2,857 research outputs found

    Data compression experiments with LANDSAT thematic mapper and Nimbus-7 coastal zone color scanner data

    Get PDF
    A case study is presented where an image segmentation based compression technique is applied to LANDSAT Thematic Mapper (TM) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression technique, called Spatially Constrained Clustering (SCC), can be regarded as an adaptive vector quantization approach. The SCC can be applied to either single or multiple spectral bands of image data. The segmented image resulting from SCC is encoded in small rectangular blocks, with the codebook varying from block to block. Lossless compression potential (LDP) of sample TM and CZCS images are evaluated. For the TM test image, the LCP is 2.79. For the CZCS test image the LCP is 1.89, even though when only a cloud-free section of the image is considered the LCP increases to 3.48. Examples of compressed images are shown at several compression ratios ranging from 4 to 15. In the case of TM data, the compressed data are classified using the Bayes' classifier. The results show an improvement in the similarity between the classification results and ground truth when compressed data are used, thus showing that compression is, in fact, a useful first step in the analysis

    LIDAR data classification and compression

    Get PDF
    Airborne Laser Detection and Ranging (LIDAR) data has a wide range of applications in agriculture, archaeology, biology, geology, meteorology, military and transportation, etc. LIDAR data consumes hundreds of gigabytes in a typical day of acquisition, and the amount of data collected will continue to grow as sensors improve in resolution and functionality. LIDAR data classification and compression are therefore very important for managing, visualizing, analyzing and using this huge amount of data. Among the existing LIDAR data classification schemes, supervised learning has been used and can obtain up to 96% of accuracy. However some of the features used are not readily available, and the training data is also not always available in practice. In existing LIDAR data compression schemes, the compressed size can be 5%-23% of the original size, but still could be in the order of gigabyte, which is impractical for many applications. The objectives of this dissertation are (1) to develop LIDAR classification schemes that can classify airborne LIDAR data more accurately without some features or training data that existing work requires; (2) to explore lossy compression schemes that can compress LIDAR data at a much higher compression rate than is currently available. We first investigate two independent ways to classify LIDAR data depending on the availability of training data: when training data is available, we use supervised machine learning techniques such as support vector machine (SVM); when training data is not readily available, we develop an unsupervised classification method that can classify LIDAR data as good as supervised classification methods. Experimental results show that the accuracy of our classification results are over 99%. We then present two new lossy LIDAR data compression methods and compare their performance. The first one is a wavelet based compression scheme while the second one is geometry based. Our new geometry based compression is a geometry and statistics driven LIDAR point-cloud compression method which combines both application knowledge and scene content to enable fast transmission from the sensor platform while preserving the geometric properties of objects within a scene. The new algorithm is based on the idea of compression by classification. It utilizes the unique height function simplicity as well as the local spatial coherence and linearity of the aerial LIDAR data and can automatically compress the data to the desired level-of-details defined by the user. Either of the two developed classification methods can be used to automatically detect regions that are not locally linear such as vegetations or trees. In those regions, the local statistics descriptions, such as mean, variance, expectation, etc., are stored to efficiently represent the region and restore the geometry in the decompression phase. The new geometry-based compression schemes for building and ground data can compress efficiently and significantly reduce the file size, while retaining a good fit for the scalable "zoom in" requirements. Experimental results show that compared with existing LIDAR lossy compression work, our proposed approach achieves two orders of magnitude lower bit rate with the same quality, making it feasible for applications that were not practical before. The ability to store information into a database and query them efficiently becomes possible with the proposed highly efficient compression scheme.Includes bibliographical references (pages 106-116)

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Multi-image classification and compression using vector quantization

    Get PDF
    Vector Quantization (VQ) is an image processing technique based on statistical clustering, and designed originally for image compression. In this dissertation, several methods for multi-image classification and compression based on a VQ design are presented. It is demonstrated that VQ can perform joint multi-image classification and compression by associating a class identifier with each multi-spectral signature codevector. We extend the Weighted Bayes Risk VQ (WBRVQ) method, previously used for single-component images, that explicitly incorporates a Bayes risk component into the distortion measure used in the VQ quantizer design and thereby permits a flexible trade-off between classification and compression priorities. In the specific case of multi-spectral images, we investigate the application of the Multi-scale Retinex algorithm as a preprocessing stage, before classification and compression, that performs dynamic range compression, reduces the dependence on lighting conditions, and generally enhances apparent spatial resolution. The goals of this research are four-fold: (1) to study the interrelationship between statistical clustering, classification and compression in a multi-image VQ context; (2) to study mixed-pixel classification and combined classification and compression for simulated and actual, multispectral and hyperspectral multi-images; (3) to study the effects of multi-image enhancement on class spectral signatures; and (4) to study the preservation of scientific data integrity as a function of compression. In this research, a key issue is not just the subjective quality of the resulting images after classification and compression but also the effect of multi-image dimensionality on the complexity of the optimal coder design
    • …
    corecore