980 research outputs found

    System configuration, fault detection, location, isolation and restoration: a review on LVDC Microgrid protections

    Get PDF
    Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty conditions. Post-fault behaviour of converter-fed LVDC system involves both active converter control and passive circuit transient of similar time scale, which makes the protection for LVDC distribution significantly different and more challenging than low voltage AC. These protection and operational issues have handicapped the practical applications of DC distribution. This paper presents state-of-the-art protection schemes developed for DC Microgrids. With a close look at practical limitations such as the dependency on modelling accuracy, requirement on communications and so forth, a comprehensive evaluation is carried out on those system approaches in terms of system configurations, fault detection, location, isolation and restoration

    Multiphase current-controlled buck converter with energy recycling output impedance correction circuit (OICC)

    Get PDF
    This study is related to the improvement of the output impedance of a multiphase buck converter with peak current mode control (PCMC) by means of introducing an additional power path, which virtually increases the output capacitance during transients. Various solutions that can be employed to improve the dynamic behavior of the converter system exist, but nearly all solutions are developed for a single-phase buck converter with voltage mode control, while in the voltage regulation module applications, due to the high currents and dynamic specifications, the system is usually implemented as a multiphase buck converter with current mode control to ensure current sharing. The proposed circuit, output impedance correction circuit (OICC), is used to inject or extract a current n - 1 times larger than the output capacitor current, thus virtually increasing n times the value of the output capacitance during the transients. Furthermore, the OICC concept is extended to a multiphase buck converter system and the proposed solution is compared with the system that has n times bigger output capacitor in terms of dynamic behavior and static and dynamic efficiency. The OICC is implemented as a synchronous buck converter with PCMC, thus reducing its penalty on the system efficiency

    Service continuity in complex power systems: safety, operation and maintenance

    Get PDF
    The research aims to define electrical architectures based on the rationalization of the distribution structure and of power sources with the achievement of the primary objectives of service continuity, power quality, safety and safe maintenance. The thesis consists of two parts: the first part deals with the architecture impact on a complex system analyzing the system configuration and operational safety aspects. New developments and methodologies are presented in the study of critical systems. A theory of complex systems for safety, operation and maintenance aspects is defined that enables to assist the management of the system throughout its whole life cycle and allows an implementation of programming languages. The second part refers to specific issues of mission critical power systems, data centers and hospitals especially. Several measurements were performed in laboratory and on field to analyze sneaky critical cases for the service continuity and the integrity of these strategic power systems.The research aims to define electrical architectures based on the rationalization of the distribution structure and of power sources with the achievement of the primary objectives of service continuity, power quality, safety and safe maintenance. The thesis consists of two parts: the first part deals with the architecture impact on a complex system analyzing the system configuration and operational safety aspects. New developments and methodologies are presented in the study of critical systems. A theory of complex systems for safety, operation and maintenance aspects is defined that enables to assist the management of the system throughout its whole life cycle and allows an implementation of programming languages. The second part refers to specific issues of mission critical power systems, data centers and hospitals especially. Several measurements were performed in laboratory and on field to analyze sneaky critical cases for the service continuity and the integrity of these strategic power systems

    An Overview of Condition Monitoring Techniques for Capacitors in DC-Link Applications

    Get PDF

    Modeling and analysis of power processing systems: Feasibility investigation and formulation of a methodology

    Get PDF
    A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks

    Dc Line-Interactive Uninterruptible Power Supply (UPS) with Load Leveling for Constant Power and Pulse Loads

    Get PDF
    Uninterruptable Power Supply (UPS) systems are usually considered as a backup power for electrical systems, providing emergency power when the main power source fails. UPS systems ensure an uninterruptible, reliable and high quality electrical power for systems with critical loads in which a continuous and reliable power supply is a vital requirement. A novel UPS system topology, DC line-interactive UPS, has been introduced. The new proposed UPS system is based on the DC concept where the power flow in the system has DC characteristic. The new DC UPS system has several advantageous with respect to the on-line 3-phase UPS which is extensively used in industry, such as lower size, cost and weight due to replacing the three-phase dual converter in the on-line UPS system with a single stage single phase DC/DC converter and thus higher efficiency is expected. The proposed system will also provide load leveling feature for the main AC/DC rectifier which has not been offered by conventional AC UPS systems. It applies load power smoothing to reduce the rating of the incoming AC line and consequently reduce the installation cost and time. Moreover, the new UPS technology improves the medical imaging system up-time, reliability, efficiency, and cost, and is applicable to several imaging modalities such as CT, MR and X-ray as well. A comprehensive investigation on different energy storage systems was conducted and couple of most promising Li-ion cell chemistries, LFP and NCA types, were chosen for further aggressive tests. A battery pack based on the LFP cells with monitoring system was developed to be used with the DC UPS testbed. The performance of the DC UPS has also been investigated. The mathematical models of the system are extracted while loaded with constant power load (CPL) and constant voltage load (CVL) during all four modes of operation. Transfer functions of required outputs versus inputs were extracted and their related stability region based on the Routh-Hurwitz stability criteria were found. The AC/DC rectifier was controlled independently due to the system configuration. Two different control techniques were proposed to control the DC/DC converter. A linear dual-loop control (DLC) scheme and a nonlinear robust control, a constant frequency sliding mode control (CFSMC) were investigated. The DLC performance was convincing, however the controller has a limited stability region due to the linearization process and negative incremental impedance characteristics of the CPL which challenges the stability of the system. A constant switching frequency SMC was also developed based on the DC UPS system and the performance of the system were presented during different operational modes. Transients during mode transfers were simulated and results were depicted. The controller performances met the control goals of the system. The voltage drop during mode transitions, was less than 2% of the rated output voltage. Finally, the experimental results were presented. The high current discharge tests on each selected Li-ion cell were performed and results presented. A testbed was developed to verify the DC UPS system concept. The test results were presented and verified the proposed concept

    Aging assessment of surge protective devices in nuclear power plants

    Full text link

    Optimised design of isolated industrial power systems and system harmonics

    Get PDF
    This work has focused on understanding the nature and impact of non-linear loads on isolated industrial power systems. The work was carried out over a period of 8 years on various industrial power systems: off-shore oil and gas facilities including an FPSO, a wellhead platform, gas production platforms, a mineral processing plant and an LNG plant. The observations regarding non-linear loads and electrical engineering work carried out on these facilities were incorporated into the report.A significant literature describing non-linear loads and system harmonics on industrial power systems was collected and reviewed. The literature was classified into five categories: industrial plants and system harmonics, non-linear loads as the source of current harmonics, practical issues with system harmonics, harmonic mitigation strategies and harmonic measurements.Off-shore oil and gas production facilities consist of a small compact power system. The power system incorporates either its own power generation or is supplied via subsea cable from a remote node. Voltage selection analysis and voltage drop calculation using commercially available power system analysis software are appropriate tools to analyse these systems. Non-linear loads comprise DC rectifiers, variable speed drives, UPS systems and thyristor controlled process heaters. All nonlinear loads produce characteristic and non-characteristic harmonics, while thyristor controlled process heaters generate inter-harmonics. Due to remote location, harmonic survey is not a common design practice. Harmonic current measurements during factory acceptance tests do not provide reliable information for accurate power system analysis.A typical mineral processing plant, located in a remote area includes its own power station. The power generation capacity of those systems is an order of magnitude higher than the power generation of a typical off-shore production facility. Those systems comprise large non-linear loads generating current and voltage interharmonics. Harmonic measurements and harmonic survey will provide a full picture of system harmonics on mineral processing plants which is the only practical way to determine system harmonics. Harmonic measurements on gearless mill drive at the factory are not possible as the GMD is assembled for the first time on site.LNG plants comprise large non-linear loads driving gas compressor, however those loads produce integer harmonics. Design by analysis process is an alternative to the current design process based on load lists. Harmonic measurements and harmonic survey provide a reliable method for determining power system harmonics in an industrial power system

    Motor Drive Technologies for the Power-by-Wire (PBW) Program: Options, Trends and Tradeoffs

    Get PDF
    Power-By-Wire (PBW) is a program involving the replacement of hydraulic and pneumatic systems currently used in aircraft with an all-electric secondary power system. One of the largest loads of the all-electric secondary power system will be the motor loads which include pumps, compressors and Electrical Actuators (EA's). Issues of improved reliability, reduced maintenance and efficiency, among other advantages, are the motivation for replacing the existing aircraft actuators with electrical actuators. An EA system contains four major components. These are the motor, the power electronic converters, the actuator and the control system, including the sensors. This paper is a comparative literature review in motor drive technologies, with a focus on the trends and tradeoffs involved in the selection of a particular motor drive technology. The reported research comprises three motor drive technologies. These are the induction motor (IM), the brushless dc motor (BLDCM) and the switched reluctance motor (SRM). Each of the three drives has the potential for application in the PBW program. Many issues remain to be investigated and compared between the three motor drives, using actual mechanical loads expected in the PBW program
    corecore