
Wilfrid Laurier University Wilfrid Laurier University

Scholars Commons @ Laurier Scholars Commons @ Laurier

Theses and Dissertations (Comprehensive)

2019

Separability and Vertex Ordering of Graphs Separability and Vertex Ordering of Graphs

Elizabeth Gorbonos
gorb6620@mylaurier.ca

Follow this and additional works at: https://scholars.wlu.ca/etd

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Gorbonos, Elizabeth, "Separability and Vertex Ordering of Graphs" (2019). Theses and Dissertations
(Comprehensive). 2148.
https://scholars.wlu.ca/etd/2148

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @
Laurier. For more information, please contact scholarscommons@wlu.ca.

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F2148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholars.wlu.ca%2Fetd%2F2148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/2148?utm_source=scholars.wlu.ca%2Fetd%2F2148&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca

Separability and Vertex Ordering of

Graphs

By:

Elizabeth Gorbonos

A thesis

Submitted to the Department of Physics and Computer Science

in partial fulfilment of the requirements for

Master of Applied Computing

in

Computer Science

Wilfrid Laurier University

Waterloo, Ontario, Canada, 2019

c©Elizabeth Gorbonos 2019

Abstract

Many graph optimization problems, such as finding an optimal coloring, or a

largest clique, can be solved by a divide-and-conquer approach. One such well-known

technique is decomposition by clique separators where a graph is decomposed into

special induced subgraphs along their clique separators. While the most common

practice of this method employs minimal clique separators, in this work we study

other variations as well. We strive to characterize their structure and in particular

the bound on the number of atoms. In fact, we strengthen the known bounds for the

general clique cutset decomposition and the minimal clique separator decomposition.

Graph ordering is the arrangement of a graph’s vertices according to a certain

logic and is a useful tool in optimization problems. Special types of vertices are often

recognized in graph classes, for instance it is well-known every chordal graph contains

a simplicial vertex. Vertex-ordering, based on such properties, have originated many

linear time algorithms. We propose to define a new family named SE-Class such that

every graph belonging to this family inherently contains a simplicial extreme, that is a

vertex which is either simplicial or has exactly two neighbors which are non-adjacent.

Our family lends itself to an ordering based on simplicial extreme vertices (named

SEO) which we demonstrate to be advantageous for the coloring and maximum clique

problems. In addition, we examine the relation of SE-Class to the family of (Even-

Hole, Kite)-free graphs and show a linear time generation of SEO for (Even-Hole,

Diamond, Claw)-free graphs. We showcase the applications of those two core tools,

namely clique-based decomposition and vertex ordering, on the (Even-Hole, Kite)-free

family.

Acknowledgements

First and foremost I would like to thank my supervisor, Professor Ch́ınh T. Hoàng,

without whom this work could not have come to fruition. The expertise, creative

thinking and enthusiastic guidance he has provided me with throughout this research

were invaluable.

I would also like to acknowledge the Physics and Computer Science department at

Wilfrid Laurier University and in particular, my course instructors who have equipped

me with instrumental skills and a great starting point for the thesis. A special thanks

is reserved to Professor Yang Liu for her help with preparing and publishing a paper

in the field of machine learning.

Last, but not the least, I thank my family and friends for supporting me along

the journey. Their encouragement and assistance instilled me with much confidence

and motivation.

Contents

1 Introduction 1

1.1 Definitions and Notations . 1

1.2 Graph Problems . 4

1.2.1 Chromatic Number and Clique Number 4

1.2.2 Approaches and Tools . 4

1.3 Motivation . 7

1.4 Organization of the Thesis . 11

2 Background 12

2.1 Perfect Graphs . 12

2.1.1 The Strong Perfect Graph Theorem 14

2.1.2 Properties of Perfect Graphs 17

2.1.3 Problems on Perfect Graphs 17

2.2 Graph traversal . 20

2.2.1 Fundamentals . 21

2.2.2 LexBFS . 23

2.3 Decomposition and Separability of Graphs 27

2.3.1 Clique Separator Decompostion 28

2.3.2 Other Cutset Decompositions 34

2.3.3 Partitioning . 36

I

Elizabeth Gorbonos Separability and Ordering of Graphs

2.4 Ordered Graphs . 37

2.4.1 β-Perfect . 37

2.4.2 Perfectly Orderable Graphs 38

2.5 Hole-free Graphs . 39

3 Clique-Cutset Decomposition 43

3.1 Decomposition Properties . 43

3.1.1 Cutsets Intersection . 47

3.2 Atom Properties . 49

3.2.1 On Non-maximal Atoms . 51

3.2.2 On the Number of Atoms . 53

3.3 Minimal clique cutset decomposition 56

3.3.1 Decomposition Properties . 57

3.3.2 Atoms Properties . 61

3.3.3 On the Number of Atoms of the Decomposition 62

3.4 Maximal clique cutset decomposition 66

3.4.1 Decomposition Properties . 66

3.4.2 Atoms Properties . 66

3.4.3 On the Number of Atoms of the Decomposition 68

4 SE-Class 71

4.1 SEO . 72

4.1.1 Generating SEO . 73

4.1.2 Verifing SEO . 73

4.1.3 Applications . 77

4.2 Structural Results . 79

4.2.1 (Even-Hole, Claw)-free . 79

4.2.2 (Even-Hole, Kite)-free . 81

II

Elizabeth Gorbonos Separability and Ordering of Graphs

4.2.3 (Even-Hole, Claw, Diamond)-free 83

4.3 SEO and LexBFS . 92

5 Case study: Coloring and certifying (Even-Hole, Kite)-free 99

5.1 The Structure of k-critical Graphs . 99

5.2 Certifying Algorithm for k-colorability 102

5.2.1 (Even-Hole)-free SE-Class Graphs 103

5.2.2 (Even-Hole, Kite)-free Graphs 105

6 Conclusions and Open Problems 109

6.1 Clique Cutset Decomposition . 109

6.2 SE-Class . 110

Bibliography 112

III

List of Tables

2.1 Perfect F -free Berge graphs . 15

2.2 Partial Results for β-perfect graphs 38

2.3 Problems on hole-free classes . 42

IV

List of Figures

1.1 Some basic graphs examples . 3

1.2 Important induced subgraphs . 7

2.1 Graphs: Paw, Bull . 14

2.2 Q graph . 34

2.3 3-path configurations . 40

3.1 Illustration of a decomposition path in T (G) 44

3.2 Example: minimal clique separator vs. minimal clique cutset 45

3.3 Cutsets of decomposition blocks . 46

3.4 Decomposition with mutually-exclusive clique cutsets 48

3.5 Clique cutset “preserving” decomposition 49

3.8 A clique cutset decomposition resulting in non-linear number of atoms 54

3.9 Two different maximal clique cutset decompositions 67

3.10 A “larger” clique cutset decomposition 68

4.1 SE-Class membership example . 71

4.2 Example of a bad path . 79

4.3 Minimally non-SE-Class (Even-Hole, Claw)-free graphs 81

4.4 Spear . 84

4.5 Types of spears . 85

4.6 Edges in a minimal-spear . 88

V

Elizabeth Gorbonos Separability and Ordering of Graphs

4.7 Illustration for Lemma 4.2.16 . 89

4.8 A SE-Class graph for which a LexBFS ordering is not SEO 93

6.1 A SE-Class graph containing a structure 111

VI

Chapter 1

Introduction

We start this chapter by introducing fundamental definitions and notations in Sec-

tion 1.1. Further terms and concepts will appear throughout this thesis, wherever

appropriate. In Section 1.2 we present common graph problems and in Section 1.3

we describe our particular topics of interests. Section 1.4 concludes the introduction

by giving an outline of this thesis.

1.1 Definitions and Notations

A graph G = (V,E) is a structure composed of the vertex-set V and the edge-set E.

G contains an edge between u ∈ V and v ∈ V if uv ∈ E (we then also refer to u

and v as adjacent). A simple graph is a graph for which the edge-set E consists of

unordered pairs of unique vertices. A simple graph has no multiple edges (there is

at most one edges between any two vertices) and no loops (there is no edge from a

vertex to itself). All graphs in this work are simple and finite (meaning, the number

of vertices is bounded). We use the common notations n = |V | and m = |E| for

the number of vertices and the number of edges, respectively (the function |X| here

means the size of a set X). The notation NG(V) means the neighborhood of v, that

is the set of all vertices v is adjacent to in G (we may omit the subscript when the

1

Elizabeth Gorbonos Separability and Ordering of Graphs

context is clear). To describe the set consisting of v and its neighborhood we use

NG[V] = NG(V)∪ {v}. A graph H = (V ′, E ′) is said to be a subgraph of G = (V,E)

if V ′ ⊆ V and E ′ ⊆ E. A special type of subgraph is an induced subgraph which we

describe by G[V ′] where V ′ ⊆ V . Let H = (V ′, E ′) = G[V ′], then the edge-set E ′

is constrained as follows: for {u, v} ⊆ V ′ we have uv ∈ E ′ only if uv ∈ E. G[V ′]

is a properly induced subgraph if V ′ ⊂ V . All subgraphs in this thesis are induced

subgraphs. A graph family (or graph class) C is a set of graphs in which all members

hold a certain property. Note that graph families need not be finite. A graph property

is said to be hereditary if for any G ∈ C every induced subgraph H of G also belongs

to C, i.e. H ∈ C. Restricted graph classes are defined in the following way: let F be

some graph, demand that every G ∈ C does not contain F as an induced subgraph.

Accordingly we name this family F -free. Similarly, let F be a (possible infinite) set

of graphs then G is F -free if it does not contain any F ∈ F . Properties of the form

F -free are hereditary.

We shall start by presenting some basic graph classes:

• Paths - Pn is a graph on n vertices V = {v1, ..., vn} which contains the edges

vivi+1 ∈ E for 1 ≤ i ≤ (n − 1). Any other edge, vivj ∈ E where |j − i| > 1,

is called a chord. When referring to a path connecting two vertices v and u, v

and u are the endpoints of the path and all other vertices are called interior.

• Cycles - A cycle Cn is a path Pn, on at least 4 vertices, with the addition of

the edge vnv1 ∈ E. It can be visualized as a closed path. A chord vivj ∈ E in

a cycle is an edge for which |j − i| > 1 and also vivj 6= vnv1. Holes are cycles

without chords.

• Wheels - A wheel Wn is composed of a hole on n vertices and a single universal

vertex, that is a vertex u ∈ V which is adjacent to all other v ∈ V .

• Cliques - A clique Kn is a set of n vertices which are all universal. Alternatively,

2

Elizabeth Gorbonos Separability and Ordering of Graphs

• • • •

P4

•

• •

•

C4

•

•
•

•
•

•

W5

•

•
•

•
•

K5

Figure 1.1: Some basic graphs examples

vivj ∈ E for any 1 ≤ i, j ≤ n, i 6= j.

A graph G is said to be connected if for every pair {v, u} ⊆ V there exists an

induced path with v and u as its endpoints. For a given graph G = (V,E), with

{u, v} ⊆ V , we define its complement G = (V,E ′) by applying the rule uv ∈ E ′ if and

only if uv 6∈ E. The prefix anti in this paper refers to the complement graph (e.g.

anti-C5). An independent set is a set of vertices S ⊂ V with no edges amongst them,

in other words for every {u, v} ⊆ S we have uv 6∈ E. Hence, an independent set of G

translates into a clique of G.

We will use the notation G − X where X ⊂ V as a shorthand for G[V − X]. Let

v ∈ V − X, we say v is X-complete if it is adjacent to every u ∈ X (alternatively,

X ⊆ N(v)), v is X-null if v is not adjacent to any vertex of X (i.e. X ∩ N(v) = ∅)

and v is X-partial is it is neither X-complete nor X-null. An edge is X-complete if

both its endpoints are X-complete.

Finally, let us describe two important graph classes:

• Bipartite graphs - A graph is bipartite if its vertices can be partitioned into two

independent sets. A complete bipartite graph, denoted Kx,y, is a bipartite graph

with independent sets X and Y , with respective sizes x and y and where for

every pair {v, u} with v ∈ X and u ∈ Y we have vu ∈ E.

• Chordal graphs - A graph G is called chordal if it contains no holes (also known

as triangulated [84] and rigid circuit graph [41]).

3

Elizabeth Gorbonos Separability and Ordering of Graphs

1.2 Graph Problems

Going as far back as 1736, to the famous Seven Bridges of Königsberg riddle, the

field of graph theory spawn many problems [4]. Two fundamental ones concern the

optimal vertex-coloring and the maximum clique.

1.2.1 Chromatic Number and Clique Number

A vertex-coloring is the assignment of colors to all vertices v ∈ V , such that every

two adjacent vertices {u, v} ⊆ V are given different colors. A graph is k-colorable

if it can be colored utilizing k colors. Since this task can always be accomplished

with n colors we are in fact interested in the smallest number of colors required.

This number is denoted χ(G) and is known as the chromatic number of the graph, a

vertex-coloring using only χ(G) colors is referred to as optimal coloring. The clique

number of G, also denoted as ω(G), is the number of vertices in a set S which induces

the largest clique of G. The real-world applications of coloring include scheduling

[70] and channel frequency assignment [44]. Finding cliques in a graph is commonly

motivated by network analysis in domains such as sociology and biology [47, 43].

1.2.2 Approaches and Tools

For an arbitrary graph G, it is well known that testing whether it is k-chromatic and

finding a clique of size t are NP-complete [59, 49]. However, many algorithms have

been proposed to improve the worst-case bound. Berge [4] originally suggested two

naive approaches to find the chromatic number: 1) A top down method where we first

color G and then try to eliminate redundant colors; 2) A bottom up method in which

we attempt to color the graph with all k ∈ {3, ..., n} colors (k = 1 means the graph

has no edges and k = 2 implies G is bipartite). Alternatively, one may attempt to

solve the clique cover problem on G. The clique cover, denoted θ(G), is the minimum

4

Elizabeth Gorbonos Separability and Ordering of Graphs

number of cliques required to cover the vertex-set V . Since every clique in G is an

independent set in G we obtain the optimal coloring by assigning each clique a unique

color. The fastest algorithm currently known runs in time O(2.2461n). It utilizes set

partitioning to find the chromatic number [7]. The clique number of G is closely

linked with the maximum independent set (denoted by α(G)) of G (in a similar way

χ(G) and θ(G) are related). A naive algorithm to find α(G) is to check all 2n subsets

of G. Tarjan and Trojanowski [92] presented the first significant improvement over

the basic method by constructing a O(2n/3) time-complexity algorithm. A number of

later works were able to slightly improved this result [58, 82, 83].

Due to the hardness of the general case other courses of action have been extensively

explored.

Definition 1.2.1 An ordering σ = {v1, ..., vn} is an ordered list of all vertices of a

graph G. Gi is produced by inducing a graph on G using the set S from σ starting at

index i (i.e. {vi, ..., vn}). The notation degσ(vi) in this context stands for the degree

of vertex vi in Gi and Nσ(vi) is the neighbors of vi in Gi.

One example of a heuristic tactic is greedy algorithms. These are a family of

algorithms which attempt to maximize (or minimize) some target value. This type

of algorithms make their choices based on the “current” state, therefore they are

prone to “get stuck” is local maximums (or local minimums). Regardless, they are

easy to implement and for certain problems they perform properly. For instance

finding a maximal clique is straightforward using a greedy algorithm, we may start

at any vertex and then add all vertices which increase our current clique. A greedy

coloring algorithm performs in the following way, it traverses the graph in some

prescribed order and assigns every vertex the smallest available color. Greedy coloring

is guaranteed to produce a coloring with at most ∆(G) + 1 colors (where ∆ is the

largest degree of any v ∈ V). Generally speaking, the greedy algorithm is not able

to find the maximum clique or produce an optimal coloring. However, for particular

5

Elizabeth Gorbonos Separability and Ordering of Graphs

families of graphs, given an appropriate ordering a greedy algorithm will perform

accurately. We will see several examples in Section 2.4.

Another way to address the NP-completeness barrier is to reduce the problem

space by restricting the allowed input graphs. Choosing to limit the discussion to

specific graph families motivates developing structure theories and auxiliary tools such

as vertex ordering and decomposition. Let us demonstrate the benefits of ordering

on the chordal graph family. A simplicial vertex is a vertex whose neighborhood is a

clique. It is well known, from structural analysis, that every chordal graph contains

a simplicial vertex (as a matter of fact a stronger theorem shows every chordal graph

G which is not a clique contains two non-adjacent simplicial vertices) [41]. Using

this knowledge we can build an ordering for G by repeatedly removing simplicial

vertices (note the hereditary property guarantees the existence of a simplicial vertex

in any induced subgraph). The order we create is known in literature as a perfect

elimination order (PEO) and can be used to optimally color G and identify ω(G) in

linear time. It follows that computing χ(G) and ω(G) in this case can be achieved in

O(generating PEO) + O(n+m) time. In Section 2.2.2 we show a PEO for a chordal

graph G can be generated in linear time (Theorem 2.2.7), making the entire problem

linear-time solvable. This is a very elegant result as opposed to the general NP-hard

case. Decomposition is a technique designed to split or reduce a graph by identifying

specific structures. Decompositions are the foundation of many divide and conquer

graph algorithms. The objective of those algorithms is to solve the problem on smaller

“simpler” graphs and later “stitch” together the complete solution. This often proves

more efficient than trying to tackle the original graph directly as we demonstrate in

Chapter 5.

6

Elizabeth Gorbonos Separability and Ordering of Graphs

• •

• •

Diamond

•

• •

•

Claw

•
•

• •

•

Kite
•
•

Pan

Figure 1.2: Important induced subgraphs

1.3 Motivation

The well awaited proof of the Strong Perfect Graph Theorem in [19] was a significant

milestone in the study of graphs. Furthermore, it rendered many open problems easy

to solve and consequently motived a new line of research focusing on (Even-Hole)-free

or (Odd-Hole)-free graphs. Our study is primarily inspired by prior results in this

vein of work. Table 2.3 (in Section 2.5) suggests the (Odd-Hole)-free class is harder

to crack, hence we pay more attention to (Even-Hole)-free graphs.

Figure 1.2 depicts some important graphs which will appear in this work. A Diamond

is the graph produced by removing one edge from a K4. A Claw, with center v, is

the bipartite graph K1,3 where v is the single-vertex set. A Kite is a diamond with

a vertex attached to it as illustrated in figure 1.2. A Pan is a hole with an auxiliary

vertex. We note, that the Kite generalizes the Diamond and the Pan generalizes the

Claw. We now define a number of observable graph properties.

Definition 1.3.1 Let G = (V,E) be a graph. A set of vertices C ⊂ V is called a

cutset if and only if the graph G−C can be partitioned into two vertex-sets A and B

such that there are no edges between A and B. C is a clique cutset if it is a cutset

and the subgraph induced by C is a clique.

Definition 1.3.2 Let G = (V,E) be a graph, a vertex v ∈ V is a simplicial ex-

treme if the neighborhood of v is a clique or the degree of v is 2 (i.e. the neighborhood

is exactly two non-adjacent vertices).

7

Elizabeth Gorbonos Separability and Ordering of Graphs

Definition 1.3.3 Let G1 and G2 be two graphs. The graph G is join of G1 and G2

(denoted G = G1 ⊕ G2) if for every v ∈ V (G1) and u ∈ V (G2), vu is an edge in G

(i.e. vu ∈ E(G)).

Kloks et al. [63] established the following nice structural theorem.

Theorem 1.3.4 [63] If G is an (Even-Hole, Diamond)-free graph, then one of the

following holds:

• G is a clique, or

• G contains two non-adjacent simplicial extremes.

The existance of simplicial extreme vertices implies a O(n2m) time-complexity

for coloring (Even-Hole, Diamond)-free graphs. In [48] this work was extended to

encompass (Even-hole, Kite)-free graphs, but the theorem in that paper is in fact

stronger as is it applies to (C4, Kite)-free graphs.

Theorem 1.3.5 [48] Let G be a connected (C4, Kite)-free graph. Then one of the

following holds.

• G is diamond-free, or

• G is the join of a clique and a diamond-free graph, or

• G contains a clique cutset

Another result given in this work states that:

Theorem 1.3.6 [48] (Even-Hole, Kite)-free graphs are β-perfect.

The final structural result we bring here regards (Even-Hole,Pan)-free graphs and

requires one additional definition.

8

Elizabeth Gorbonos Separability and Ordering of Graphs

Definition 1.3.7 A Circular-Arc graph G is the mapping of a set A of arcs on

some circle, such that every vertex represents an arc, and two vertices of G are ad-

jacent if the two corresponding arcs intersect on the circle. A Unit Circular-Arc

graph is a circular-arc graph for which all arcs have the same length.

Theorem 1.3.8 [13] If G is (Even-Hole, Pan)-free, then

• G is a clique, or

• G contains a clique cutset, or

• G is a unit circular-arc graph, or

• G is the join of a unit circular-arc graph and a clique.

Fraser et al. [48] and Cameron et al. [13] present poly-time algorithms to color

(Even-Hole, Kite)-free and (Even-Hole, Pan)-free graphs with run times of O(n3m)

and O(n2.5 +nm) respectively. Both coloring algorithms exploit Tarjan’s [91] decom-

position technique and rely on the fact that an efficient decomposition produces at

most n − 1 atoms (see Section 2.3.1). Examining the presented results, we extract

two properties to be at the center of our thesis, namely: clique cutsets and simplicial

extremes.

The idea to utilize clique cutsets to decompose a graph is described by Gavril [51].

A prime graph is a natural concept in decompositions. It takes different meanings

with respect to the preformed decomposition and we formally define and redefine it

numerous times in Section 2.3. For the purpose of discussing the clique cutset de-

composition we say a prime graph is a graph that does not contain a clique cutset. A

maximal prime subgraph (mp-subgraph) H of G is an induced subgraph of G which

is prime and is maximal with respect to the number of vertices. An atom of a decom-

position is a prime subgraph produced by the decomposition process, we remark that

an atom is not necessarily a mp-subgraph. Many have studied this decomposition,

9

Elizabeth Gorbonos Separability and Ordering of Graphs

including Whitesides [101] and Diestel [39]. Leimer [65] proved that using minimal

clique separators produces the optimal (smallest) number of atoms. So far most ef-

forts in this line of work were focused on optimizing the decomposition algorithm

and minimizing the number of atoms. We are however interested in a comprehensive

theoretical characterization of this type of decomposition. Our main results for this

chapter are:

• Theorem 3.3.17 tightens the maximum bound, for a minimal clique separators

decomposition, to n− |H|+ 1. Where H is the largest mp-subgraph of G.

• Theorem 3.2.7 refines the upper bound, on the number of atoms, for any clique

cutset decomposition. We show the number of atoms is at most n2

4
. This is a

more precise result than the previously reported n2 estimation [51].

The second feature we set out to explore is the presence of simplicial extremes.

Simplicial extremes only slightly differ from simplicial vertices and encourage us to

consider them in orderings (this is reminiscent of the PEO). In fact we show in Section

4.1.3 that once a simplicial-extreme order (SEO) is generated for a graph, assuming

such order exists, both the chromatic number and the clique number can be found

in linear time (Theorems 4.1.5 and 4.1.6). We define a new graph family C with the

property: G ∈ C if for any X ⊆ V there is a simplicial extreme in G[X]. From [63] we

know C contains (Even-Hole, Diamond)-free graphs. We ask the following questions:

• Which other graph families are in C?

• How can we generate and verify a SEO order?

• For which graph classes every LexBFS produces a SEO?

Our major findings are:

• Corollary 4.2.6 shows that an (Even-Hole, Kite)-free graph G is either in C or

G contains a wheel.

10

Elizabeth Gorbonos Separability and Ordering of Graphs

• Theorem 4.3.3 demonstrates that every LexBFS ordering for an (Even-Hole,

Diamond, Claw)-free graph is a SEO.

1.4 Organization of the Thesis

Chapter 2 presents a survey of related works, starting from a historical review on the

study of perfect graphs. Perfect graphs are the cornerstone to many of the techniques

and topics in the remainder of that chapter including lexicographical breadth first

search (LexBFS), various decomposition methods, vertex-orderings and the currently

ongoing research on hole-free graphs. In Chapter 3 we dive into the clique cutset

decomposition and attempt to characterize multiple aspects of it, from the decompo-

sition itself to properties of the atoms and their quantity. We begin with a general

decomposition, meaning we place no constraints over the clique cutsets chosen at each

step. Later we consider extreme cases including the minimum and minimal clique cut-

set decomposition as well as the maximum and maximal clique cutset decomposition.

We propose a new class named SE-Class in Chapter 4, which is defined by the ideal

that any graph G in this class has a simplicial extreme and so does every induced

subgraph of G. We commence by demonstrating the benefits of our prescribed prop-

erty for solving the coloring and maximum clique problem. Then we examine the

(Even-Hole, Claw)-free and (Even-Hole, Kite)-free classes to determine whether they

belong to SE-Class. Finally we identify a structure we name spear in (Even-Hole,

Claw, Diamond)-free graphs (a subclass of SE-Class) which helps us prove that any

LexBFS on such graphs creates a SEO. The purpose of Chapter 5 is to showcase how

clique cutset decomposition along with structural results on (Even-Hole, Kite)-free

graphs allow us to design a certifying algorithm for k-colorability of graphs in this

family. Lastly, in Chapter 6 we summarize and pose the questions left unresolved in

this work.

11

Chapter 2

Background

In this chapter we present an overview of related graph families along with a broad

literature survey of tools essential to our work. We start by introducing the class of

perfect graphs in Section 2.1. This graph family was first introduced in the 1960s

by Berge and has drawn much attention since. It is also the prime motivator behind

many of the techniques covered in this chapter. Section 2.2 presents graph traversal

algorithms, focusing on LexBFS. In Section 2.3 we survey multiple decomposition

techniques. Section 2.4 demonstrates several graph families which are defined via

special orderings. And lastly, we examine the known results on hole-free graphs in

Section 2.5.

2.1 Perfect Graphs

In the late 1950s Berge set out to explore new combinatorial properties of graphs. He

proposed two new graph families which he named γ-perfect and α-perfect, we now

know these classes simply as perfect graphs [3]. The original definition of γ-perfect

graphs was identical to the one given here.

Definition 2.1.1 A graph G is perfect if for every induced subgraph H of G the

12

Elizabeth Gorbonos Separability and Ordering of Graphs

property χ(H) = ω(H) holds.

On the other hand, α-perfect graphs were defined by the hereditary property α(H) =

θ(H) for every induced subgraph H of G. We have pointed out in Section 1.2.2 that

α(G) = ω(G) and θ(G) = χ(G) thus α-perfection of G implies γ-perfection of G.

Several prominent graph classes were recognized to be perfect soon after Berge’s defi-

nitions. For instance, Berge noted bipartite graphs and chordal graphs (as proven by

Hajnal and Suranyi) were perfect [3, 10]. However, two non-perfect infinite families,

became quickly known. Specifically, graphs containing induced odd-holes and graph

with induced odd-antiholes are not perfect. An odd-hole G on 2k+ 1 vertices (k ≥ 2)

has 2 = ω(G) 6= χ(G) = 3 and its complement G has k = ω(G) 6= χ(G) = k + 1.

These findings motivated Berge to formulate the next two conjectures.

1. A graph G is perfect if and only if its complement is perfect.

2. A graph G is perfect if and only if it does not contain an odd-hole or an odd-

antihole.

These conjectures are commonly referred to as the Weak Perfect Graph Conjecture

(WPGC) and the Strong Perfect Graph Conjecture (SPGC), respectively. The family

of graphs described by the SPGC is also known as Berge graphs.

Definition 2.1.2 A graph G is Berge if it contains no induced odd-hole and no

induced odd-antihole.

Lovász [67] managed to prove the WPGC using the replication lemma and with

that made the dual terminology of α-perfect and γ-perfect obsolete.

Lemma 2.1.3 [67] When substituting perfect graphs for some vertices of a perfect

graph the obtained graph is also perfect.

Theorem 2.1.4 [67] (Perfect Graph Theorem) A graph G is perfect if and only if G

is perfect.

13

Elizabeth Gorbonos Separability and Ordering of Graphs

••
•
•

Paw

• •
• •
•

Bull

Figure 2.1: Graphs: Paw, Bull

2.1.1 The Strong Perfect Graph Theorem

Unlike the WPGC, the SPGC resisted proof for almost four decates up utill the early

2000s when it was finally proven by Chudnovsky et al. [19]. It drew quite a bit of at-

tention over those years and cultivated many new techniques throughout the various

attempts to prove it. It is important to note one side of the SPGC is straightforward:

any graph which is not Berge is not perfect, as by definition it contains an induced

subgraph which obstructs perfection. For that reason, all efforts focused on proving

every Berge graph is also perfect.

Many of the results cited here use special types of cutsets. Section 2.3 is dedicated

to decompositions and provides complete definitions for all relevant terms. We mark

with (*) terms which will be properly defined later. A Paw (see Fig. 2.1) is a con-

nected graph on four vertices which consists of a triangle and exactly one more edge.

A Bull is the graph on five vertices depicted in Fig. 2.1 and is self-complementary

(meaning G = G).

One endeavor aimed to characterize perfect graphs by means of restricted-graph

families. In fact, the perfection of all F -free Berge graphs with F being any connected

graph on four-vertices was gradually established (see Table 2.1). Yet it is clear such

an approach cannot settle the SPGC.

At the same time a parallel effort was carried out and involved decomposing (and

in certain cases composing [35]) perfect graphs. The results of the decompositions

were used to characterize a minimal imperfect graph (w.r.t. the number of vertices).

In a more precise manner we say a minimal imperfect graph is a graph G which is not

14

Elizabeth Gorbonos Separability and Ordering of Graphs

F -free Berge Source

P4-free Seinsche (1974) [86]
Claw-free Parthasarathy and Ravindra (1976) [81]
K4-free Tucker (1977) [97]

Diamond-free Tucker (1987) [99]
Paw-free Olariu (1988) [79] based on [73]
C4-free Conforti et al. (2004) [27]

Table 2.1: Account of establishing perfection for F -free Berge graphs

perfect but every properly induced subgraph H of G is. We will discuss notable results

for minimally imperfect graphs, but beforehand we must define a few properties.

Definition 2.1.5

An Even-Pair in G = (V,E) is a pair of two non-adjacent vertices {v1, v2} ⊆ V

such that all induced paths with endpoints v1, v2 have an even number of edges.

An Antitwin in G = (V,E) is a pair of vertices {v1, v2} ⊆ V for which every vertex

u ∈ (G− {v1, v2}) is adjacent to exactly one of {v1, v2}.

A Homogeneous pair in G = (V,E) is a pair of disjoint vertex-sets A,B (A ⊂ V ,

B ⊂ V) such that:

1. all A-partial vertices are in B and all B-partial vertices are in A,

2. at least one of A,B has size greater than two,

3. |V (G− (A ∪B))| ≥ 2

Cornuéjols and Cunningham studied perfection-preserving compositions and dis-

covered the following result.

Lemma 2.1.6 [35] No minimal imperfect graph contains a 2-join (*).

Meyniel proved that:

Lemma 2.1.7 (Even Pair Lemma) [74] No minimal imperfect graph contains an

even pair.

15

Elizabeth Gorbonos Separability and Ordering of Graphs

The next result by Chvátal inspired Olariu’s theorem for pan-free Berge graphs.

It also serves to demonstrate how observations on minimal imperfect graphs allowed

researchers to further identify restricted perfect graph classes.

Lemma 2.1.8 (Star Cutset Lemma) [23] No minimal imperfect graph contains a star

cutset (*).

Theorem 2.1.9 [80] The Strong Perfect Graph Conjecture holds true for pan-free

graphs.

Another example is the Antitwin Lemma which was generalized by Chvátal and

helped proving bull-free Berge graphs are perfect.

Lemma 2.1.10 (Antitwin Lemma) [78] No minimal imperfect graph contains an-

titwins.

Lemma 2.1.11 (Homogeneous Pair Lemma) [24] No minimal imperfect graph con-

tains a homogeneous pair.

Theorem 2.1.12 [24] The Strong Perfect Graph Conjecture holds true for bull-free

graphs.

Definition 2.1.13 Two non-adjacent vertices u1, u2 of a graph G form a three-pair

if all chordless paths of G joining u1 to u2 have exactly three edges.

The antitwin structure was also utilized by Hoàng[56], who noted every even-pair

in G forms a three-pair in G or in G, thus leading to the following result:

Lemma 2.1.14 (Three-Pair Lemma) [56] No minimal imperfect graph contains a

three-pair.

16

Elizabeth Gorbonos Separability and Ordering of Graphs

The final proof to the Strong Perfect Graph Teorem (SPGT) was a combination

of the two approaches [19]. It was inspired by a proposition for decomposing perfect

graphs mentioned in [27]. The authors conjectured that every Berge graph can be

classified into some well-defined graph class (called basic) or it can be decomposed

in a specific manner (referred to as a useful decomposition). The idea behind the

proof was to show that a minimal imprefect graph does not admit any of the useful

decompositions, thus it is basic. However, all basic graphs are perfect hence we arrive

at a contradiction, meaning no Berge graph can be minimally imperfect. One of the

adaptations required for this proof was the definition of balanced skew partitions(*).

2.1.2 Properties of Perfect Graphs

Following the previous discussion we are already aware of a powerful property of

perfect graphs, namely a graph G is perfect if and only if it is Berge. We mention

below two results of particular interest.

Theorem 2.1.15 [73] A graph is perfect if each of its odd cycles with at least five

vertices contains at least two chords.

Theorem 2.1.16 [19, 16] For every perfect graph G, either G is basic, or one of G,

G admits a proper 2-join (*), or G admits a balanced skew partition (*).

2.1.3 Problems on Perfect Graphs

Perfect graphs are nice in the sense that many NP-complete problems can be solved

in polynomial time for this class. The definition of perfect graphs and the equality

ω(G) = α(G) (symmetrically, χ(G) = θ(G)) means a poly-time solution to one of the

four problems entails an efficient algorithm for the rest, and these in fact exist [53].

To reap those benefits, it is desirable to recognize perfect graphs algorithmically in

17

Elizabeth Gorbonos Separability and Ordering of Graphs

poly-time as well. Fortunately, due to [18] we are now able to recognize perfect graph

in O(n9) time.

Recognizing Perfect Graphs

Based on the SPGT, one can test if a graph is perfect by testing to see if it is Berge.

A direct approach would be to follow the definition of a Berge graph and search for

odd-holes, unfortunately there is no poly-time algorithm known to perform this task

[14]. For this reason we are compelled to search for other structures resulting in

odd-holes or odd-antiholes.

Definition 2.1.17 G = (V,E) has a Pyramid if {x1, x2, x3} ⊂ V is a triangle and

there are three induced paths from x1, x2, x3 to a vertex y ∈ V , P1, P2, P3 respectively.

At most one of P1, P2, P3 has length one and the union of every two paths induces a

hole.

Definition 2.1.18 G = (V,E) has a Jewel if it has a cycle C5 = v1, v2, v3, v4, v5

with the following conditions: v1v3 6∈ E, v1v4 6∈ E, v2v3 6∈ E and there is some path

P with endpoints v1, v4 and no edges between its interior vertices and {v2, v3, v5}.

Theorem 2.1.19 If G contains a pyramid or a jewel it contains an odd hole.

Proof. A pyramid necessarily contains two paths with the same parity. Assume,

without loss of generality, P1 and P2 have the same parity, then G[P1 ∪ P2] is a odd

hole. For a Jewel, assume P has an even length then G[P ∪ {v2, v3}] is a odd hole,

otherwise G[P ∪ {v5}] is a odd hole. 2

The algorithm devised in [18] handles odd-holes with a special property called

amendable. Let C be a hole in G, a vertex v ∈ V (G − C) is called C-major if

V (N(v) ∩ C) 6⊆ V (H) where H is any induced P2 of C. A hole C without C-major

18

Elizabeth Gorbonos Separability and Ordering of Graphs

vertices can be easily identified. In order to obtain such hole a “cleaning” technique,

first introduced in [28], is used. Roughly speaking, amendable holes are holes which

can be cleaned. To be more specific, a cleaner of a hole C is a vertex-set X ⊂ V

which contains all C-major vertices. A set X is anticonnected if G[X] is connected.

Additionally, C is called amendable if it is the shortest odd-hole in G on at least 7

vertices and for every anticonnected set X of C-major vertices, there is an X-complete

edge in C. The general idea is to generate a polynomial number k of cleaners, such

that S = X1, ..., Xi, ..., Xk, and test the graph G[V −Xi] for clean holes. For practical

reasons, [18] have applied some optimizations to this approach and are working with

a variation of the cleaners, called near-cleaners. The algorithm is composed of three

routines and is executed on both G and G. There are two bottlenecks in this algorithm

resulting in the O(n9) time-complexity, the first one is detecting a pyramid and the

second one is detecting an amendable odd-hole (an order of O(n5) near-cleaners are

generated and the time-complexity to detect a hole using a near-cleaner is O(n4)).

Algorithm 1 Berge Graph Recognition

1: Detect one of five structures (two of which are the pyramid and the the jewel)
2: Generate O(n5) near-cleaner sets.
3: for each near-cleaner set do
4: check if a odd-hole is found
5: end for

Coloring Perfect Graphs

In the 1980s Grötschel at el. [53] demonstrated how the ellipsoid method can be

applied to solve the coloring problem for perfect graphs in poly-time. For that end,

they utilized the theta function Θ(G) introduced by Lovász in [68]. Their algorithm

evaluates Θ(G), and by perfection we have Θ(G) = α(G) = θ(G) = χ(G) = ω(G).

Recently, there have been several attempts to devise a combinatorial coloring al-

gorithm. Combinatorial in this context means an algorithm which relies on graph

19

Elizabeth Gorbonos Separability and Ordering of Graphs

searches, decomposition or linear programing [94]. The motivation of these studies is

to solve those problems with the gathered knowledge about decompositions in perfect

graphs. So far, most such algorithms have been restricted with respect to the allowed

decompositions. For instance, [96] focused on perfect graphs which can be decom-

posed using 2-joins(*). In their work they showed that for a perfect graph G with no

balanced skew partition(*), no connected non-path 2-join(*) in the complement and

no homogeneous pair a maximum stable set and a maximum clique can be found in

O(n6) time. Subsequently, an optimal coloring can be produced in O(n7) time. This

work was extended in [20], where the restriction was loosened to accept any perfect

graph with no balanced skew partition(*) and a O(n5) time algorithm to retrieve the

maximum stable set and maximum clique was presented. The complexity for optimal

coloring, on the other hand, remained the same. A further step in this direction was

taken in [21] in which a combinatorial algorithm for coloring any perfect graph on n

vertices in time O(n(ω(G)+1)2) is given. This is technically polynomial assuming the

graph has a bounded clique number.

2.2 Graph traversal

A graph traversal (or graph search [103]) of G = (V,E) is the process of visiting all the

nodes V in some order, two principal algorithms to accomplish this task are Breadth

First Search(BFS) and Depth First Search(DFS). The logic guiding each search pro-

cess produces a vertex-ordering of G. In this section we trace the development of

Lexicographic Breadth First Search (LexBFS), a prominent graph traversal algorithm

and an extension of the classic BFS.

Definition 2.2.1 Let G = (V,E) be a graph and {v, u} ⊆ V . The distance between

v and u, denoted d(v, u), is the length of the shortest chordless path with endpoints v

and u (in terms of number of edges).

20

Elizabeth Gorbonos Separability and Ordering of Graphs

2.2.1 Fundamentals

The adjacency list is the optimal graph representation (i.e. data structure) for BFS

and DFS and is key for their linear time execution (O(n + m)). Conceptually BFS

and DFS are very much alike: they both explore the graph gradually, in the sense

that the algorithm will only reach a new vertex v if it has already encountered at least

one of its neighbors (besides the first node, obviously). Furthermore, we can visualize

the traversal pattern as a tree, as we always reach a vertex from a previously seen

neighbor we can think of it as the parent node. The major difference between BFS

and DFS, as implied by their names, lies in the order in which we choose the “next”

vertex. For BFS we use a first in first out (FIFO) strategy, every time we process a

vertex we enqueue all of its “new” neighbors and reach them in due time. Assume

s ∈ V is the vertex from which we start the search, BFS logic guarantees a vertex

v ∈ V will be processed before a vertex u ∈ V if d(s, v) < d(s, u). This property,

combined with the traversal tree enables us to find the shortest path from s to v. BFS

is indeed an appropriate and efficient solution for finding shortest paths and is widely

used for this purpose. Other applications of BFS include cycle detection, spanning

trees, and graph class recognition [30]. Algorithm 2 outlines the steps of BFS.

Algorithm 2 BFS

1: initialize queue with start vertex s
2: initialize a boolean array seen and mark s as seen
3: while queue not empty do
4: pop v from queue
5: for u ∈ N(v) do
6: if u not seen then
7: mark u as seen
8: push u to queue
9: end if

10: end for
11: end while

Unlike the previous algoritm, DFS employs a “deep-dive” approach. The algo-

21

Elizabeth Gorbonos Separability and Ordering of Graphs

rithm follows a path of unvisited vertices until it reaches some vertex whose entire

neighborhood has been visited, then it backtracks to the latest seen unvisited vertex

and repeats the process (see Algorithm 3). Such behavior is achieved by a last in first

out (LIFO) technique, characteristic to a stack data structure. Similar to BFS, DFS

can be used to solve problems like cycle detection and spanning trees however it was

popularized for settling connectivity problems [89].

Algorithm 3 DFS

1: initialize stack with start vertex s
2: initialize a boolean array visited
3: while stack not empty do
4: pop v from stack
5: if v not visited then
6: for u ∈ N(v) do
7: if u not visited then
8: push u to stack
9: end if

10: end for
11: mark v as visited
12: end if
13: end while

Before commensing the discussion on LexBFS, we would like to mention as a side

note another commonly used traversal variation, namely the Maximum Cardinality

Search (MCS). Unlike BFS which progresses to the earliest seen and unvisited vertex

or DFS which chooses the latest seen yet unvisited one, MCS decides on the next

vertex based on a seen-count, the vertex with the most neighbors in the “visited pile”

is picked next. MCS was introduced by Tarjan and Yannakakis [93] as a simplification

of LexBFS for the tasks of chordality testing and checking acyclicity of hypergraphs

(these generalize graphs by allowing edges to contain more than two vertices [2]).

22

Elizabeth Gorbonos Separability and Ordering of Graphs

2.2.2 LexBFS

Origin and Chordal Graphs

LexBFS first appeared in [85] where the authors studied the problem of Minimum

Fill-In. This problem is closely related to Gaussian elimination which is a technique

from linear algebra to solve a system of linear equations, the method simplifies the

coefficients matrix M (of size n × n) by eliminating the variables x1, ..., xn from as

many rows as possible. The fill-in of a graph corresponds to the new non-zero elements

produced by the elimination process (a comprehensive review on this representation

can be found in [90]). To discuss the problem we need few additional definitions.

Definition 2.2.2 Let G = (V,E) be a graph and v ∈ V .

• The deficiency of v, denoted D(v) is a set of edges corresponding to all the non-

edges in the neighborhood of v. Formally, D(v) = {u1u2|{u1, u2} ⊆ N(v), u1u2 6∈

E}.

• The graph Gv is a v-elimination graph, if it represents the elimination process

of v. This graph is generated by adding all the edges D(v) and removing v, i.e.

Gv = (V ′, E ′) with V ′ = V − {v} and E ′ = E(G[V ′]) ∪D(v).

• An elimination process with order σ is the process of eliminating all vertices

of G according to σ, using the i-th elimination graph as the input for the {i+1}

elimination step.

• The fill-in of G with respect to σ is the result of the elimination process and

is defined as F (Gσ) =
n−1⋃
i=1

D(σi) (the deficiency D(σi) is computed here on the

elimination graph of the (i− 1)-th step).

• The elimination graph of G = (V,E) with ordering σ is G∗σ = (V,E∪F (Gσ)).

23

Elizabeth Gorbonos Separability and Ordering of Graphs

The minimum fill-in problem requires finding an ordering σ such that F (Gσ)

contains the smallest number of edges with respect to any other ordering of V . The

authors of [85] conjecture this problem might be NP-complete (as was actually proven

later in [104]) and therefore they focus on minimal fill-in instead.

Definition 2.2.3 A minimal fill-in is a fill-in F (Gσ) such that for any other or-

dering α, F (Gα) 6⊂ F (Gσ). An ordering σ for which F (Gσ) is a minimal fill-in is

called a minimal elimination order (MEO). A perfect elimination order(PEO) is

an ordering σ for which F (Gσ) = ∅. Graphs that admit PEO are perfect elimina-

tion graphs.

Clearly every elimination graph G∗σ is a perfect elimination graph since the order

σ is a perfect elimination order of this graph (it cannot contribute any more edges to

a fill-in). In addition we note that PEO is both a MEO and minimum elimination

order. The following theorem establishes a PEO is an efficient recognition technique

for chordal graphs.

Theorem 2.2.4 [84] A graph G is a perfect elimination graph if and only if it is

chordal.

For that reason G∗σ is called a triangulation of G or a minimal triangulation if σ

is a MEO. A particularly interesting observation about a PEO is that it implies that

every σi is simplicial in G[{σi, ..., σn}], making it a powerful tool for solving graph

problems on chordal graphs [50]. The next result defines a sufficient condition for a

minimal triangulation.

Theorem 2.2.5 [85] Let G = (V,E) be a graph and G′ = (V,E ∪ F) be chordal.

Then G is a minimal triangulation if and only if each f ∈ F is a unique chord of a

C4 in G′.

24

Elizabeth Gorbonos Separability and Ordering of Graphs

Algorithm 4 LexM

1: initialize labels list of size n
2: for i : n→ 1 do
3: choose the vertex v with the largest label
4: set σi = v
5: for unnumbered u ∈ V such that there is a path P = {v, u1, ..uk, u} with uj

unnumbered and labels[uj] < labels[u] do
6: labels[u] += i {e.g. add i to the set labels[u]}
7: end for
8: end for

Rose et al. [85] showed Algorithm 4 produces an order that satisfies the require-

ment in Theorem 2.2.5, meaning every order produced by Lex-M is MEO. They also

demonstrated a O(nm) time implementation of Lex-M and that constructing a min-

imal triangulation using the produced order can be done in linear-time. A further

result was due to the next observation. Note, from this point onwards we use Gi as

per Definition 1.2.1.

Observation 2.2.6 [85] Let G′ = G∗σ be the elimination graph of G = (V,E). The

label for every v = σi contains all of the neighbors of v in G′i. In other words, let

L(v) be the final label of v, then L(v) = NG′(v) ∩ V (G′i).

For a MEO of a chordal graph G (and equally, as we have noted, a PEO) Ob-

servation 2.2.6 implies that once we pick the vertex v with the largest label it is

sufficient to only update its neighbors. Thus Rose, Tarjan and Lueker were able to

give a simplified linear-time algorithm to produce a PEO assuming one exists. Their

algorithm, Lex-P, is now commonly called LexBFS and is detailed in Algorithm 5.

Theorem 2.2.7 [85] Chordal graphs can be recognized in time O(n+m)

Proof. To check that G is chordal by Theorem 2.2.4 it is enough to check that G

has a PEO. First, execute LexBFS on G in O(n + m) time to find an elimination

order σ = {v1, ..., vn}. If G is chordal then σ is inevitably a PEO, the following is

25

Elizabeth Gorbonos Separability and Ordering of Graphs

Algorithm 5 LexBFS

1: initialize labels list of size n
2: for i : n→ 1 do
3: choose the vertex v with the largest label
4: set σi = v
5: for unnumbered u ∈ N(v) do
6: labels[u] += i {e.g. add i to the set labels[u]}
7: end for
8: end for

an explanation of how to check that in linear time. Initialize a list bba (“better be

adjacent”) of size n. Now we examine σ from left to right. For each vi (1 ≤ i ≤ (n−1)),

start by checking that it satisfies its adjacency requirements, i.e. bba[i] ⊆ Nσ(vi).

Then, identify the smallest vj ∈ Nσ(vi) (w.r.t. the index in σ) and assign bba[j] =

set(bba[j] ∪ (Nσ(vi)− {vj})). 2

Further Applications

Since the original paper more variations and applications for LexBFS were introduced.

The research branches out to other graph families so we briefly define them first. We

say a path P misses a vertex v if N(v) ∩ V (P) = ∅.

Definition 2.2.8 A vertex v is semisimplicial if v is not an interior vertex of

an induced P4. An ordering σ = {v1, ..., vn} of V is a semiperfect elimination

ordering if vi is semisimplicial in Gi. The term HHD is short for the graphs: hole,

House (P5) and Domino (a graph composed of two C4s with a shared edge).

Definition 2.2.9 The vertices v1, v2 are unrelated w.r.t. v if there exist P1, P2 with

endpoints v, v1 and v, v2 respectively such that P1 misses v2 and P2 misses v1. The

vertex v is called admissible if there are no unrelated vertices w.r.t. v. An ordering

σ is an admissible elimination ordering if vi is admissible in Gi. An independent

set {v1, v2, v3} ⊂ V is an Asteroidal Triple (AT) if between every pair there is a

path P which misses the third vertex.

26

Elizabeth Gorbonos Separability and Ordering of Graphs

LexBFS is an effective tool to recognize graph families beyond chordal graphs.

As demonstrated by several works, specific restricted graph classes are characterized

by special orderings which are produced by any LexBFS.

Theorem 2.2.10 [57] G is an HHD-free graph if and only if every ordering produced

by LexBFS is a semiperfect elimination ordering.

Theorem 2.2.11 [33] G is an AT-free graph if and only if every ordering produced

by LexBFS is an admissible elimination ordering.

In addition, it was noted in [55] that the orderings produced by LexBFS em-

body a special case of partitioning. This observation instigated algorithms based on

multiple “sweeps” such as LexBFS+ and LexBFS−. Let σ be a LexBFS ordering of

G. LexBFS+ breaks the ties in line 3 of Algorithm 5 according to σ and is used in

[34] to recognize Interval graphs (these are AT-free chordal graphs [66]) in a simple

linear fashion. LexBFS− produces an ordering of G using σ and eliminates the need

to explicitly represent G. It was also used in [12] to efficiently recognize Cographs

(graphs with no induced P4).

2.3 Decomposition and Separability of Graphs

Decompositions are a substantial subfield of graph theory. This research area includes

modular, split and star-cutset decompositions, to name a few. Roughly speaking the

connecting thread of all techniques is partitioning the graph in order to simplify it.

Some methods, as does the one we plan to study, exploit cutsets and separate the

graph into multiple smaller graphs. A similar, yet more informative, way to define a

cutset is as a separator.

Definition 2.3.1 Let G = (V,E) be a graph and u, v ∈ V . A set S is a uv-

separator of G if the vertices u and v belong to different components A and B

in G− S. Every uv-separator is also a cutset with u ∈ A and v ∈ B.

27

Elizabeth Gorbonos Separability and Ordering of Graphs

In this chapter we focus on the clique separator decomposition and provide an overview

of some other popular decompositions. We group the various decompositions into two

types based on whether cutsets are utilized.

Definition 2.3.2

• A decomposition step is an operation on graph G resulting in a set of smaller

graphs (with respect to number of vertices).

• Decomposition blocks are the graphs produced by a decomposition step.

• A decomposition is the process of repeatedly performing decomposition steps

until the decomposition method is no longer applicable.

• A decomposition tree is a logical (and visual) representation of a decompo-

sition.

• An atom is the graph corresponding to a leaf of a decomposition tree.

In some cases we mention composition, this is the opposite operation of a decom-

position step. Simply put it is an operation of “gluing” or “bonding” two graphs

together.

2.3.1 Clique Separator Decompostion

A uv-separator S is a clique separator (and therefore a clique cutset) if S induces

a clique. A graph G is called decomposable if it contains a clique cutset. Let us

begin by redefining some of the general terms with respect to the clique separator

decomposition. All subgraphs in this section are induced subgraphs.

Definition 2.3.3

• Let G be a decomposable graph and C be a clique cutset of G. A decomposition

step is the partitioning of V (G − C) into two sets A and B, such that there is

28

Elizabeth Gorbonos Separability and Ordering of Graphs

no edge between A and B. We define the decomposition blocks G1, G2 as follows

G1 = G[A ∪ C] and G2 = G[B ∪ C]. We denote a decomposition step by the

function DS(G,C,G1, G2).

• The decomposition tree T (G) is a binary tree representing a decomposition. Each

inner node is labeled according to the decomposition step it represents and (apart

from the root node) corresponds to a previous decomposition block. The leaves

of the tree are non-decomposable subgraphs of G and are known as atoms.

We use the notation atoms(T (G)) for the set of subgraphs at the bottom of a

decomposition tree.

• Let H be a subgraph of G. H is a prime-subgraph of G if and only if H is a

connected subgraph which has no clique cutsets. H is a maximal prime-subgraph

(mp-subgraph) if and only if H is a prime-subgraph and there exists no H ′

such that H ⊂ H ′ and H ′ is a prime-subgraph. We use mp-subgraphs(G) to

refer to the set of all mp-subgraphs of G.

The clique separator decomposition, similar to most other decompositions we

shall present, was motivated by the research on perfect graphs. Clique cutsets were

noted as “useful” to the study of perfection since a composition of two perfect graphs

using a clique preserves perfection (i.e. this operation results in a perfect graph)

[94]. At the same time, certain perfect graph families are famously decomposable.

For instance, it is well known that every minimal cutset of a chordal graph G is a

clique [41, 84]. Gavril [51] tried to aggregate graphs with clique cutsets and special

types of atoms (Type 1: the join of a biparite graph and a clique, Type 2: k-partite

graphs) under a class named Clique Separable Graphs. He presented an algorithm for

recognizing graphs in this family together with a method to find a maximum clique

and minimum coloring (utilizing the decomposition tree).

29

Elizabeth Gorbonos Separability and Ordering of Graphs

For an arbitrary graph G, an O(nm) time algorithm to detect a clique cutset was

given by Whitesides [101]. A complete clique cutset decomposition is achieved by

re-running the algorithm on all decomposition blocks, which are roughly bounded by

n2 [51], and amounts to O(n3m) time. Tarjan [91] noticed the advantage of a MEO

to this problem and suggested an alternative algorithm. His algorithm also requires

O(nm) time to find a clique cutset, however this is also the time required to find all

the clique cutsets. Tarjan generalized Garvil’s algorithms for maximum clique and

minimum coloring and answered Garvil’s open question regarding maximum stable

set. Even though the proposed algorithm was shown to produce at most n−1 atoms,

Tarjan raised the question regarding the uniqueness of atoms in an arbitrary clique

cutset decomposition. This problem was tackled by Leimar [65] who introduced the

P -decomposition, which is a clique cutset decomposition with the property that at

each decomposition step DS(G,C,G1, G2), C must be a minimal clique separator of

G. Let us define that more precisely.

Definition 2.3.4 Let G = (V,E) be a graph. S is a minimal clique separator if

and only if S is a clique cutset and there are {u, v} ∈ V such that S is a uv-separator

and there exists no S ′ ⊂ S which is also a uv-separator.

Liemer [65] proved the following two theorems and thus demonstrated the smallest

possible set of atoms of any clique separator decomposition is exactly the set of mp-

subgraphs(G).

Theorem 2.3.5 [65] Let G be a decomposable graph and T (G) be any decomposition

of G. Then mp-subgraphs(G) ⊆ atoms(T (G)).

Theorem 2.3.6 [65] Let G be a decomposable graph and T (G) be any minimal clique

separator decomposition of G. Then mp-subgraphs(G) = atoms(T (G)).

30

Elizabeth Gorbonos Separability and Ordering of Graphs

Finding Clique Cutsets

Whiteside’s [101] algorithm for finding clique cutsets is a bottom up approach. As

described in Algorithm 6, we iteratively grow a non-decomposable subgraph S of G.

We start from a subgraph S which is hole of G (hence, clearly prime) and enlarge it

until a clique cutset is found or we reach S = G (recall, a graph with no holes is chordal

and any cutset of such graph is a clique cutset). Once a clique cutset C if found the

algorithm may be repeated on the decomposition blocks of DS(G,C,G1, G2).

Algorithm 6 Find clique cutset - Whitesides

1: initialize S with a hole of G
2: while |S| < |G| and clique cutset not found do
3: Let C be a connected component of G− S
4: Compute R = NG(C) ∩ S
5: if R is a clique then
6: R is a clique cutset
7: else
8: Find a path P between two non-adjacent vertices {u, v} ⊆ R with P ⊆ C
9: Increase S = S ∪ P

10: end if
11: end while

Tarjan’s algorithm uses a minimal triangulation (presented in Section 2.2.2) of G

and relies of the observation that for a MEO σ any clique cutset of G∗σ is a clique

cutset of G. This property is a result of the next theorem.

Theorem 2.3.7 [91] Let G = (V,E) be a graph and σ be a MEO of G generated

by Lex-M (see Algorithm 4). For any decomposition by clique separators, every edge

uv ∈ F (Gσ), is such that a unique atom contains both u and v.

Using the fact that σ is a PEO of G∗σ and that every cutset of a chordal graph is

a clique [41, 84], by scanning the vertices of G according to σ and checking whether

Nσ(vi) is a clique we find all clique cutsets of G. The correctness of this algorithm

is proven in [91]. Leimer [65] gave a comprehensive mathematical analysis of Tar-

jan’s algorithm and the minimal clique separator decomposition. He proved that

31

Elizabeth Gorbonos Separability and Ordering of Graphs

the optimal (smallest) number of atoms is produced when the MEO is ordered in

a particular way, called D-numbering. He showed that Lex-M does in fact generate

such an order, while other minimal traingulation algorithms may not (e.g. [77]). He

also suggested an optimization to the second step of Tarjan’s algorithm. Instead of

trying to apply the decomposition step to all vertices in σ, Leimer was able to extract

better candidates. A recent variation of this idea was presented by Berry [6], she

demonstrated a MCS-based minimal triangulation algorithm which also produces an

effective D-numbering order.

Applications of Clique Cutset Decomposition

As previously mentioned, for a decomposable graph G, the decomposition tree can

be used to find an optimal coloring, a maximum weighted clique and a maximum

stable set. The following propositions assume we are able to solve those problems on

the atoms of G. We denote by O(F (Atoms)) the time complexity required to do so

(that is O(n)· time per atom). It is important however to mention these problems

may remain NP-hard for the atoms. We rely on the fact that Tarjan’s decomposition

produces a right skewed binary tree with at most n−1 atoms and at most n−2 inner

nodes.

Proposition 2.3.8 [91] A graph G can be colored in time O(n2) +O(F (Atoms)).

Proof. First we color all leaves in time O(F (Atoms)). We now work our way up the

decomposition tree, starting at the lowest inner node. The general coloring step con-

sists of coloring the current node utilizing its two optimally colored children. Let the

current inner node correspond to DG(G′, C ′, G′1, G
′
2) and let k = max(χ(G′1), χ(G′2)).

Then we can color G′ with k colors by identifying the colors of G′1 and G′2 with respect

to C ′. Perform this repeatedly until we reach the root of the tree. We have O(n)

such compositions to perform and the cost of recoloring is also O(n), resulting O(n2)

time. 2

32

Elizabeth Gorbonos Separability and Ordering of Graphs

Proposition 2.3.9 [91] A a maximum-weighted clique of G can be found in time

O(F (Atoms)).

Proof. Any clique K of G is obviously prime and we expect to find any prime subgraph

of G in one of its atoms (see Observation 3.1.3). Therefore, this problem reduces to

finding the maximum weighted clique for all atoms and then merely choosing the

largest one. 2

The key idea to computing the maximum-weighted independent set of G is that

any clique cutset may contribute at most one vertex to any independent set of G.

The method proposed here requires us to solve O(n) variations of the problem on

each atom. Hence, in this case O(F (Atoms)) is of order O(n2)· time per atom.

Proposition 2.3.10 [91] A a maximum-weight independent set of G can be found

in time O(n2) +O(F (Atoms)).

Proof. We solve this problem recursively by traversing the skewed tree from the

top down. The function w(I) is the weight of a set I. Let DS(G,C,G1, G2) be the

decomposition step at the root of T (G), and let us label the vertices of C by {v1, ..., vl}.

According to Tarjan’s decomposition one of G1, G2 is an atom, and let it be G1. We

start by computing the maximum-weight independent set of (G1 − C) denoted I,

along with l more sets Ij (1 ≤ j ≤ l) such that Ij is the maximum weight stable set

of G1 −NG1 [vj]. The next step is to adjust the weights of vj ∈ G2 so they reflect the

potential gain or loss in choosing vj as part of the maximum weight independent set

of G2 (w.r.t. G1). We assign vj the weight w(vj)+w(Ij)−w(I). Finally, we solve the

problem on the updated G2 recursively. Let α(G2) be the maximum weighted stable

set of G2, if vj ∈ α(G2) then α(G) = Ij ∪ α(G2) otherwise α(G) = I ∪ α(G2). 2

For certain graph families the maximum independent set problem is relatively

easy to solve. We can therefore define classes whose atoms are in such families and

obtain results of the following type.

33

Elizabeth Gorbonos Separability and Ordering of Graphs

•
• •
•

•

Figure 2.2: Q graph

Theorem 2.3.11 [9] The maximum independent set problem can be solved in time

O(n4m) on graphs whose atoms are (P5, Q)-free. (see Fig. 2.2)

Theorem 2.3.12 [9] The maximum independent set problem can be solved in time

O(n3m) on graphs whose atoms are (P6, C4)-free.

2.3.2 Other Cutset Decompositions

In cutset-based decompositions a prime subgraph is an induced subgraph that does

not admit the respective cutset. Cutsets chosen for decompositions usually exhibit

special properties, as is the case with clique cutsets. Another example is the stable

cutset. A stable cutset is a stable set S for which G − S is disconnected, it was

studied in relation to perfect graphs in [98, 32]. Unfortunately this type of cutset is

not particularly useful since it is NP-complete to detect [11]. We start this survey

from the star cutset, which is a generalization of the clique cutset and follow with the

even more general skew partition. Recall, skew partition decomposition appeared in

Theorem 2.1.16, which popularized it along with the 2-join.

Definition 2.3.13 A graph G has a star cutset C if there is a vertex v ∈ C such

that C is a cutset of G and v is adjacent to all vertices of C − v.

Definition 2.3.14 A skew partition is a partitioning of V into four nonempty

sets: A,B,C,D such that every vertex in A is adjacent to every vertex in B and no

vertex in C has a neighbor in D.

A skew partition insures that the set A ∪ B is a cutset of G while C ∪ D is a

cutset of G. It easy to see the skew partition generalizes the star cutset which is a

34

Elizabeth Gorbonos Separability and Ordering of Graphs

skew partition where one of A,B has size one. The decomposition blocks of a skew

partition decomposition are G1 = G[A∪B∪C] and G2 = G[A∪B∪D]. In [23] it was

conjectured that no minimal imperfect graph has a skew partition. However, so far

this is only known to be true for the balanced skew partition, and was demonstrated

in the SPGT proof [19].

Definition 2.3.15 A balanced skew partition is a skew partition A,B,C,D such

that:

• For every non-adjacent pair {u, v} ⊆ A or {u, v} ⊆ B any induced path with

endpoints u, v and interior in C or D has an even number of edges.

• For every adjacent pair {u, v} ⊆ C or {u, v} ⊆ D any induced antipath with

endpoints u, v and interior in A or B has an even number of edges.

As for recognizing these types of cutsets, from [61] we know skew partitions can

be found in time O(n4m) while recognizing balanced skew partitions is NP-hard [95].

Nonetheless, for a Berge graph the existence of a balanced skew partition can be

certified in O(n5) time [95, 15].

The 2-join decomposition emerged from studies regarding perfection-preserving

compositions. This is in fact a generalization of the split-decomposition (or 1-join)

and a special case of the 2-amalgam structure [38, 37, 35].

Definition 2.3.16 A connected graph G has a 2-join if V can be partitioned into

V1, V2 with vertex-disjoint non-empty subsets Ai, Bi in Vi (i = 1, 2), such that:

• every vertex of A1 is adjacent to every vertex of A2 and every vertex of B1 is

adjacent to every vertex of B2

• there are no other edges between V1 and V2 and |Vi| ≥ 3 for i = 1, 2.

35

Elizabeth Gorbonos Separability and Ordering of Graphs

In a 2-join decomposition the decomposition blocks are G1 = G[V1 ∪ P2] and

G2 = G[V2 ∪ P1], where P1 and P2 are marker paths as defined in [18]. A path 2-join

is a 2-join for which some G[Vi] is an induced path. Appropriately, a non-path 2-join

is a 2-join which is not a path 2-join, this was defined to facilitate detection. The

fastest algorithm known to identify a non-path 2-join is given in [15] with execution

time of O(n2m).

2.3.3 Partitioning

While cutset-based decompositions allow us to “trim” the graph, in certain cases we

may rather benefit from extracting special subgraphs. The Modular decomposition

is just that case. It is a well studied and commonly used approach (as evident from

its many names: substitution decomposition, disjunctive decomposition and X-join

[76]). We first need to define a module:

Definition 2.3.17 Let G = (V,E) be a graph. A module of G is a subset of vertices

M ⊆ V such that for every {v, u} ⊆M we have N(v)−M = N(u)−M .

Modules also appear in literature as closed sets, clans, autonomous sets and partitive

sets [54]. A module is called trivial if it is an empty set, a single vertex or the entire

vertex-set V . A non-trivial module is called a homogeneous set. Here a graph is called

prime if it contains no homogeneous sets. Let H be a homogeneous set of a graph G.

In a modular decomposition, the decomposition blocks are the two graphs: H and

G[(V (G)−H)∪{h}] for a vertex h ∈ H. Note that G[(V (G)−H)∪{h1}] is isomorphic

to G[(V (G)−H) ∪ {h2}] for any two vertices h1, h2 in H. If either of the graphs H

and G[(V (G) − H) ∪ {h}] is not prime, then it is recursively decomposed. At the

bottom of the decomposition tree (i.e. the leaves) we find all the unique vertices. The

modular decomposition can be performed in linear time [36, 72] making it a robust

tool for optimization problems (as it has practically no cost). Applications for this

decomposition may be found in [76].

36

Elizabeth Gorbonos Separability and Ordering of Graphs

2.4 Ordered Graphs

A central topic of this work is exploring a SEO, that is an ordering σ with the property

that σi is simplicial extreme in Gi. This idea is clearly inspired by the classical PEO.

In this section we examine two graph families which also demonstrate inherently

useful orders, these are β-perfect graphs and perfectly orderable graphs.

2.4.1 β-Perfect

Let G = (V,E) be a graph and δ(G) be the minimum degree of any v ∈ V . We

define β(G) = max(δ(H) + 1) where H is an induced subgraph of G. The relation to

the chromatic number is known to be χ(G) ≤ β(G), by virtue of the analysis made

in [88]. The following definition of β-perfect graphs is somewhat akin to that of the

perfect graph class [69].

Definition 2.4.1 A graph G is β-perfect if for every induced subgraph H we have

χ(H) = β(H).

A favorable trait of β-perfect graphs and a core reason for their conception is

the fact they can be colored in linear time by a greedy algorithm and a smallest last

ordering (that is an ordering σ in which σi has the smallest degree in Gi) [88, 71, 69].

It is easy to check that even holes are not β-perfect and as a matter of fact no β-

perfect graph can contain an even hole. This observation is one of the motivators for

the study of (Even-Hole)-free graphs. We note, on the other hand, that (Even-Hole)-

free graphs are not necessarily β-perfect. Take the graph W5 for example, it contains

no even hole but it is not β-perfect as 4 = χ(W5) > β(W5) = 3. The following is an

important structural result about β-perfect graphs.

Theorem 2.4.2 [69] G is β-perfect if it contains no even-hole and no even antihole.

37

Elizabeth Gorbonos Separability and Ordering of Graphs

Class β-perfect

(Even-hole, Diamond, Cap on six vertices)-free Yes 2000 [46]
(Even-hole, Diamond, Net)-free Yes 2002 [60]

(Even-hole, Diamond)-free Yes 2009 [63]
(Even-hole, Kite)-free Yes 2018 [48]
(Even-hole, Claw)-free No [60] gives forbidden structures
(Even-hole, Cap)-free No [100] gives an example

Table 2.2: Partial Results for β-perfect graphs. No means not necessarily β-perfect

A Cap is a hole with a single chord between two vertices at distance two. A

Net is a graph on six vertices {v1, v2, v3, v4, v5, v6} where {v1, v2, v3} is a triangle and

the other edges are exactly v1v4, v2v5, v3v6. The complete characterization of (Even-

Hole)-free β-perfect graphs is still open, Table 2.2 depicts some partial results (in

chronological order).

Lastly, the next theorem demonstrates the relation between β-perfect graphs and

simplicial extremes.

Theorem 2.4.3 [69] A minimal β-imperfect graph that is not an even hole, contains

no simplicial extreme.

2.4.2 Perfectly Orderable Graphs

The family of perfectly orderable graphs is characterized by the existence of a perfect

ordering, let us define that.

Definition 2.4.4 An ordering σ of a graph G is called perfect if for each induced

subgraph H the greedy algorithm (see Section 1.2.2) produces an optimal coloring using

the sub-order of σ that contains V (H). If G has a perfect order then G is perfectly

orderable.

The special requirement in this definition encourages one to observe the corre-

sponding oriented graph, that is the directed graph in which an edge uv has direction

38

Elizabeth Gorbonos Separability and Ordering of Graphs

u→ v if u appears before v in σ (or σ(u) < σ(v)). Chvátal [22] presented the following

analogous definition of perfectly orderable graphs and showed they are perfect.

Definition 2.4.5 A graph G is perfectly orderable with order σ if it does not contain a

chordless path P = {v1, v2, v3, v4}, with edges v1v2, v2v3, v3v4, such that σ(v1) < σ(v2)

and σ(v4) < σ(v3).

Theorem 2.4.6 [22] A perfectly orderable graph is perfect.

By definition, a graph G with a perfect order σ, can be optimally colored in

linear time. The paper [25] gives a linear time algorithm to find a largest clique in

a perfectly ordered graph. However, it is known that checking whether an arbitrary

graph has a perfect order is NP-complete [75]. For this reason, much of the research

concentrates on easily recognizable sub-families, including some famous classes such

as chordal graphs and interval graphs.

2.5 Hole-free Graphs

Once the SPGC was settled and perfect graphs become fairly well characterized, it

was only natural to extend the research to broader families of graphs, namely hole-

free graphs. The class of (Odd-Hole)-free graphs is an obvious generalization of Berge

graphs, at the same time graphs without even holes are an interesting counterpart

and (as we have already seen) are closely related to the β-perfect family.

Within the study of (Even-Hole)-free and (Odd-Hole)-free graphs, the 3-path configu-

rations (abbriviated 3PCs) are predominant structures which are commonly encoun-

tered [29]. The 3PC structure-set, illustrated in Fig. 2.3, consists of the three types:

3PC(., .) (called theta [17]), 3PC(∆, .) (called pyramid [18]) and 3PC(∆,∆) (called

prism[17]). The pyramid was previously introduced in relation to perfect graph recog-

nition (see Section 2.1.3). A graph G is said to have a theta, specifically 3PC(x, y),

39

Elizabeth Gorbonos Separability and Ordering of Graphs

if there are two vertices x and y with three paths P1, P2, P3 between them. Graph G

contains a prism with two disjoint triangles {x1, x2, x3} and {y1, y2, y3} if there exists

a path P1 from x1 to y1, a P2 from x2 to y2 and a P3 from x3 to y3 (to be more explicit

we say G has a 3PC(x1x2x3, y1y2y3)). For both theta and prism, any two paths must

induce a hole, i.e. the condition G[V (Pi) ∪ V (Pj)] is a hole for {Pi, Pj} ⊂ P1, P2, P3

ought to be satisfied.

(a) 3PC(.,.) (b) 3PC(∆,.) (c) 3PC(∆,∆)

Figure 2.3: 3-path configurations. Solid lines are edges, dashed lines are paths with
length at least one.

In a manner similar to that of Theorem 2.1.19 it can be shown an (Even-Hole)-

free graph may not contain a theta or a prism. Let us demonstrate that for the

3PC(∆,∆).

Observation 2.5.1 A graph G containing a 3PC(∆,∆) has an even hole.

Proof. Let G contain a 3PC(x1x2x3, y1y2y3), and let P1 be a path from x1 to y1, P2

be a path from x2 to y2 and P3 be a path from x3 to y3. By the definition of 3PC

we have the following holes: H1 = G[V (P1) ∪ V (P2)], H2 = G[V (P1) ∪ V (P3)] and

H3 = G[V (P2) ∪ V (P3)]. For H1 and H2 to be odd the parity of |P1| should differ

from that of |P2|, |P3|. Without loss of generality, we choose |P1| to be even, meaning

|P2| and |P3| are odd. But now H3 is an even hole. 2

Following the methodology used to prove the SPGT, it became customary to

describe graph classes as basic or decomposable via certain cutsets. This is also the

best known characterization of (Even-Hole)-free and (Odd-Hole)-free graphs. We

will not specify the exact basic classes here as they tend to be complex and are not

40

Elizabeth Gorbonos Separability and Ordering of Graphs

necessary for this thesis. Along those lines, a recent study into graphs with restricted

Trumper configurations (these are the 3PCs and a variation of the wheel) have yielded

nice decomposition and structural results [8]. Conforti et al. [26] gave the following

characterization of graphs without odd holes.

Theorem 2.5.2 [26] If G is an (Odd-Hole)-free graph, then G is either basic or G

has a double star cutset or a 2-join.

An equivalent way to express whether a graph has an odd or even hole is by

signing it. A signed graph is a graph with the values 0 and 1 assigned to its edges.

A graph is odd-signable (resp. even-signable) if there exists a signing such that every

triangle has odd weight and every hole has odd (resp. even) weight. A graph is odd-

signable if it is (Even-Hole)-free and is even-signable if it is (Odd-Hole)-free [29]. Da

Silva and Vušković [87] described the structure of (Even-Hole)-free graphs in terms of

odd-signable graphs and provided a O(n19) time recognition algorithm for them (this

was improved to O(n11) time by [14]).

Theorem 2.5.3 [87] A connected 4-hole-free odd-signable graph is either basic or it

has a 2-join or a star cutset.

Farber [45] noted that C4-free graphs have a most O(n2) maximal cliques, this

entails a polynomial algorithm to find the maximum clique. Another nice property

of (Even-Hole)-free graphs relates the clique number to the chromatic number.

Theorem 2.5.4 [1] If a graph G is (Even-Hole)-free, then G contains a vertex whose

neighborhood can be partitioned into two cliques. In particular, G satisfies χ(G) ≤

2ω(G)− 1.

41

Elizabeth Gorbonos Separability and Ordering of Graphs

Class coloring clique independent set clique cover

(Even-Hole)-free ? P ? NP-hard

(Odd-Hole)-free NP-hard NP-hard ? NP-hard

Table 2.3: Complexity for problems on hole free classes [100, 64]

Table 2.3 summarizes the known results for the fundamental graph problems of

coloring, maximum clique, maximum independent set and clique cover on (Even-

Hole)-free and (Odd-Hole)-free graphs.

42

Chapter 3

Clique-Cutset Decomposition

In this chapter we conduct a thorough examination of the clique cutset decomposition.

We rely on the definitions presented in Section 2.3.1 coupled with few extra notations.

In general, decompositions are not unique since at each node of the decomposition

tree we are at liberty to pick any cutset. To illustrate this claim, let T (G) be a

decomposition tree of G and N be a node labeled DS(G′, C,G′1, G
′
2). The cutset C

is chosen out of a set containing all clique cutsets of G′. Our goal is to observe how

this choice effects the corresponding subtree in terms of further available cutsets and

atoms formed. Furthermore, we intend to examine various types of decompositions

which impose different constraints over the choice of C. We start by examining the

properties of a general clique cutset decomposition in Section 3.1 and Section 3.2.

Section 3.3 performs a similar study for the minimal clique cutset decomposition and

Section 3.4 analyzes the maximal clique cutset decomposition.

3.1 Decomposition Properties

Definition 3.1.1 Let G be a graph and C be a clique cutset of G. A decomposition

path, denoted P (N), is a path in T (G) from the root to a node N , that consists of

all decomposition blocks on the way. For instance, a path to an atom A is P (A) =

43

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 3.1: Illustration of a decomposition path in T (G)

(G = G0, ..., Gk, Gk+1 = A). The decomposition blocks of each Gi are denoted as G′i

and G′′i , and G′i = Gi+1 (see Fig. 3.1).

So far we used the terms cutset and separator almost interchangeably, however

on some occasions we should be more careful. With the following observation we

emphasis the difference between a minimal clique separator and a minimal clique

cutset (sometimes called inclusion minimal separator [62]). To avoid confusion, we

use the notation S for separators and C for cutsets.

Observation 3.1.2 Every minimal clique cutset C of G is a minimal separator of G,

the converse is not necessarily true (see Fig. 3.2). For every minimal clique separator

S there exists a minimal clique cutset C such that C ⊆ S. Particularly, if S is not a

minimal clique cutest then there is a minimal clique cutset C such that C ⊂ S.

By definition, the atoms of any T (G) are prime subgraphs of G. It is also trivial

44

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 3.2: The clique {2,3} is a minimal (1,4)-separator but it is not a minimal
clique cutset as {3} is a smaller cutset.

that any clique K of G is a prime subgraph of G. We start by observing the “location”

of prime subgraphs in a decomposition tree.

Observation 3.1.3 Let G be a graph and H be a prime subgraph of G. Consider

DS(G,C,G1, G2), if H 6⊆ C then H ⊆ G1 or H ⊆ G2.

Proof. As H is not contained in C we can find a vertex v ∈ V (G) such that v ∈ V (H)

and v 6∈ V (C). Without loss of generality we assume that after the decomposition

step v ∈ V (G1 − C). Let us consider two cases:

Case 1: H is a clique.

Since C is a clique cutset of G there exists no edge between v and any u ∈ V (G2−C),

so H ∩ (G2 − C) = ∅ and necessarily H ⊆ G1.

Case 2: H is not a clique.

Assume there exists a vertex u ∈ V (H) such that u ∈ V (G2 − C). Since any path in

H with endpoints u, v must contain some vertex of C, we note H ∩C is a non-empty

clique. But that also means H ∩ C is a uv-separator and consequently H contains a

clique cutset which is a contradiction (recall H is prime). So any u ∈ V (H) must be

in G1 and we have H ⊆ G1. 2

45

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 3.3: A clique cutset of a decomposition block is also a clique cutset of the
parent graph.

As a general rule, clique cutsets have the property of “bubbling up” a decomposi-

tion tree (also mentioned in [51]). More precisely, let G′ be the graph corresponding

to some node N of T (G) then any clique cutset of G′ is a cutset of the graph corre-

sponding to any ancestor of N (this is Observation 3.1.5 below). We start with the

following observation.

Observation 3.1.4 (known [51]) Let G be a decomposable graph, consider DS(G,C,G1, G2).

Let G′ be one of the decomposition blocks (i.e. G1 or G2) with clique cutset C ′, then

C ′ is also a clique cutset of G.

Proof. Without loss of generality we assume G′ = G1. Now, note that C ⊂ G1 and

C ′ ⊂ G1 (if C ′ = G1 then C ′ is not a clique cutset of G′). For the case C ⊆ C ′

it is clear that C ′ is a clique cutset of G. In particular, if C (C ′ then C ′ is a

non-minimal clique cutset. So we only need to examine the case C 6⊆ C ′. Consider

DS(G1, C
′, G′1, G

′
2) (Fig. 3.3 may serve as a visual aid). By observation 3.1.3, we

assume w.l.o.g. that C ⊆ G′1. We know G′2 − C ′ ⊂ G1 − C. Let u ∈ V (G′2 − C ′) and

v ∈ V (G2−C). Suppose there exists a shortest path P with endpoints u, v such that

46

Elizabeth Gorbonos Separability and Ordering of Graphs

P does not contain any vertex in C ′. Let s be a vertex of P that belongs to C − C ′.

The subpath P ′ of P from u to s has P ′ ⊆ G1 and since C ′ is a cutset of G1 the

path P ′ must contain a vertex in C ′. However, since P ′ ⊂ P we have P ∩ C ′ 6= ∅, a

contradiction. 2

Observation 3.1.5 Let G be a decomposable graph and N be a node of T (G) with

label DS(G′, C ′, G′1, G
′
2). Then C ′ is a clique cutset of all Gi ∈ P (N).

Proof. Let Gk = G′ in P (N), then by Observation 3.1.4 C ′ is a clique cutset of Gk−1.

Now by induction C ′ is a clique cut set of all Gi ∈ P (0 ≤ i ≤ k). 2

3.1.1 Cutsets Intersection

We denote by C(G) all the clique cutsets of a decomposable graph G. The following

is a breakdown of the various possible intersections among members of C(G).

Observation 3.1.6 Any two clique cutsets C1 and C2 of G with C1 6= C2 may inter-

sect in the following ways:

1. C1 ∩ C2 = ∅

2. C1 ∩ C2 6= ∅ and none of C1 and C2 is contained in the other.

3. C1 ⊂ C2

4. C2 ⊂ C1

Definition 3.1.7 Let {C1, C2} ⊆ C(G). If the intersection of C1 and C2 is of type 1

or 2 in Observation 3.1.6, we call them mutually-exclusive clique cutsets.

Let G′ be a decomposition block of DS(G,C), we are interested to know when

will a cutset of G be in C(G′) (we already know C(G′) ⊆ C(G)). Clearly this is

affected by the choice of C, which why we consider the intersections. One might hope

47

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 3.4: Two different decomposition steps using mutually-exclusive cutsets C1

(rightside, colored green) and C2 (on the left, colored red). C2 is not a cutset for any
of the decomposition blocks created by C1 and vice versa.

that given two mutually-exclusive clique cutsets {C1, C2} ⊆ C(G), decomposing G

by one of them will result in the other being a clique cutset of some decomposition

block. Unfortunately, this is not so and Fig. 3.4 depicts a counterexample, but by

imposing the condition in Proposition 3.1.8 below such behavior can be achieved.

Proposition 3.1.8 Let C1 and C2 be two mutually-exclusive clique cutsets of G and

C ′ = C1 ∩ C2 is not a clique cutset. Consider DS(G,C1, G1, G2), then C2 is a clique

cutset of G1 or G2.

Proof. By observation 3.1.3 we assume, w.l.o.g., C2 ⊂ G1. Since C1 6⊂ C2 there is a

vertex v1 ∈ C1 − C2. Consider DS(G,C2, G
′
1, G

′
2). Assume without loss of generality

C1 ⊆ G′1. We may choose some vertex v2 ∈ V (G′2−C2) and note C2 is a v1v2-separator

(Fig. 3.5). Clearly, if v2 ∈ V (G1) then C2 is a clique cutset of G1 and we are done.

We only need to prove v2 ∈ V (G1). Note, C ′ cannot be a clique cutset of G2 since it

is not a clique cutset of G (Observation 3.1.5). Suppose v2 ∈ V (G2−C1) then we can

find a path P with endpoints v1, v2 in G2 − C ′, otherwise (i.e. if all paths contain a

vertex of C ′) C ′ is a cutset of G. Now, P is in G2−C ′ ⊂ G−C2 (because C2 ⊂ G1),

but this is a contradiction as removing C2 should separate v1, v2. Hence, necessarily

v2 ∈ V (G1). 2

48

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 3.5: Illustration of Proposition 3.1.8. The intersection condition guarantees
C2 to be a clique cutset of G1

The following lemma demonstrates every clique which lies “in between” clique

cutsets is also a clique cutset.

Lemma 3.1.9 Let C1, C2, C3 be cliques of G such that C3 ⊆ C2 ⊆ C1 and C1, C3 are

cutsets of G. Then C2 is a cutset of G.

Proof. Let H1, ..., Hk be the components of G−C3. If C2 = C3 or C2 = C1 then clearly

C2 is a cutset of G. So let us consider C3 ⊂ C2 ⊂ C1. We know C2 can intersect with

at most one Hi because C2 is a clique. Without loss of generality assume C2∩H1 6= ∅.

Suppose H1 −C2 = ∅, i.e. H1 ⊂ C2. Since C2 ⊂ C1 there exists a vertex v ∈ Hj ∩C1

for some j. Now, there is no edge from v and C2∩H1, a contradiction (C1 is a clique).

So, H1 − C2 6= ∅ and G− C2 is disconnected. 2

3.2 Atom Properties

In this section we proceed with our analysis by taking a closer look at the atoms. As

usual, let G be a graph with clique cutset C and let G1 and G2 be the decomposition

blocks of G using C. We denote the number of atoms created by a clique cutset

decomposition T (G) by |atoms(T (G))| and denote the number of vertices in G by

|G|. To start with, we recount the following essential equations.

49

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 3.6: L = {{1}, {1}} and C = {{1}}

• |atoms(T (G))| = |atoms(T (G1))|+ |atoms(T (G2))|

• |G| = |G1|+ |G2| − |C|

• |C| < |G1| and |C| < |G2|

• |G| − |C| ≥ 2

Here, T (G1) and T (G2) are the subtrees of T (G) rooted at the second level. The

decomposition tree T (G) for any clique cutset decomposition is a full binary tree. It

is well known that a full binary tree with I inner nodes has exactly I + 1 leaves. We

use this property to derive the next two observations.

Observation 3.2.1 Let G be a decomposable graph and T (G) be some decomposition

tree of G. We denote by L the multi-set of all clique cutsets used in T (G) and by C

the set of all clique cutsets used in T (G) (see Fig. 3.6).

• |atoms(T (G))| = |L|+ 1.

• |atoms(T (G))| ≥ |C|+ 1.

Proof. Clearly, every clique cutset C ∈ L corresponds to an inner node of T (G). As

T (G) is a full binary tree, it has |L|+ 1 leaves which represent |atoms(T (G))|. Every

C ∈ C may appear in L more than once and therefore it gives a lower bound. 2

50

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 3.7: A decomposition which produces a non-mp-atom: the atom {1, 3} is not
a mp-subgraph as is belongs to larger prime subgraph {1, 3, 4}

3.2.1 On Non-maximal Atoms

Clique cutsets are obviously prime. It is therefore natural to wonder whether a clique

cutset of G can possibly be an atom of some T (G). The answer is yes as implied

by Proposition 3.2.4 below. The next two observations demonstrate straightforward

relations between atoms and clique cutsets.

Observation 3.2.2 Let G be a decomposable graph and let A be an atom of some

T (G). Then there is a clique C such that C ⊂ A and C is a clique cutset of G.

Proof. We examine the decomposition path P (A) of T (G). Gk is the parent of A in

T (G) and let Ck be the clique cutset of Gk. Now Ck ⊂ A and from Observation 3.1.5

Ck is also a clique cutset of G0 = G. 2

Observation 3.2.3 (known [5]) Let G be a decomposable graph and C be a minimal

clique cutset of G. For any T (G) we have C 6∈ atoms(T (G)).

Proof. Assume C ∈ atoms(T (G)). Then there exists C ′ ⊂ C which is also a cutset

of G (from Observation 3.2.2), but this contradicts the minimality of C. 2

We recall that for an arbitrary clique cutset decomposition an atomA ∈ atoms(T (G))

does not need to be a mp-subgraph of G. An example is illustrated in Fig. 3.7. We

will now show any such atom is a non-minimal clique cutset of G.

51

Elizabeth Gorbonos Separability and Ordering of Graphs

Proposition 3.2.4 Let G be a decomposable graph and A ∈ atoms(T (G)). If A 6∈

mp-subgraphs(G) then A is a non-minimal clique cutset of G.

Proof. This proposition contains two claims, specifically, that A is a clique and A is

a minimal-cutset. We start by proving A is a clique. Since A is not a mp-subgraph

of G we know there must be a mp-subgraph A′ such that A ⊂ A′. In addition, from

Theorem 2.3.5, A′ is an atom. Consider the lowest common ancestor N of A and A′

along P (A) and P (A′) (this node must exists as A 6= A′ and both paths originate

at the root node G = G0). Let the label of N be DS(G′, C ′, G′1, G
′
2) . Without

loss of generality let A ⊂ G′1 and A′ ⊂ G′2. Because A ⊂ A′ we know A ⊆ C ′ and

therefore A is a clique. In Observation 3.2.2 we have established every atom contains

a clique cutset of G, let us denote the clique cutset contained in A by CA. So, we

have CA ⊂ A ⊆ C ′, where both CA and C ′ are cutsets of G. It follows from Lemma

3.1.9 that A is a clique cutset of G. Finally, A is not a minimal clique cutset since it

contains CA, a smaller cutset. 2

It is possible to extract another piece of information regarding a non-mp-atom A.

Not only is A a non-minimal clique cutset but apparently it is also used at some step

of the decomposition.

Proposition 3.2.5 Let G be a decomposable graph and A ∈ atoms(T (G)). If A 6∈

mp-subgraphs(G) then A is a cutset of some G′ ∈ P (A).

Proof. Let CP be the set of all clique cutsets used along P (A). Assume A 6∈ CP ,

meaning for every cutset C ∈ CP we have A 6= C, or in other words either A 6⊆ C

or A ⊂ C. Let Hi be a prime subgraph of Gi such that A ⊂ Hi (such H exists for

G0 = G by definition). We intend to show any of the two intersection options for A

and Ci results in the existence of Hi+1 in Gi+1. For A 6⊆ Ci we have Hi 6⊆ Ci and

from Observation 3.1.3 we get Hi+1 = Hi ⊆ Gi+1. The second case, A ⊂ Ci implies

we can define Hi+1 = Ci ⊂ Gi+1. So far we have shown that A ⊂ Hi ⊂ Gi for all i,

52

Elizabeth Gorbonos Separability and Ordering of Graphs

however this is a contradiction to Gk+1 = A. Hence, there must be some G′ ∈ P (A)

for which A is used as a cutset. 2

3.2.2 On the Number of Atoms

The famous Tarjan Decomposition was covered in Section 2.3, one of its important

features is the fact it produces at most n−1 atoms. In fact it produces the minimum

possible number of atoms as it only utilizes minimal clique separators. We will try to

strengthen this bound (just the bound, surely we can not expect less atoms) by only

allowing minimum clique cutsets. We denote by Tm(G) a clique cutset decomposition

of G where at each node only a minimum clique cutset may be chosen.

Theorem 3.2.6 Let G be a decomposable graph and C be a minimum clique cutset

of G, then |atoms(Tm(G))| ≤ |G| − |C|.

Proof. Let the decomposition at the root node be DS(G,C,G1, G2). By strong

induction we assume the theorem is correct for any induced proper subgraph of G.

Let us consider the atoms of G1 and G2.

Case 1: G1 and G2 are both atoms. Here we find atoms(G) = 2 ≤ |G| − |C| and the

theorem is correct.

Case 2: G1 and G2 are non-atoms. Let C1 and C2 be the minimum clique cutsets of

G1 and G2 respectively. By the induction hypothesis: |atoms(Tm(G1))| ≤ |G1| − |C1|

and |atoms(Tm(G2))| ≤ |G2| − |C2|. We know |atoms(Tm(G))| = |atoms(Tm(G1))|+

|atoms(Tm(G2))| ≤ |G1|−|C1|+ |G2|−|C2|. Now, C1 and C2 are also clique cutsets of

G (Observation 3.1.4) but since C is a minimum clique cutset we have |C1| ≥ |C| and

|C2| ≥ |C|. From here: |atoms(Tm(G))| ≤ |G1| + |G2| − 2|C| ⇒ |atoms(Tm(G))| ≤

|G| − |C|.

Case 3: One of G1, G2 is an atom. Without loss of generality we assume G1 is the

atom and G2 has a clique cutset C2. So, |atoms(Tm(G))| = 1 + |atoms(Tm(G2))| ≤

53

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 3.8: A clique cutset decomposition resulting in non-linear number of atoms.

1 + |G2| − |C2| ≤ 1 + |G2| − |C|. Obviously, |G2| < |G| and we get |atoms(Tm(G))| ≤

|G| − |C|. 2

While the minimum clique cutset decomposition (which we have just seen) and

the minimal clique separator decomposition produce a linear number of atoms (w.r.t.

|G|) this is not guaranteed for an arbitrary decomposition by clique cutsets. For

instance, consider a graph G composed of a clique Kl and a set of l disjoint vertices

S. Draw an edge between u ∈ S and v ∈ V (Kl) if v has no neighbor in S and u has no

other neighbor in Kl. Now, Kl is a clique cutset of G. Take u ∈ V (S) and decompose

G into G1 = G[V (Kl) ∪ {u}] and G2 = G[V − {u}]. It is possible to decompose G1

into l atoms by repeatedly choosing the maximal clique cutset (as illustrated in Fig.

3.8). Applying this process recursively to G2 will result in a total of l2 = |G|2
4

atoms.

The quadratic order of atoms in our extreme example is not surprising. This limit

was also reported in [51, 102]. Gavril proved this by noting every inner node of T (G)

54

Elizabeth Gorbonos Separability and Ordering of Graphs

corresponds to at least one non-edge of G and as G may have at most n2 non-edges

this figure serves to bound the number of decompositions along with the number of

atoms (as per Observation 3.2.1). We will now demonstrate how this estimate can be

strengthened with respect to the largest clique of G.

Theorem 3.2.7 Let G a decomposable graph and let K be a maximum clique of G.

Let T (G) be any clique cutset decomposition of G. Then |atoms(T (G))| ≤ |K|(|G| −

|K|)

Proof. By virtue of G being decomposable, we derive: |G| ≥ 3, |K| ≥ 2, |G| −

|K| ≥ 1 and |K|(|G| − |K|) ≥ 2. Now, let C be any clique cutset of G. Consider

DS(G,C,G1, G2) and assume, without loss of generality, that K ⊆ G1 (Observation

3.1.3). Let K ′ be the maximum clique of G2, clearly |C| ≤ |K ′| ≤ |K|. Once again

we consider the cases for G1 and G2 and employ induction.

Case 1: G1 and G2 are atoms. Then |atoms(T (G))| = 2 ≤ |K|(|G| − |K|).

Case 2: G1 and G2 are both decomposable. By induction we say: |atoms(T (G))| =

|atoms(T (G1))|+ |atoms(T (G2))| ≤ |K|(|G1|−|K|)+ |K ′|(|G2|−|K ′|). Using the size

properties of K and K ′ we write: |atoms(T (G))| ≤ |K|(|G1| + |G2| − |K| − |K ′|) ≤

|K|(|G|+ |C| − |K| − |K ′|) ≤ |K|(|G| − |K|)− |K|(|K ′| − |C|) ≤ |K|(|G| − |K|).

Case 3: G1 is decomposable andG2 is an atom. Here |atoms(T (G))| = |atoms(T (G1))|+

1 ≤ |K|(|G1| − |K|) + 1 ≤ |K|(|G − 1| − |K|) + 1 ≤ |K|(|G| − |K|) − |K| + 1 ≤

|K|(|G| − |K|).

Case 4: G1 is an atom and G2 is decomposable. In this case |atoms(T (G))| =

1 + |atoms(T (G2))| ≤ 1 + |K ′|(|G2| − |K ′|). Since K ⊆ G1 we know:

• |G1| ≥ |K|

• |G2| = |G| − |G1|+ |C| ≤ |G| − |K|+ |C|

• |C| − |K ′| ≤ 0

55

Elizabeth Gorbonos Separability and Ordering of Graphs

We examine the cases for |K| and |K ′|:

Case 4.1: |G1| > |K|. Obviously then |G1| ≥ |K|+1⇒ |G2| ≤ |G|− (|K|+1)+ |C|.

Plug this into the atoms equation, |atoms(T (G))| ≤ 1 + |K ′|(|G| − (|K|+ 1) + |C| −

|K ′|) ≤ 1 + |K|(|G| − |K|)− |K ′|+ |K ′|(|C| − |K ′|). Now, we may disregard the last

factor (since it is non-positive) and as |K ′| ≥ 1 we get |atoms(T (G))| ≤ |K|(|G|−|K|).

Case 4.2: |G1| = |K| and |K ′| = |K|. For this case |C| < |K| ⇒ |C| − |K| >

0. We find the required bound by simply rearranging our preliminary equation

|atoms((T (G))| ≤ 1+|K ′|(|G|−|K|+|C|−|K ′|) ≤ |K|(|G|−|K|)+1+|K|(|C|−|K|) ≤

|K|(|G| − |K|).

Case 4.3: |G1| = |K| and |K ′| < |K|. First we rewrite |atoms(T (G))| ≤ 1 +

|K ′|(|G| − |K|+ |C| − |K ′|) ≤ |K ′|(|G| − |K|) + 1 + |K ′|(|C| − |K ′|).

Similar to the previous case |K ′|(|C|− |K ′|) ≤ 0 so instead we state |atoms(T (G))| ≤

|K ′|(|G| − |K|) + 1. Note, |G| − |K| > 0 and |K ′| ≤ |K| − 1. These observations lead

to |atoms(T (G))| ≤ (|K| − 1)(|G| − |K|) + 1 ≤ |K|(|G| − |K|) + 1 − (|G| − |K|) ≤

|K|(|G| − |K|).

2

It is only called for to treat the equation in Theorem 3.2.7 as a maximum problem

for |K|. By doing so we reach the next corollary. It is also worth noting this result is

not-incidentally in line with our example.

Corollary 3.2.8 Let G a decomposable graph and K be the largest clique of G. The

maximum number of atoms for any T (G) is achieved when |K| = |G|
2

and is bounded

by |G|
2

4
. 2

3.3 Minimal clique cutset decomposition

A minimal clique cutset decomposition is a clique cutset decomposition in which we

are only allowed to decompose using minimal clique cutsets. In Theorem 3.2.6 we

56

Elizabeth Gorbonos Separability and Ordering of Graphs

have obtained a result for a minimum clique cutset decomposition, this is clearly

a special case of the minimal clique cutset decomposition. We now aim to expand

and provide more results for this type of decomposition. Through this section all

decompositions implied by T (G) are minimal clique cutset decompositions.

Definition 3.3.1 Let S be a minimal clique separator of G. The graph G[V − S]

contains at least two connected components H1, H2 such NG(H1) = NG(H2) = S.

These components are called full components of S.

3.3.1 Decomposition Properties

Observation 3.3.2 Any two minimal clique cutsets C1 and C2 of G with C1 6= C2

are mutually-exclusive clique cutsets. As they may only intersect in the following

ways:

1. C1 ∩ C2 = ∅

2. C1 ∩ C2 6= ∅ and none of C1 and C2 is contained in the other.

An important property of the minimal clique cutset decomposition, which follows

from the next lemma, is that all minimal clique cutsets of G are utilized in any

decomposition T (G). We stress this property holds regardless of the order in which

we choose them.

Lemma 3.3.3 Let C1 and C2 be two minimal clique cutsets of G. Consider DS(G,C1, G1, G2).

Then C2 will be a clique cutset of either G1 or G2.

Proof. From the Observation 3.3.2 C1 and C2 are mutually-exclusive cutsets and from

minimality C ′ = C1 ∩ C2 is not a clique cutset of G. The proof is now immediate

from Proposition 3.1.8. 2

57

Elizabeth Gorbonos Separability and Ordering of Graphs

Theorem 3.3.4 (known [6]) Let C be the set of all minimal clique cutsets of a de-

composable graph G. Then for every C ∈ C there is an inner node N of T (G) which

corresponds to C.

Proof. By induction on the size of G. Let the root node of T(G) be labeled

DS(G,C,G1, G2). Now from Lemma 3.3.3 any C ′ ∈ C − {C} will be either a mini

mal clique cutset of G1 or G2. Assume without loss of generality that C ′ is a minimal

clique cutset of G1. Let C1 be the set of all minimal clique cutsets of G1 (we know

C ′ ∈ C1). Now by induction T (G1) will include some node N1 in which the corre-

sponding graph is decomposed by with C ′. Trivially any node of T (G1) is a node of

T (G) and we have N ∈ T (G) which corresponds to C ′. 2

A charectaristic similar to that of Lemma 3.3.3 is showcased by the minimal clique

separator decomposition [6]. And since every minimal clique cutset is a minimal

clique separator it is intuitive to assume the minimal clique cutset decomposition

is a variation of the the minimal clique separator decomposition. This is in fact

so. But at the same time we also know not every minimal clique separator is a

minimal clique cutset, to verify the analogy of the decompositions we plan to show

all minimal clique separators are used as minimal clique cutsets in the minimal clique

cutset decomposition.

Lemma 3.3.5 (known [5]) Let G be a decomposable graph and C be the set of all

minimal clique cutsets of G. Let S be a minimal clique separator of G with S 6∈ C.

Consider DS(G,C,G1, G2). Then S is also a minimal clique separator of G1 or G2.

Proof. Obviously S may not be a subset of any C ∈ C (i.e. S 6⊆ C) so we know that S

is a subgraph of G1 or G2 (by Observation 3.1.3). Assume without loss of generality

S ⊆ G1. We will now demonstrate that S is also a minimal clique separator of G1.

Let u1, u2 ∈ V such that S is a minimal u1u2-separator (so, u1 6∈ S, u2 6∈ S and

{u1, u2} 6⊆ C).

58

Elizabeth Gorbonos Separability and Ordering of Graphs

Case 1: u1, u2 ∈ V (G1). Notice that (G1 − S) ⊂ (G− S) hence clearly S remains a

minimal clique u1u2-separator in G1.

Case 2: u1, u2 ∈ V (G2)

Case 2.1: One of u1, u2 is in C.

Without loss of generality assume u1 ∈ C and u2 ∈ V (G2−C). Now, u1 ∈ C−S and

u2 in some full component H of C. We know every vertex of C has a neighbor in every

full component (Definition 3.3.1) therefore we can find a path P with endpoints u1, u2

such that all interior vertices belong to H. Note that G[H ∪ {u}] ⊆ G2 − S ⊂ G− S

meaning we have a path from u1 to u2 in G− S, but this is a contradiction.

Case 2.2: u1, u2 ∈ V (G2 −C). We claim there is no path from u1 to u2 in (G2 −C)

and denote by Hi be the components of G2−C that contains ui for i = 1, 2. Otherwise

S is not a minimal clique u1u2-separator as (G2−C) = (G−G1) ⊆ (G−S). In other

words C is a minimal u1u2-separator in G2 (if C contains a smaller separator C ′ then

C ′ is a clique cutset of G, a contradiction to the minimality of C). We also claim that

C 6⊂ S, for otherwise C is a smaller u1u2-separator (note, C 6= S or S is a minimal

clique cutset). Seeing that G2 is connected there is a path with endpoints u1, u2 in G2

(and any such path goes through C). We can now identify a vertex v ∈ C−S. Recall,

every vertex of C has a neighbor in every full component. So, the following paths

must exists: P1 with endpoints u1, v and all interior vertices belong to H1 and P2

with endpoints v, u2 and all interior vertices belong to H2. Note, both P1, P2 contain

no vertices of S. Concatenating P1 and P2 results in a path with endpoints u1, u2 in

(G− S). Therefore, S is not a u1, u2-separator which is a contradiction.

We conclude that this case is not possible.

Case 3: u1 ∈ V (G1) and u2 ∈ V (G2). First, we remark that if u2 ∈ C we are in Case

1 and if u1 ∈ C we have Case 2. So, u1 ∈ V (G1 − C) and u2 ∈ V (G2 − C).

Now, note that C is a minimal clique u1u2-separator. From here we gather C and S

59

Elizabeth Gorbonos Separability and Ordering of Graphs

are mutually-exclusive clique cutsets (by definition S 6⊆ C and by the minimality of

S we have C 6⊆ S). Furthermore, the minimality of C means C ′ = C ∩ S cannot be

a clique cutset of G, thus Proposition 3.1.8 assures us S is a clique cutset of G1. To

show that S is indeed a minimal clique separator in G1 we would like to pin-point

two vertices which S separates minimally. Let v ∈ C−S. Let us show S is a minimal

u1v-separator in G1. Assume there is a path P with endpoints v, u1 in G1−S (i.e. P

does not contain any vertex of S), then we have a path in G−S with endpoints u1, u2

(simply join P with some path in G2 which avoids S). This of course contradicts S

being a minimal clique u1u2-separator and with that we know S is u1v-separator in

G1. We are going to show S is a minimal separator. Assume it is not. Then there is

some S ′ ⊂ S such that v and u1 are disconnected in (G1 − S ′). However, we know

that there is a path P ′ from u1 to u2 in G − S ′ (since (G − S) ⊂ (G − S ′)), which

must contain some vertex c of V (C). By taking the subset of P ′ from u1 to c and

adding the edge cv we get a path with endpoints u1, v in (G1−S ′). Hence, no S ′ can

be a u1v-separator in G1 and S must be a minimal. 2

Theorem 3.3.6 A minimal clique cutset decomposition is a minimal clique separator

decomposition.

Proof. Let G be a decomposable graph and T (G) be some minimal clique cutset

decomposition of G. From Theorem 3.3.4 we know all the minimal clique cutsets

of G will be used in T (G). We intend to prove that every minimal clique separator

of G will also be used in T (G). Let S be a minimal clique separator of G which is

not a minimal clique cutset. S is trivially prime and will be contained in some atom

A. Consider the path P (A) = (G = G0, ..., Gk, A) in T (G) (illustrated in Fig. 3.1),

we know S ⊂ Gi (0 ≤ i ≤ k). Assume S is not a minimal clique cutset of Gi (we

will arrive at a contradiction) then according to Lemma 3.3.5, S is a minimal clique

separator of Gi+1. Hence Gi+1 6= A as A contains no clique cutsets and equally no

clique separators, a contradiction to Lemma 3.3.5. 2

60

Elizabeth Gorbonos Separability and Ordering of Graphs

Corollary 3.3.7 Every inner node N of T (G) is decomposed by a minimal clique

separator of G. 2

3.3.2 Atoms Properties

Recognizing the minimal clique cutset decomposition is a minimal clique separator

decomposition indicates the atoms of such a decomposition are exactly the set of

mp-subgraphs [5, 65]. However, it is possible to reach this conclusion without relying

on this result, as we intend to do here.

Lemma 3.3.8 Let A be an atom of T (G). Then A is not a clique cutset for any

inner node N of T (G).

Proof. Certainly, this lemma is correct when A is not a clique, so we assume it is.

Let P (A) = (G = G0, ..., Gk, A) be the path to A in T (G) (Gk is the parent of A and

Ck is the minimal clique cutset used for Gk). We recall from Observation 3.1.3 that

A is contained in all graphs along P (A). If A is a clique cutset chosen for some inner

node N ∈ T (G) then P (A) must go through N , or in other words we expect to find

Gi ∈ P (A) (0 ≤ i ≤ k) for which A = Ci. Recall, Ck ⊂ A and Ck is a clique cutset

for all Gi (0 ≤ i ≤ k) (Observation 3.1.5). So we have A 6⊆ Ci for all i or Ci is not a

minimal cutset of Gi. 2

The last result in combination with Theorem 3.3.6 also entails no atoms is a

minimal clique separator.

Corollary 3.3.9 (known [5]) No minimal clique separator S is an atom of T (G). 2

It is now easy to be convinced all atoms of T (G) are mp-subgraphs of G. Assume

by contradiction that for some atom A we find A 6∈ mp-subgraphs(G), then by Propo-

sition 3.2.5 A is a clique cutset of some G′ ∈ P (A). But according to Lemma 3.3.8

this cannot be, so A must be a mp-subgraph of G. This discussion can be summarized

by the theorem below.

61

Elizabeth Gorbonos Separability and Ordering of Graphs

Theorem 3.3.10 (known [65]) Let G be a decomposable graph and A be an atom of

a clique minimal cutset decomposition T (G). Then A ∈ mp-subgraphs(G). 2

Corollary 3.3.11 (known [65]) Let G be a decomposable graph. Then any minimal

clique cutset decomposition T (G) produces the same set of atoms.

Proof. We know from Theorem 2.3.5 that mp-subgraphs(G) ⊆ atoms(T (G)). Let

A ∈ atoms(T (G)) then according to Theorem 3.3.10, we have A ∈ mp-subgraphs(G).

No mp-subgraph can appear more than once in atoms(T (G)), due to Lemma 3.3.8

and Observation 3.1.3. So we have atoms(T (G)) ⊆ mp-subgraphs(G), therefore

atoms(T (G)) = mp-subgraphs(G). 2

3.3.3 On the Number of Atoms of the Decomposition

With Corollary 3.3.11 we have established the uniqueness property of the minimal

clique cutset decomposition. We no longer need to refer to a specific decomposition

tree when discussing the atoms of a decomposable graph G. Hence, in this section,

we simply use the notation atomsmin(G) (we also reiterate atomsmin(G) = mp −

subgraphs(G)). Quite similar to our attempt in Theorem 3.2.6, we now focus on

uncovering a stronger bound for |atomsmin(G)|, that is better than n − 1. To help

with this goal we are introducing the concept of dedicated vertices.

Definition 3.3.12 Let A be an atom of G and v be a vertex in A. We say that v is a

dedicated vertex if A is the only atom of G containing v. A set D = {v1, v2, ..., vn}

is a dedicated set if D ⊂ A and each vi ∈ D is a dedicated vertex. A clique K is a

dedicated clique if V (K) is a dedicated set.

Observation 3.3.13 A vertex v ∈ V is dedicated if and only it is not included in

any minimal clique separator of G.

62

Elizabeth Gorbonos Separability and Ordering of Graphs

We plan to assert the existence of dedicated vertices in a minimal clique cutset

decomposition. This property enables us to bind the number of atoms of specific

subgraphs.

Lemma 3.3.14 In every minimal clique cutset decomposition of a graph G there

exists at least one dedicated vertex v (which is found in some atom A).

Proof. If G has no clique cutsets all of v ∈ V are trivially dedicated. For a de-

composable graph G, we intend to construct a special minimal clique cutset de-

composition T (G) which will allow us to easily identify a dedicated vertex in some

atom A. It has already been established that any decomposition T ′(G) will result

in A ∈ atoms(T ′(G)) (Corollary 3.3.11). As suggested by Observation 3.3.13 we are

looking for a vertex v which is not contained in any minimal clique separator of G

(analogously, v is not in any clique cutset used by T (G)). Denote G0 = G and let

DS(G = G0, C0, G
′
0, G

′′
0) be the label for the root node of T (G). As always, we recur-

sively define Gi+1 = G′i. At each decomposition step DS(Gi, Ci, G
′
i, G

′′
i) we partition

the vertices such that:

• Ci is not a clique cutset of G′i

• Ci−1 ⊂ G′′i

We say G′i is the left child of Gi, and G′′i is the right child of Gi. This partitioning

makes sure Ci 6= Ci−1 and is possible due to the properties of minimal clique cutsets

(Observation 3.3.2). We denote by Si the set of vertices used in all minimal clique

cutsets up to step i, specifically Si =
i⋃

j=0

Cj. Our choices enforce (Gi+1−Ci)∩Si = ∅.

Let Gk+1 = A be the left-most atom of this decomposition, then any vertex v ∈

V (A−Ck) is a dedicated vertex. Such v has not been used in any Ci (0 ≤ i ≤ k) and

it necessarily exists. 2

63

Elizabeth Gorbonos Separability and Ordering of Graphs

Lemma 3.3.15 Let S be a dedicated set of G. Denote G′ = G−S then |atomsmin(G)| ≤

|atomsmin(G′)|+ 1.

Proof. First we address the case where G has no clique cutset. G′ must have at least

one atom and therefore |atomsmin(G)| = 1 ≤ 2 is correct.

Let A be an atom of G such that S ⊂ A. We intend to show that (atomsmin(G) −

{A}) ⊆ atomsmin(G′)⇒ |atomsmin(G)|−1 ≤ |atomsmin(G′)|. LetA′ ∈ (atomsmin(G)−

{A}), from Theorem 3.3.10 we know A′ ∈ mp-subgraphs(G). By the definition of a

dedicated set S ∩ A′ = ∅ and therefore A′ ⊆ G′. We claim that A′ is a mp-subgraph

of G′. Assume it is not. Then there exists A′′ such that A′ ⊂ A′′ ∈ mp-subgraphs(G′),

but now A′′ is also prime graph of G and A′ is not maximal, a contradiction. Thus

we conclude |atomsmin(G)| ≤ |atomsmin(G′)|+ 1. 2

Let us first reprove the popular |G| − 1 bound using Lemma 3.3.15. Afterwards

we will show |atomsmin(G)| ≤ |G| − |H|+ 1 where H is any prime subgraph of G (in

particular H may be the largest prime subgraph).

Theorem 3.3.16 (known [91]) Let G be a connected graph with |G| ≥ 2. Then

|atomsmin(G)| ≤ |G| − 1.

Proof. From Lemma 3.3.14 we know G has some dedicated vertex v. Let G′ = G−{v},

G′ is certainly connected as v is not a cutset (Observation 3.3.13). We prove the

theorem by induction on the number of vertices using Lemma 3.3.15. It is trivial to

verify the theorem for the base case |G| = 2 ⇒ |atomsmin(G)| = 1. Applying the

induction hypothesis to G′ we have |atomsmin(G′)| ≤ |G′| − 1 ≤ |G − 1| − 1. Now,

|atomsmin(G)| ≤ |atomsmin(G′)|+ 1 ≤ |G| − 2 + 1 ≤ |G| − 1. 2

Theorem 3.3.17 Let H be a prime-subgraph of G. Then |atomsmin(G)| ≤ |G| −

|H|+ 1.

Proof. For any subgraph H of G, obviously |H| ≤ |G|, therefore |G| − |H| + 1 ≥ 1.

If G is not decomposable then |atomsmin(G)| = 1. So we have |atomsmin(G)| ≤

64

Elizabeth Gorbonos Separability and Ordering of Graphs

|G| − |H|+ 1.

We break the discussion into two parts based on whether H is a dedicated set or not.

Case 1: H is a dedicated set.

Let G′ = G − H, we will show 2 ≤ |G′|. Let C be a minimal clique cutset of G.

Notice H ∩C = ∅. Consider DS(G,C,G1, G2), and assume without loss of generality

H ⊂ G1. Now G2 ⊆ G′ and clearly 2 ≤ |G2| ≤ |G′|. Now, we can apply Theorem

3.3.16 to G′ and get |atomsmin(G′)| ≤ |G′| − 1 ≤ |G| − |H| − 1. Using Lemma 3.3.15

we find |atomsmin(G)| ≤ |atomsmin(G′)|+ 1 ≤ |G| − |H| ≤ |G| − |H|+ 1.

Case 2: H is a not dedicated set.

Observation 3.3.13 implies there is some minimal clique separator S for which S∩H 6=

∅. Consider DS(G,S,G1, G2) and partition the vertices so H ⊆ G1. Notice, H is

also a prime-subgraph of G1 so by induction we say |atomsmin(G1)| ≤ |G1| − |H|+ 1.

Clearly S ⊂ G2 but from the Corollary 3.3.9 we know S 6∈ atomsmin(G2). Therefore

there exists a prime subgraph M of G2 which contains S (S ⊂M). Using M and the

induction hypothesis for G2 we find |atomsmin(G2)| ≤ |G2| − |M | + 1 ≤ |G2| − |S|.

Combining the two tree branches gives us the desired outcome |atomsmin(G)| =

|atomsmin(G1)|+ |atomsmin(G2)| ≤ |G1| − |H|+ 1 + |G2| − |S| ≤ |G| − |H|+ 1. 2

It is clear that for Theorem 3.3.17 the larger the prime subgraph H is, the tighter

the bound. Unfortunately, we do not know of an efficient way to recognize the largest

prime subgraph of an arbitrary G without actually performing a decomposition. How-

ever, since certain prime subgraphs are easily described (cliques, for instance) or are

strictly not maximally prime (e.g. minimal cutsets) the theorem can be rephrased to

reflect that.

Corollary 3.3.18 Let G be a connected graph with |G| ≥ 2 and K be any clique of

G. Then |atomsmin(G)| ≤ |G| − |K|+ 1. 2

65

Elizabeth Gorbonos Separability and Ordering of Graphs

3.4 Maximal clique cutset decomposition

After exploring decompositions by minimal clique cutsets we shift our attention to

the opposite extreme, namely maximal clique cutsets. We follow the same structure:

first we examine the decomposition itself then we focus on properties of the atoms

and their quantity.

3.4.1 Decomposition Properties

Observation 3.4.1 Any two maximal clique cutsets C1 and C2 with C1 6= C2 are

mutually-exclusive clique cutsets.

Lemma 3.4.2 Let K be a clique of a decomposable graph G, and let C be a clique

cutset of G, such that C ⊂ K. Then there exists a clique cutset C ′ ⊂ K with

|C ′| = |K − 1|.

Proof. Consider DS(G,C,G1, G2). Assume without loss of generality K ⊆ G1 and

identify a vertex u ∈ K − C. We may choose any v ∈ V (G2 − C), and we have C is

a uv-separator. Define C ′ = K − {u} , clearly C ′ is also a uv-separator and thus we

have a clique cutset with size |K − 1|. 2

3.4.2 Atoms Properties

Conveniently, the minimal clique cutset case guaranteed any such decomposition will

produce the same exact set of atoms. We are not that lucky when it comes to the

maximal clique cutset decomposition. Figure 3.9 contains an example for two maximal

clique cutset decompositions of a graph G which result in different atom-sets.

Observation 3.4.3 Not all maximal clique cutset decompositions produce the same

number of atoms.

66

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 3.9: Two maximal clique cutset decompositions which result in different sets
of atoms

In the following lemma we use larger in terms of the number of atoms the decom-

position produces.

Lemma 3.4.4 Let T (G) be a decomposition tree of G with the root node labeled

DS(G,C,G1, G2). If C is not a maximal clique cutset, we can find a larger decom-

position.

Proof. Recall, |atoms(T (G))| = |atoms(T (G1))| + |atoms(T (G2))|. Choose C ′ a

maximal clique cutset of G, with the property C ⊂ C ′. Let us strategically con-

struct a decomposition tree T ′(G) where the root is labeled DS(G,C ′, G′1, G
′
2). We

will show |atoms(T ′(G))| > |atoms(T (G))|. See Fig. 3.10. Assume without loss

of generality C ′ ⊂ G1. We partition G′1 and G′2 such that G′1 = G1. Consequen-

tially G′2 = G2 ∪ (C ′ − C). We know there exists v ∈ C ′ − C. Since C ′ ⊂ G1

we know that C is a vu-separator for every u ∈ V (G2 − C). Therefore we may

consider DS(G′2, C,G
′
3, G

′
4). By partitioning V (G′2) such that G′3 = C ′ we con-

sequentially find G′4 = G2. We can now apply the previous decompositions of

G1, G2, i.e. T ′(G′1) = T (G1) and T ′(G′4) = T (G2). Recall, G′3 is a clique so

|atoms(T ′(G′2))| = |atoms(T ′(G′3))|+ |atoms(T ′(G′4))| = 1 + |atoms(T (G2))|.

Overall we get |atoms(T ′(G))| = |atoms(T ′(G′1))|+|atoms(T ′(G′2))| = |atoms(T (G1))|+

|atoms(T (G2))|+ 1 = |atoms(T (G))|+ 1 . 2

Lemma 3.4.4 implies the following corollary.

67

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 3.10: Depiction of how choosing a larger clique cutset (w.r.t. set-size) can
produce more atoms. The decomposition on the right uses C ′ for which C ⊂ C ′.

Corollary 3.4.5 Let Tmax(G) be a decomposition of G which produces the largest pos-

sible number of atoms. Then every clique cutset used at every inner node of Tmax(G)

is a maximal clique cutset. 2

3.4.3 On the Number of Atoms of the Decomposition

Corollary 3.2.8 gives the absolute “worst case” for the number of atoms which a clique

cutset decomposition can produce. We have derived this result from Theorem 3.2.7

which relates |atoms(T (G))| to the cliques of the corresponding graph G. Here we

seek to uncover a similar relation with respect to maximum clique cutsets.

Observation 3.4.6 A maximum clique cutset decomposition is a maximal clique cut-

set decomposition.

Definition 3.4.7 Let G be a decomposable graph and C be a clique cutset of G. The

function f(G,C) is the maximum number of connected components in (G− C).

It is plain to see that in general f(G,C) ≤ |G| − |C|. The Star graph Sk is an

example for f(G,C) = |G|− |C| = k. We denote by TM(G) a maximum clique cutset

68

Elizabeth Gorbonos Separability and Ordering of Graphs

decomposition of G.

Lemma 3.4.8 Let G be a decomposable graph, C be a clique cutset of G and K be

some clique of G such that K 6⊆ C. Then f(G,C) ≤ |G| − |C ∪K|+ 1.

Proof. Assume the graph G − C has l connected components H1, ..., Hl. Now, K

is obviously connected and therefore it is completely contained in a some C ∪ Hi

(1 < i < l). Without loss of generality let us assume it is contained in C ∪ H1

(so K ⊆ G[C ∪ H1]). Trivially, H1 is a single component so let us observe the

subgraph H = G[{H2, ..., Hl}]. We know H has l − 1 connected components, but

it is also correct to say H has at most |H| components. An even more detailed

statement is |H| = |G| − |C ∪H1| ≤ |G| − |C ∪K| (because K ⊆ C ∪H1). Therefore

f(G,C) ≤ 1 + |H| ≤ 1 + |G| − |C ∪K|. 2

Theorem 3.4.9 Let G be a decomposable graph and C be the maximum clique cutset

of G. Then in a maximum clique cutset decomposition TM(G) we have |atoms(TM(G))| ≤

|C|f(G,C).

Proof. Consider DS(G,C,G1, G2). For the case where G1 and G2 are both atoms the

theorem holds since |atoms(G)| = 2 ≤ 2|C| ≤ |C|f(G,C). Proving |atoms(TM(Gi))| ≤

|C|(|Gi|−|C|) (i = 1, 2) is sufficient as it leads to |atoms(TM(G))| = |atoms(TM(G1))|+

|atoms(TM(G2))| ≤ |C|(|G1|−|C|)+ |C|(|G2|−|C|) ≤ |C|(|G|−|C|). Let us therefore

focus on G1 and let C1 be a maximum clique cutset of G1, clearly |C1| ≤ |C|.

Case 1: |C1| = |C|. By induction, it is immediate that |atoms(TM(G1))| ≤ |C|f(G1, C) ≤

|C|(|G1| − |C|).

Case 2: |C1| < |C|. We should consider whether or not C1 is contained in C.

Case 2.1: C1 ⊂ C. Lemma 3.4.2 implies |C1| = |C − 1|, let u be the vertex left out

of C1 (u ∈ C − C1). Consider DS(G1, C1, G
′, G′′) and assume C ⊆ G′. We claim

G′ = C. Otherwise, C should have been the maximum clique cutset of G1, as it would

69

Elizabeth Gorbonos Separability and Ordering of Graphs

be a separator for any v1 ∈ V (G′−C) and v2 ∈ V (G′′−C1). Finally, using induction

we find |atoms(TM(G1))| ≤ 1 + |atoms(TM(G′′))| ≤ 1 + |C1|f(G1 − {u}, C1) ≤ 1 +

|C − 1|(|G1 − 1| − |C − 1|) ≤ 1 + |C|(|G1| − |C|)| − (|G1| − C) ≤ |C|(|G1| − |C|).

Case 2.2: C1 6⊂ C. In this case f(G1, C1) ≤ |G1|− |C ∪C1|+ 1 (Lemma 3.4.8). Now

since C1 6⊂ C we know |C ∪ C1| > |C|, therefore f(G1, C1) ≤ |G1| − |C|. Employing

the induction hypothesis |atoms(TM(G1))| ≤ |C1|f(G1, C1) ≤ |C|(|G1| − |C|). 2

Our last result for this chapter is another mean to bind the number of atoms

of any clique cutset decomposition. We mention in certain cases it can serve as a

better bound then the one presented in Theorem 3.2.7. In particular, let G be a

decomposable graph, C be a maximum clique cutset of G and K be the maximum

clique of G, if C < K ≤ |G|
2

then Corollary 3.4.10 gives a tighter bound.

Corollary 3.4.10 Let G be a decomposable graph and C be a maximum clique cutset.

Then in a maximum clique cutset decomposition |atoms(TM(G))| ≤ |C|(|G| − |C|).

2

70

Chapter 4

SE-Class

We introduce a new graph family named SE-Class. Graphs in this class are defined

as those that inherently contain simplicial extremes.

Definition 4.0.1 A graph G is in SE-Class if any induced subgraph H of G contains

a simplicial extreme. A simplicial extreme order (SEO) is an ordering σ such

that vi is a simplicial extreme in Gi.

Figure 4.1a gives an example for a graph which belongs to SE-Class. The graph

depicted in Fig. 4.1b does not belong to SE-Class. Note both graphs contain a

simplicial extreme (vertex no. 3), however for the graph in Fig. 4.1b the induced

subgraph on all other vertices has no simplicial extreme.

(a) A SE-Class graph (b) A non-SE-Class graph

Figure 4.1: SE-Class membership example

71

Elizabeth Gorbonos Separability and Ordering of Graphs

Clearly for any G in SE-Class we can construct a SEO, in this manner SE-Class

generalizes chordal graphs (note that a PEO is a SEO). Additionally, we learn from

Theorem 2.4.3 that a graph G of SE-Class which is also (Even-Hole)-free is β-perfect

(the other direction is not true, take W5 as an example).

Proposition 4.0.2 Let G be a (Even-Hole)-free SE-Class graph. Then G is β-

perfect. 2

But different from the perfect and β-perfect classes which forbid odd holes and

even holes (respectively), graphs in SE-Class may contain any type of hole. Neither

the odd nor the even hole is forbidden by the definition of SE-Class. In this chapter

we explore the applications of a SEO as well as certain subfamilies of SE-Class. Our

first result stems from the proof of Theorem 4.1.6 below (in Subsection 4.1.3) and

stands in contrast to the known bound for (Even-Hole)-free graphs (Theorem 2.5.4).

The following proposition is obvious:

Proposition 4.0.3 Let G be a graph in SE-Class then χ(G) ≤ max(ω(G), 3). 2

This chapter is structured as follows: Section 4.1 explores SEO and its applications;

Section 4.2 presents some structural results for related restricted graph families and

in Section 4.3 we prove that a SEO for (Even-Hole, Claw, Diamond)-free graphs can

be constructed using LexBFS in linear time.

4.1 SEO

In this section we focus on algorithmic aspects of SEO. We first demonstrate a naive

SEO construction procedure followed by a linear time verification algorithm. Then

we describe how a SEO of G can help us efficiently solve the coloring and maximum

clique problems.

72

Elizabeth Gorbonos Separability and Ordering of Graphs

4.1.1 Generating SEO

To begin with, let us consider the complexity of finding a simplicial extreme vertex.

Lemma 4.1.1 A simplicial extreme vertex can be found in O(nm) time.

Proof. A vertex v is trivially simplicial if it has a degree lower than 3. Otherwise,

we need to examine whether its neighborhood induces a clique. This check can be

performed using a single traversal of the graph in time O(n + m). The worst case

for finding a simplicial extreme requires testing all the vertices and therefore takes

O(nm) time. 2

A straightforward approach, that consists of repeatedly finding and removing one

simplicial extreme vertex, yields the next theorem.

Theorem 4.1.2 SEO can be generated in O(n2m) time. 2

4.1.2 Verifing SEO

As per its definition, the vertices in a SEO may either be simplicial or have exactly

two non-adjacent neighbors. The following observation gives a tool to differentiate

between the two.

Observation 4.1.3 Let σ be a SEO of G, then a vertex vi ∈ σ is simplicial if:

• degσ(vi) = 1

• degσ(vi) ≥ 3

• there exists vj with j < i, such that degσ(vj) = 3 and vi is the nearest larger

neighbor of vj in σ (i.e. in {vj, ..., vn}).

Proof. Let σ be a SEO ordering of the vertices of G. The first two cases are trivial.

A vertex vi with degσ(vi) = 1 is obviously simplicial. For vi with degσ(vi) ≥ 3,

73

Elizabeth Gorbonos Separability and Ordering of Graphs

we know that vi must be simplicial (or σ is not a SEO). Note that every vi with

degσ(vi) = 2 is a simplicial extreme, so the task is to identify when such a vertex is

required to be simplicial. Let us consider some vi with degσ(vi) ≥ 3. Now, let Nσ(vi)

be the neighborhood of vi in Gi and let the three “smallest” (w.r.t. to the σ index)

neighbors of vi be vk, vl, vm (with k < l < m). If degσ(vk) ≥ 3 then it is simplicial.

Now, we can see that vi forces vk to be simplicial since vk must be adjacent to all

Nσ(vi)− {vk}. This justifies the third condition. 2

Our next step is to meticulously design a linear SEO-verification algorithm. Mean-

ing, given some ordering σ we would like to decide whether or not it is a SEO. For

each vi ∈ σ (1 ≤ i ≤ n− 1) let vi′ be the “smallest” neighbor of vi in Gi. According

to Observation 4.1.3, to test whether σ is a SEO, we need to verify the following for

each vi with degσ(vi) ≥ 3:

1. vi′ is simplicial, and

2. vi′ is adjacent to all Nσ(vi)− {vi′}

Algorithm 7 drafts an initial solution for this problem. The time to test whether vi′

is simplicial is O(n+m), hence the total complexity is governed by O(nm) time.

Algorithm 7 Draft: Verify SEO

1: for i← 1 to n− 1 do

2: vi′ ← smallest neighbor of vi in Gi

3: task-1: test vi′ is simplicial

4: task-2: test vi′w ∈ E for w ∈ Nσ(vi)− {vi′}

5: end for

To allow for a linear algorithm we employ the method developed in [85]. We scan

σ from left to right (from smallest to largest) and exploit a similar strategy to that of

perfect elimination order verification, namely deferring the check of simplicial vertices.

We introduce two helper arrays: bba (stands for “better be adjacent”) and bbs (short

74

Elizabeth Gorbonos Separability and Ordering of Graphs

for “better be simplicial”). The cell bba[i] holds a set of vertices vi is required to be

adjacent to. The array bbs is a boolean array where bbs[i] = true means vi (with

degσ(vi) ≥ 2) should be simplicial. Algorithm 8 demonstrates how both tasks can be

accomplished when using an adjacency matrix.

Algorithm 8 Verify SEO (adjacency matrix)

Input: σ: an order of V
M : adjacency matrix of G

Output: true if σ is SEO, false otherwise
1: for i← 1 to n do
2: initialize bba[i] to empty set
3: initialize bbs[i] to false
4: end for
5: for i← 1 to n− 1 do
6: if vi is not adjacent to some vertex in bba[i] then
7: return false
8: end if
9: if degσ(vi) ≥ 3 then

10: vi′ ← smallest neighbor of vi in Gi

11: bbs[i] = bbs[i′] = true
12: append Nσ(vi)− {vi′} to bba[i′]
13: else if degσ(vi) = 2 and bbs[i] = true then
14: {vi′ , vi′′} = Nσ(vi)
15: if M [i′][i′′] = 0 then
16: return false
17: end if
18: end if
19: end for
20: return true

Task 1 for vi′ is taken care of when the external loop reaches vi′ (line 5). If vi′

has degσ(vi′) ≥ 3 then the verification is implicit (it in fact relies on task 2). For

degσ(vi′) = 2 we perform the test immediately (that is at the time of processing vi′)

by looking at the adjacency matrix (line 15). This algorithm assumes the entries in

the matrix correspond to the ordering σ but any other mapping method will work

just as well. We pay no attention to vertices with degσ(vi′) = 1 as they are trivially

simplicial. Notice that we only append to bba[i′] when degσ(vi) ≥ 3, meaning all

non-empty sets in bba contain at least two vertices (line 12). Task 2 is performed on

75

Elizabeth Gorbonos Separability and Ordering of Graphs

line 6 and requires O(degσ(vi′)) for each vi′ . Overall, Algorithm 8 runs in linear time

(i.e. O(n+m)) and requires O(n2) space due to the size of the adjacency matrix.

We can improve upon the space requirement of Algorithm 8 by avoiding the use

of the adjacency matrix, as we do in Algorithm 9. One main difference is that now

bba[i] is allowed to contain a single vertex. However, we still make sure only simplicial

vertices contribute to bba (line 13). While the time-complexity remains O(n+m) the

space-complexity can now be reduced to O(m).

Algorithm 9 Verify SEO

Input: σ: an order of V

Output: true if σ is SEO, false otherwise

1: for i← 1 to n do

2: initialize bba[i] to empty set

3: initialize bbs[i] to false

4: end for

5: for i← 1 to n− 1 do

6: if vi is not adjacent to some vertex in bba[i] then

7: return false

8: end if

9: vi′ ← smallest neighbor of vi in Gi

10: if degσ(vi) ≥ 3 then

11: bbs[i] = bbs[i′] = true

12: end if

13: if bbs[i] = true then

14: append Nσ(vi)− {vi′} to bba[i′]

15: end if

16: end for

17: return true

76

Elizabeth Gorbonos Separability and Ordering of Graphs

For Algorithm 9 we are not using the adjacency matrix of G. However, we are

still able to perform the adjacency check for vi (line 6) in time O(deg(vi)). Let us

explain how this is achieved. Using the idea presented by Golumbic [52], we initialize

a boolean array test of size n to false. For every vi we iterate over N(vi) and set

test[j] to true for all vj ∈ N(vi). This operation takes O(deg(vi)) time. Now, there

can be at most deg(vi) vertices in bba[i] (or σ is not a SEO and we return). Checking

whether uvi ∈ E for each u ∈ bba[i] takes O(1) using test. Finally, we reset test by

changing all deg(vi) cells back to false. This procedure amounts to O(deg(vi)) time

for each vi ∈ V . Overall, adjacency testing in Algorithm 9 requires O(n+m) time.

The next theorem summarizes the discussion so far.

Theorem 4.1.4 A SEO can be verified in O(n+m) time. 2

4.1.3 Applications

Let G be a graph with a SEO σ. We will now demonstrate how can σ help identify

the maximum clique of G.

Theorem 4.1.5 Given a graph G and a SEO on G, a maximum clique can be found

in O(n+m) time.

Proof. Clearly, whenever a vertex vi is simplicial in Gi, it is part of a clique of size

degσ(vi) + 1. On the other hand, if vi is not simplicial, the largest clique containing

it in Gi is an edge. So we define a clique-size function for vi ∈ V as:

cs(vi) =

degσ(vi) + 1, if vi is simplicial

2, otherwise

The maximum clique of G is now given by G[{u} ∪ Nσ(u)] where u ∈ V is the

vertex with the largest clique-size, specifically cs(u) = maxvi∈V (cs(vi)). The only

77

Elizabeth Gorbonos Separability and Ordering of Graphs

challenge left is to determine whether vi is simplicial in Gi. We can easily accomplish

that by constructing an indicator array using the following method. Initialize two

arrays of size n: simplicial and candidates. Scan σ from left to right. If vi has

degσ(vi) 6= 2 we mark it as simplicial and plainly move on. Otherwise, let vi′ and vi′′

be the two neighbors of vi in Gi. Without loss of generality assume i′ < i′′. Now,

append the tuple (i, vi′′) to the list in candidates[i′]. We think of this as a “request” of

vi′ to check whether vi is simplicial. Note, every vi can produce at most one “request”,

so
∑n

i=1 |candidates[i]| ≤ n. We determine if vi is simplicial when processing vi′ , if

vi′′ ∈ Nσ(vi′) we set simplicial[i] to true otherwise vi is not simplicial. We perform

this adjacency check in a similar manner to that of Algorithm 9. 2

Lastly, we show a greedy algorithm using a SEO produces an optimal coloring.

Theorem 4.1.6 Given a graph G and a SEO on G, then G can be optimally colored

in O(n+m) time.

Proof. Our first step is to check if G is bipartite. If it is we are done. Otherwise, we

note that G requires at least 3 colors and we start to scan σ from right to left. We

know vi has degσ(vi) neighbors in Gi and respectively Nσ[vi] needs at most degσ(vi)+

1 unique colors (the available colors are {0, ..., degσ(vi)}). For every vertex vi we

initialize all cells of a boolean array free (of size degσ(vi) + 1) to true. We update

free[j] to false if any u ∈ Nσ(vi) was assigned color j. If a neighbor of vi has a

color which is larger than degσ(vi) we disregard it. Finally, we choose the smallest

free color and assign it to vi.

Assume by contradiction such coloring is not optimal, this means at some vertex vi

we use a color l that is not necessary (meaning Gi could have been colored with l− 1

colors). We should consider what type of vertex vi is. Assume vi is simplicial in Gi

this implies degσ(vi) = l−1, so Gi clearly needs at least l colors, a contradiction. Now

we know vi is not simplicial, and it may only be assigned one of the colors (0,1,2).

78

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 4.2: Example of a bad path

However, we have already established it is not possible to color G with less than 3

colors. So we could have not made a mistake and the coloring is optimal. 2

4.2 Structural Results

We already know SE-Class contains (Even-Hole, Diamond)-free graphs, this is evi-

dent from Theorem 1.3.4. We’d like to learn which other families SE-Class contains.

Another way to ask this question is: which graph families admit a SEO? Or, relatedly,

when does a graph not admit a SEO?

The latter question motivates us to point out an obvious obstruction to SEO. Let

G be a path Gk = {v1, ..., vk} with k ≥ 5, assume no vertex of Gk is simplicial and

the degree of each vertex is at least 3 (i.e. deg(vi) ≥ 3). Then, clearly, we cannot

eliminate any vertex of Gk. Thus Gk has no SEO and we call such structure a bad

path (see Fig. 4.2). In addition, if v1vk ∈ E(Gk) then there is a cycle of size k and we

shall call it a bad cycle. The wheel Wk for instance is a bad cycle, it is also minimally

non-SE-Class. Obviously, any graph which contains a bad path or a bad cycle cannot

have a SEO. It is of course possible more obstructing structures exist.

4.2.1 (Even-Hole, Claw)-free

Cameron et al. [13] presented the buoy and the following structural result for (Even-

Hole, Pan)-free graphs, these generalize the (Even-Hole, Claw)-free family.

Definition 4.2.1 Let G be a connected graph. G has a l-buoy (l ≥ 5) B with vertex-

79

Elizabeth Gorbonos Separability and Ordering of Graphs

sets B0, ..., Bl−1 (called bags) such that G[Bi] is a clique and every vertex v ∈ Bi has

a neighbor in Bi−1 and Bi+1, and v has no neighbor in any other bag of B. A buoy

of G is called full buoy if it includes all vertices of G.

Theorem 4.2.2 [13] If G is a connected graph and every atom of G is (Even-Hole,

Pan)-free, then

• G is a clique, or

• G contains a clique cutset, or

• for every maximal buoy B of G, either B is a full buoy of G, or G is the join

of B and a clique.

A Hamiltonian cycle (HC) in a graph G is a cycle of size n. We observe that for

every buoy B on k vertices, a cycle Ck can be found. In particular, if B is a full buoy

of G then G has a HC. Our proposition is build upon the latter Theorem.

Proposition 4.2.3 Let G be a (Even-Hole, Claw)-free graph with no clique cutset.

Then G is in SE-Class or G has a bad cycle.

Proof. The claim trivially holds for any chordal graph so let us assume G has a hole,

and moreover G contain a buoy. Let B be the maximal buoy of G.

Case 1: G is a join of B and a clique. We denote G = B ⊕ K, where K is the

clique. We know B has an induced hole F with length at least 5. Take any vertex

v ∈ V (K) and define G′ = G[V (F) ∪ {v}]. Every u ∈ V (G′) has degG′(v) ≥ 3 and is

not simplicial. Thus G′ is a bad cycle and any G of this form is not in SE-Class.

Case 2: B is a full buoy of G. By definition buoys have no simplicial vertices and

every vertex has a degree of at least 2. If for all v ∈ V we have deg(v) > 2, then G is

a bad cycle (notice, G has a HC). On the other hand, if deg(v) = 2 for some v then v

is a simplicial extreme and we have a bag with size 1. The graph G− {v} is chordal

and therefore in SE-Class. Hence G is in SE-Class. 2

80

Elizabeth Gorbonos Separability and Ordering of Graphs

(a) Not a bad cycle (b) Not a bad path

Figure 4.3: Minimally non-SE-Class (Even-Hole, Claw)-free graphs

Figure 4.3 depicts two minimally non-SE-Class (Even-Hole, Claw)-free graphs.

Both examples have clique cutsets. We can see such graphs need not contain a bad

cycle nor a bad path.

4.2.2 (Even-Hole, Kite)-free

Next, using Theorem 1.3.5 we prove that every (Even-Hole, Kite)-free graph is in

SE-Class or has a wheel.

Proposition 4.2.4 Let G be a (Even-Hole, Kite)-free graph that is not a clique and

has no clique cutset, then G has a wheel or G has two non-adjacent simplicial ex-

tremes.

Proof. This property is already known to us for a (Even-Hole, Diamond)-free graph

G which is not a clique from Theorem 1.3.4. By Theorem 1.3.5, we’re left to handle

the case in which G is the join of a clique and a (Even-Hole, Diamond)-free graph.

We denote G = K ⊕ H, H is (Even-Hole, Diamond)-free and K is a clique. Note

that H may not be a clique, otherwise G is a clique. Suppose H is chordal. Then

H contains two non-adjacent simplicial vertices that remain simplicial in G. So, H

contains a hole F . Now, take any vertex u ∈ V (K) and observe G[V (F) ∪ {u}] is a

wheel. 2

81

Elizabeth Gorbonos Separability and Ordering of Graphs

Finally, we are ready to show the following:

Theorem 4.2.5 Let G be (Even-Hole, Kite)-free then either

• G is a clique, or

• G has two non-adjacent simplicial extremes, or

• G has a wheel

Proof. Proposition 4.2.4 handled the case in which G has no clique cutset, here we

assume G has one. We also assume the theorem is true by induction. Let C be a

clique cutset of G and G1, G2 be the decomposition blocks. We will show that G

either contains a wheel or two non-adjacent simplicial extremes (one in G1 − C and

the other in G2 − C). We discuss G1 but our logic is applicable to G2 all the same.

We apply the induction hypothesis to G1.

Case 1: If G1 is a clique then all vertices in G1 − C are simplicial.

Case 2: If G1 has two non-adjacent simplicial extremes, then at least one of them

must be in G1 − C.

Case 3: If G1 has a wheel then so does G. 2

The last theorem also implies no minimal non-SE-Class (Even-Hole, Kite)-free

graph can have a clique cutset. Simultaneously, we have proven every non-SE-Class

(Even-Hole, Kite)-free graph has a bad cycle (specifically, a wheel). The wheel is in

fact the only minimal obstruction for this class.

Corollary 4.2.6 Let G be (Even-Hole, Kite)-free then G is in SE-Class if and only

if G contains no wheel. 2

Detecting wheels is NP-complete [40] but fortunately we do not have to do that

directly. The following theorem provides an efficient mean to recognize (Even-Hole,

82

Elizabeth Gorbonos Separability and Ordering of Graphs

Kite)-free graphs which belong to SE-Class using the minimal clique separators de-

composition.

Theorem 4.2.7 Let G be a (Even-Hole, Kite)-free graph. Then G is in SE-Class if

and only if every A ∈ atoms(G) is diamond free.

Proof. Let us start by observing two things about the wheel: 1) it contains diamonds;

2) it has no clique cutset. Therefore, if a wheel W is present in G it will be included

in some atom A of G (i.e W ⊆ A). Let us assume all atoms are diamond free, then

no atom contains a wheel and accordingly G is wheel free. By Corollary 4.2.6, G is

in SE-Class. We now analyize the opposite direction and assume G is in SE-Class.

Clearly all atoms of G are (Even-Hole, Kite)-free and have no clique cutset. By

Theorem 1.3.5 every atom A is either diamond free or is the join of a clique and a

(Even-Hole, Diamond)-free graph, the first option is exactly what we want so let us

take a closer look at the second one. Let us label the clique with K and the diamond

free subgraph with H such that A = K⊕H. If H contains a hole, then A has a wheel

and thus G is not in SE-Class, a contradiction. Hence, H has no holes, or in other

words H is chordal. From here it follows that A is chordal with no clique cutset (the

universal vertices of K cannot by part of a hole), which is precisely a clique [84] and

obviously diamond free. 2

4.2.3 (Even-Hole, Claw, Diamond)-free

Following all our previous discussions we are well aware (Even-Hole, Claw, Diamond)-

free graphs are a subclass of SE-Class. Our interest in this class stems from an attempt

to efficiently construct a SEO, we will elaborate on this in Section 4.3.

For now, let us introduce the spear, a relaxed variation of the 3PC(∆, .) (Fig.

4.4). Similarly to the 3PC definition, a graph G has a spear(x1x2x3, y) if {x1, x2, x3}

is a triangle and there are three paths P1, P2, P3 from x1, x2, x3 to y respectively.

83

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 4.4: Spear

In a spear we do not require G′ = G[V (Pi) ∪ V (Pj)] for {Pi, Pj} ⊂ {P1, P2, P3} to

be a hole. Strictly speaking G′ is a cycle in which chords are allowed or in other

words Pi and Pj should both contain y but be otherwise vertex-disjoint. We emphasis

another difference this definition makes. While the 3PC(∆, .) condition imposes that

at most one of the paths may have length 1, this requirement does not apply to a

spear (specifically, K4 is a spear).

Definition 4.2.8 A strong-spear is a spear for which the paths P1, P2, P3 are all

chordless.

Definition 4.2.9 A weak-spear is a spear for which the paths P1, P2, P3 may not be

chordless.

Definition 4.2.10 A near-spear is defined in a following manner. A graph G has a

near-spear(x1x2x3, y) if there exist:

• {x1, x2, x3} is a triangle

• P1 is a chordless path from x1 to y and x2, x3 6∈ P1

• P2 is a chordless path from x2 to y and x1, x3 6∈ P2

• P3 is a chordless path from x3 to y and x1, x2 6∈ P3

84

Elizabeth Gorbonos Separability and Ordering of Graphs

(a) strong spear (b) weak-spear (c) near-spear

Figure 4.5: Examples of different types of spears. Dashed lines represent paths and
solid lines are edges.

Examples of the different types are illustrated in Fig. 4.5. Note that a near-spear

allows paths {Pi, Pj} ⊂ {P1, P2, P3} to intersect and even partially merge (different

from the strong-spear and weak-spear).

In the context of a spear(abc, d) or a near-spear(abc, d), where {a, b, c} is a tri-

angle and P1, P2, P3 are the paths from a, b, c to d respectively, we use the following

notations:

• A chordless path from some vertex z ∈ {a, b, c} to d is denoted Z.

• The path Z = {z0, ..., zz′} has z′ vertices, such that z0 = z and zz′ = d.

• The notation length(Z) is the number of edges of Z.

• We denote by Z(i, j) the subpath of Z from vertex zi to zj.

We will now show both weak-spear and near-spear contain a strong-spear. We

start by showing a weak-spear can always be transformed into a strong-spear.

Observation 4.2.11 Let P be some path of G with endpoints x, y. Then P has an

induced subpath P ′ such that P ′ is chordless and has endpoints x, y.

Proof. By induction on the number of vertices. Let P be the path {v0 = x, v1, ..., vk =

y}. Assume P has a chord from vi to vj where i < j. Define P ′ = P [{v0, ..., vi} ∪

85

Elizabeth Gorbonos Separability and Ordering of Graphs

{vj, ..., vk}]. Now, P ′ is an induced subpath of P . By induction P ′ contains an induced

chordless path P ′′ with endpoint x, y. P ′′ is also an induced subpath of P . 2

Observation 4.2.12 Every weak-spear contains an induced strong-spear.

Proof. Let H be a weak-spear(abc, d) with paths P1, P2 and P3. By Observation

4.2.11, P1, P2, P3 can be replaced by chordless paths A,B,C respectively and we have

a strong-spear(abc, d). 2

Now, let G be a near-spear(abc, d), the spear-size is defined as the sum of the

path-lengths S(G) = length(A) + length(B) + length(C). A minimal-size near-spear

G is a near-spear such that no induced subgraph G′ of G is a near-spear(abc, d′) with

S(G′) < S(G) for some d′ ∈ V . We intend to show the minimal-size near-spear

does not contain any other type of spear (in particular, the strong-spear), as proper

induced subgraph.

Lemma 4.2.13 Let G be a minimal-size near-spear(abc, d). Then G is a strong-

spear(abc, d).

Proof. Assume G is not a strong-spear, then there exists an intersection between two

of A,B,C. Without loss of generality we choose A to intersect with B. Assume v ∈ A

and also v ∈ B. Observe that unless v = d we can identify the following three paths:

• P1 = A(0, v)

• P2 = B(0, v)

• P3 = A(v, d) ∪ C

The paths P1, P2 are clearly chordless and we may assume P3 to be chordless as well

(Observation 4.2.11). Note that length(B(v, d)) ≥ 1 and with this we have a smaller-

size near-spear(abc, v). But this is a contradiction to the minimality of G, hence G

must be a strong-spear. 2

86

Elizabeth Gorbonos Separability and Ordering of Graphs

Corollary 4.2.14 Let G be a near-spear(abc, d). Then G contains a strong-spear(abc, v)

for some v ∈ G.

Proof. From Lemma 4.2.13 we know that if G is a minimal-size near-spear, it is a

strong-spear. Assume G is not minimal-size near-spear then by definition there exists

an induced subgraph G′ of G which is a “smaller” near-spear. We apply the same

argument recursively to G′ until it is a minimal-size near-spear and therefore also a

strong-spear. 2

Let us recap our findings so far, from Observation 4.2.12 and Corollary 4.2.14 we

know both weak-spear and near-spear contain a strong-spear. Clearly any strong-

spear is also a weak-spear and a near-spear. Additionally, we have demonstrated a

minimal-size near-spear is a strong-spear, so we conclude that a minimal-size spear is

a strong-spear containing no other strong spear. We now simplify this construct and

reformulate it as a minimal-spear. For the remainder of this chapter a spear implies

a strong-spear and the term “smaller spear” is henceforward defined with respect to

the number of vertices.

Definition 4.2.15 A minimal-spear is a spear which does not contain another

properly induced spear.

We proceed by examining the structure of a minimal-spear. We show that a

minimal-spear without an induced claw or diamond is either a K4 or has special

types of edges.

Lemma 4.2.16 Let G be a minimal-spear(abc, d).Then either:

• G has an induced diamond or a claw

• G is a K4

87

Elizabeth Gorbonos Separability and Ordering of Graphs

(a) T1 (b) T2

Figure 4.6: Types of edges in a minimal-spear which is not a K4 and is (Diamond,
Claw)-free. Solid lines are edges, dashed lines are chordless paths

• For any {X, Y } ⊂ {A,B,C}, if xiyj is an edge such that xi is an interior

vertex of X or yj is an interior vertex of Y , then i = x′ − 1, j = y′ − 1 (T1) or

i = 0, j = y′ − 1 (T2) (see Fig. 4.6).

Proof. Our proof is by induction on the total number of vertices of the spear. We

first consider the lengths of the paths A,B,C in terms of edges. We note that if

all three paths have length 1 then G is precisely the K4 on {a, b, c, d}. For the case

where exactly two of the paths have length 1, it’s easy to see a diamond is formed on

{a, b, c, d}. We now focus on the case in which at most one path has length 1.

Let X and Y be the two distinct paths of the spear, {X, Y } ⊂ {A,B,C}. Let

H(X, Y) be the cycle formed by X, Y and the edge xy. If H is chordless for all

possible X, Y , then d is the center of a claw {d, aa′−1, bb′−1, cc′−1} (such G is in fact a

pyramid). Without loss of generality we may assume H(A,B) has a chord aibj with

i > 0 or j > 0, or both. We define the subpaths (Fig. 4.7):

• S1 = A(0, i), S2 = A(i, a′)

• S3 = B(0, j), S4 = B(j, b′)

Recall both A and B are chordless paths. This means no chord of H can have an end

in d, i.e. ai 6= d and bj 6= d. It follows that length(S2) ≥ 1 and length(S4) ≥ 1.

88

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 4.7: Illustration for Lemma 4.2.16

Since i > 0 or j > 0, we known length(S1) > 0 or length(S2) > 0.

Case 1: length(S1) ≥ 1 and length(S3) ≥ 1. We observe that for this case if

length(S2) ≥ 2 then we have G′ = weak-spear(abc, bj) with the paths: P1 = S1 ∪

aibj, P2 = S3, P3 = C ∪ S4. We know G′ contains a smaller spear (by Observation

4.2.12) which does not contain aa′−1. But this is a contradiction to the minimal-

ity of G. Similarly, if length(S4) ≥ 2 then G′ = weak-spear(abc, ai) with paths:

P1 = S1, P2 = S3 ∪ aibj, P3 = C ∪ S2 has a smaller spear. Therefore it must be

length(S2) = length(S4) = 1. Consequently, we are left with exactly one possible

edge aibj that is i = a′ − 1, j = b′ − 1. So this edge is of type T1.

Case 2: length(S1) = 0 or length(S3) = 0. From symmetry we shall discuss length(S1) =

0 (A and B may be swapped to fit this discussion). Our condition implies ai = a0.

We first address the case where length(S3) = 1 (i.e. bj = b1). We note there must

be an edge between b1 and c or {a, b, c, b1} is a diamond. But then {a, b, c, b1}

is a K4 which obviously is a smaller spear, a contradiction. So we may assume

length(S3) ≥ 2. As in the previous discussion having length(S2) ≥ 2 leads to a

smaller weak-spear(abc, bj) with paths: P1 = a0bj, P2 = S3, P3 = C ∪ S4 (accord-

ingly, a smaller spear). Consequently, we may assume length(S2) = 1, which implies

length(A) = 1 and length(B) ≥ 2. We have length(S4) = 1, for otherwise there is a

89

Elizabeth Gorbonos Separability and Ordering of Graphs

claw {a, d, bj, b}. Therefore the chord aibj is of type T2. 2

The following analysis suggests no (Even-Hole, Claw, Diamond)-free graph G may

contain a minimal-spear which is not a K4.

Lemma 4.2.17 Let G be a minimal-spear(abc, d). Then either G is a K4 or G

contains as induced subgraph one of the following:

• even hole

• diamond

• claw

Proof. Relying on Lemma 4.2.16, a minimal-spear which is not a K4 and is (Dia-

mond, Claw)-free should have an edge of type T1 or T2 for some {X, Y } ⊂ {A,B,C}.

Without loss of generality we choose X = A, Y = B.

Case 1: A,B have an edge of type T1 labeled e1 = aa′−1bb′−1 ∈ E.

Case 1.1: There is no edge between A and C (besides ac) and no edge between

B and C (besides bc). Then G has a prism, specifically 3PC(abc, daa′−1bb′−1), and

subsequently G has an even hole (Observation 2.5.1).

Case 1.2: There is an edge e2 between A and C (besides ac) or B and C (besides

bc). By symmetry we say the edge is between A and C. We should now consider

what is the type of e2.

Case 1.2.1: e2 is of type T1, meaning e2 = aa′−1cc′−1 ∈ E. We haveG′ = spear(abc, aa′−1)

with P1 = A(0, a′ − 1), P2 = B(0, b′ − 1) ∪ e1, P3 = C(0, c′ − 1) ∪ e2. G′ is a smaller

spear than G since d 6∈ V (G′).

Case 1.2.2: e2 is of type T2 where e2 = a0cc′−1 ∈ E.

Such e2 requires length(A) = 1, but we know length(A) ≥ 2 (because of e1). So we

cannot have this case.

90

Elizabeth Gorbonos Separability and Ordering of Graphs

Case 1.2.3: e2 is of type T2 where e2 = aa′−1c0 ∈ E.

Here G′ = spear(abc, aa′−1) is a smaller spear with P1 = A(0, a′ − 1), P2 = B(0, b′ −

1) ∪ e1, P3 = e2 since we leave out d (i.e. d 6∈ V (G′)).

To summarize, Case 1.1 results in an even hole and all three subcases of 1.2 contradict

the minimality of G. We may now assume any edge between {X, Y } ⊂ {A,B,C}

(which is not xy) is of type T2.

Case 2: A,B have an edge of type T2 with e1 = a0bb′−1 ∈ E.

Case 2.1: There is no edge between A and C (besides ac) and no edge between B

and C (besides bc).

First we call attention to the fact that length(B(0, b′− 1)) is odd, otherwise B(0, b′−

1)∪e1∪a0b0 is an even hole, subsequently length(B) is even. Additionally, length(C)

is odd, otherwise C ∪ da0 ∪ a0c0 is an even hole. However now we have an even hole

on B ∪ C ∪ b0c0.

Case 2.2: There is an edge e2 of type T2 between A and C.

Since length(A) = 1 we can only have the edge e2 = a0cc′−1 ∈ E. Now, we have

bb′−1cc′−1 ∈ E, otherwise there is a diamond on {d, a0, bb′−1, cc′−1}. Now, there exists

a smaller spear G′ = spear(abc, cc′−1) with paths: P1 = e2, P2 = B(0, b′ − 1) ∪

bb′−1cc′−1, P3 = C(0, c′− 1) (note that d 6∈ V (G′)). This contradicts the minimality of

G.

Case 2.3: There is an edge e2 of type T2 between B and C.

The edge between B and C may only be of type T1, as length(A) = 1 means B,C

must have length greater than 1, a contradiction. 2

Corollary 4.2.18 Let G be a (Even-Hole, Claw, Diamond)-free minimal-spear(abc, d)

then G is a K4. 2

Up to this point we have established the structure of the minimal spear itself. We

are now equipped with the tools to tackle graphs that contain spears.

91

Elizabeth Gorbonos Separability and Ordering of Graphs

Lemma 4.2.19 Let G′ = spear(abc, d) be an induced subgraph of G. Then either G′

has a K4 containing {a, b, c} or G contains as induced subgraph one of the following:

• even hole

• diamond

• claw

Proof. We identify an induced minimal-spear withinG′. LetG′′ = minimal-spear(abc, v)

be an induced subgraph of G′. From Lemma 4.2.17 G′′ is either the K4 on {a, b, c, v}

or it has an induced even hole, diamond or claw. 2

Our final and most general result regards graphs with near-spears. It will be of

use to us in the next section.

Theorem 4.2.20 Let G be a graph containing G′ =near-spear(abc, d). Then either

the graph induced on A,B,C has a K4 which contains {a, b, c} or G contains as

induced subgraph one of the following:

• even hole

• diamond

• claw

Proof. This follows effortlessly from Lemma 4.2.19 and Corollary 4.2.14. We know G′

has an induced subgraph G′′ = spear(abc, v) and that G′′ either contains as induced

subgraph an even hole, a diamond or a claw or has a K4 which contains {a, b, c}. 2

4.3 SEO and LexBFS

In Section 4.1 we have displayed linear time applications of SEO towards coloring and

maximum clique problems. The bottleneck, however, lies in generating such order.

92

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 4.8: An example of a SE-Class graph for which a LexBFS ordering is not SEO.
The vertex numbers represent the LexBFS ordering.

We have mentioned a naive method to generate a SEO in O(n2m) time, but a linear

time construction would be much more profitable. Especially, it would be nice if some

traversal algorithm could produce a SEO. In this section we are considering LexBFS

as a candidate for this task, predominantly due to its ability to generate PEOs (as

discussed in Section 2.2.2). Obviously, not every LexBFS ordering for any G in SE-

Class is a SEO (an example of this is depicted in Fig. 4.8). What we are in fact

seeking is a subclass of SE-Class for which every LexBFS produces a SEO. We aim

to show this is so for the (Even-Hole, Claw, Diamond)-free family.

Let us introduce some new ordering notations first. Let σ = {σ1, ..., σn} be an

ordering of the graph G = (V,E). Let v = σi (v ∈ V) for some i ∈ {1, ..., n}. We

obtain the index of the vertex v in σ by σ(v), expressly σ(v) = i. We name the start

vertex of a LexBFS traversal s and accordingly s = σn. The following is a well known

property of a LexBFS order.

Definition 4.3.1 (known [42]) Let σ be a LexBFS ordering of G and {a, b, c} ⊆ V

with σ(a) < σ(b) < σ(c). If ac ∈ E and bc 6∈ E then there exists d ∈ V with

σ(c) < σ(d) which is adjacent to b but not to a.

We start of by proving a property of the LexBFS order, a similar proof (under

93

Elizabeth Gorbonos Separability and Ordering of Graphs

the name The Prior Path Lemma) was given in [31]. We denote a path from some

v = σi to s with Pσ(v).

Lemma 4.3.2 (known [31]) Let σ be a LexBFS order of a connected graph G and

v = σi. There exists a path Pσ(v) from v to s = σn, which lies completely in Gi.

Specifically, Pσ(v) does not include any vertex w = σj where j < i.

Proof. By induction on the number of vertices. We may assume vs 6∈ E, for otherwise

we are done. Let v′ be the largest neighbor of v with σ(v′) > σ(v). Vertex v′ exists

by property of LexBFS (namely, we may only choose vertices which have been “seen”

before). By induction, there is a path Pσ(v′). Now, Pσ(v) = Pσ(v′) ∪ {v, v′} is the

desired path. 2

We now utilize the results obtained in Section 4.2.3 for (Even-Hole, Claw, Diamond)-

free graphs.

Theorem 4.3.3 Every LexBFS order on a (Even-Hole, Claw, Diamond)-free graph

G is a SEO.

Proof. Assume by contradiction there exists a vertex σi = v which is not a simplicial

extreme in Gi (i ∈ {1, ..., n}). Note that degσ(v) ≥ 3 otherwise v is trivially a

simplicial extreme. By requiring v to be non-simplicial we imply there exists at least

one non-edge in Nσ(v). Let u1, u2, u3 be three neighbors of v in Gi with at least

one non-edge among them. If the set {u1, u2, u3} does not contain an edge, then v

is the center of a claw. If the set {u1, u2, u3} contains exactly one non-edge, then

{v, u1, u2, u3} is a diamond. Hence we conclude that for v to satisfy our precondition

there is, among u1, u2 and u3, just one edge and exactly two non-edges.

We now choose u3 to be the largest, with respect to the order σ, neighbor of v which

has a non-edge with some x ∈ Nσ(v). Observe, σ(x) < σ(u3). Consider another

y ∈ Nσ(v) (i.e. y 6= x and y 6= u3). Now {x, y, u3} is a set with at least one

94

Elizabeth Gorbonos Separability and Ordering of Graphs

non-edge. By the previous discussion the set {x, y, u3} has exactly one edge. So, y

cannot be adjacent to both x and u3. Additionally, σ(y) < σ(u3) or y would have

been chosen as u3 (the largest neighbor of v with a non-edge in Nσ(v)). In fact, this

indicates u3 is the largest neighbor of v. We now relabel x, y with u1, u2 such that

σ(u1) < σ(u2) < σ(u3).

We examine all three adjacency cases. We intend to show, for all cases, a near-

spear(abc, d) such that the graph induced on A,B,C has no K4 which contains

{a, b, c}.

Case 1: u2u3 ∈ E.

In this case we have u1u3 6∈ E and by the property of LexBFS there must be a u4

with σ(u3) < σ(u4) such that u1u4 ∈ E. Observe that u2u4 6∈ E otherwise there is

a C4 on {v, u1, u4, u2} (recall, vu4 6∈ E and u1u2 6∈ E). Now by LexBFS property

there is a vertex u5 with u2u5 ∈ E and σ(u4) < σ(u5). With this analysis we have a

near-spear(vu2u3, s) in Gi:

• P1 = vu1 ∪ u1u4 ∪ Pσ(u4) (u2, u3 6∈ P1)

• P2 = u2u5 ∪ Pσ(u5) (v, u3 6∈ P2)

• P3 = Pσ(u3) (v, u2 6∈ P3)

We know {v, u1, u2, u3} is not a K4. Note, there in no induced K4 containing

{v, u2, u3} on P1, P2, P3 (recall, u3 is the largest neighbor of v).

95

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 4.9: Solid lines are edges, red dashed lines are non-edges and blue,green and
orange lines correspond to P1, P2, P3.

Case 2: u1u3 ∈ E.

Here u2u3 6∈ E so there exists a u4 with σ(u3) < σ(u4) such that u2u4 ∈ E. Now

the non-edge u1u2 implies there exists u5 such that σ(u2) < σ(u5) (u3 6= u5 because

u3v ∈ E). If σ(u3) < σ(u5), we define P2 = u1u5 ∪ Pσ(u5). Suppose σ(u5) < σ(u3).

We note u3u5 6∈ E (or {v, u1, u3, u5} is a diamond) and therefore there must be u6

with u5u6 ∈ E and σ(u3) < σ(u6). Now, we define P2 = u1u5 ∪ u5u6 ∪ Pσ(u6).

We can now identify the near-spear(vu1u3, s) with the paths:

• P1 = vu2 ∪ u2u4 ∪ Pσ(u4) (u1, u3 6∈ P1)

• P2 defined as above. Note, v, u3 6∈ P2.

• P3 = Pσ(u3) (v, u1 6∈ P3)

Here, {v, u1, u2, u3} and {vu1u3u5} are not a K4. Also, no vertex on P3 (besides u3)

is adjacent to v. So there in no induced K4 containing {v, u1, u3} on P1, P2, P3.

96

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 4.10: Solid lines are edges, red dashed lines are non-edges and blue,green and
orange lines correspond to P1, P2, P3. Note the positions of u5 and u6 are not strictly
defined, these are placed only with respect to σ(u2) < σ(u5) and σ(u3) < σ(u6).

Case 3: u1u2 ∈ E.

As u1u3 6∈ E we have u4 which is adjacent to u1 and σ(u3) < σ(u4). Now, u4 may not

be adjacent to u2 or there is a diamond {v, u1, u2, u4}. From here we have u5, such

that σ(u4) < σ(u5) and u2u5 ∈ E. We have the following near-spear(vu1u2, s):

• P1 = vu3 ∪ Pσ(u3) (u1, u2 6∈ P1)

• P2 = u1u4 ∪ Pσ(u4) (v, u2 6∈ P2)

• P3 = u2u5 ∪ Pσ(u5) (v, u1 6∈ P3)

Note, the sets: {v, u1, u2, u3}, {v, u1, u2, u4} and {v, u1, u2, u5} are not K4 (recall vu4 6∈

E and vu5 6∈ E). So there is no induced K4 on P1, P2, P3.

Figure 4.11: Solid lines are edges, red dashed lines are non-edges and blue,green and
orange lines correspond to P1, P2, P3.

97

Elizabeth Gorbonos Separability and Ordering of Graphs

For all cases, by Theorem 4.2.20, G has an induced even hole, diamond or claw.

However, it is a contradiction to the definition of G. 2

98

Chapter 5

Case study: Coloring and

certifying (Even-Hole, Kite)-free

This chapter ties together the two major topics of this thesis and outlines an applica-

tion for the techniques we have presented. We say a graph G is k-critical if k colors

are required to color G but any proper induced subgraph H of G can be colored

with less than k colors. As the title of this chapter suggests our focus is (Even-Hole,

Kite)-free graphs. In Section 5.1 we examine the structure of such k-critical graphs,

then in Section 5.2 we devise a O(n3m) time certifying algorithm which extracts a

k-critical induced subgraph from any (Even-Hole, Kite)-free graph.

5.1 The Structure of k-critical Graphs

Let us first establish some elementary properties regarding k-critical graphs. We

should also note every antihole Cn with n > 5 contains an induced C4, meaning

graphs which are (Even-Hole, Odd-Hole)-free are perfect.

Observation 5.1.1 Let G be a 3-critical (Even-Hole, Triangle)-free graph then G is

an odd hole.

99

Elizabeth Gorbonos Separability and Ordering of Graphs

Proof. We observe the absence of a triangle implies ω(G) ≤ 2. Now, if G does not

contain any odd hole then G is perfect, but then G can clearly be colored by at most

two colors (as ω(G) = χ(G)) which is a contradiction. Let H be an induced odd

hole of G, assume there exists some v ∈ V (G) such that v 6∈ V (H) then G[V − {v}]

requires 3 colors as well and thus G is not 3-critical. 2

Observation 5.1.2 Let G = (V,E) be any graph containing a clique H with k ver-

tices then G is k-critical if and only if G = H.

Proof. The “if” part is trivial, a clique H on k vertices is obviously k-critical. As for

the other direction, assume there exists a vertex v ∈ V (G) such that v 6∈ V (H). We

can easily see the graph G[V −{v}] requires k colors which contradicts the criticality

of G. 2

This following lemma is related to Proposition 2.3.8.

Lemma 5.1.3 A k-critical graph G does not contain a clique cutset.

Proof. By contradiction. Let G be a k-critical graph which contains a clique cutset

C and consider DS(G,C,G1, G2). We recall that a coloring of G can be obtained

from a coloring of G1 and G2 such that χ(G) = max(χ(G1), χ(G2)) = k (proof of

Proposition 2.3.8). Without loss of generality we can assume χ(G1) = k. So, G1 is a

proper induced subgraph of G which requires k colors, a contradiction. 2

SE-Class graphs

We now address k-critical SE-Class graphs, these are important as per the structural

result in Theorem 1.3.5. Recall, (Even-Hole, Diamond)-free graphs are in SE-Class.

Observation 5.1.4 Let G be a k-critical SE-Class graph with k ≥ 4, then G is a

clique with k vertices.

100

Elizabeth Gorbonos Separability and Ordering of Graphs

Proof. We claim that in a k-critical graph each vertex v ∈ V has deg(v) ≥ k − 1.

Assume this is false, then we can remove v with deg(v) < k − 1 and color the graph

G[V − {v}] with at most k − 1 colors. Now since v has at most k − 2 neighbors, we

can surely assign it a color in {1, ..., k− 1}, consequently making G (k− 1)-colorable.

By the definition of SE-Class, G has a simplicial extreme v. Furthermore, v must be

a simplicial vertex as deg(v) ≥ k − 1 ≥ 3. Thus G[N [v]] is a clique with k vertices.

From Observation 5.1.2, every k-critical graph that contains a clique with k vertices

is in itself a clique with k vertices. 2

Corollary 5.1.5 Let G be a SE-Class graph with χ(G) = k ≥ 4 then G contains a

clique with k vertices. 2

Combining Observation 5.1.4 and Observation 5.1.1 leads us to the next proposi-

tion.

Proposition 5.1.6 A k-critical SE-Class graph G is either:

• a clique with k vertices, or

• k = 3 and G is an odd-hole 2

(Even-Hole, Kite)-free Graphs

Let us recall, a (Even-Hole, Kite)-free graph G is either (Even-Hole, Diamond)-free,

the join of a clique and a (Even-Hole, Diamond)-free graph or G has a clique cut-

set. We now demonstrate k-critical (Even-Hole, Kite)-free may only have one of two

structures.

Theorem 5.1.7 Let G be a k-critical (Even-Hole, Kite)-free graph with k ≥ 3. Then

G is either:

• a clique with k vertices, or

101

Elizabeth Gorbonos Separability and Ordering of Graphs

• a join of a clique of with k − 3 vertices and an odd hole.

Proof. Let G be a k-critical (Even-Hole, Kite)-free graph with k ≥ 3. It is easy to see

that a 3-critical graph is a K3, or an odd hole. So we may assume k ≥ 4. By Lemma

5.1.3, G does not contain a clique cutset. So by Theorem 1.3.5, G is (Even-Hole,

Diamond)-free, or is the join of a clique Kt and a (Even-Hole, Diamond)-free graph

G′. If G is (Even-Hole, Diamond)-free, then by Theorem 1.3.4, G is in SE-Class, and

so by Corollary 5.1.5, G is a clique with k vertices, and we are done. So we know G

is the join of a clique Kt and a (Even-Hole, Diamond)-free graph G′. We may assume

G′ is not a clique, for otherwise G is a clique and we are done. Obviously, the graph

G′ is (k − t)-critical, it also belongs to SE-Class. By Proposition 5.1.6, G′ is an odd

hole, and we are done. 2

5.2 Certifying Algorithm for k-colorability

A certifying algorithm is one that produces a certificate with each output that proves

it has not been compromised by an implementation bug. For example, a certifying

algorithm for checking if an input graph G is bipartite produces either a 2-coloring,

or an induced odd hole proving G is not bipartite. Of course, one would want the

certificate to be simpler, i.e. easier to verify, than the algorithm itself. The notation

of certifying algorithm provides new insights into the design and analysis of algo-

rithms. Most known algorithms are not certifying. In the majority of these cases, the

algorithms produce a certificate for Yes-instance but none for No-instances.

A certifying algorithm for the k-colorability problem, for an input graph G, outputs

either a k-coloring of G, or an induced subgraph H that is not k-colorable; H could

be for example a (k + 1)-critical graph.

102

Elizabeth Gorbonos Separability and Ordering of Graphs

5.2.1 (Even-Hole)-free SE-Class Graphs

In this section, we show there is a O(n2m) time certifying algorithm for k-colorability

of (Even-Hole)-free SE-Class graphs. This algorithm is described in Algorithm 10.

Recall, from Proposition 4.0.2, that (Even-Hole)-free SE-Class graphs are β-perfect.

Thus, they can be colored in linear time. On line 1 of Algorithm 10 we perform such

coloring. If χ(G) ≤ k, the k-coloring is a Yes-certificate. The else clause of Algorithm

10, starting on line 4, deals with finding a No-certificate that is a χ(G)-critical induced

subgraph of G. Let H be the largest clique of G. If χ(G) ≥ 4, then by Corollary

5.1.5, we have |H| = χ(G), and we return H on line 8. If χ(G) ≤ 3, and |H| < χ(G),

then we know G contains an odd hole by Proposition 5.1.6. We find the odd hole

on line 10. This algorithm can be implemented in O(n2m) time, as suggested by the

proposition 5.2.3 below.

Algorithm 10 Certifying k-colorability of (Even-Hole)-free SE-Class graphs

Input: G: an (Even-Hole)-free SE-Class graph
k: an integer

Output: (i) a k-coloring of G, or
(ii) a χ(G)-critical induced subgraph for χ(G) > k

1: Compute χ(G) by coloring G
2: if χ(G) ≤ k then
3: return coloring
4: else
5: Generate SEO σ of G
6: Find maximum clique H of G using σ
7: if |H| = χ(G) then
8: return H
9: else

10: Search for an odd hole H of G
11: return H
12: end if
13: end if

First, we are going to show line 10 can be implemented in linear time. In general,

recognizing an odd hole is not an easy task, but in our scenario it is performed under

103

Elizabeth Gorbonos Separability and Ordering of Graphs

the assumption that χ(G) = 3 and G contains no triangle (Proposition 5.1.6). We

also know G has no even holes, so the problem of finding an odd hole is reduced to

merely identifying a cycle, which is a fairly simple task. Let us prove that.

Observation 5.2.1 Let G be (Even-Hole, Triangle)-free graph, then every cycle of

G contains an induced odd hole.

Proof. Let H be a cycle in G. Clearly, if H is chordless we have found our odd

hole. So we assume H has some chord vu. Note that removing the edge vu does

not disconnect H. Now, by performing a BFS on G′ = (V,E − {vu}) starting from

v we can obtain a path P with endpoints v, u. P is the shortest path from v to

u and therefore chordless (in accordance with BFS properties). But now, P ∪ vu

(alternatively, G[V (P)]) is an odd hole. 2

It is well known that DFS can recognize a cycle in any graph G (if exists) in time

O(n+m). So a DFS combined with Observation 5.2.1 gives us an efficient algorithm

to find an odd hole.

Proposition 5.2.2 An odd hole can be identified in a (Even-Hole, Triangle)-free

graph G in O(n+m) time. 2

We are now ready to prove the following:

Proposition 5.2.3 Let G be (Even-Hole)-free SE-Class graph with χ(G) = k. Then

a k-critical induced subgraph H of G can be found in O(n2m) time.

Proof. We may assume G is connected. As per Theorem 4.1.2 generating a SEO

takes O(n2m) time (line 5). Looking for the maximum clique takes O(n + m) time

by Theorem 4.1.5 (line 6). Finding an odd hole is linear-time from Proposition 5.2.2

(line 10). Hence, the overall complexity is O(n2m) time. 2

104

Elizabeth Gorbonos Separability and Ordering of Graphs

5.2.2 (Even-Hole, Kite)-free Graphs

In this section we design Algorithm 11, a certifying algorithm for k-colorability of

(Even-Hole, Kite)-free graphs. Let G be a (Even-Hole, Kite)-free graph. From Theo-

rem 1.3.6 we can compute χ(G) in linear time. So, we are concerned only with finding

a χ(G)-critical subgraph. We distinguish among two cases: when G is in SE-Class;

and when G is not in SE-Class.

Algorithm 11 Certifying k-colorability of (Even-Hole, Kite)-free graphs

Input: G: an (Even-Hole, Kite)-free graph
k: an integer

Output: (i) a k-coloring of G, or
(ii) a χ(G)-critical induced subgraph for χ(G) > k

1: Compute χ(G) by coloring G
2: if χ(G) ≤ k then
3: return coloring
4: else if G in SE-Class then
5: return output of Algorithm 10(G, k)
6: else
7: Decompose G using Tarjan’s decomposition
8: for A ∈ atoms(G) do
9: Compute χ(A) by coloring A

10: if χ(A) = χ(G) then
11: if A in SE-Class then
12: return output of Algorithm 10(A, k)
13: else
14: U = the set of universal vertices in A
15: A′ = A− U
16: H ′ = output of Algorithm 10(A′, k − |U |)
17: return H = U ⊕H ′
18: end if
19: end if
20: end for
21: end if

Recognizing (Even-Hole, Kite)-free SE-Class Graphs

On line 4 of Algoritm 11 we check if an (Even-Hole, Kite)-free graph G is in SE-Class.

Let us describe an O(nm) time algorithm to test that. We use Tarjan’s decomposition

105

Elizabeth Gorbonos Separability and Ordering of Graphs

method which produces at most n−1 atoms and requires O(nm) time [91]. Obviously,

each atom has at most n vertices and m edges, so we can safely use these as upper

bounds.

Observation 5.2.4 Let G be a SE-Class (Even-Hole, Kite)-free graph with no clique

cutset. If G contains a universal vertex v then G is a clique.

Proof. We know that if G is chordal, then it is a clique. Suppose G is not chordal and

let H be a hole of G. Clearly v 6∈ V (H). Now, G[H ∪{v}] is a wheel, a contradiction

to Corollary 4.2.6. 2

Observation 5.2.5 Let G be an (Even-Hole, Kite)-free graph. Then G is in SE-

Class if and only if for every atom A ∈ atoms(G):

• A has no universal vertex, or

• A is a clique

Proof. We prove the “if” part. From Theorem 1.3.5, if A has no universal vertex, then

A is diamond free. Also, recall cliques have no diamonds. So the “if” part follows

from Theorem 4.2.7. We will prove the “only if” part by contradiction. Let G be

an (Even-Hole, Kite)-free SE-Class graph. Note, all atoms of G are in SE-Class by

Theorem 4.2.7. Suppose there exists A ∈ atoms(G) such that A is not a clique and

A has a universal vertex v, then it contradicts Observation 5.2.4. 2

Lemma 5.2.6 Let G be an (Even-Hole, Kite)-free graph, it is possible to check if G

is in SE-Class in O(nm) time.

Proof. Let G be an (Even-Hole, Kite)-free graph. From Observation 5.2.5, in order

to check that G is in SE-Class, we only need to make sure any atom A ∈ atoms(G)

which has a universal vertex is a clique. This can be performed in time O(n + m),

106

Elizabeth Gorbonos Separability and Ordering of Graphs

per atom (by checking the degrees of the vertices of A). Since we have at most n− 1

atoms, the overall time complexity is O(nm) time. 2

By Proposition 5.2.3, we can recognize an (Even-Hole, Kite)-free SE-Class graph

in O(n2m) time. Note that on line 5 we invoke Algorithm 10 to perform this task.

At this stage, we know Algorithm 10 will produce a χ(G)-critical graph (because G

is not k-colorable).

Now, let us consider a (Even-Hole, Kite)-free graph G which is not in SE-Class.

Identifing a χ(G)-critical subgraph in Atoms

Let H be a χ(G)-critical induced subgraph of G. From Lemma 5.1.3 we know H has

no clique cutsets, meaning H is a prime subgraph of G and is therefore contained in

some mp-subgraph of G. Our approach is to first decompose G using minimal clique

separators (line 7) and then search for H in the atoms of the decomposition (recall,

mp-subgraphs(G) = atoms(G) for this decomposition by Theorem 2.3.6).

Obviously, every A ∈ atoms(G) is an (Even-Hole, Kite)-free graph. So, for each

A, we can compute χ(A) in linear time (Theorem 1.3.6). Clearly, χ(A) ≤ χ(G). If

χ(A) < χ(G), then A does not contain a χ(G)-critical induced subgraph. So suppose

χ(A) = χ(G). Let us explain how to find a χ(G)-critical graph in A in time O(n2m).

Lemma 5.2.7 Let G be an (Even-Hole, Kite)-free graph which is not in SE-Class.

Let χ(G) = k and A ∈ atoms(G). If A contain a k-critical induced subgraph H, then

H can be found in time O(n2m).

Proof. Let A ∈ atoms(G) be an atom which contains a k-critical induced subgraph H.

Suppose A is in SE-Class. Then from Proposition 5.2.3 we can find such H in O(n2m)

time and we are done. So, we may assume A is not in SE-Class. From Theorem 1.3.5

we know A = U⊕A′ (the join of a clique U and a diamond free graph A′), or A is in SE-

Class. Note, A′ is in SE-Class. Observe, χ(A) = k = |U |+ χ(A′)⇒ χ(A′) = k − |U |.

107

Elizabeth Gorbonos Separability and Ordering of Graphs

Let H ′ be a (k − |U |)-critical induced subgraph of A′. We have H = U ⊕ H ′. We

can obtain A′ from A in linear time (by removing all universal vertices of A). From

Proposition 5.2.3, we can find H ′ in A′ in O(n2m) time. 2

Note that on lines 12 and 16 we know Algorithm 10 outputs a χ(G)-critical graph

and a (χ(G) − |U |)-critical graph, respectively (A is not k-colorable and A′ is not

(k − |U |)-colorable).

Certifying Algorithm: Complexity Analysis

We conclude the analysis of Algorithm 11 with the following proposition.

Proposition 5.2.8 Let G be (Even-Hole, Kite)-free graph with χ(G) = k. Then a

k-critical induced subgraph H of G can be found in O(n3m) time.

Proof. Let G be an (Even-Hole, Kite)-free graph. We may assume G is connected.

If G is in SE-Class, we are done by Proposition 5.2.3. For G not in SE-Class, let us

consider atoms(G) produced by Tarjan’s decomposition. Now, for each A ∈ atoms(G)

we check if it contains a χ(G)-critical graph in linear time (lines 9-10). By Lemma

5.2.7, for an atom A with χ(A) = χ(G) we can extract a χ(G)-critical induced

subgraph in time O(n2m) (lines 11-18). Finally, by looking through all the atoms we

arrive at a time-complexity of O(n3m). 2

108

Chapter 6

Conclusions and Open Problems

This final chapter presents problems left unsettled at the time of completing this the-

sis. These are questions arisen during the research process, some have extremely close

proximity to discussions conducted herein while others seek to ambitiously generalize

the attained results.

6.1 Clique Cutset Decomposition

We have provided a thorough analysis of the clique cutset decomposition, however we

believe our results, specifically regarding cutsets interaction can be pushed further.

• Let C1 and C2 be mutually-exclusive clique cutsets of a decomposable graph G.

Proposition 3.1.8 guarantees that if C ′ = C1 ∩ C2 is not a clique cutset of G,

then the atoms of a decomposition in which we consecutively choose C1, C2 are

not altered by the order the cutsets are choose. We would like know whether

a similar statement could be made for a pair of clique cutsets “farther down”

a decomposition path. In addition, it would be nice to describe the opposite

condition, i.e. under which circumstances two clique cutsets “cancel each other

out”?

109

Elizabeth Gorbonos Separability and Ordering of Graphs

• As to bounding the number of atoms, Theorem 3.3.17 gives a strong bound but

it remains to be seen what application would be able to take advantage of it,

as it requires to identify a large prime subgraph of G. Is it possible to identify

the largest prime subgraph in linear time?

• Theorem 3.4.9 gave an upper bound for the number of atoms of a maximum

clique cutset decomposition with respect to f(G,C) (as in Definition 3.4.7).

Could f(G,C) be also used to give a lower bound for such a decomposition?

• Corollary 3.4.10 bounded the number of atoms of any clique cutset decomposi-

tion with respect to any maximum clique cutset of G. We note that a maximal

clique cutset decomposition is not unique. Yet, we are still curious whether a

statement of the form: all maximal clique cutset decompositions are bounded

by |C|(|G|−|C|) where C is a maximal clique cutset of G, is correct. We should

note, that if this is in fact true, it will only provide a better bound than the one

of Corollary 3.4.10 when |C ′| < |C| < |G|
2

where C is a maximum clique cutset

and C ′ is some maximal clique cutset.

6.2 SE-Class

In Chapter 4 we presented SE-Class. We were able to point out specific subclasses

of SE-Class but the large characterization problem remains open. One way to tackle

this, which we have only briefly mentioned, might be a deeper investigation into the

relationship between SE-Class and β-perfect graphs. We do know that any (Even-

Hole)-free G which belongs to SE-Class is β-perfect, but what can be said about the

opposite direction? In other words, which β-perfect graphs are in SE-Class?

We demonstrated how SEO can be used for coloring and finding a largest clique

but a utilization towards the maximum stable set problem is yet unknown. We have

also attempted to find a subclass of SE-Class for which any LexBFS ordering is a SEO.

110

Elizabeth Gorbonos Separability and Ordering of Graphs

Figure 6.1: Three different paths with endpoints x (blue), y (orange) and length
|P1| = |P2| = 2, |P3| = 3 can be easily identified in a house. The original definition
suggests an obstructive structure exists, however every LexBFS ordering for this graph
is SEO (the vertex labels depict one such ordering).

We proved that (Even-Hole, Claw, Diamond)-free graphs have this property in Section

4.3 but this is not a complete characterization (take the even hole for example). From

the study on those graphs we have learned there exists some structure obstructing this

requirement, which can be roughly characterized as three paths P1, P2, P3 with the

same endpoints u, v and lengths that differ by at most one. It is easy to verify that if

a LexBFS ordering is not SEO, then such structure exists. In fact the spears we have

encountered during the proof of Theorem 4.3.3 are a special case of this structure.

However, this general description is not strong enough to sustain an if and only if

proof, for instance the house is a graph which contains such a structure but for whom

all LexBFS orderings are SEO (Fig. 6.1). We therefore believe the obstruction would

be better defined by a set of structures with more precise constraints over P1, P2, P3.

These are yet to be determined.

111

Bibliography

[1] L. Addario-Berry, M. Chudnovsky, F. Havet, B. Reed, and P. Seymour. “Bisim-

plicial vertices in even-hole-free graphs”. In: Journal of Combinatorial Theory,

Series B 98.6 (2008), pp. 1119–1164.

[2] C. Berge. Hypergraphs: Combinatorics of Finite Sets. North-Holland, 1989.

[3] C. Berge. “Motivations and history of some of my conjectures”. In: Discrete

Mathematics 165-166 (1997), pp. 61–70.

[4] C. Berge. The Theory of Graphs. Dover Publications, 2001.

[5] A. Berry, J.-P. Bordat, and O. Cogis. “Generating All the Minimal Separators

of a Graph”. In: Graph-Theoretic Concepts in Computer Science. Springer

Berlin Heidelberg, 1999, pp. 167–172.

[6] A. Berry, R. Pogorelcnik, and G. Simonet. “An Introduction to Clique Minimal

Separator Decomposition”. In: Algorithms 3.2 (2010), pp. 197–215.

[7] A. Bjrklund, T. Husfeldt, and M. Koivisto. “Set Partitioning via Inclusion-

Exclusion”. In: SIAM Journal on Computing 39.2 (2009), pp. 546–563.

[8] V. Boncompagni, I. Penev, and K. Vušković. “Clique cutsets beyond chordal

graphs”. In: Electronic Notes in Discrete Mathematics 62 (2017), pp. 81–86.

[9] A. Brandstdt and C. T. Hoàng. “On clique separators, nearly chordal graphs,

and the Maximum Weight Stable Set Problem”. In: Theoretical Computer

Science 389.1-2 (2007), pp. 295–306.

112

Elizabeth Gorbonos Separability and Ordering of Graphs

[10] A. Brandstdt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. Society

for Industrial and Applied Mathematics, 1999.

[11] A. Brandstdt, F. F. Dragan, V. B. Le, and T. Szymczak. “On stable cutsets

in graphs”. In: Discrete Applied Mathematics 105.1-3 (2000), pp. 39–50.

[12] A. Bretscher, D. Corneil, M. Habib, and C. Paul. “A Simple Linear Time

LexBFS Cograph Recognition Algorithm”. In: SIAM Journal on Discrete Math-

ematics 22.4 (2008), pp. 1277–1296.

[13] K. Cameron, S. Chaplick, and C. T. Hoàng. “On the structure of (pan, even

hole)-free graphs”. In: Journal of Graph Theory 87.1 (2017), pp. 108–129.

[14] H. C. Chang and H. I. Lu. “A faster algorithm to recognize even-hole-free

graphs”. In: Journal of Combinatorial Theory, Series B 113 (2015), pp. 141–

161.

[15] P. Charbit, M. Habib, N. Trotignon, and K. Vušković. “Detecting 2-joins

faster”. In: Journal of Discrete Algorithms 17 (2012), pp. 60–66.

[16] M. Chudnovsky. “Berge trigraphs”. In: Journal of Graph Theory 53.1 (2006),

pp. 1–55.

[17] M. Chudnovsky and R. Kapadia. “Detecting a Theta or a Prism”. In: SIAM

Journal on Discrete Mathematics 22.3 (2008), pp. 1164–1186.

[18] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, and K. Vušković. “Rec-

ognizing Berge Graphs”. In: Combinatorica 25.2 (2005), pp. 143–186.

[19] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. “The strong

perfect graph theorem”. In: Annals of Mathematics 164.1 (2006), pp. 51–229.

[20] M. Chudnovsky, N. Trotignon, T. Trunck, and K. Vušković. “Coloring per-

fect graphs with no balanced skew-partitions”. In: Journal of Combinatorial

Theory, Series B 115 (2015), pp. 26–65.

113

Elizabeth Gorbonos Separability and Ordering of Graphs

[21] M. Chudnovsky, A. Lagoutte, P. Seymour, and S. Spirkl. “Colouring perfect

graphs with bounded clique number”. In: Journal of Combinatorial Theory,

Series B 122 (2017), pp. 757–775.

[22] V. Chvátal. “Topics on Perfect Graphs”. In: ed. by C. Berge and V. Chvátal.

North-Holland Math, 1984. Chap. Perfectly ordered graphs, pp. 63–65.

[23] V. Chvátal. “Star-cutsets and perfect graphs”. In: Journal of Combinatorial

Theory, Series B 39.3 (1985), pp. 189–199.

[24] V. Chvátal and N. Sbihi. “Bull-free Berge graphs are perfect”. In: Graphs and

Combinatorics 3.1 (1987), pp. 127–139.

[25] V. Chvátal, C. T. Hoàng, N. V. Mahadev, and D. D. Werra. “Four classes of

perfectly orderable graphs”. In: Journal of Graph Theory 11.4 (1987), pp. 481–

495.

[26] M. Conforti, G. Cornuéjols, and K. Vušković. “Decomposition of odd-hole-free

graphs by double star cutsets and 2-joins”. In: Discrete Applied Mathematics

141.1-3 (2004), pp. 41–91.

[27] M. Conforti, G. Cornuéjols, and K. Vušković. “Square-free perfect graphs”. In:

Journal of Combinatorial Theory, Series B 90.2 (2004), pp. 257–307.

[28] M. Conforti and M. R. Rao. “Testing balancedness and perfection of linear

matrices”. In: Mathematical Programming 61.1-3 (1993), pp. 1–18.

[29] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. “Even and odd holes

in cap-free graphs”. In: Journal of Graph Theory 30.4 (1999), pp. 289–308.

[30] D. G. Corneil. “Lexicographic Breadth First Search – A Survey”. In: Graph-

Theoretic Concepts in Computer Science. Springer Berlin Heidelberg, 2004,

pp. 1–19.

114

Elizabeth Gorbonos Separability and Ordering of Graphs

[31] D. G. Corneil. Lexicographic Breadth First Search A Survey. Ed. by J. Hromkovič,

M. Nagl, and B. Westfechtel. Vol. 3353. Springer Berlin Heidelberg, 2005.

[32] D. G. Corneil and J. Fonlupt. “Stable Set Bonding in Perfect Graphs and

Parity Graphs”. In: Journal of Combinatorial Theory, Series B 59.1 (1993),

pp. 1–14.

[33] D. G. Corneil, E. Khler, and J.-M. Lanlignel. “On end-vertices of Lexicographic

Breadth First Searches”. In: Discrete Applied Mathematics 158.5 (2010), pp. 434–

443.

[34] D. G. Corneil, S. Olariu, and L. Stewart. “The LBFS Structure and Recog-

nition of Interval Graphs”. In: SIAM Journal on Discrete Mathematics 23.4

(2010), pp. 1905–1953.

[35] G. Cornuéjols and W. H. Cunningham. “Compositions for perfect graphs”. In:

Discrete Mathematics 55.3 (1985), pp. 245–254.

[36] A. Cournier and M. Habib. “A new linear algorithm for Modular Decompo-

sition”. In: Trees in Algebra and Programming 94. Springer-Verlag, pp. 68–

84.

[37] W. H. Cunningham. “Decomposition of Directed Graphs”. In: SIAM Journal

on Algebraic Discrete Methods 3.2 (1982), pp. 214–228.

[38] W. H. Cunningham and J. Edmonds. “A Combinatorial Decomposition The-

ory”. In: Canadian Journal of Mathematics 32.03 (1980), pp. 734–765.

[39] R. Diestel. “Simplicial decompositions of graphs—Some uniqueness results”.

In: Journal of Combinatorial Theory, Series B 42.2 (1987), pp. 133–145.

[40] E. Diot, S. Tavenas, and N. Trotignon. “Detecting wheels”. In: Applicable

Analysis and Discrete Mathematics 8.1 (2014), pp. 111–122.

115

Elizabeth Gorbonos Separability and Ordering of Graphs

[41] G. A. Dirac. “On rigid circuit graphs”. In: Abhandlungen aus dem Mathema-

tischen Seminar der Universitt Hamburg 25.1-2 (1961), pp. 71–76.

[42] F. F. Dragan, F. Nicolai, and A. Brandstdt. “LexBFS-orderings and powers of

graphs”. In: Graph-Theoretic Concepts in Computer Science. Springer Berlin

Heidelberg, 1997, pp. 166–180.

[43] J. D. Eblen, C. A. Phillips, G. L. Rogers, and M. A. Langston. “The maximum

clique enumeration problem: algorithms, applications, and implementations”.

In: BMC Bioinformatics 13.Suppl 10 (2012), S5.

[44] A. Eisenblätter, M. Grötschel, and A. M. Koster. Frequency Planning and

Ramifications of Coloring. eng. Tech. rep. 00-47. Takustr. 7, 14195 Berlin:

ZIB, 2000.

[45] M. Farber. “On diameters and radii of bridged graphs”. In: Discrete Mathe-

matics 73.3 (1989), pp. 249–260.

[46] C. M. H. de Figueiredo and K. Vušković. “A class of β-perfect graphs”. In:

Discrete Mathematics 216.1-3 (2000), pp. 169–193.

[47] S. Fortunato. “Community detection in graphs”. In: Physics Reports 486.3-5

(2010), pp. 75–174.

[48] D. J. Fraser, A. M. Hamel, and C. T. Hoàng. “On the Structure of (Even Hole,

Kite)-Free Graphs”. In: Graphs and Combinatorics 34.5 (2018), pp. 989–999.

[49] M. R. Garey, D. S. Johnson, and L. Stockmeyer. “Some simplified NP-complete

graph problems”. In: Theoretical Computer Science 1.3 (1976), pp. 237–267.

[50] F. Gavril. “Algorithms for Minimum Coloring, Maximum Clique, Minimum

Covering by Cliques, and Maximum Independent Set of a Chordal Graph”. In:

SIAM Journal on Computing 1.2 (1972), pp. 180–187.

116

Elizabeth Gorbonos Separability and Ordering of Graphs

[51] F. Gavril. “Algorithms on clique separable graphs”. In: Discrete Mathematics

19.2 (1977), pp. 159–165.

[52] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of

Discrete Mathematics, Vol 57). Amsterdam, The Netherlands, The Nether-

lands: North-Holland Publishing Co., 2004.

[53] M. Grötschel, L. Lovász, and A. Schrijver. “The ellipsoid method and its conse-

quences in combinatorial optimization”. In: Combinatorica 1.2 (1981), pp. 169–

197.

[54] M. Habib and C. Paul. “A survey of the algorithmic aspects of modular de-

composition”. In: Computer Science Review 4.1 (2010), pp. 41–59.

[55] M. Habib, R. McConnell, C. Paul, and L. Viennot. “Lex-BFS and partition

refinement, with applications to transitive orientation, interval graph recogni-

tion and consecutive ones testing”. In: Theoretical Computer Science 234.1-2

(2000), pp. 59–84.

[56] C. T. Hoàng. “Some properties of minimal imperfect graphs”. In: Discrete

Mathematics 160.1-3 (1996), pp. 165–175.

[57] B. Jamison and S. Olariu. “On the semi-perfect elimination”. In: Advances in

Applied Mathematics 9.3 (1988), pp. 364–376.

[58] T. Jian. “An O(20.304n) Algorithm for Solving Maximum Independent Set

Problem”. In: IEEE Transactions on Computers C-35.9 (1986), pp. 847–851.

[59] R. M. Karp. “Reducibility among Combinatorial Problems”. In: Complexity

of Computer Computations. Springer US, 1972, pp. 85–103.

[60] J. Keijsper and M. Tewes. “Conditions for β-perfectness”. In: Discussiones

Mathematicae Graph Theory 22.1 (2002), p. 123.

117

Elizabeth Gorbonos Separability and Ordering of Graphs

[61] W. S. Kennedy and B. Reed. “Fast Skew Partition Recognition”. In: Computa-

tional Geometry and Graph Theory. Springer Berlin Heidelberg, 2008, pp. 101–

107.

[62] T. Kloks and D. Kratsch. “Listing all Minimal Separators of a Graph”. In:

SIAM Journal on Computing 27.3 (1998), pp. 605–613.

[63] T. Kloks, H. Mller, and K. Vušković. “Even-hole-free graphs that do not con-

tain diamonds: A structure theorem and its consequences”. In: Journal of

Combinatorial Theory, Series B 99.5 (2009), pp. 733–800.

[64] D. Král’, J. Kratochv́ıl, Z. Tuza, and G. J. Woeginger. “Complexity of Coloring

Graphs without Forbidden Induced Subgraphs”. In: Graph-Theoretic Concepts

in Computer Science. Springer Berlin Heidelberg, 2001, pp. 254–262.

[65] H. G. Leimer. “Optimal decomposition by clique separators”. In: Discrete

Mathematics 113.1-3 (1993), pp. 99–123.

[66] C. Lekkeikerker and J. Boland. “Representation of a finite graph by a set of

intervals on the real line”. eng. In: Fundamenta Mathematicae 51.1 (1962),

pp. 45–64.

[67] L. Lovász. “Normal hypergraphs and the perfect graph conjecture”. In: Dis-

crete Mathematics 2.3 (1972), pp. 253–267.

[68] L. Lovász. “On the Shannon capacity of a graph”. In: IEEE Transactions on

Information Theory 25.1 (1979), pp. 1–7.

[69] S. Markossian, G. Gasparian, and B. Reed. “β-Perfect Graphs”. In: Journal

of Combinatorial Theory, Series B 67.1 (1996), pp. 1–11.

[70] D. Marx. “Graph Coloring problems and their applications in scheduling”. In:

Periodica Polytechnica Electrical Engineering (Archives) 48.1-2 (2004), pp. 11–

16.

118

Elizabeth Gorbonos Separability and Ordering of Graphs

[71] D. W. Matula and L. L. Beck. “Smallest-last ordering and clustering and graph

coloring algorithms”. In: Journal of the ACM 30.3 (1983), pp. 417–427.

[72] R. M. McConnell and J. P. Spinrad. “Modular decomposition and transitive

orientation”. In: Discrete Mathematics 201.1-3 (1999), pp. 189–241.

[73] H. Meyniel. “On the perfect graph conjecture”. In: Discrete Mathematics 16.4

(1976), pp. 339–342.

[74] H. Meyniel. “A New Property of Critical Imperfect Graphs and some Conse-

quences”. In: European Journal of Combinatorics 8.3 (1987), pp. 313–316.

[75] M. Middendorf and F. Pfeiffer. “On the complexity of recognizing perfectly

orderable graphs”. In: Discrete Mathematics 80.3 (1990), pp. 327–333.

[76] R. H. Möhring. “Algorithmic aspects of the substitution decomposition in

optimization over relations, set systems and Boolean functions”. In: Annals of

Operations Research 4.1 (1985), pp. 195–225.

[77] T. Ohtsuki. “A Fast Algorithm for Finding an Optimal Ordering for Vertex

Elimination on a Graph”. In: SIAM Journal on Computing 5.1 (1976), pp. 133–

145.

[78] S. Olariu. “No antitwins in minimal imperfect graphs”. In: Journal of Combi-

natorial Theory, Series B 45.2 (1988), pp. 255–257.

[79] S. Olariu. “Paw-free graphs”. In: Information Processing Letters 28.1 (1988),

pp. 53–54.

[80] S. Olariu. “The Strong Perfect Graph Conjecture for pan-free graphs”. In:

Journal of Combinatorial Theory, Series B 47.2 (1989), pp. 187–191.

[81] K. Parthasarathy and G. Ravindra. “The strong perfect-graph conjecture is

true for K1,3-free graphs”. In: Journal of Combinatorial Theory, Series B 21.3

(1976), pp. 212–223.

119

Elizabeth Gorbonos Separability and Ordering of Graphs

[82] J. M. Robson. “Algorithms for maximum independent sets”. In: Journal of

Algorithms 7.3 (1986), pp. 425–440.

[83] J. M. Robson. Finding a maximum independent set in time O(2n/4). Tech. rep.

Technical Report 1251-01, LaBRI, Université Bordeaux I, 2001.

[84] D. J. Rose. “Triangulated graphs and the elimination process”. In: Journal of

Mathematical Analysis and Applications 32.3 (1970), pp. 597–609.

[85] D. J. Rose, R. E. Tarjan, and G. S. Lueker. “Algorithmic Aspects of Vertex

Elimination on Graphs”. In: SIAM Journal on Computing 5.2 (1976), pp. 266–

283.

[86] D. Seinsche. “On a property of the class of n-colorable graphs”. In: Journal of

Combinatorial Theory, Series B 16.2 (1974), pp. 191–193.

[87] M. V. da Silva and K. Vušković. “Decomposition of even-hole-free graphs with

star cutsets and 2-joins”. In: Journal of Combinatorial Theory, Series B 103.1

(2013), pp. 144–183.

[88] G. Szekeres and H. S. Wilf. “An inequality for the chromatic number of a

graph”. In: Journal of Combinatorial Theory 4.1 (1968), pp. 1–3.

[89] R. E. Tarjan. “Depth-First Search and Linear Graph Algorithms”. In: SIAM

Journal on Computing 1.2 (1972), pp. 146–160.

[90] R. E. Tarjan. “Graph Theory and Gaussian Elimination”. In: Sparse Matrix

Computations. Elsevier, 1976, pp. 3–22.

[91] R. E. Tarjan. “Decomposition by clique separators”. In: Discrete Mathematics

55.2 (1985), pp. 221–232.

[92] R. E. Tarjan and A. E. Trojanowski. “Finding a Maximum Independent Set”.

In: SIAM Journal on Computing 6.3 (1977), pp. 537–546.

120

Elizabeth Gorbonos Separability and Ordering of Graphs

[93] R. E. Tarjan and M. Yannakakis. “Simple Linear-Time Algorithms to Test

Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce

Acyclic Hypergraphs”. In: SIAM Journal on Computing 13.3 (1984), pp. 566–

579.

[94] N. Trotignon. “Perfect graphs”. In: Topics in Chromatic Graph Theory. Ed. by

L. W. Beineke and R. J. Wilson. Cambridge University Press, pp. 137–160.

[95] N. Trotignon. “Decomposing Berge graphs and detecting balanced skew par-

titions”. In: Journal of Combinatorial Theory, Series B 98.1 (2008), pp. 173–

225.

[96] N. Trotignon and K. Vušković. “Combinatorial optimization with 2-joins”. In:

Journal of Combinatorial Theory, Series B 102.1 (2012), pp. 153–185.

[97] A. Tucker. “Critical perfect graphs and perfect 3-chromatic graphs”. In: Jour-

nal of Combinatorial Theory, Series B 23.1 (1977), pp. 143–149.

[98] A. Tucker. “Coloring graphs with stable cutsets”. In: Journal of Combinatorial

Theory, Series B 34.3 (1983), pp. 258–267.

[99] A. Tucker. “Coloring perfect (K4− e)-free graphs”. In: Journal of Combinato-

rial Theory, Series B 42.3 (1987), pp. 313–318.

[100] K. Vušković. “Even-hole-free graphs: A survey”. In: Applicable Analysis and

Discrete Mathematics 4.2 (2010), pp. 219–240.

[101] S. H. Whitesides. “An algorithm for finding clique cut-sets”. In: Information

Processing Letters 12.1 (1981), pp. 31–32.

[102] S. H. Whitesides. “A Method for Solving Certain Graph Recognition and Op-

timization Problems, with Applications to Perfect Graphs”. In: Topics on Per-

fect Graphs. Elsevier, 1984, pp. 281–297.

121

Elizabeth Gorbonos Separability and Ordering of Graphs

[103] R. J. Wilson. Introduction to Graph Theory. New York, NY, USA: John Wiley

& Sons, Inc., 1986.

[104] M. Yannakakis. “Computing the Minimum Fill-In is NP-Complete”. In: SIAM

Journal on Algebraic Discrete Methods 2.1 (1981), pp. 77–79.

122

	Separability and Vertex Ordering of Graphs
	Recommended Citation

	tmp.1556227905.pdf.8PwsM

