413 research outputs found

    Vertex coloring with forbidden subgraphs

    Get PDF
    Given a set LL of graphs, a graph GG is LL-free if GG does not contain any graph in LL as induced subgraph. A holehole is an induced cycle of length at least 44. A holehole-twintwin is a graph obtained by adding a vertex adjacent to three consecutive vertices in a holehole. Hole-twins are closely related to the characterization of the line graphs in terms of forbidden subgraphs. By using {\it clique-width} and {\it perfect graphs} theory, we show that (clawclaw,4K14K_1,holehole-twintwin)-free graphs and (4K14K_1,holehole-twintwin,55-wheelwheel)-free graphs are either perfect or have bounded clique-width. And thus the coloring of them can be done in polynomial time

    Separability and Vertex Ordering of Graphs

    Get PDF
    Many graph optimization problems, such as finding an optimal coloring, or a largest clique, can be solved by a divide-and-conquer approach. One such well-known technique is decomposition by clique separators where a graph is decomposed into special induced subgraphs along their clique separators. While the most common practice of this method employs minimal clique separators, in this work we study other variations as well. We strive to characterize their structure and in particular the bound on the number of atoms. In fact, we strengthen the known bounds for the general clique cutset decomposition and the minimal clique separator decomposition. Graph ordering is the arrangement of a graph’s vertices according to a certain logic and is a useful tool in optimization problems. Special types of vertices are often recognized in graph classes, for instance it is well-known every chordal graph contains a simplicial vertex. Vertex-ordering, based on such properties, have originated many linear time algorithms. We propose to define a new family named SE-Class such that every graph belonging to this family inherently contains a simplicial extreme, that is a vertex which is either simplicial or has exactly two neighbors which are non-adjacent. Our family lends itself to an ordering based on simplicial extreme vertices (named SEO) which we demonstrate to be advantageous for the coloring and maximum clique problems. In addition, we examine the relation of SE-Class to the family of (Even-Hole, Kite)-free graphs and show a linear time generation of SEO for (Even-Hole, Diamond, Claw)-free graphs. We showcase the applications of those two core tools, namely clique-based decomposition and vertex ordering, on the (Even-Hole, Kite)-free family

    On the structure of (pan, even hole)-free graphs

    Full text link
    A hole is a chordless cycle with at least four vertices. A pan is a graph which consists of a hole and a single vertex with precisely one neighbor on the hole. An even hole is a hole with an even number of vertices. We prove that a (pan, even hole)-free graph can be decomposed by clique cutsets into essentially unit circular-arc graphs. This structure theorem is the basis of our O(nm)O(nm)-time certifying algorithm for recognizing (pan, even hole)-free graphs and for our O(n2.5+nm)O(n^{2.5}+nm)-time algorithm to optimally color them. Using this structure theorem, we show that the tree-width of a (pan, even hole)-free graph is at most 1.5 times the clique number minus 1, and thus the chromatic number is at most 1.5 times the clique number.Comment: Accepted to appear in the Journal of Graph Theor

    Balancedness of subclasses of circular-arc graphs

    Get PDF
    A graph is balanced if its clique-vertex incidence matrix contains no square submatrix of odd order with exactly two ones per row and per column. There is a characterization of balanced graphs by forbidden induced subgraphs, but no characterization by mininal forbidden induced subgraphs is known, not even for the case of circular-arc graphs. A circular-arc graph is the intersection graph of a family of arcs on a circle. In this work, we characterize when a given graph G is balanced in terms of minimal forbidden induced subgraphs, by restricting the analysis to the case where G belongs to certain classes of circular-arc graphs, including Helly circular-arc graphs, claw-free circular-arc graphs, and gem-free circular-arc graphs. In the case of gem-free circular-arc graphs, analogous characterizations are derived for two superclasses of balanced graphs: clique-perfect graphs and coordinated graphs.Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Duran, Guillermo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Chile; ChileFil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Wagler, Annegret Katrin. Centre National de la Recherche Scientifique; Franci

    Vertex elimination orderings for hereditary graph classes

    Full text link
    We provide a general method to prove the existence and compute efficiently elimination orderings in graphs. Our method relies on several tools that were known before, but that were not put together so far: the algorithm LexBFS due to Rose, Tarjan and Lueker, one of its properties discovered by Berry and Bordat, and a local decomposition property of graphs discovered by Maffray, Trotignon and Vu\vskovi\'c. We use this method to prove the existence of elimination orderings in several classes of graphs, and to compute them in linear time. Some of the classes have already been studied, namely even-hole-free graphs, square-theta-free Berge graphs, universally signable graphs and wheel-free graphs. Some other classes are new. It turns out that all the classes that we study in this paper can be defined by excluding some of the so-called Truemper configurations. For several classes of graphs, we obtain directly bounds on the chromatic number, or fast algorithms for the maximum clique problem or the coloring problem
    • …
    corecore