifying independent vertices. The class of HAjÓS-k-constructible graphs
is defined accordingly. In 1961, HAjÓS [54] proved the following remarkable result.

Theorem 8.8 (HAjÓS). Let k ≥ 3 be an integer. A graph has chromatic number at least k
if and only if it contains a HAjÓS-k-constructible subgraph. ⋄

For digraphs, we obtain a similar result. While our proof also uses some of the original
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ideas from HAjÓS, we need some new tricks related to perfect digraphs, which are examined
below.

Theorem 8.8’. Let k ≥ 3 be an integer. A digraph has dichromatic number at least k if
and only if it contains a HAjÓS-k-constructible subdigraph. ⋄

The clique number ω(D) of a digraph D is the order of the largest bidirected complete
subdigraph of D. As →→→χ(D(Kn)) = n, every digraph D satisfies ω(D) ≤ →→→

χ(D). A perfect
digraph is a digraph D satisfying that for each induced subdigraph D ′ of D it holds→→→
χ(D ′) = ω(D ′). An odd hole is an (undirected) cycle of odd length at least 5 and an
odd antihole is the complement of an odd hole. Moreover, a filled odd hole/filled odd
antihole is a digraph D so that S(D) is an odd hole/antihole, where S(D) is the symmetric
part of D, that is, the graph with vertex set V(D) and edge set

E(S(D)) = {uv | uv ∈ A(D) and vu ∈ A(D)}.

ANDRES and HOCHSTÄTTLER [4, Corollary 5] proved the following result on perfect digraphs.

Theorem 8.9 (ANDRES and HOCHSTÄTTLER). A digraph D is perfect if and only if it con-
tains none of the following as an induced subdigraph: a filled odd hole, a filled odd antihole,
and a directed cycle of length at least 3. ⋄

This theorem is a really nice and powerful tool in many ways. For the class of bidirected
graphs, the theorem is equivalent to the Strong Perfect Graph Theorem (SPGT) by CHUD-
NOVSKY, ROBERTSON, SEYMOUR, and THOMAS [33], and hence, the SPGT follows from
ANDRES and HOCHSTÄTTLER’s result. Nevertheless, their proof heavily relies on the SPGT.
We will use their result for the following corollary.

Corollary 8.10. Let D be a digraph and for u, v ∈ V(D) let u ∼ v denote the relation that
uv 6∈ A(D). If ∼ is transitive, then D is perfect. ⋄

Proof. By Theorem 8.9, we only need to prove that D does neither contain a filled odd hole,
nor a filled odd antihole, nor an induced directed cycle of length at least 3 as an induced
subdigraph.

First assume that D contains a filled odd hole C as an induced subdigraph and choose
a cyclic ordering v1, v2, . . . , vr, v1 of the vertices of the filled odd hole. Then r is odd and
r ≥ 5. By symmetry, we may assume that v3 ∼ v1. As ∼ is transitive, this implies that
v1v4 ∈ A(D) (as otherwise v3 ∼ v1, v1 ∼ v4, but v3 6∼ v4) and so v4 ∼ v1. As a consequence,
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v1v3 ∈ A(D) (since v4 ∼ v1 and v4v3 ∈ A(D)). By continuing this argumentation we obtain
that v1vi ∈ A(D) for all i ∈ [2, r]. Moreover, regarding v2, it follows that v2v4 ∈ A(D) (as
otherwise v2 ∼ v4, v4 ∼ v1, but v2 6∼ v1, a contradiction). As a consequence, v2vi ∈ A(D) for
all i ∈ [4, r]. Finally, v3vr ∈ A(D) (as otherwise v3 ∼ vr, vr ∼ v2, but v3 6∼ v2). However,
since C is a filled odd hole, this gives us vr ∼ v3 and so vr ∼ v3, v3 ∼ v1, but v1 6∼ vr, a
contradiction. Thus, D cannot contain a filled odd hole as an induced subdigraph.

Next assume that D contains a filled odd antihole C as an induced subdigraph. Let again
v1, v2, . . . , vr, v1 be a cyclic ordering of the vertices. Then r is odd and r ≥ 5. By symmetry,
we may assume that v1 ∼ v2. Then, v2v3 ∈ A(D) as otherwise ∼ would not be transitive.
Continuing this argument, we obtain that vi ∼ vi+1 for i odd and vivi+1 ∈ A(D) for even
i. As r is odd this implies vr ∼ v1. As a consequence, vr ∼ v1, v1 ∼ v2, but vrv2 ∈ A(D), a
contradiction. Thus, D contains no filled antiholes as induced subdigraphs.

Finally, assume that D contains an directed cycle C of length at least 3 as an induced
subdigraph. Again, let v1, v2, . . . , vr, v1 be a cyclic ordering of the vertices of C. Then,
v1 ∼ vr, vr ∼ v2, but v1v2 ∈ A(D), a contradiction. As a consequence, D is perfect by
Theorem 8.9, and we are done. ■

Proof of Theorem 8.8’. Let k ≥ 3 be an integer. Clearly, every HAjÓS-k-constructible
digraph has dichromatic number at least k (by Theorem 8.7 and since →→→χ(D/I) ≥ →→→

χ(D) for
each independent set I of a digraph D). This proves the “if”-implication. The proof of the
“only if”-implication is by reductio ad absurdum. Let D be a maximal counter-example
in the sense that →→→χ(D) ≥ k and D does not contain a HAjÓS-k-constructible subdigraph,
but adding a new arc a ∈ A(D) to D implies the existence of a HAjÓS-k-constructible
subdigraph Da of D+a with a ∈ A(Da). For two vertices u, v ∈ V(D), let u ∼ v denote the
relation that uv 6∈ A(D). We distinguish between two cases and show that both of them
lead to a contradiction.
Case 1: ∼ is transitive. Then, D is perfect by Corollary 8.10 and so D contains a

bidirected complete graph of order at least k as a subdigraph and, therefore, a HAjÓS-k-
constructible sudigraph, which is impossible.
Case 2: ∼ is not transitive. Then there are vertices u, v,w ∈ V(D) such that uv 6∈ A(D),

vw 6∈ A(D), but uw ∈ A(D). Hence, both arcs uv and vw belong to A(D). By the
maximality of D, there exist HAjÓS-k-constructible subdigraphs Duv ⊆ D+ uv and Dvw ⊆
D+vw with uv ∈ A(Duv) and vw ∈ A(Dvw). Let D ′ be the graph obtained from the union
(Duv − uv) ∪ (Dvw − vw) by adding the arc uw. Then, D ′ is a subdigraph of D that can
be obtained from disjoint copies of Duv and Dvw as follows. First we apply the HAjÓS join
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by removing the copies of the arcs uv and vw, identifying the two copies of v, and adding
the arc from u ∈ V(Duv) to w ∈ V(Dvw). Afterwards, for each vertex x that belongs to
both Duv and Dvw, we identify the two copies of x. Hence, D ′ is a HAjÓS-k-constructible
subdigraph of D, a contradiction. This completes the proof. ■

While reading our submission of the paper [7], one of the referees suggested another idea
for proving Corollary 6 using DiLWORTH’s Theorem. To this end, note that a preorder
P = (X,≺) consists of a set X and a binary relation ≺, which is reflexive and transitive. Two
elements x, y ∈ X are comparable (with respect to P) if x ≺ y or y ≺ x and incomparable,
otherwise. A chain in P is a subset Y ⊆ X of pairwise comparable elements, an antichain
on P is a subset Z ⊆ X of pairwise incomparable elements. The well known theorem of
DiLWORTH [34] (see also [8, Theorem 13.5.8]) states the following.

Theorem 8.11 (DiLWORTH). Let P = (X,≺) be a preorder. Then the minimum number of
chains needed to cover X equals the maximum number of elements in an antichain. ⋄

Alternate proof of Corollary 8.10. Let D ′ ⊆ D be an induced subdigraph of D and let→→→
χ(D ′) = k. We claim that ω(D ′) = k. Recall that for vertices u, v ∈ V(D), u ∼ v denotes
the relation that uv 6∈ A(D). Since ∼ is transitive on A(D), the relation ∼ is transitive on
A(D ′), and so P = (V(D ′), ∼) is a preorder. Then, an antichain on P induces a bidirected
complete graph in D ′ (as u, v ∈ V(D ′) are incomparable if and only if uv ∈ A(D ′) and
vu ∈ A(D ′)). Furthermore, it is easy to see that Y is a chain in P if and only if D ′[Y] is an
acyclic subdigraph of D ′. Hence, a cover of V(D ′) with ℓ chains corresponds to an ℓ-coloring
of D ′. As χ(D ′) = k, we need k chains in order to cover V(D ′) and so there is an antichain
Z ⊆ V(D ′) of order k, i.e. D ′[Z] = D(Kk). Thus, ω(D ′) ≥ k and, as →→→χ(D ′) = k, we have
ω(D ′) = k. Consequently, D is perfect. ■

A third short proof of Corollary 8.10 can be obtained by applying the GALLAi-MiLGRAM
Theorem [50] (see also [8, Theorem 13.5.2]) to the complement D of D.

In the last two decades HAjÓS’ theorem (Theorem 8.8) became very popular among
graph theorists. HAjÓS-like theorems were established for the list-chromatic number by
GRAViER [53] and KRÁL [74], for the circular chromatic number by ZHU [121], for the signed
chromatic number by KANG [65], for the chromatic number of edge weighted graphs by
MOHAR [89], for graph homomorphisms by NEŠETRiL [93], and for GRASSMANN homomor-
phisms (a homomorphism concept that provides a common generalization of graph colorings,
hypergraph colorings and nowhere-zero flows) by JENSEN [61].
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8.4. The Ore Construction

Regarding undirected graphs, URQUHART [119] proved that each graph with chromatic num-
ber at least k does not only contain a HAjÓS-k-constructible subgraph but itself is HAjÓS-
k-constructible. The aim of this section is to point out that the same result does not hold
for digraphs and to prove that, however, a slight modification of the HAjÓS join does the
trick.

Theorem 8.12. Let k ≥ 3 be an integer and let D be a HAjÓS-k-constructible digraph.
Then, D is strongly connected. ⋄

Proof. Clearly, if D is a strongly connected digraph, then identifying non-adjacent vertices
still leads to a strongly connected digraph. Moreover, if D1 and D2 are strongly connected,
then the directed HAjÓS-join of D1 and D2 is strongly connected, too, as vertices on di-
rected cycles are still on directed cycles after the HAjÓS join (consider Figure 8.3 for a
visualization). ■

As a consequence of the above theorem, every digraph with dichromatic number at least
k that is not strongly connected is not HAjÓS-k-constructible and so URQUHART’s Theo-
rem cannot be directly transferred to digraphs. Nevertheless, it turns out that we get an
URQUHART-type theorem by further allowing the following join. Let D1 and D2 be two
digraphs and let u1, v1 ∈ V(D1) and u2, v2 ∈ V(D2) such that Di[{ui, vi}] is a digon for
i ∈ {1, 2}. Now let D be the digraph obtained from the union D1 ∪D2 by deleting both arcs
between u1 and v1 as well as both arcs between u2 and v2, identifying the vertices v1 and v2

to a new vertex v, and adding both arcs u1u2 and u2u1. We say that D is the bidirected
HAjÓS join of D1 and D2 and write D = (D1, v1, u1)

↔↔↔
▽(D2, v2, u2) or, briefly, D = D1

↔↔↔
▽D2.

Note that the bidirected HAjÓS join is the exact analogue of the undirected HAjÓS join.
By a slight modification of the proof of Theorem 8.7(a)-(c) one can easily show that the
following holds.

Theorem 8.13 (Bidirected HAjÓS Construction). Let D = D1

↔↔↔
▽D2 result from the bidi-

rected HAjÓS join of two disjoint non-empty digraphs D1 and D2. Then, the following
statements hold:

(a) →→→
χ(D) ≥ min{→→→χ(D1),

→→→
χ(D2)}.

(b) If →→→χ(D1) =
→→→
χ(D2) = k and k ≥ 3, then →→→

χ(D) = k.

(c) If both D1 and D2 are k-critical and k ≥ 3, then D is k-critical. ⋄
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Note that for the proof of statement (b), we use the fact that k ≥ 3 and so we can choose
φ1 and φ2 such that φ1(v1) = φ2(v2) and φ1(u1) 6= φ2(u2). For k = 2, the statement is
not true: for example, D(C4)

↔↔↔
▽D(C4) = D(C7), whereas →→→χ(D(C4)) = 2 6= 3 =

→→→
χ(D(C7)).

The same trick works for statement (c).
For the proof of his theorem, URQUHART even used a more restricted class of constructible

(undirected) graphs than the class of HAjÓS-k-constructible graphs, which originally was
introduced by ORE [98, Chapter 11]. Transferred to digraphs, we get the following. Let
D1 and D2 be two vertex-disjoint digraphs, let u1v1 be an arc of D1, and let v2u2 be an
arc of D2. Furthermore, let ι : S1 → S2 be a bijection with Si ⊆ V(Gi − vi) for i ∈ {1, 2}

and ι(u1) 6= u2. Let D be the digraph obtained from (D1, v1, u1)▽(D2, v2, u2) by identifying
w with ι(w) for each w ∈ S1. Then, D is a directed ORE join of D1 and D2 and
we write D = (D1, v1, u1)▽o

ι (D2, v2, u2). Note that the undirected ORE join of two
undirected graphs G1 and G2 is performed via an undirected HAjÓS join and identification
afterwards. However, for digraphs we need a second type of ORE join: If u1, v1 ∈ V(D1)

and u2, v2 ∈ V(D2) are vertices such that Di[{ui, vi}] is a digon for i ∈ {1, 2} and if ι is
the bijection from above, then the digraph D obtained from (D1, v1, u1)

↔↔↔
▽(D2, v2, u2) by

identifying w with ι(w) for each w ∈ S1 is a bidirected ORE join of D1 and D2 and we
write D = (D1, v1, u1)

↔↔↔
▽
o

ι (D2, v2, u2). Recall that if the identification would lead to more
than one arc in the same direction between two vertices, all but one of those arcs get deleted.

We define the class of ORE-k-constructible digraphs as the smallest family of digraphs
that contains all bidirected complete graphs of order k and is closed under both directed and
bidirected ORE joins. The proof of Theorem 8.8’ immediately implies the following theorem
(see [98] for the undirected analogue). In particular, here we do not need any bidirected
ORE joins.

Theorem 8.14. Let k ≥ 3 be an integer. A digraph has dichromatic number at least k if
and only if it contains an ORE-k-constructible subdigraph. ⋄

URQUHART [119] proved the following result, thereby answering a conjecture by HANSON,
ROBiNSON, and TOFT [55] (the conjecture was also proposed by JENSEN and TOFT in their
book on graph coloring problems [62, Problem 11.5]).

Theorem 8.15 (URQUHART). Let k ≥ 3 be an integer. For a graph G the following condi-
tions are equivalent:

(a) G satisfies χ(G) ≥ k.
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(b) G is HAjÓS-k-constructible.

(c) G is ORE-k-constructible. ⋄

Note that if G is the HAjÓS join of two graphs G1 and G2, then D(G) is the bidirected
HAjÓS join of D(G1) and D(G2). Furthermore, →→→χ(D(G)) = χ(G) (by (6.1)) and so the above
theorem immediately implies the following.

Observation 8.16. Each bidirected graph with dichromatic number at least k ≥ 3 is ORE-
k-constructible.

Now we have all the tools that we need in order to prove our URQUHART-type theorem.

Theorem 8.17. Let k ≥ 3 be an integer. A digraph has dichromatic number at least k if
and only if it is ORE-k-constructible. ⋄

Proof. It immediately follows from Theorem 8.7(a) and Theorem 8.13(a) that each ORE-k-
constructible digraph has dichromatic number at least k.

Thus, it suffices to show that each digraph with dichromatic number at least k is ORE-
k-constructible. We will do this via a sequence of claims. In the following, we will denote
by D(Kk)

→→→
+ v (respectively D(Kk)

←←←
+ v) the digraph that results from D(Kk) by adding a

new vertex v and the arc uv (respectively vu) for some vertex u of D(Kk). Moreover, let
D(Kk) + a be the digraph that results from D(Kk) by adding two new vertices u, v and the
arc a = uv. Finally, Ok denotes the class of ORE-k-constructible digraphs and O∗

k denotes
the class of ORE-k-constructible digraphs containing a bidirected complete graph of order
k. It follows from Observation 8.16 that

Claim 8.17.1. The digraph obtained from D(Kk) by adding an isolated vertex belongs to
O∗
k . ⋄

Claim 8.17.2. The digraph D(Kk) + a belongs to O∗
k . ⋄

Proof. It is clear that D(Kk)+a still contains a copy of D(Kk). We claim that D(Kk)+a is
ORE-constructible. To this end, let D1 (respectively D2) be the bidirected graph obtained
by identifying a vertex of D(Kk) with a vertex of a disjoint copy of D(K2) (respectively
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D(K3)). More formally,

V(D1) = {v1, v2, . . . , vk, u},

A(D1) = {vivj | i 6= j} ∪ {v1u, uv1},

V(D2) = {v ′
1, v

′
2, . . . , v

′
k, u1, u2}, and

A(D2) = {v ′
iv

′
j | i 6= j} ∪ {v ′

1u1, v
′
1u2, u1v

′
1, u2v

′
1, u1u2, u2u1}

(see Figure 8.4a). Let ι be the bijection with ι(vi) = v ′
i for all i ∈ [1, k] and let D ′

2 =

(D1, u, v1)▽o
ι (D2, u2, u1) (see Figure 8.4(a) and (b)). This ORE-join leads to the digraph

D ′
2 = D2−u2u1 (see Figure 8.4(c)). By v∗i we denote the vertex that results from identifying

vi with ι(vi) = v ′
i. Now we take a new copy of D1, define ι ′ to be the bijection with

ι ′(v∗i ) = vi+1 for all i ∈ [1, k] (where vk+1 = v1), and set D ′′
2 = (D ′

2, u1, v
∗
1)
↔↔↔
▽
o

ι ′(D1, u, v1) (see
Figure 8.5b). Still, let v∗i denote the vertex that results from identifying v∗i with ι ′(v∗i ).

Finally, we take another copy of D1, set ι ′′(v∗i ) = vi+1 for i ∈ [1, k] (where vk+1 = v1) and
perform the ORE join (D ′′

2 , u2, v
∗
1)
↔↔↔
▽
o

ι ′′(D1, u, v1) (see Figure 8.6(a)(b)). This gives us the
digraph D(Kk) + u1u2 as required. □

u2

v ′
1

u1v ′
4

v ′
3 v ′

2

D2

v1 v4

v3v2

u

D1

(a) The digraphs D2 and D1. Firstly, we perform the directed HAjÓS join (D1, u, v1)∆(D2, u2, u1).

v ′
1

u1v ′
4

v ′
3 v ′

2

u2

v1 v4

v3v2

(b) The digraph we obtain after the HAjÓS join. Now, we identify the vertices of the same color.

Claim 8.17.3. The digraphs D(Kk)
→→→
+ v and D(Kk)

←←←
+ v are in O∗

k . ⋄
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v∗1 u1v∗4

v∗3 v∗2

u2

(c) This gives us the digraph D ′
2.

FiG. 8.4. The first step of the construction of Claim 8.17.2.

u2 u1

v∗1v∗4

v∗3 v∗2

v1 v4

v3v2

(a)

u2 u1

v∗1v∗4

v∗3 v∗2

(b)

FiG. 8.5. How to build the digraph D ′′
2 .

u2 u1

v∗1v∗4

v∗3 v∗2

v1 v4

v3v2

(a)

u2 u1

v∗1v∗4

v∗3 v∗2

(b)

FiG. 8.6. The final step of the construction.

Proof. For the exact construction ofD(Kk)
→→→
+v see Figure 8.7; we start with two digraphs that

result from D(Kk) by adding a vertex and joining it to either one or two vertices of D(Kk)

by arcs in both directions. The construction of D(Kk)
←←←
+ v can be obtained (by symmetry)

by changing the order of the digraphs in the directed HAjÓS join in Figure 8.7(a). □
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From now on, we may argue similar to the original proof of URQUHART.

Claim 8.17.4. Let D be a digraph belonging to O∗
k . Then, the digraph D ′ obtained from D

by adding an isolated vertex belongs to O∗
k , too.

Proof. It suffices to show that D ′ ∈ Ok. Let D2 be a copy of D(Kk) plus an isolated vertex
(which belongs to O∗

k by Claim 1). As D ∈ O∗
k , there is a vertex set X1 ⊆ V(D) such that

D[X1] is isomorphic to D(Kk). Let X2 be the vertex set of the bidirected complete graph of
order k contained in D2 and, for i ∈ {1, 2}, let vi, wi, ui be three vertices of Xi. Furthermore,
let ι : X1 \ {v1} → X2 \ {v2} be a bijection such that ι(u1) = w2 and ι(w1) = u2. Then
(D, v1, u1)

↔↔↔
▽
o

ι (D2, v2, u2) ∈ Ok is a copy of D ′ and we are done. □

Claim 8.17.5. Let D be a digraph belonging to O∗
k and let a ∈ A(D). Then, the digraph

D+ a belongs to O∗
k , too.

Proof. Since D ∈ O∗
k , there is a vertex set X ⊆ V(D) such that D[X] is a copy of D(Kk). We

distinguish between two cases.
Case 1: One end-vertex of the arc a belongs to X. Then, we may assume a = uv with

u ∈ X and v ∈ V \ X (the case a = vu can be done analogously). Moreover, let D ′ be a
copy of D(Kk) +

→→→
v ′, let X ′ = V(D ′) \ {v ′}, and let u ′ be the vertex adjacent to v ′ in D ′.

Finally, let w, z ∈ X \ {u} and let w ′, z ′ ∈ X ′ \ {u ′}. By Claim 8.17.3, D ′ ∈ Ok. Now let ι be
a bijection from (X \ {u}) ∪ {v} to (X ′ \ {u ′}) ∪ {v ′} with ι(v) = v ′, ι(w) = z ′, and ι(z) = w ′.
Then, (D,u,w)

↔↔↔
▽o
ι (D

′, u ′, w ′) ∈ Ok is a copy of D+ a, and we are done.

Case 2: No end-vertex of a belongs to X. Then, let a = uv, and D ′ be a copy of
D(Kk) + u ′v ′. By Claim 8.17.2, D ′ belongs to Ok. Now let x, y, z be three vertices from X

and let {x ′, y ′, z ′} ⊆ D ′ \ {u, v}. Finally, let ι be a bijection from X \ {x} ∪ {u, v} to D ′ \ {x ′}

with ι(u) = u ′, ι(v) = v ′, ι(y) = z ′, and ι(z) = y ′. Then, (D, x, y)
↔↔↔
▽
o

ι (D
′, x ′, y ′) ∈ Ok is a

copy of D+ a and the proof of the claim is complete. □

It follows from Claims 8.17.4 and 8.17.5 that each digraph containing D(Kk) belongs to
O∗
k . The remaining part of the proof is by reductio ad absurdum. Let D be a maximal

counterexample on a fixed number of vertices in the sense that →→→χ(D) ≥ k, D is not ORE-
k-constructible, and D has maximum number of arcs with respect to this property. Then,
D does not contain D(Kk) and if a ∈ A(D), D + a belongs to Ok. Now we argue as in the
proof of Theorem 8.8’. For two vertices u, v ∈ V(D), let u ∼ v denote the relation that
uv 6∈ A(D). If ∼ is transitive we again conclude from Corollary 8.10 that D is perfect and,
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v1

u1

v2

u2

(a) We start with a directed HAjÓS join between the two digraphs, which are in O∗
k by Theorem 8.15.

v∗

u1 u2

(b) Afterwards, we identify the vertices of the same color. (c) End of the first step.
v1

u1

v2

u2

(d) Now we perform a bidirected HAjÓS join.

v∗

(e) Again we identify vertices of the same color. (f) We get the digraph D(Kk)
→→→
+ v.

FiG. 8.7. The construction of Claim 8.17.3.
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hence, contains D(Kk), a contradiction. Hence, ∼ is not transitive and so there are vertices
u, v,w ∈ V(D) with uv 6∈ A(D), vw 6∈ A(D), but uw ∈ A(D). Then, both digraphs D+uv

as well as D + vw belong to Ok and D is the ORE join of two disjoint copies of these two
digraphs. Thus, D belongs to Ok, a contradiction. ■



Chapter 9

Some Nice Conjectures on Digraph
Coloring

9.1. Emerging Questions Regarding DP-colorings

In Chapter 7, we have transferred the concept of DP-coloring to digraphs and obtained the
BROOKS-type Theorem 7.14 as well as the solution to OHBA’s Conjecture in this setting (see
Corollary 7.19). Nevertheless, as we are the first to examine DP-colorings of digraphs, there
are still various interesting problems left to be investigated.

The Multi-Case
A major benefit of DP-coloring is that the definition of a cover naturally works for multi-
graphs, respectively multidigraphs, as well: if there are ℓ arcs from u to v in a digraph
D, just add ℓ matchings from Xu to Xv in the auxiliary digraph D. Thus, in contrast to
(list-)coloring of digraphs, forbidding parallel arcs between vertices makes a big difference.
But how would the “bad” configurations look like if we allow parallel arcs in the digraph?
Obviously, we get the K- and the C-configurations from the (hyper-)graph case in Chapter 4
by replacing each edge with a digon (see Figure 9.1). Moreover, if D is a directed multicycle
in which two consecutive vertices are joined by ℓ arcs, then we have |Xv| = ℓ for all v ∈ V(D)

and for two consecutive vertices u, v on the cycle, A(D[Xu ∪ Xv]) consists of all possible
arcs xuxv with xu ∈ Xu, xv ∈ Xv and is the union of ℓ matchings from Xu to Xv (see also
Figure 9.1). It is easy to check that this, indeed, gives us a minimal uncolorable configu-
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ration. Nevertheless, by considering multidigraphs we get in trouble regarding shifting in
the auxiliary digraph. Since we can have more than one matching between two sets Xu and
Xv, there does not exist a unique vertex anymore to which we can shift the color and so
many arguments would have to be reassessed significantly. Still, we strongly believe that
the following holds true. Recall that a (multi-)digraph D together with a cover (X,D) is a
degree-feasible configuration if |Xv| ≥ max{d+

D(v), d
−
D(v)} for all v ∈ V(D). A configuration

(D,X,D) is constructible if it can be obtained from K-, C- and DC-configurations (here in
the multi-version) via the merging operation.

Conjecture 9.1. Suppose that (D,X,D) is a degree-feasible configuration, whereD is a mul-
tidigraph. Then, (D,X,D) is minimal uncolorable if and only if (D,X,D) is constructible.⋄

DP-chromatic Number of a Tournament
We have proved in Corollary 7.2 that the DP-chromatic number of a bidirected graph D al-
ways coincides with the DP-chromatic number of its underlying graph G(D). Consequently,
many bounds for the DP-chromatic number of a graph also hold for digraphs and, often, the
sharp digraphs are just bidirected graphs (like for example the K- and the C-configuration
in our result). However, by forbidding digons, i.e., by examining orientations of graphs,
instead, many new and interesting results can be obtained. Here, the first step is usually
to regard tournaments. For instance, NEUMANN-LARA [95] proved that there are exactly
four non-isomorphic tournaments on seven vertices that have dichromatic number 3 and
that there is a unique tournament on eleven vertices with dichromatic number 4. The 3-
chromatic tournaments of order 7 are displayed in Figure 9.2. In particular, the first two
tournaments are also critical; for the other two the removal of the colored arc in each case
leads (up to isomorphisms) to the same critical digraph (see also [60]). We will go more into
detail on this topic in Section 9.4.

But there are also extremal results on coloring tournaments: HARUTYUNYAN proved in
his PhD thesis [56] that the random tournament T of order n satisfies →→→χ(T) ≥ n

2 log2 n+2

a.a.s., and that every tournament T of order n fulfills →→→χ(T) ≤ n
log2 n

(1 + o(1)). A random
tournament of order n is a tournament obtained from the complete graph Kn by replacing
each edge between two vertices u and v either by the arc uv or vu with equal probability
1/2. As a consequence, the random tournament T of order n satisfies a.a.s. →→→χ(T) ∼ n

2 log2 n
.

Later, BENSMAiL, HARUTYUNYAN, and LE [9] extended the argumentation to list-colorings
of digraphs, they obtained the following result.
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(K)-configuration odd (C)-configuration

even (C)-configuration (DC)-configuration

FiG. 9.1. The “bad” configurations for multidigraphs.
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FiG. 9.2. The 3-chromatic tournaments of order 7.

Theorem 9.2 (BENSMAiL, HARUTYUNYAN, and LE, 2018). Let T be the random tourna-
ment of order n. Then a.a.s.

→→→
χ(T) ∼

→→→
χℓ(T) ∼

n

2 log2 n
. ⋄⋄

Obviously, the question arises whether this also true for DP-coloring.

Question 9.3. Let T be the random tournament of order n. Does it hold a.a.s.

→→→
χDP(T) = O(

n

log2 n
)? ⋄⋄

In order to tackle this question, we should have a deeper look into BENSMAiL et al.’s
approach: they rely heavily on the following Lemma due to ERDŐS and MOSER [43].

Lemma 9.4 (ERDŐS and MOSER, 1964). Every Tournament T with order n has an acyclic
set of size at least log2 n+ 1. ⋄

In the paper [9], it is first proved that every tournament T of order n satisfies →→→χℓ(T) ≤
n

log2 n
(1 + o(1)). Here, the key idea is basically to choose a large set of vertices whose lists

share a common color α. Then, the subdigraph of T induced by those vertices is again a
tournament and, by the above lemma, contains a large acyclic set S. Thus, we can color the
vertices from S with α and, thereby, do not create a monochromatic cycle. Afterwards, we
remove those vertices as well as the color α from T , respectively the lists, and repeat this
procedure until there is no large set of vertices left whose lists contain a common color. For
the remaining vertices, we create a bipartite auxiliary graph in which the remaining vertices
form one and the remaining colors form the other class. A vertex v is joined with a color
if the color is contained in its (reduced) list L(v). Then, applying HALL’s Theorem leads to
a matching that covers all the vertices and, hence, to the required list-coloring. The proof
that the random tournament T of order n even satisfies →→→χℓ(T) ≤ n

2 log2 n
(1+o(1)) is based on



Some Nice Conjectures on Digraph Coloring 165

the same ideas but uses probabilistic tools (in particular, the Extended JANSON Inequality,
cf. [3]).

The problem with DP-coloring, however, is that we do not have the concept of coloring
vertices with the same color anymore. Clearly, if we have an acyclic set in a digraph D,
we can choose any vertices in the auxiliary digraph D and do not create a directed cycle
there. But how is it possible to choose those vertices from D and to reduce the configuration
(D,X,D) such that only few vertices are forbidden? This question is definitely interesting
and should be examined in detail. Since the author has already spent (maybe too) much
time on trying to find a solution for this problem, it would be highly appreciated if the
reader tries his luck.

9.2. Digraphs and Variable (Weak) Degeneracy

In the paper [52], GOLOWiCH introduced the concept of degeneracy for digraphs: given a
positive integer k, a digraph D is weakly k-degenerate if every non-empty subdigraph D ′

of D contains a vertex v with min{d+
D ′(v), d

−
D ′(v)} < k. Consequently, a digraph is acyclic

if and only if it is weakly 1-degenerate. Moreover, if D is a bidirected graph, D is weakly
k-degenerate if and only if G(D) is strictly k-degenerate. Due to this relation, the question
arises if we might obtain a decomposition result for digraphs similar to the one in Chapter 2:
given a digraph D and a function h : V(D) → N0, a digraph D is weakly h-degenerate if
in each non-empty subdigraph D ′ of D there is a vertex v with min{d−

D ′(v), d
+
D ′(v)} < h(v).

Moreover, if f : V(D) → N
p
0 is a vector function, then an f-partition of D is a partition

(D1, D2, . . . , Dp) of D such that Di is weakly fi-degenerate for i ∈ [1, p]. We want to
determine under which degree condition D does admit an f partition. Theorems 6.2 and
6.3 suggest that the requirement

f1(v) + f2(v) + . . .+ fp(v) ≥ max{d+
D(v), d

−
D(v)}

for all v ∈ V(D) is the correct condition as (list-)coloring can be modeled by choosing f

appropriately analogous to what we did in Chapter 3. Then, the definition of blocks of type
(K) and (C) can be transferred directly to digraphs by taking D(Kn), respectively D(Cn)

instead of Kn, respectively Cn. Obviously, there has to be a ”bad“-type regarding directed
cycles, in this case there needs to exist an index j such that fj(v) = 1 for all v and fi(v) = 0

for i 6= j. Thus, the directed cycles would fall under the definition of monoblocks. The
digraph D is a monoblock if D is a block, D is EULERian, and there is an index j ∈ [1, p]
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with fi(v) = max{d+
H(v), d

−
H(v)} if i = j and fi(v) = 0, otherwise. An example of a block

of type (M), (K), and (C) is given in Figure 9.3. By defining the types (M), (K), and (C)
in this way, the merging operation still works. We say that (D, f) is a hard pair if D is a
block of type (M), (K), or (C), or if (D, f) is obtained from two hard pairs by the merging
operation.

(C)(K)(M)

(1, 1, 0)

(1, 1, 0)

(1, 1, 0) (1, 1, 0)

(1, 1, 0)

(2, 0, 1)(2, 0, 1)

(2, 0, 1) (2, 0, 1)

(0, 1, 0)(0, 1, 0)

(0, 1, 0)

(0, 1, 0) (0, 1, 0)

(0, 1, 0)

FiG. 9.3. A block of type (M), (K), and (C).

Conjecture 9.5. Let D be a digraph, and let f ∈ Vp(D) be a vector function with p ≥ 1

such that f1(v)+ f2(v)+ . . .+ fp(v) ≥ dH(v) for all v ∈ V(H). Then, D is not f-partitionable
if and only if (D, f) is a hard pair. ⋄

By examining digraph degeneracy, GOLOWiCH [52] aimed to tackle a particularly challeng-
ing conjecture due to ERDŐS [44] from 1979 that was, according to [59], stated independently
by MCDiARMiD and MOHAR in 2002.

Conjecture 9.6. Let D be a digon-free digraph. Then, →→→χ(D) = O( ∆(D)
log2∆(D)). ⋄

This conjecture is the digraph-counterpart to JOHANSSON’s [63] celebrated theorem that
there exists a positive constant C such that every triangle-free graph G with maximum
degree ∆ satisfies χ(G) ≤ (C + o(1)) ∆

ln∆ . JOHANSSON even proved his result for the list-
chromatic number with C = 9; MOLLOY [92] recently improved the constant to C = 1.
Surprisingly, it is possible to use MOLLOY’s probabilistic approach to obtain the result also
for the DP-chromatic number of G, as demonstrated in the highly recommended paper [10]
by BERNSHTEYN. If ERDŐS’ conjecture holds true, it would be asymptotically best possible
as the dichromatic number of a random tournament of order n is approximately n

2 log2 n
as pointed out above. So far, the conjecture is still wide open. A first step was made
by HARUTYUNYAN and MOHAR [57], who proved the following by using the probabilistic
method. Note that, given a digraph D, d̃D(v) denotes the geometric mean of d+

D(v) and
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d−
D(v) and ∆̃(D) is the maximum geometric mean over all vertices of D.

Theorem 9.7 (HARUTYUNYAN and MOHAR, 2011). There is an absolute constant ∆1 such
that every digon-free digraph D with ∆̃(D) ≥ ∆1 satisfies →→→χ(D) ≤ (1− e−13)∆̃(D). ⋄

A similar theorem regarding the list-dichromatic number was obtained later by BENSMAiL,
HARUTYUNYAN, and LE [9]. GOLOWiCH [52] obtained a strengthening of the above theorem
by regarding the m-degenerate dichromatic number →→→χm(D) of a digraph D, i.e., the
smallest integer k such that D admits a partition (D1, D2, . . . , Dk) of which each part Di is
weakly m-degenerate.

Theorem 9.8 (GOLOWiCH, 2016). Let m be a positive integer. For any digon-free digraph
D, we have

→→→
χm(D) ≤

⌊∆(D) − b∆(D)+1
4m+1

c
2m

⌋
+ 1. ⋄⋄

Note that m = 1 corresponds to the usual acyclic coloring concept for digraphs and
so the above theorem implies →→→χ(D) ≤ b2/5 · (∆(D) + 1)c + 1 for all digon-free digraphs
D. GOLOWiCH further utilized his theorem to substantially improve HARUTYUNYAN and
MOHAR’s theorem in terms of ∆̃(D):

Theorem 9.9 (GOLOWiCH, 2016). Every digon-free digraph D satisfies

→→→
χ(D) ≤ b

√
2

3
· ∆̃(D) +

7

5
c. ⋄⋄

Obviously, GOLOWiCH’s theorem is much weaker than ERDŐS’ conjecture, but it gives a
precise bound for all digon-free digraphs. In this regard, HARUTYUNYAN and MOHAR [57]
conjectured that the following holds true.

Conjecture 9.10 (HARUTYUNYAN and MOHAR, 2011). Every digon-free digraph D satis-
fies

→→→
χ(D) ≤ d ∆̃(D)

2
e+ 1. ⋄⋄
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9.3. The Hajós Construction

Regarding critical digraphs, a lot of questions immediately come to mind. It follows from
Theorem 8.8’ that each k-critical digraph is HAjÓS-k-constructible. However, the proof of
Theorem 8.8’ is not constructive at all and it has proved quite challenging to construct
specific critical digraphs by the HAjÓS construction. The first barrier to take should be the
following.

Question 9.11. How can a bidirected C5 be constructed from copies of D(K3) by only using
directed HAjÓS joins and identifying non-adjacent vertices? ⋄

Building upon this question, it is of particular interest to study the connection of the
HAjÓS construction to computational complexity. In the undirected case, MANSFiELD and
WELSH [83] stated the problem of determining the complexity of the HAjÓS construction.
They noted that if for any k ≥ 3 there would exist a polynomial P such that every graph
of order n with chromatic number k contains a HAjÓS-k-constructible subgraph that can
be obtained by at most P(n) uses of the HAjÓS-join and identification of non-adjacent
vertices, then NP = coNP. Hence, it is very likely that the HAjÓS construction is not
polynomially bounded, but not much progress has been made on this problem yet. PiTASSi
and URQUHART [99] found a linkage to another important open problem in logic; they proved
that a restricted version of the HAjÓS construction is polynomially bounded if and only if
extended FREGE systems are polynomially bounded.

Question 9.12. For k ≥ 3, is there a polynomial P such that every digraph of order n

contains a HAjÓS-k-constructible subdigraph that can be obtained from bidirected complete
graphs of order k by at most P(n) uses of the directed HAjÓS-join and identification of
non-adjacent vertices? ⋄

9.4. Critical Digraphs with Few Arcs and Few Vertices

A beautiful theorem of GALLAi [49] states that any k-critical graph with order at most
2k − 2 and k ≥ 2 is the DiRAC join of two disjoint non-empty critical graphs. Within the
last decades, various different proofs of this theorem have been published (see e.g. [91] and
[107]). Clearly, a graph G is the DiRAC join of two disjoint non-empty graphs if and only if
G is disconnected and so most of the proofs use matching theory for the complement graph
G. Recently, STEHLÍK [108] transferred GALLAi’s theorem to digraphs, thereby answering a
question that we raised in an early version of the paper [7].
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Theorem 9.13 (STEHLÍK, 2019). Let k ≥ 3 be an integer and let D be a k-critical digraph
on at most 2k − 2 vertices. Then, D is disconnected and so D is the DiRAC join of two
proper subdigraphs D1 and D2. ⋄

GALLAi [49] used his Theorem in order to determine the minimum number of edges in
k-critical graphs of order n with k+2 ≤ n ≤ 2k−2. It seems natural to apply his approach
to the digraph setting. To this end, let

→→→
CRI(k, n) denote the class of k-critical digraphs of

order n. Our aim is to analyze the function

→→→
ext(k, n) = min{|A(D)| | D ∈

→→→
CRI(k, n)}

as well as the corresponding class
→→→

Ext(k, n) = {D ∈
→→→

CRI(k, n) | |A(D)| =
→→→
ext(k, n)}.

The definition of ext(k, n) and Ext(k, n) for graphs are accordingly.
That it is worthwile studying the function ext(k, n) was already recognized by DiRAC in

his PhD thesis. As every k-critical graph has minimum degree at least k − 1, we have the
trivial bound 2ext(k, n) ≥ (k − 1)n. Note that BROOKS’ Theorem is equivalent to the fact
that equality holds if and only if n = k or k = 3 and n is odd. In 1957, DiRAC [40] improved
this bound by showing that

2ext(k, n) ≥ (k− 1)n+ k− 3 for k ≥ 4 and n ≥ k+ 2.

Note that there is no k-critical graph on k+1 vertices since no two vertices in a critical graph
can have the same neighborhood. GALLAi [49] further improved DiRAC’s bound. Utilizing
his Theorem 3 on the low-vertex subgraph of a k-critical graph, he deduced that

2ext(k, n) ≥
(
k− 1+

k− 3

k2 − 3

)
n for n ≥ k+ 2.

As already indicated above, GALLAi also used his characterization of k-critical graphs with
order at most 2k − 2 to determine the exact values of ext(k, n) for k ≥ 4 and k + 2 ≤ n ≤
2k− 1: he proved that

ext(k, n) =
(
n

2

)
− ((n− k)2 + 1).

After a series of additional enhancements (see [70, 75] and also the survey by KOSTOCHKA [69]),
KOSTOCHKA and YANCEY [73] proved the following remarkable result that establishes the
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asymptotics of ext(k, n).

Theorem 9.14 (KOSTOCHKA and YANCEY, 2014). If k ≥ 4 and n ≥ k with n 6= k + 1,
then

ext(k, n) ≥
⌈(k+ 1)(k− 2)n− k(k− 3)

2(k− 1)

⌉
and equality holds if n ≡ 1(mod k− 1), or k = 4, or k = 5 and n ≡ 2(mod 4). ⋄

In particular, we get ext(4, n) = d 5n−2
3

e for n ≥ 4 and n 6= 5. Moreover, it follows that

lim
n→∞ 2ext(k, n)

n
= k−

2

k− 1
,

which confirmes a conjecture by ORE [98].
However, not much is known about the function

→→→
ext(k, n). As every k-critical digraph D

satisfies min{δ+(D), δ−(D)} ≥ k − 1 (by Proposition 8.1(b)), it trivially holds
→→→
ext(k, n) ≥

(k− 1)n and it follows from Theorem 8.2 that equality holds if and only if k = 2 and n ≥ 3,
or k = 3 and n ≥ 3 odd, or n = k ≥ 4. Moreover,

→→→
Ext(2, n) consists only of the directed

cycle of order n (n ≥ 2),
→→→

Ext(3, n) only contains the bidirected Cn (for n ≥ 3 odd), and→→→
Ext(k, k) = {D(Kk)} for k ≥ 4.

A natural first approach for the determination of
→→→
ext(k, n) is to analyze the relation

between
→→→
ext(k, n) and ext(k, n). In (8.1) we have already obtained that a bidirected graph

D is k-critical if and only if its underlying graph D(G) is k-critical (with respect to χ). As a
consequence,

→→→
ext(k, n) ≤ 2ext(k, n) for n ≥ k ≥ 4 and n 6= k+ 1. Note that this inequality

does not hold for n = k + 1 as CRI(k, k + 1) is empty, but
→→→

CRI(k, k + 1) is not. In order
to verify that

→→→
CRI(k, k + 1) indeed is non-empty, let C be a directed cycle of length 3 and

consider the DiRAC join D = D(Kk−2)⊠C with k ≥ 2. Then, D is k-critical by Theorem 8.6
and |D| = k + 1. In fact, it is possible to show that this is the only digraph contained in→→→
CRI(k, k+ 1) [102]. KOSTOCHKA and STiEBiTZ [71] conjectured the following:

Conjecture 9.15 (KOSTOCHKA and STiEBiTZ, 2020). Let k, n ∈ N with n ≥ k ≥ 4 and
n 6= k+ 1. Then

→→→
ext(k, n) = 2ext(k, n) and hence

lim
n→∞

→→→
ext(k, n)

n
= k−

2

k− 1
.

Furthermore,
→→→

Ext(k, n) = {D(G) | G ∈ Ext(k, n)}. ⋄
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KOSTOCHKA and STiEBiTZ [71] also made a first step to confirming their conjecture; they
proved that for n ≥ 4, →→→

ext(4, n) ≥ 10n− 4

3
.

Note that this corresponds with the above mentioned fact that ext(4, n) = d 5n−2
3

e. Thus, if
n ≥ 4 and n 6= 5, then

2ext(4, n) − 1 ≤
→→→
ext(4, n) ≤ 2ext(4, n)

and
→→→
ext(4, n) = 2ext(4, n) if n ≡ 1(mod 3) or n ≡ 2(mod 3). We are optimistic that we

can use STEHLÍK’s result together with GALLAi’s approach in order to prove the following
conjecture.

Conjecture 9.16. Let k and n be integers satisfying k ≥ 4 and k+ 2 ≤ n ≤ 2k− 1. Then,→→→
ext(k, n) = 2(

(
n
2

)
− ((n− k)2 + 1)). ⋄

Note that the above conjecture would imply that
→→→
ext(k, n) = 2ext(k, n) if k ≥ 4 and

k+ 2 ≤ n ≤ 2k− 1.
If KOSTOCHKA and STiEBiTZ’s conjecture can be confirmed true, there is no longer

any reason to consider
→→→
ext(k, n) as (nearly) everything could be settled within the graph

case. What would still be interesting, though, is to examine how the number of arcs
in critical digraphs behaves if we forbid digons. Related to this question, HOSHiNO and
KAWARABAYASHi [60] proved that there is an infinite family of sparse k-critical digon-free
digraphs D with |A(D)| < (k

2−k+1
2

)|D| and an infinite family of dense k-critical digon-free
digraphs D satisfying |A(D)| > ( 1

2
− 1

2k−1 )|D|2. However, they point out that k2−k+1
2

is pre-
sumably not optimal, for instance, there is an infinite family of 3-critical digon-free digraphs
with D with |A(D)| < 20

7
|D|, where the above bound would only give 7

2
. This motivates the

following problem.

Problem 9.17 ([60]). For each k ≥ 3, determine a function y(k) < k2−k+1
2

for which there
exist infinitely many k-critical digon-free digraphs D satisfying |A(D)| < y(k)|D|. What is
the minimum of all such functions y(k)? ⋄

HOSHiNO and KAWARABAYASHi further conjectured that y(k) = k2

2
−O(k), to the author’s

knowledge this is still open. Regarding the upper bound, they guessed that 1
2
− 1

2k−1 is at
least close-to-optimal. They still proposed the following problem.
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Problem 9.18 ([60]). For each k ≥ 3, determine a function x(k) > 1
2
− 1

2k−1 for which there
exist infinitely many k-critical digon-free digraphs D satisfying |A(D)| > x(k)|D|2. What is
the supremum of all such functions x(k)? ⋄

Instead of regarding the relation between arcs and vertices, one could also examine what
are the ”smallest“ critical digraphs with respect only to their order.

Question 9.19. For fixed k ≥ 3, what is the minimum integer N(k) such that there is a
k-critical digon-free digraph on N(k) vertices? ⋄

As k− 1 ≤ min{d+
D(v), d

−
D(v)} for all vertices v of a k-critical digraph D, we trivially have

N(k) ≥ 2k − 1. In fact, BROOKS’ Theorem 8.2 for digraphs implies that N(k) ≥ 2k for
k ≥ 3. Moreover, some small values are already known: the directed triangle shows that
N(2) = 3, and NEUMANN-LARA [95] proved that N(3) = 7, N(4) = 11, and 17 ≤ N(5) ≤ 19;
he conjectured that N(5) = 17. In fact, there are exactly three non-isomorphic 3-critical
digraphs of order seven, two of them having 21 arcs and the third having 20 arcs. Those
three digraphs are displayed in Figure 9.2 by regarding only the black arcs. The third and
the fourth digraph are isomorphic.

Finally, let us return to the problem of determining the minimum number of arcs in
critical digon-free digraphs: from Theorem 8.5 it follows that each 3-critical digon-free
digraph D satisfies |A(D)| ≥ (2 + 1

7
)|D|. We believe that this bound can be improved to

|A(D)| ≥ (2 + 1
2
)|D|. As a consequence of our bound, we obtain that if D is a 3-critical

digon-free planar digraph, then G(D) contains a triangle. However, Li and MOHAR [77] in
fact proved that in this case D contains not only a triangle but a directed cycle of length
three. This implies that every planar digraph of digirth at least 4 admits a 2-coloring. This
result is a first step in proving the following, famous conjecture proposed by ERDŐS and
NEUMANN-LARA, and, independently, by ŠKREKOVSKi (for a reference see [77]).

Conjecture 9.20 (THE TWO COLOR CONjECTURE). Every digon-free planar digraph D

satisfies →→→χ(D) ≤ 2. ⋄
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[107] STEHLíK, M.: Critical graphs with connected complements. J. Combin. Theory Ser.
B 89 (2003), 189–194 (cit. on p. 168).
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The number at the end of each line refers to the page where the term is defined.
The items are sorted according to content as far as possible.

Basic Terminology

N set of positive integers, 6
N0 set of non-negative integers, 6
[k, ℓ] all h ∈ N0 with k ≤ h ≤ ℓ, 6
∅∅∅ empty set, 6
2V power set of V , 6
|V| cardinality of the set V , 6
G,G′, G̃ graphs, 6
ω(G) clique number of G, 95
Kn complete graph on n vertices, 7
Cn cycle on n vertices, 7
Γ color set, 12

L list-assignment, 13
α color, 13
φ coloring of graph/hypergraph/digraph,
12
χ(G) chromatic number of a graph G, 1
CRI(k) class of k-critical graphs, 3
ext(k,n) minimum number of edges in a
k-critical graph of order n, 169
Ext(k,n) class of k-critical graphs of order
n with minimum number of edges, 169
GL low vertex subgraph of G, 3

Hypergraph Terminology

H,H′, H̃ hypergraphs, 6
V(H) vertex set of a hypergraph H, 6
E(H) edge set of a hypergraph H, 6
iH incidence function of H, 6
|H| order of the hypergraph H, 6
< e > hypergraph consisting of the edge e, 7
tH t-uniform inflation of H, 8
H′ ⊆ H H ′ subhypergraph of H, 7

H′ ⊂ H H ′ proper subhypergraph of H, 7
H1 ∪H2 union of H1 and H2, 7
H1 ∩H2 intersection of H1 and H2, 7
H[X] subhypergraph induced by X, 7
H(X) H shrinked to X, 8
H÷ X H shrinked at X, 8
H − X subhypergraph of H induced by
V(H) \ X, 8
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H−F subhypergraph with vertex set V(H)

and edge set E(H) \ F, 8
H′ + v subhypergraph induced by V(H ′)∪
{v}, 8
H′ + e subhypergraph with vertex set
V(H ′) and edge set E(H ′) ∪ {e}, 8
M (hyper-)matching, 8
P (hyper-)path, 9
uPw subhyperpath between u and w, 9
distH(u, v) distance between u and v, 9
λH(u, v) local edge connectivity of u, v, 88
λ(H) maximum local edge connectivity, 88
B block, 10
B(H) set of all blocks of H, 10
Bv(H) set of blocks of H containing v, 10
(X, Y, F) edge cut of H, 95
XF set of vertices of X incident to F with
respect to (X, Y, F), 95
NH(v) ordinary neighborhood of v, 10
EH(X) set of edges containing at least one
vertex from X as well as V(H) \ X, 10
EH(v) set of edges incident with v, 10
dH(v) degree of v in H, 10
δ(H) minimum degree of H, 10
∆(H) maximum degree of H, 10
d(H) degree sum of H, 61
µH(u, v) multiplicity of (u, v) in H, 10
A(H) set of all two-subsets {u, v} of V(H)

with µH(u, v) > 0, 72
col(H) coloring number of H, 11
(H1,H2, . . . ,Hp) p-partition of H, 12
χ(H) chromatic number of H, 13
χℓ(H) list-chromatic number of H, 13
χDP(H) DP-chromatic number of H, 68
χs(H) point-partition number of H, 50

χs
ℓ(H) list point-partition number of H, 50

χ(H : P) P-chromatic number of H, 54
χℓ(H : P) P-list-chromatic number of H,
54
COk(H) set of proper k-colorings of H, 92
H class of all hypergraphs, 14
P hypergraph property, 14
F(P) property of P-(vertex-)critical hy-
pergraphs, 14
d(P) minimum degree over all hyper-
graphs from F(P), 15
O property of edgeless hypergraphs, 14
Sk property of hypergraphs with maxi-
mum degree ≤ k, 14
Dk property of strictly (k + 1)-degenerate
hypergraphs, 14
Hk specific class of hypergraphs closed un-
der Hajós joins, 88
Ck class of k + 1-critical hypergraphs H

with λ(H) ≤ k, 97
V(H,P, L) set of low vertices of H with re-
spect to (P, L), 56
H(V(H,P, L)) low-vertex hypergraph, 56
f : V(H) →→→ N

p
0 vector function of H, 19

fi ith coordinate of f, 19
Vp(H) set of all vector functions of H, 19
(X,H) cover of a hypergraph H, 68
(H,X,H) (feasible) configuration, 71
(H, f)/(z, j) reduction method for non-
partitionable pairs, 26
(H,X,H)/(v, x) reduction method for fea-
sible configurations, 76
H1▽H2 Hajós join of H1 and H2, 88
H1 ⊠H2 Dirac sum of H1 and H2, 103
S(H1, ẽ,H2, ṽ, s) splitting ṽ into ẽ, 100
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S(H, ṽ, ẽ, s) splitting ṽ into the indepen- dent set ẽ, 103

Digraph Terminology

D,D′, D̃ digraphs, 106
V(D) vertex set of a digraph D, 106
A(D) arc set of a digraph D, 106
|D| order of the digraph D, 106
ω(D) clique number of D, 150
S(D) symmetric part of D, 150
G(D) underlying graph of D, 108
D complement of D, 108
DC maximal subdigraph of D satisfying
G(DC) = C, 108
D(G) complete biorientation of G, 108
a = uv arc from u to v, 106
N+

D(v) set of out-neighbors of v, 107
N−

D(v) set of in-neighbors of v, 107
AD(X, Y) set of arcs with inital vertex in
X and terminal vertex in Y, 107
d+
D(v) out-degree of v, 107

d−
D(v) in-degree of v, 107

dD(v) total degree of v, 107
d̃D(v) geometric mean of d+

D(v) and d−
D(v),

166
∆+(D) maximum out-degree of D, 107
∆−(D) maximum in-degree of D, 107
∆(D) maximum total degree of D, 107
∆̃(D) maximum geometric mean over all
vertices of D, 167
δ+(D) minimum out-degree of D, 107
δ−(D) minimum in-degree of D, 107
δ(D) minimum total degree of D, 107
D′ ⊆ D D ′ subdigraph of D, 107

D′ ⊂ D D ′ proper subdigraph of D, 107
D[X] subdigraph induced by X, 107
D−X subdigraph ofD induced by V(D)\X,
107
P (directed) path, 107
C (directed) cycle, 107
M matching, 114
B Block of D, 108
B(D) set of all blocks of D, 108
Bv(D) set of blocks of D containing v, 108→→→
χ(D) dichromatic number of D, 109→→→
χℓ(D) list-dichromatic number of D, 116→→→
χDP(D) DP-dichromatic number of D, 115→→→
χm(D) m-degenerate dichromatic number
of D, 167
(X,D) cover of D, 114
(D,X,D) feasible configuration, 117
(X,D)/v reduction method for feasible
configurations, 121
u →→→ v shifting the color from xu ∈ Xu to
xv ∈ Xv (DP-case), 125
u →→→ v shifting the color from u to v, 143→→→
CRI(k) class of k-critical digraphs, 140→→→
ext(k,n) minimum number of arcs in a k-
critical digraph of order n, 169→→→
Ext(k,n) class of k-critical digraphs of or-
der n with minimum number of arcs, 169
DL low vertex subdigraph of D, 140
D1 ⊠D2 Dirac sum of D1 and D2, 147
D1▽D2 Hajós join of D1 and D2, 147
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D1

↔↔↔
▽D2 bidirected Hajós join ofD1 andD2,

153
(D1, v1, u1)▽o

ι (D2, v2, u2) directed Ore
join of D1 and D2, 154
(D1, v1, u1)

↔↔↔
▽
o

ι (D2, v2, u2) bidirected Ore
join of D1 and D2, 154
Ok class of Ore-k-constructible digraphs,
155

O∗
k class of Ore-k-constructible digraphs

containing D(Kk), 155
D(Kk)

→→→
+v results from D(Kk) by adding v

plus one arc uv, 155
D(Kk)

←←←
+v results from D(Kk) by adding v

plus one arc vu, 155
D(Kk) + a results from D(Kk) by adding
new vertices u, v and the arc uv, 155
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