
Wilfrid Laurier University Wilfrid Laurier University 

Scholars Commons @ Laurier Scholars Commons @ Laurier 

Theses and Dissertations (Comprehensive) 

2019 

Vertex coloring with forbidden subgraphs Vertex coloring with forbidden subgraphs 

Yingjun Dai 
daix8340@mylaurier.ca 

Follow this and additional works at: https://scholars.wlu.ca/etd 

 Part of the Theory and Algorithms Commons 

Recommended Citation Recommended Citation 
Dai, Yingjun, "Vertex coloring with forbidden subgraphs" (2019). Theses and Dissertations 
(Comprehensive). 2171. 
https://scholars.wlu.ca/etd/2171 

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for 
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ 
Laurier. For more information, please contact scholarscommons@wlu.ca. 

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F2171&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholars.wlu.ca%2Fetd%2F2171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/2171?utm_source=scholars.wlu.ca%2Fetd%2F2171&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca


Vertex Coloring With Forbidden
Subgraphs

By:

Yingjun Dai

A thesis

Submitted to the Department of Physics and Computer Science

in partial fulfilment of the requirements for

Master of Applied Computing in Computer Science

Wilfrid Laurier University

c© 2019 Yingjun Dai



Abstract

Given a set L of graphs, a graph G is L-free if G does not contain any graph in L as

induced subgraph. A hole is an induced cycle of length at least 4. A hole-twin is a

graph obtained by adding a vertex adjacent to three consecutive vertices in a hole.

Hole-twins are closely related to the characterization of the line graphs in terms of

forbidden subgraphs.

By using clique-width and perfect graphs theory, we show that (claw,4K1,hole-

twin)-free graphs and (4K1,hole-twin,5-wheel)-free graphs are either perfect or have

bounded clique-width. And thus the coloring of them can be done in polynomial

time.
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Chapter 1

Introduction

1.1 Background

In the 1700s, the idea of a graph was introduced during a Swiss mathematician

Leonhard Euler’s attempts to a famous problem: the Königsberg Bridge Problem.

Königsberg is a city on the Pregolya river and it has four bodies of land connected by

a total of seven bridges. The problem asks: Is there a way to walk through all lands

by crossing each bridge exactly once?

Definition 1.1.1 A graph is an ordered pair G = (V,E), where V is a set of vertices

and E is a set of edges(a pair of vertices).

Definition 1.1.2 The number of edges incident to a vertex is called the degree of the

vertex.

Definition 1.1.3 A path is a sequence of distinct vertices vi and edges of the form

v0, {v0, v1}, v1, ... vk−1 ,{vk−1, vk}, vk. And Pk represents a path of length k.

1



2 CHAPTER 1. INTRODUCTION

Definition 1.1.4 An Euler Path is a path that uses every edge of the graph exactly

once.

The four bodies of land can be seen as 4 vertices in the graph and there is an edge

between two vertices if a bridge connects the two corresponding lands. Euler found

that if G contains none or 2 odd degree vertices, then the graph has an Euler path.

The discussion of the Königsberg problem in [7] is commonly considered to be the

origin of graph theory.

(a) The Königsberg city

◦

◦

◦

◦

(b) A graph view of the

Königsberg city

Figure 1.1: The landscape of Königsberg

One of the most important subfields of graph theory is the vertex coloring prob-

lem. It has been studied as an algorithmic problem and has attracted the interest of

scientists since last century. A definition of vertex coloring is as follows:

Definition 1.1.5 Vertex coloring is an assignment of colors to vertices of a graph G

such that no two adjacent vertices are assigned with the same color.
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Definition 1.1.6 A coloring using at most k colors is called a k-coloring and a graph

that admits a k-coloring is called k-colorable.

Definition 1.1.7 The least number of colors needed to color a graph is called the

chromatic number, denoted by χ(G).

A famous example of graph coloring is the Four Color Theorem: Given any plane,

partition the plane into contiguous regions and call it a map. Four colors are enough

to color any map where no two regions sharing a common boundary are assigned

with the same color. The Four Color Theorem was proved in 1976 with the use of

computer by Kenneth Appel and Wolfgang Haken [1].

Figure 1.2: from the four coloring problem to graph coloring

Another application of graph coloring is scheduling. There is a set of tasks to

be scheduled, and each task can be scheduled in any order, but tasks may share the

same resources. Finding the best schedule to avoid conflicts can be seen as graph

coloring problem, where each task represents a vertex in the graph and there is an

edge between vertices if the tasks are in conflict.

Now we provide some useful definitions.

Definition 1.1.8 The complement of a graph G is a graph that has the same set of
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vertices, and two vertices are adjacent if and only if they are not adjacent in G. It is

denoted as G.

Definition 1.1.9 A clique is a subset of vertices such that every two distinct vertices

are adjacent.

Definition 1.1.10 A stable (or independent) set of a graph G, is a set of vertices of

G where no two vertices are adjacent.

The number of vertices in the largest stable set (or the stability number) in G is

denoted as α(G).

Definition 1.1.11 Given a graph G and partition G into cliques. The minimum

number of cliques needed to cover all vertices of G is called the clique covering number

of G, denoted as θ(G).

The clique covering number of G is also equal to the chromatic number of its

complement graph: θ(G) = χ(G).

Definition 1.1.12 The size of the largest clique in G is called the clique number of

G, denoted as ω(G).

Definition 1.1.13 A hole is a cycle with length at least four. A k-hole is a hole with

k vertices.

Definition 1.1.14 A decision problem is a problem with answer Yes or No.

Definition 1.1.15 P is a complexity class containing all decision problems that can

be solved in polynomial time.
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Definition 1.1.16 NP is a complexity class containing all decision problems that the

answer of the problem can be verified in polynomial time.

Definition 1.1.17 NP-Complete is a complexity class containing all decision prob-

lems X in NP such that for any other NP problems Y , it is possible to reduce Y to

X in polynomial time.

It is well known that for any arbitrary graph, determining whether it is k-colorable

or not is NP-Complete. Therefore, it is natural to study the complexity of vertex

coloring when the graph is restricted with forbidden subgraphs.

Definition 1.1.18 A subgraph of graph G = (V,E) is another graph G′ = (V ′, E ′)

such that V ′ ⊆ V and E ′ ⊆ E. An induced subgraph of graph G = (V,E) is a graph

G′ = (V ′, E ′) such that V ′ ⊆ V and E ′ is the set of all edges whose endpoints are

both in V ′.

“H-Free” graphs refers to the class of all graphs that do not contain an induced

subgraph H.

For a set L of graphs, a graph G is called L-free when G does not contain any

graph of L as an induced subgraph.

In [31], Král, Kratochv́ıl, Tuza and Woeginger showed a complete characterization

of H-free graphs for which the coloring can be done in polynomial time or NP-

Complete:

Theorem 1.1.1 ([31]) The coloring of H-free problem can be solved in polynomial

time if H is an induced subgraph of P4 or P3⊕K1(disjoint union of P3 and K1), and

NP-Complete for any other H.
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The authors further studied the L-free graph coloring problem when L contains

two sets of graphs.

The authors generalized L into fours types:

• Type A: Graphs containing a cycle

• Type B: Graphs containing a claw

• Type C: Graphs containing an induced subgraph of 2K2

• Type D: Graphs that are an induced subgraph of P4 or P3 ⊕K1

Proposition 1.1.2 ([31]) If at least one of graphs in L is of Type D, then L-free

graphs coloring is polynomial time solvable. If all graphs of L are the same type A,

B or C, then L-free graphs coloring is NP-Complete.

Proposition 1.1.3 ([31]) (claw,Ck)-free coloring is NP-Complete for any k ≥ 4.

1.2 Perfect Graph

In the 1950s, Claude Berge [4] introduced the concept of perfect graphs. He defined

two kinds of perfectness:

• α-perfect: θ(G) = α(G) (the smallest number of cliques that covers G equals

the number of vertices in the largest stable set)

• χ-perfect: ω(G) = χ(G) (the number of vertices in the largest clique equals the

number of colors need to color G)

In 1963, Berge [5] was working on graphs that do not contain odd holes of length

at least 5, or the complement of such a cycle. Such graphs are called Berge graphs.
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Definition 1.2.1 A Berge graph is a graph that contains neither odd holes nor odd

antiholes(complement of holes) of length 5 or more.

Then he published his two famous conjectures:

1. The Weak Perfect Graph Conjecture: α- and χ-perfect graphs are the same set

of graphs.

2. The Strong Perfect Graph Conjecture: Berge Graphs are α-perfect.

The Weak Perfect Graph conjecture was proved in 1972 by Lovász [32], and because

of the proof, there is no need to distinguish between α− and χ- perfect graphs. They

have since been called perfect graphs by the graph theory community.

Theorem 1.2.1 (Perfect Graph Theorem) If G is perfect, then G is perfect.

Definition 1.2.2 A perfect graph is a graph where the chromatic number of every

induced subgraph is equal to the size of its largest clique.

Chudnovsky, Robertson, Seymour and Thomas announced a proof of the Strong

Perfect Graph Conjecture and the proof was published in 2006 [11]. Since then, the

Strong Perfect Graph Conjecture was renamed the Strong Perfect Graph Theorem.

Theorem 1.2.2 (Strong Perfect Graph Theorem) Perfect graphs are the graphs that

contains neither odd holes nor odd anti-holes of length at least five.

The Shannon capacity of a graph is defined by Shannon in [36]. The computational

complexity of Shannon capacity is unknown. But the Lovász number, also known as

the Lovász’s theta function, can be computed in polynomial time and it is an upper

bound of the Shannon capacity.
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Theorem 1.2.3 (Lovász’s Sandwich Theorem) Lovász’s theta function θ(G) satisfies

ω(G) ≤ θ(G) ≤ χ(G).

Perfect graphs satisfy ω(G) = χ(G) for every induced subgraph, and thus ω(G) =

θ(G) = χ(G). For any graph G, a polynomial time algorithm based on the ellipsoid

method to find the Lovász number was given in [21]. Therefore, for all perfect graphs,

the graph coloring problem can be solved in polynomial time.

1.3 Clique Width

The clique width of a graph G, denoted by cwd(G), is a relatively new concept and

it describes the structure of the graph. In 1990, Courcelle, Engelfriet and Rozenberg

defined the construction sequences of clique width [15].

Consider the following operations to build a graph:

1. Create a vertex u labeled by integer `.

2. Make the disjoint union of several graphs.

3. For some pair of distinct labels i and j, add all edges between vertices with

label i and vertices with label j.

4. For some pair of distinct labels i and j, relabel all vertices of label i by label j.

The clique width of a graph G is the minimum number of labels used to generate

G by the four operations. A k-expression for a graph G is the description of how G

is recursively generated by repeatedly applying the four operations with k labels.

An example to build a path using 3 labels is presented in Figure 1.3.
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◦

1

P1:

Create a new vertex and label it 1.

Create a new vertex and label it 2.

Add all edges between vertices with label 1 and 2.

◦ ◦

1 2

P2:

◦ ◦

1 2

◦ ◦ ◦

1 2 3

P3:

Create a new vertex and label it 3.

Add all edges between vertices with label 2 and 3.

Relabel all vertices with label 2 by label 1.

◦ ◦ ◦

1 2 3

◦ ◦ ◦

1 1 3

◦ ◦ ◦ ◦

1 1 3 2

P4:

Create a new vertex and label it 2.

Add all edges between vertices with label 2 and 3.

Relabel all vertices with label 3 by label 1.

◦ ◦ ◦ ◦

1 1 3 2

◦ ◦ ◦ ◦

1 1 1 2

◦ ◦ ◦ ◦ ◦

1 1 1 2 3

P5:

◦ ◦ ◦ ◦ ◦

1 1 1 2 3

Figure 1.3: Create a path using 3 labels
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Theorem 1.3.1 ([10]) If G has a bounded clique width, then its complement G has

a bounded clique width.

Lemma 1.3.2 ([28]) If G has n vertices, then cwd(G) ≤ n−k as long as 2k+2k ≤ n.

Thus, for any graph G with a finite number of vertices, G has bounded clique

width.

Folklore 1.3.3 Let G be a graph and let X be a finite set of vertices of G. Then G

has bounded clique width if and only if G−X has bounded clique width.

Definition 1.3.1 Given sets of vertices X, Y , the structure of X, Y is called co-join

if there is no edges between any vertex in X and any vertex in Y , represented by

X 0 Y .

Definition 1.3.2 Given sets of vertices X, Y , the structure of X, Y is called join if

there are all edges between vertices in X and Y , represented by X 1 Y .

Folklore 1.3.4 Let G be a graph such that G is the join of two graphs G1 and G2.

Then G has bounded clique width if and only if both Gi have bounded clique width,

for i = 1, 2.

Folklore 1.3.5 Let G be a graph such that G is the co-join of two graphs G1 and G2.

Then G has bounded clique width if and only if both Gi have bounded clique width,

for i = 1, 2.

Many graph problems that are NP-hard for arbitrary graphs can be solved in

polynomial time on graphs with bounded clique width. In Rao [35], the following

result is established.

Theorem 1.3.6 ([35]) For any constant c, vertex coloring is polynomial-time

solvable in the class of graphs with clique-width at most c.
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1.3.1 Clique Width for 4-Vertex Forbidden Subgraph

A graph G is P4-free if and only if cwd(G) ≤ 2 and it is interesting to consider

what other forbidden 4-vertex graphs will lead a graph G that avoid them to have

a bounded clique width. In [9], the clique width of class (H, co-H)-free graphs for

any 4-vertex graph has been proved to be bounded. In [10], the authors listed all

the essential combinations of forbidden 4-vertex graphs and classified which make a

graph have either a bounded or unbounded clique width. Figure 1.4 shows all 4-vertex

graphs.

•

• •

•

K4

•

• •

•

diamond

•

• •

•

C4

•

• •

•
paw

•

• •

•

claw

•

• •

•

4K1

•

• •

•

co-diamond

•

• •

•

2K2

•

• •

•
co-paw

•

• •

•

co-claw

• • • •

P4

Figure 1.4: All 4-vertex graphs

Graphs defined by forbidding the following 4-vertex graphs have bounded clique

width:

• K4, co-paw

• K4, co-diamond

• K4, 4K1

• diamond, co-paw

• diamond, 2K2

• diamond, co-diamond
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• C4, co-paw

• paw, claw

• paw, co-paw

• claw, co-claw

• K4, C4, 2K2

• K4, claw, 2K2

• C4, claw, 2K2

• K4, co-claw, 2K2

Graphs defined by forbidding the following 4-vertex graphs have a unbounded

clique width:

• K4, 2K2

• C4, 2K2

• K4, diamond, C4, claw

• K4, diamond, C4, paw, co-claw

1.4 Line Graph

In graph theory, the line graph L(G) represents the adjacencies between edges of the

graph G. A formal definition of line graph is as follows:

Definition 1.4.1 ([24]) The vertices of L(G) are taken as the edges of G, and for

each pair of vertices in L(G), there is an edge if and only if the corresponding edges

of G are adjacent.

An example of building the line graph for C4-twin is shown in Figure 1.5:

◦

◦ ◦

◦

◦ ◦

◦
◦

◦

◦

◦

◦ ◦

◦
◦

◦

◦

◦

◦

Figure 1.5: An example of a line graph
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The recognition of line graphs and the reconstruction of their original graphs can

be done in polynomial time. In [16], the authors described an efficient algorithm of

recognizing line graphs using the Whitney’s Isomorphism Theorem.

Theorem 1.4.1 (Whitney’s Isomorphism Theorem) If the line graphs of two con-

nected graphs are isomorpic, then the underlying graphs are isomorpic, except for K3

and claw.

In 1970, Beineke [2] showed a characterization of line graphs in terms of nine

forbidden subgraphs. In general, the coloring of line graphs is NP-Complete, but it

is worth considering that whether the coloring can be done in polynomial time by

forbidding some of the subgraphs in Figure: 1.6.

•

• •

• • • •

• • •

•

•
•
•

•

•

•
•
•

•

•

• •

•

•

• •

•

•
•
•

•

•

•
•

•
• • • •

•

•
• • • • •

•

•
•

Figure 1.6: Nine forbidden subgraphs that characterize the line graph

Line graphs are claw-free, and claw-free graphs are considered to be an interesting

generalization of line graphs.

Lemma 1.4.2 ([14]) Let G be a connected claw-free graph with α(G) ≥ 3. If G

contains an odd anti-hole then G contains a C5.
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It is well known that vertex coloring is polynomial time solvable for graphs G with

α(G) = 2.

1.5 Motivation

It is interesting to think about the coloring on graphs whose forbidden list L contains

graphs with 4 vertices. A recent paper by Lozin and Malyshev [33] discusses the

computational complexity of vertex coloring on graphs defined by forbidden induced

subgraphs with at most 4 vertices. For all classes except for three, they show the

vertex coloring is either polynomial-time sovable or is NP-Complete. The three classes

are: (4K1, C4)-free graphs, (Claw, 4K1)-free graphs and (Claw, 4K1,co−diamond)-

free graphs. In the paper [18], the authors considered the vertex coloring problem

of (4K1, C4, C5)-free graphs, which is a slightly larger forbidden list of one of the

three remaining classes: (4K1, C4)-free graphs. They showed that (4K1, C4, C5)-free

graphs have either bounded clique width or are perfect. Inspired by this approach,

we consider what others graphs we can add into the forbidden list. In the paper

[17], the authors proved the coloring of (Claw, 4K1, K5 − e)-free graphs can be done

in polynomial time. The graph K5 − e is one of the nine forbidden subgraphs that

characterize the line graph(see Figure: 1.6). We observed that three graphs in the

nine forbidden subgraphs, namely, P5-twin, C5-twin and C4-twin, share the same

structure: all the graphs have a diamond attached to a path or a cycle. We enlarge

the set to include hole-twins and consider whether forbidding hole-twin helps in the

coloring of the remaining cases.

The tools we use in this thesis are perfect graph theory and clique width theory.

In Chapter 2, we show the problem of coloring (claw, 4K1, hole-twin)-free graphs
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can be solved in polynomial time. In Chapter 3, we design a polynomial time algo-

rithm to color (4K1, hole-twin, 5-wheel)-free graphs. In Chapter 4, we present our

conclusions and open problems related to our work.



Chapter 2

(Claw, 4K1, hole-twin)-free graphs

In this section, we will prove that there exists a polynomial time algorithm to color

(Claw, 4K1, hole-twin)-free.

We will assume that G is a connected (Claw, 4K1, hole-twin)-free graph. Since

G is (C4-twin)-free, G does not contain any odd antihole with length larger than 5.

Thus we will focus on what happens when G contains an odd hole. We know G

contains no hole Ck with k ≥ 9 since G is 4K1-free. So we assume G contains a C7 or

a C5, otherwise by the Strong Perfect Graph theorem, G is a perfect graph and the

chromatic number and the optimal coloring can be found in polynomial time.

Definition 2.0.1 A hole-twin is a graph obtained by adding a vertex adjacent to three

consecutive vertices in a hole.

Theorem 2.0.1 There is a polynomial time algorithm to color (Claw, 4K1, hole-

twin)-free graphs.

Lemma 2.0.2 Let G be a graph such that V (G) can be covered by k (disjoint) cliques

X1, . . . , Xk. For a vertex x, let Xix be the clique containing x, and let NF (x) be the

16
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set of neigbours y of x such that y ∈ Xj for j 6= ix. Suppose G satisfies the following

conditions: (i) for every vertex x and any set Xj with j 6= ix, x has at most one

neighbor in Xj, and (ii) for any vertex x, NF (x) is a clique. Then G has clique width

at most 2k.

Proof. By (i) and (ii), if some two vertices x, y are adjacent with x ∈ Xi, y ∈

Xj, i 6= j, then we have NF (x)− {y} = NF (y)− {x}; that is, x and y have the same

neighbourhood in V (G)− (Xi∪Xj). It follows that we can partition the vertices of G

into pairwise disjoint sets Y1, Y2, . . . , Yt, Z = V (G)− (Y1∪Y2∪ . . .∪Yt), such that the

following holds: (1) each Ys is a clique with at least two vertices, (2) if two vertices

x, y are adjacent with x ∈ Xi, y ∈ Xj, i 6= j, then x and y belong to some clique Ys,

and (3) every edge of G belongs to a clique Xi, or a clique Ys.

The vertices of a set Xi will be associated with two labels `i,new, `i,old. We will

label the vertices of G one by one. Suppose we are about to label a vertex x.

1. If there is a vertex with a label `i,new, re-label it with label `i,old for all i.

2. Label x with label `ix,new (Xix is the set containing x)

3. For each neighbour y of x in a set Xiy , label y with label `iy ,new

4. Add edges between vertices with new labels (building the clique Ys)

5. Add edges between vertices of label `ix,new and label `ix,old (building the clique

Xix).

6. Re-label all vertices of label `i,new with label `i,old for all i.

We repeat the above steps until all vertices are labeled. We will use 2k labels.

This proves the lemma. 2
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X1 X2 X3 X4

Y1

Y2

Y3

Z

Figure 2.1: A visualization for Lemma 2.0.2

Next, we will establish a number of intermediate results before proving Theo-

rem 2.0.1.

Lemma 2.0.3 Let G be a connected (Claw, 4K1, hole-twin)-free graph. If G contains

a C7, then G has at most 21 vertices.

Proof. Suppose that G contains a 7-hole H, with vertices h1, ..., h7 and edges hihi+1,

with the subscripts taken modulo 7. A vertex in G−H is a k-vertex if it is adjacent

to k vertices in H.

Let Yi denote the set of 4-vertices adjacent to hi, hi+1, hi+2, hi+3. Let Zi denote

the sets of 4-vertices adjacent to hi, hi+1, hi+3, hi+4. It is easy to see that a 4-vertex

must be of type Yi, or Zi.

Observation 2.0.4 G has no k-vertex ∀ k ∈ {0, 1, 2, 3, 5, 6, 7}.
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Proof. If G has a k-vertex, for k ∈ {0, 1, 2}, then G contains a 4K1. If G has a

k-vertex, for k ∈ {5, 6, 7}, then G contains a claw. If there exists some 3-vertex, then

G contains a C7-twin, or a claw.

From the above observations, it follows that a vertex in G − H must be of type

Yi, or Zi.

Observation 2.0.5 Yi is a clique.

Proof. If Yi contains non-adjacent vertices u,v, then vertices {hi+3, hi+4, u, v} induces

a claw. 2

Observation 2.0.6 |Yi| ≤ 1 for any i.

Proof. Suppose some Yi has at least two vertices u, v. Then {hi+3, hi+4, hi+5, hi+6, hi, u, v}

induces a C6-twin. 2

◦ ◦ ◦ ◦ ◦

◦

◦

◦ ◦

Figure 2.2: G contains a C6-twin if some Yi has at least two vertices

Observation 2.0.7 Zi is a clique.

Proof. If Zi contains non-adjacent vertices u,v, then {hi, hi+6, u, v} induces a claw. 2

Observation 2.0.8 |Zi| ≤ 1 for any i.
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Proof. Suppose some Zi has at least two vertices u, v. Then {hi+4, hi+5, hi+6, hi, u, v}

induces a C5-twin. 2

From the above observation, we have |V (G)| = |V (H)|+∑7
i=1 |Zi|+

∑7
i=1 |Yi| ≤ 21.

We have established Lemma 2.0.3. 2

Lemma 2.0.9 Let G be a connected (Claw, 4K1, hole-twin)-free graph. If G contains

a C5, then either α(G) = 2, or G has bounded clique width, or both.

Proof. Suppose G contains a 5-hole H, with vertices h1, ..., h5, and edges hihi+1

with the subscripts taken modulo 5. We define the following sets, for each i ∈

{1, ..., 5}.

• Let Xi be the set of 2-vertices adjacent to hi−2 and hi+2.

• Let Yi be the set of 4-vertices not adjacent to hi.

• Let R be the set of 0-vertices.

• Let T be the set of 5-vertices.

We begin our proof of the Lemma with a number of observations. Let Y =

Y1 ∪ . . . ∪ Y5, and X = X1 ∪ . . . ∪X5.

Observation 2.0.10 We have T 0 R.

Proof. If there is an edge between a vertex t ∈ T and a vertex r ∈ R, then G has a

claw with t, r, and some two vertices in H. 2

Observation 2.0.11 We have T 0 X.

Proof. If there is an edge between a vertex t ∈ T and a vertex x ∈ X, then G has a

claw with t, y, and some two vertices (that are non-neighbors of x) in H. 2
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Observation 2.0.12 We have T 1 Y .

Proof. Suppose a vertex t ∈ T is not adjacent to some vertex y ∈ Yi for some i. Then

the set {y, hi−1, t, hi+1, hi} induces a C4-twin. 2

Observation 2.0.13 We have R 0 Y .

Proof. If there is an edge between a vertex r ∈ R and a vertex y ∈ Y , then G has a

claw with r, y, and some two vertices in H. 2

Observation 2.0.14 G has no k-vertex ∀ k ∈ {1, 3}.

Proof. Suppose G has 1-vertex, then G contains a claw. If there exists some 3-vertex,

then G contains a C5-twin or a claw. 2

Observation 2.0.15 Xi is a clique.

Proof. Let u, v ∈ Xi and uv 6∈ E. Then {u, v, hi+1, hi+2} induces a claw. 2

Observation 2.0.16 Yi is a clique.

Proof. Let u, v ∈ Yi and uv 6∈ E. Then {u, v, hi, hi+1} induces a claw. 2

Observation 2.0.17 |Yi| ≤ 1 for i = 1, 2, . . . , 5.

Proof. Suppose some Yi contains two vertices u, v. By Observation 2.0.16, uv is

an edge of G. Now, {hi−1, hi, hi+1, u, v} induces a C4-twin. 2

Observation 2.0.18 R is a clique.

Proof. If R is not a clique, then some two non-adjacent vertices of R and some two

non-adjacent vertices of H induce a 4K1. 2
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Observation 2.0.19 A vertex u of Xi cannot be adjacent to two vertices in Xi+1,

and by symmetry, u cannot be adjacent to two vertices of Xi−1.

Proof. Let u ∈ Xi, v, k ∈ Xi+1 and uv ∈ E, uk ∈ E. Then {u, v, hi−1, hi, hi+1, hi+2, k}

induces a C6-twin. 2

Observation 2.0.20 A vertex u of Xi cannot be adjacent to two vertices in Xi+2;

and by symmetry, u cannot be adjacent to two vertices of Xi−2.

Proof. Let u ∈ Xi, v, k ∈ Xi+2 and uv ∈ E, uk ∈ E. Then {u, v, hi, hi+1, hi+2, k}

induces a C5-twin. 2

For a vertex x ∈ Xi for some i, define NF (x) to be the set of vertices y such that

xy is an edge, and y ∈ Xj for some j 6= i. By Observations 2.0.19 and 2.0.20, for each

x ∈ Xi, we have |NF (x)| ≤ 4.

Observation 2.0.21 For any i and any vertex x in Xi, the set NF (x) is a clique.

Proof. We prove by contradiction. Let x be a vertex in Xi for some i. Suppose

NF (x) is not a clique, and so there are non-adjacent vertices y, z ∈ NF (x). First, let

us suppose y ∈ Xi+1. If z ∈ Xi+2 ∪Xi−2, then the set {x, y, z, hi+2} induces a claw.

Thus, z belongs to Xi−1, but now {hi+1, hi, hi−1, y, x, z, hi−2} induces a C6-twin. So

we know {y, z} ∩ (Xi+1 ∪Xi−1) = ∅. Thus, we may assume y ∈ Xi+2 and z ∈ Xi−2.

Now, the set {xi, y, z, hi+2} induces a claw. We have established the observation. 2

We now continue the proof of Lemma 2.0.9. We know α(T ) ≤ 2 for otherwise G

has a claw with one vertex in H and some three vertices in T . Suppose T contains

two non-adjacent vertices t1, t2. Then X has to be empty, for otherwise the set

{h, x, t1, t2} induces a claw, where x is a vertex in X, and h is a neighbour of x in

H (by Observation 2.0.11, X has no neighbours in T ). Now, R has to be empty, for
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otherwise there is an edge rz with r ∈ R and z ∈ Y ∪ T (since G is connected); and

thus G has a claw with r, z and some two vertices in H. Now, G is the join of T and

H ∪ Y by Observation 2.0.12. The set Y ∪H cannot contain a stable set S on three

vertices, for otherwise S and a vertex in T induce a claw. It follows that α(G) = 2,

and we are done. So we may assume T is a clique. Note that cliques have clique

width 2.

Let G1 be the subgraph of G obtained by removing all vertices in H∪Y . Since the

set Y is finite (by Observations 2.0.17), by folklore 1.3.3, we only need to prove G1

has bounded clique width. In G1, there are no edges between T (if it is not empty)

and X ∪ R by Observations 2.0.10 and 2.0.11. So, by folklore 1.3.5, we only need to

prove the graph G2 induced by X ∪R has bounded clique width.

There is an edge between any vertex r ∈ R and any vertex x ∈ X, for otherwise

there is a 4K1 containing r, x, and some two vertices of H. So, G2 is the join of R and

X. By folklore 1.3.4, we only need to prove G3 = G2 − R = X has bounded clique

width. Recall Observation 2.0.21 that for each x ∈ Xi, NF (x) is a clique. Thus, G3

satisfies the hypothesis of Lemma 2.0.2, and so it has bounded clique width. The

proof of Lemma 2.0.9 is completed.

Now, we can prove the main theorem

Proof of Theorem 2.0.1. Let G be a (Claw, 4K1, hole-twin)-free graph. We may

assume that G is connected and has α(G) ≥ 3. We may assume that G is not perfect,

for otherwise we may use the algorithm of Hsu [27] to color a claw-free perfect graph

in polynomial time. Thus G contains an odd hole or odd antihole. By Lemma 1.4.2,

we know G must contain an odd hole H. Since α(G) < 4, H is a 7-hole or a 5-hole.

If H is a 7-hole, then by Lemma 2.0.3, G has a bounded number of vertices and we

are done. So H is a 5-hole. By Lemma 2.0.9, G has bounded clique width and we
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are done. 2



Chapter 3

(4K1,hole-twin,5-wheel)-free graphs

In the last section, we proved that the coloring (Claw, 4K1, hole-twin)-free graphs

can be solved in polynomial time. A larger problem is the coloring of (4K1, hole-

twin)-free graphs. We list some known results that will be useful tools in this work.

Theorem 3.0.1 [10] K4-free co-chordal graphs have unbounded clique width.

Lemma 3.0.2 (4K1,hole-twin)-free graphs have unbounded clique width.

Proof. By Theorem 3.0.1 and 1.3.1, 4K1-free chordal graphs have unbounded clique

width. Since (4K1, hole-twin)-free graphs is a super class of 4K1-free chordal graphs,

(4K1,hole-twin)-free graphs have unbounded clique width. 2

In this section, we design a polynomial time algorithm to color (4K1,hole-twin,5-

wheel)-free graphs. We will prove that these graphs have bounded clique width, and

so by Thereom 1.3.6, they can be colored in polynomial time.

First, we consider the case the graphs contain a C7.

Lemma 3.0.3 Let G be a (4K1,hole-twin)-free graph. If G contains a C7, then G

has bounded clique width.

25



26 CHAPTER 3. (4K1,HOLE-TWIN ,5-WHEEL)-FREE GRAPHS

We will prove a number of preliminary results before establishing Lemma 3.0.3. Con-

sider a (4K1, hole-twin, 5-wheel)-free graphG with a 7-holeH, with vertices h1, ..., h7,

with the subscripts taken modulo 7. Let k-vertex denotes the set of vertices that are

adjacent to k vertices in H. We will eventually show that the sets of k-vertices with

k < 7 are finite, and the set of 7-vertices form a clique.

Observation 3.0.4 G has no k-vertex ∀ k ∈ {0, 1, 2}.

Proof. Suppose G has k-vertex, x for k ∈ {0, 1, 2}. Then, G contains a 4K1. 2

Now, we examine the sets of 3-vertices. We will show all 3-vertices belong to the

set Ti defined below.

• Let Ti to denote the set of 3-vertices adjacent to hi, hi+1, hi+4.

Observation 3.0.5 Any 3-vertex of G must belong to Ti.

Proof. Suppose G has 3-vertex v. If v is adjacent to 3 consecutive vertices in H, then

G contains a C7-twin. If v is not adjacent to two consecutive vertices in H, then G

contains a 4K1. So, we may assume v is adjacent to hi, hi+1 and not to hi+2, hi+6.

The edge vhi+4 must be present, for otherwise, {v, hi+2, hi+4, hi+6} induces a 4K1.

Now, v clearly belongs to Ti. 2

The next obvervations will show that the sets T are finite.

Observation 3.0.6 |Ti| ≤ 1 for any i.

Proof. Suppose Ti contains at least two vertices u, v. If uv is not an edge, then G

contains a 4K1. So we may assume uv is an edge. Now G contains a C5-twin with

vertices {hi+1, hi+2, hi+3, hi+4, u, v}. 2

Now, we examine the sets of 4-vertices. We will show all 4-vertices belong to the

sets Y defined below.
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• Let Y1i to denote the set of 4-vertices adjacent to hi, hi+1, hi+2, hi+3.

• Let Y2i to denote the set of 4-vertices adjacent to hi, hi+1, hi+3, hi+4.

• Let Y3i to denote the set of 4-vertices adjacent to hi, hi+1, hi+2, hi+4.

Observation 3.0.7 Any 4-vertex of G must belong to Y1i ∪ Y2i ∪ Y3i for some i.

Proof. Suppose G has 4-vertex v. If v is adjacent to 4 consecutive vertices in H,

then v belongs to Y1i for some i. Suppose v is adjacent to hi, hi+1, hi+2 and not

to hi+3, hi+6. Now v is adjacent to hi+4, or hi+5, but not both. Then, v belongs to

Y3i. Finally, we may suppose v is adjacent to two, but not three, consecutive vertices

of H. So, suppose v is adjacent to hi, hi+1, and not to hi+2, hi+6. Vertex v must be

adjacent to hi+4, for otherwise G has a 4K1 with vertices v, hi+2, hi+4, hi+6. Now, v

belongs to Y2i. 2

The next obvervations will show that the sets Y are finite.

Observation 3.0.8 We have |Yji| ≤ 1 for any j and any i (j = 1, 2, 3; i = 1, 2, . . . 7)

Proof. Consider the set Y1i. If Y1i contains non-adjacent vertices u,v, then {hi, hi+1, hi+3u, v}

induces a C4-twin. Now we assume Y1i contains two adjacent vertices u,v, then

{hi, hi+3, hi+4, hi+5, hi+6, u, v} induces a C6-twin. So |Y1i| ≤ 1. 2

Now, consider the set Y2i. If Y2i contains non-adjacent vertices u,v, then {hi, hi+1, hi+3u, v}

induces a C4-twin. Now we assume Y2i contains two adjacent vertices u,v, then

{hi, hi+4, hi+5, hi+6, u, v} induces a C5-twin. So, |Y2i| ≤ 1.

Finally, consider the set Y3i. If Y3i contains non-adjacent vertices u,v, then

{hi, hi+1, hi+4u, v} induces a C4-twin. Now we assume Y3i contains at two adjacent

vertices u,v, then {hi, hi+4, hi+5, hi+6, u, v} induces a C5-twin. So, |Y3i| ≤ 1. 2

Now, we examine the set of 5-vertices.
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• Let Z1i to denote the set of 5-vertices adjacent to hi, hi+1, hi+2, hi+3, hi+4.

• Let Z2i to denote the set of 5-vertices adjacent to hi, hi+1, hi+2, hi+3, hi+5.

• Let Z3i to denote the set of 5-vertices adjacent to hi, hi+1, hi+2, hi+4, hi+5.

Observation 3.0.9 Any 5-vertex of G must belong to Z1i ∪ Z2i ∪ Z3i for some i.

Proof. Let v be a 5-vertex of H. Vertex v must be adjacent to at least three consecu-

tive vertices of H. If v is adjacent to five consecutive vertices of H, then v belongs to

some Z1i. If v is adjacent to four consecutive vertices of H, but not to five consecutive

vertices, the v belongs to Z2i. Finally, if v is adjacent to three consecutive vertices of

H, but not to four consecutive vertices, the v belongs to Z3i. 2

Observation 3.0.10 We have |Zji| ≤ 1 for j = 1, 2, 3.

Proof. Consider Z1i, the set of 5-vertex that are adjacent to {hi, hi+1, hi+2, hi+3, hi+4}.

Let u,v be two vertices in Zi. If uv ∈ E, then {hi, hi+6, hi+5, hi+4, u, v} induces a

C5-twin. Now if uv 6∈ E, then {hi, hi+1, hi+4, u, v} induces a C4-twin. So we have

|Z1i| ≤ 1.

Consider Z2i, the set of 5-vertex that are adjacent to {hi, hi+1, hi+2, hi+3, hi+5}.

Let u,v be two vertices in Zi. If uv ∈ E, then {hi, hi+6, hi+5, u, v} induces a C4-twin.

Now if uv 6∈ E, then {hi, hi+1, hi+5, u, v} induces a C4-twin.

Finally, consider Z3i, the set of 5-vertex that are adjacent to {hi, hi+1, hi+2, hi+4, hi+5}.

Let u,v be two vertices in Zi.If uv ∈ E, then {hi, hi+5, hi+6, u, v} induces a C4-twin.

Now if uv 6∈ E, then {h1, hi+1, hi+5, u, v} induces a C4-twin. 2

Now, we examine the set of 6-vertex of G.

• LetMi to denote the set of 6-vertices adjacent to hi, hi+1, hi+2, hi+3, hi+4, hi+5.
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Clearly, every 6-vertex belongs to some Mi.

Observation 3.0.11 We have |Mi| ≤ 1 for all i.

Proof. ConsiderMi, the set of 6-vertex that are adjacent to {hi, hi+1, hi+2, hi+3, hi+4, hi+5}.

Let u,v be two vertices in Mi. If uv ∈ E, then {hi, hi+5, hi+6, u, v} induces a C4-twin.

Now if uv 6∈ E, then {hi, hi+1, hi+5, u, v} induces a C4-twin. 2

Now, we examine the 7-vertices of G.

Observation 3.0.12 The set of 7-vertices induces a clique.

Proof. Let u,v be two 7-vertices. If uv 6∈ E, then {hi, hi+1, hi+3, u, v} induces a

C4-twin. 2

Proof of Lemma 3.0.3. Let G be a (4K1,hole-twin)-free graph G with a 7-hole H.

By Observations 3.0.6,3.0.8, 3.0.10, 3.0.11, the sets of k-vertices with k < 7 are finite.

So, we can remove them and the C7 from consideration. That is, we only need

to prove the set S of 7-vertices have bounded clique width. But S is a clique by

Observation 3.0.12, and so it has clique width two. 2

Now, we consider the case where the graphs contain a C5 but not a C7.

Lemma 3.0.13 Let G be a (4K1,hole-twin, 5-wheel)-free graph G that contains 5-

hole H and does not contain a 7-hole. Then G has bounded clique width.

We will need to establish a number of preliminary results before proving Lemma 3.0.13

We assume that G contains a 5-hole H, with vertices h1, ..., h5, with the subscripts

taken modulo 5. Let k-vertex denotes the set of vertices that are adjacent to k vertices

in H. We define the following sets, for each i ∈ {1, ..., 5}.

• Let Oi be the set of 1-vertices adjacent to hi.
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• Let Xi be the set of 2-vertices adjacent to hi and hi+1.

• Let Yi be the set of 4-vertices adjacent to hi,hi+1,hi+2 and hi+3.

• Let R be the set of 0-vertices.

Observation 3.0.14 There are at most ten 2-vertices that do not belong to some Xi.

Proof. Suppose there are two 2-vertices x, y that have the same neighbours in the C5,

and x, y do not belong to some Xi. Without loss of generality, we may assume x, y

are adjacent to h1, h3. It is easy to see that G contains a 4K1, or a C4-twin. 2

Observation 3.0.15 Each set Yi has at most one vertex.

Proof. Let x, y be two vertices in Y1. If xy is not an edge, the {h1, x, y, h4, h3} induces

a C4-twin. So, xy is an edge. Now {h4, h5, h1, x, y} induces a C4-twin. So Yi has at

most one vertex for all i. 2

Observation 3.0.16 G has no 3-vertices and 5-vertices.

Proof. Suppose G has 3-vertex, then G contains a C5-Twin. If G has 5-vertex, then

G contains a 5-wheel. 2

Observation 3.0.17 R is a clique.

Proof. Let u, v ∈ R and uv 6∈ E. Then {u, v, hi+1, hi+3} induces a 4K1. 2

Observation 3.0.18 The entire set O1 ∪O2 ∪ . . . ∪O5 of 1-vetices is a clique.

Proof. If O1 ∪O2 ∪ . . . ∪O5 is not a clique then G contains a 4K1. 2
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Observation 3.0.19 Xi is a clique.

Proof. Let u, v ∈ Xi and uv 6∈ E. Then {u, v, hi+2, hi+4} induces a 4K1. 2

Observation 3.0.20 Any vertex in Xi cannot be adjacent to 2 vertices in Xi+1.

Proof. Let u ∈ Xi, v, k ∈ Xi+1 and uv ∈ E, uk ∈ E. Then {u, v, k, hi, hi+2, hi+3, hi+4}

induces a C6-twin. 2

Observation 3.0.21 Any vertex in Xi cannot be adjacent to 2 vertices in Xi+2.

Proof. Let u ∈ Xi, v, k ∈ Xi+2 and uv ∈ E, uk ∈ E. Then {u, v, k, hi, hi+3, hi+4}

induces a C5-twin. 2

Observation 3.0.22 If G contains Xi, Xi+1, Xi+2, let u ∈ Xi, v ∈ Xi+1, k ∈ Xi+2

and uv ∈ E, vk ∈ E, then uk ∈ E.

Proof. Suppose uk 6∈ E, then {u, v, k, hi, hi+1, hi+3 hi+4} induces a C6-twin. 2

Observation 3.0.23 If G contains Xi, Xi+1, Xi+2, let u ∈ Xi, v ∈ Xi+1, k ∈ Xi+2

and uk ∈ E, vk ∈ E, then uv ∈ E.

Proof. Suppose uv 6∈ E, then {u, v, k, hi+1, hi+2} induces a C4-twin. 2

Observation 3.0.24 If G contains Xi, Xi+1, Xi+3, let u ∈ Xi, v ∈ Xi+1, k ∈ Xi+3

and uv ∈ E, vk ∈ E, then uk ∈ E.

Proof. Suppose uk 6∈ E, then {u, v, k, hi, hi+1, hi+4} induces a C5-twin. 2

Observation 3.0.25 If G contains Xi, Xi+1, Xi+3, let u ∈ Xi, v ∈ Xi+1, k ∈ Xi+3

and uv ∈ E, uk ∈ E, then vk ∈ E.
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Proof. Suppose vk 6∈ E, then {u, v, k, hi+1, hi+2, hi+3} induces a C5-twin. 2

Observation 3.0.26 Xi 1 Oi.

Proof. Let u ∈ Xi, v ∈ Oi and uv 6∈ E, then {u, v, hi+2, hi+4} induces a 4K1. 2

Observation 3.0.27 Any vertex in Xi cannot be adjacent to 2 vertices in Oi+2 and

vice versa.

Proof. Let u, v ∈ Xi, k, j ∈ Oi+2. Suppose uk ∈ E and uj ∈ E, then {u, k, j, hi+1, hi+2}

induces a C4-twin. Now suppose uk ∈ E and vk ∈ E, then {u, v, k, hi+1, hi+2} induces

a C4-twin. 2

Observation 3.0.28 Xi 1 Oi+3.

Proof. Let u ∈ Xi, v ∈ Oi+3 and uv 6∈ E, then {u, v, hi+2, hi+4} induces a 4K1. 2

Observation 3.0.29 Any vertex in Xi cannot be adjacent to 2 vertices in Oi+3 and

vice versa.

Proof. Let u, v ∈ Xi, k, j ∈ Oi+3. Suppose uk ∈ E and uj ∈ E, then {u, k, j, hi+1, hi+2, hi+3}

induces a C5-twin. Now suppose uk ∈ E and vk ∈ E, then {u, v, k, hi+1, hi+2, hi+3}

induces a C5-twin. 2

Observation 3.0.30 If G contains Xi and Oi+3, then |Xi| = |Oi+3| = 1.

Proof. The Observation follows from Observations 3.0.28 and 3.0.29. 2

The following claim is easy to verify.
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Claim 3.0.31 Let G be a graph whose vertices can be partitioned into three cliques

C1, C2, C3 such that each vertex in Cj is adjacent to at most one vertex of Ck, j 6= k.

Then G is diamond-free, in particular, G has bounded clique width.

Lemma 3.0.32 If G contains 1-vertices and 2-vertices only, then G has a bounded

clique width.

Proof. Let Z be the set of 2-vertices that do not belong to some Xi. Let G1 be the

graph obtained by removing from G the C5, the set Z, and any sets Oi, Xi, Yi, R that

has less than 3 vertices. Note that all Yi are removed by Observation 3.0.15. Since

we remove a fixed number of vertices, by Theorem 1.3.3, G has bounded clique width

if and only if G1 does. 2

Now, we may assume each of the sets Oi, Xi, R contains at least 3 vertices. Let

P = O1∪. . . O5∪X1∪. . . X5. It is easy to see that for any x ∈ R, y ∈ P , xy is an edge,

for otherwise G has a 4K1. So G1 is the join of P and R. So G1 has bounded clique

width if and only if P has bounded clique width. The rest of the proof is devoted to

proving that P has bounded clique width. We only need to consider the sets Oi and

Xi.

Claim 3.0.33 There does not exist three consecutive sets Xi, Xi+1, Xi+2.

Proof. Suppose there are three consecutive setsXi, Xi+1, Xi+2. By Observations 3.0.20

and 3.0.21, a vertex in Xj is adjacent to at most one vertex in Xk with j 6= k, {j, k} ⊂

{i, i+ 1, i+ 2}. So the set Xi ∪Xi+1 ∪Xi+2 contains a stable set S on three vertices.

Now S and vi+4 induces a 4K1, a contradiction. 2

Claim 3.0.34 If the sets Oi, Xi, Xi+4 are all non-empty, then G contains a C7-twin.



34 CHAPTER 3. (4K1,HOLE-TWIN ,5-WHEEL)-FREE GRAPHS

Proof. Suppose that X1 6= ∅, X4 6= ∅ X5 6= ∅. Consider a vertex u ∈ X5. Then

by Observation 3.0.20, there are two vertices x, y ∈ X5 that are not adjacent to

u. Let v be a vertex in O1. By Observations 3.0.26, v is adjacent to u, x, y. So

{u, v, x, y, h2, h3, h4, h5} induces a C7-twin. The Claim is justified. 2

Claim 3.0.35 If the sets Oi, Oi+1, Xi+1 are all non-empty, then G contains a C7-

twin.

Proof. Suppose that O1 6= ∅, O2 6= ∅ X2 6= ∅. Consider a vertex x ∈ O1. By

Observation 3.0.27, there is a vertex y ∈ X2 that is not adjacent to x. Let u, v be

two vertices in O2. Then {x, u, v, y, h3, h4, h5, h1} induces a C7-twin. 2

Claim 3.0.36 If the sets Oi, Xi, Oi+2 are all non-empty, then G contains a C5-twin.

Proof. Suppose O1 6= ∅, X1 6= ∅ and O3 6= ∅. Consider a vertex x ∈ X1. By

Observation 3.0.27, there is a vertex y ∈ O3 that is not adjacent to x. Consider a

vertex z ∈ O1. By Observations 3.0.18 and 3.0.26, vertex z is adjacent to x, y. Now

{y, z, x, h2, h3, h1} induces a C5-twin. 2

To prove the lemma, we will distinguish among six cases.

Case 1: G contains no sets of 1-vertices.

By Claim 3.0.33, G contains at most 3 distinct sets Xi. And the three cliques Xi

satisfy the hypothesis of Claim 3.0.31, and so G has bounded clique width.

Case 2: G contains one set of 1-vertices.

We may assume O1 6= ∅. By Observation 3.0.30, we have X3 = ∅.

Suppose that X1 6= ∅ and X5 6= ∅. By Claim 3.0.34, G contains a C7-twin, a

contradiction.

Suppose that X1 6= ∅ and X5 = ∅. The sets X2 and X4 could be non-empty. Let

X ′1 = X1 ∪O1. By Observation 3.0.26, X ′1 is a clique. By Observations 3.0.27, 3.0.20
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and 3.0.21, the three cliques X ′1, X2, X4 satisfy the hypothesis of Claim 3.0.31 and so

G has bounded clique width.

Now we may assume X1 = ∅ and by symmetry, X5 = ∅. The sets X2 and X4 could

be non-empty. By Observations 3.0.27, 3.0.20 and 3.0.21, the three cliques O1, X2, X4

satisfy the hypothesis of Claim 3.0.31 and so G has bounded clique width. Case 2 is

settled.

Case 3: G contains two sets of 1-vertices.

Consider the case that O1 6= ∅ and O2 6= ∅. By Observations 3.0.30, we know X3 = ∅

(becauseO1 has at least three vertices). Similarly, by consideringO2, we knowX4 = ∅.

Suppose X2 6= ∅. Then by Claim 3.0.35, G contains a C7-twin, a contradiction.

So we may assume X2 = ∅ and by symmetry, X5 = ∅.

Suppose now that X1 6= ∅. By Observation 3.0.26, G is the join of X1 and O1∪O2.

By Observation 3.0.18, G is a clique and we are done. Now, we have X1 = ∅. Since

G = O1 ∪O2, it is a clique by Observation 3.0.18, and we are done.

To complete the analysis of this case, suppose O1 6= ∅ and O3 6= ∅. By Observa-

tion 3.0.30, we have X2 = X5 = ∅. Suppose X1 6= ∅. By Claim 3.0.36, G contains a

C5-twin, a contradiction. So we have X1 = ∅, and by symmetry, X2 = ∅. We must

have X3 6= ∅, for otherwise G is a clique and we are done. Let O = O1 ∪O3. The two

cliques O and X4 satisfy the hypothesis of Claim 3.0.31 by Observation 3.0.27, and

so G has bounded clique width.

Case 4: G contains at least 3 sets of 1-vertices.

Suppose G contains three consecutive sets O1, O2, O3. By considering O1, O2 and

Claim 3.0.35, we have X2 = ∅, and by symmetry, X5 = ∅. Similarly, by considering

O2, O3 and Claim 3.0.35, we have X3 = ∅, and by symmetry, X1 = ∅. Finally, by

considering O2 and Observation 3.0.30, we have X4 = ∅. Thus all the sets Xi are
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empty, and so G is a clique and we are done.

Now, we may assume O1 6= ∅, O2 6= ∅, O4 6= ∅. By considering O1, O2 and

Claim 3.0.35, we have X2 = ∅, and by symmetry, X5 = ∅. Now, we will rely on

Observation 3.0.30. By considering O1 (respectively, O2, O4), we see that X3 = ∅

(respectively, X4 = ∅, X1 = ∅). Thus all the sets Xi are empty, and so G is a clique

and we are done. 2

We are now ready to prove the following theorem.

Theorem 3.0.37 Let G be a (4K1, hole-twin, 5-wheel)-free graph. Then G has

bounded clique width, or G is perfect.

Proof. Let G be a (4K1, hole-twin, 5-wheel)-free graph G. We may assume G contain

an odd hole, or odd anti-hole, for otherwise G is perfect. Since G contains no C4-twin,

it contains no odd anti-hole on at least 7 vertices. So G contains a C5 or C7. Now by

Lemma 3.0.3 and 3.0.13, G has bounded clique width. 2

Theorem 3.0.37 implies the Corollary below.

Corollary 3.0.38 There is a polynomial time algorithm to color a (4K1, hole-twin,

5-wheel)-free graph.



Chapter 4

Conclusion and Future Work

We showed that the problems of coloring (claw, 4K1, hole-twin)-free and (4K1, hole-

twin, 5-wheel)-free graphs can be solved in polynomial time by proving the graph

G to be either perfect or have bounded clique width. Our two results are partial

results to the two challenging problems of determining the complexity of coloring

(claw, 4K1)-free graphs and (4K1, C4)-free graphs.

Besides what we have studied in the thesis, there are other works and open prob-

lems. We list some possible future research as follows.

• Can the coloring of (claw, 4K1, C5)-free graphs be done in polynomial time?

By using the same method we discussed in the thesis, we could assume there

exists a C7 in the (claw, 4K1, C5)-free graph, otherwise G is perfect. 3-vertices

and 4-vertices are the only vertices alone with the C7 and they are cliques that

adjacent to 3 and 4 consecutive vertices in the C7. There can be at most 3 sets

of different 4-vertices and up to 7 sets of 3-vertices. Instead of proving G has

bounded clique width, we have tried to find the largest clique in G of size k

with direct coloring of k + c colors and prove it is the optimal coloring when G

37
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has only 4-vertices. Since the number of cases is finite and we conjecture that

the coloring of (claw, 4K1, C5)-free graphs can be done in polynomial time.

• Determine the complexity of (claw,4K1)-free graphs.

Together with (4K1,C4)-free and (claw,4K1,co-diamond)-free graphs, the com-

plexity of (claw,4K1)-free graphs is unknown. Some information related to this

problem can be found in [33] and [17].
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l’Institut de Statistique de l’Université de Paris. (1960) IX: 123-160.
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