52 research outputs found

    Circumferences of 3-connected claw-free graphs, II

    Get PDF
    For a graph H , the circumference of H , denoted by c ( H ) , is the length of a longest cycle in H . It is proved in Chen (2016) that if H is a 3-connected claw-free graph of order n with δ ≥ 8 , then c ( H ) ≥ min { 9 δ − 3 , n } . In Li (2006), Li conjectured that every 3-connected k -regular claw-free graph H of order n has c ( H ) ≥ min { 10 k − 4 , n } . Later, Li posed an open problem in Li (2008): how long is the best possible circumference for a 3-connected regular claw-free graph? In this paper, we study the circumference of 3-connected claw-free graphs without the restriction on regularity and provide a solution to the conjecture and the open problem above. We determine five families F i ( 1 ≤ i ≤ 5 ) of 3-connected claw-free graphs which are characterized by graphs contractible to the Petersen graph and show that if H is a 3-connected claw-free graph of order n with δ ≥ 16 , then one of the following holds: (a) either c ( H ) ≥ min { 10 δ − 3 , n } or H ∈ F 1 . (b) either c ( H ) ≥ min { 11 δ − 7 , n } or H ∈ F 1 ∪ F 2 . (c) either c ( H ) ≥ min { 11 δ − 3 , n } or H ∈ F 1 ∪ F 2 ∪ F 3 . (d) either c ( H ) ≥ min { 12 δ − 10 , n } or H ∈ F 1 ∪ F 2 ∪ F 3 ∪ F 4 . (e) if δ ≥ 23 then either c ( H ) ≥ min { 12 δ − 7 , n } or H ∈ F 1 ∪ F 2 ∪ F 3 ∪ F 4 ∪ F 5 . This is also an improvement of the prior results in Chen (2016), Lai et al. (2016), Li et al. (2009) and Mathews and Sumner (1985)

    Circumferences and minimum degrees in 3-connected claw-free graphs

    Get PDF
    AbstractIn this paper, we prove that every 3-connected claw-free graph G on n vertices contains a cycle of length at least min{n,6δ−15}, thereby generalizing several known results

    Circuits and Cycles in Graphs and Matroids

    Get PDF
    This dissertation mainly focuses on characterizing cycles and circuits in graphs, line graphs and matroids. We obtain the following advances. 1. Results in graphs and line graphs. For a connected graph G not isomorphic to a path, a cycle or a K1,3, let pc(G) denote the smallest integer n such that the nth iterated line graph Ln(G) is panconnected. A path P is a divalent path of G if the internal vertices of P are of degree 2 in G. If every edge of P is a cut edge of G, then P is a bridge divalent path of G; if the two ends of P are of degree s and t, respectively, then P is called a divalent (s, t)-path. Let l(G) = max{m : G has a divalent path of length m that is not both of length 2 and in a K3}. We prove the following. (i) If G is a connected triangular graph, then L(G) is panconnected if and only if G is essentially 3-edge-connected. (ii) pc(G) ≤ l(G) + 2. Furthermore, if l(G) ≥ 2, then pc(G) = l(G) + 2 if and only if for some integer t ≥ 3, G has a bridge divalent (3, t)-path of length l(G). For a graph G, the supereulerian width μ′(G) of a graph G is the largest integer s such that G has a spanning (k;u,v)-trail-system, for any integer k with 1 ≤ k ≤ s, and for any u, v ∈ V (G) with u ̸= v. Thus μ′(G) ≥ 2 implies that G is supereulerian, and so graphs with higher supereulerian width are natural generalizations of supereulerian graphs. Settling an open problem of Bauer, Catlin in [J. Graph Theory 12 (1988), 29-45] proved that if a simple graph G on n ≥ 17 vertices satisfy δ(G) ≥ n − 1, then μ′(G) ≥ 2. In this paper, we show that for 4 any real numbers a, b with 0 \u3c a \u3c 1 and any integer s \u3e 0, there exists a finite graph family F = F(a,b,s) such that for a simple graph G with n = |V(G)|, if for any u,v ∈ V(G) with uv ∈/ E(G), max{dG(u), dG(v)} ≥ an + b, then either μ′(G) ≥ s + 1 or G is contractible to a member in F. When a = 1,b = −3, we show that if n is sufficiently large, K3,3 is the only 42 obstacle for a 3-edge-connected graph G to satisfy μ′(G) ≥ 3. An hourglass is a graph obtained from K5 by deleting the edges in a cycle of length 4, and an hourglass-free graph is one that has no induced subgraph isomorphic to an hourglass. Kriesell in [J. Combin. Theory Ser. B, 82 (2001), 306-315] proved that every 4-connected hourglass-free line graph is Hamilton-connected, and Kaiser, Ryj ́aˇcek and Vr ́ana in [Discrete Mathematics, 321 (2014) 1-11] extended it by showing that every 4-connected hourglass-free line graph is 1- Hamilton-connected. We characterize all essentially 4-edge-connected graphs whose line graph is hourglass-free. Consequently we prove that for any integer s and for any hourglass-free line graph L(G), each of the following holds. (i) If s ≥ 2, then L(G) is s-hamiltonian if and only if κ(L(G)) ≥ s + 2; (ii) If s ≥ 1, then L(G) is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3. For integers s1, s2, s3 \u3e 0, let Ns1,s2,s3 denote the graph obtained by identifying each vertex of a K3 with an end vertex of three disjoint paths Ps1+1, Ps2+1, Ps3+1 of length s1,s2 and s3, respectively. We prove the following results. (i)LetN1 ={Ns1,s2,s3 :s1 \u3e0,s1 ≥s2 ≥s3 ≥0ands1+s2+s3 ≤6}. Thenforany N ∈ N1, every N-free line graph L(G) with |V (L(G))| ≥ s + 3 is s-hamiltonian if and only if κ(L(G)) ≥ s + 2. (ii)LetN2={Ns1,s2,s3 :s1\u3e0,s1≥s2≥s3≥0ands1+s2+s3≤4}.ThenforanyN∈N2, every N -free line graph L(G) with |V (L(G))| ≥ s + 3 is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3. 2. Results in matroids. A matroid M with a distinguished element e0 ∈ E(M) is a rooted matroid with e0 being the root. We present a characterization of all connected binary rooted matroids whose root lies in at most three circuits, and a characterization of all connected binary rooted matroids whose root lies in all but at most three circuits. While there exist infinitely many such matroids, the number of serial reductions of such matroids is finite. In particular, we find two finite families of binary matroids M1 and M2 and prove the following. (i) For some e0 ∈ E(M), M has at most three circuits containing e0 if and only if the serial reduction of M is isomorphic to a member in M1. (ii) If for some e0 ∈ E(M), M has at most three circuits not containing e0 if and only if the serial reduction of M is isomorphic to a member in M2. These characterizations will be applied to show that every connected binary matroid M with at least four circuits has a 1-hamiltonian circuit graph

    Homeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in 3-connected Graphs with Bounded Maximum Degrees

    Get PDF
    A tree TT with no vertex of degree 2 is called a {\it homeomorphically irreducible tree}\,(HIT) and if TT is spanning in a graph, then TT is called a {\it homeomorphically irreducible spanning tree}\,(HIST). Albertson, Berman, Hutchinson and Thomassen asked {\it if every triangulation of at least 4 vertices has a HIST} and {\it if every connected graph with each edge in at least two triangles contains a HIST}. These two questions were restated as two conjectures by Archdeacon in 2009. The first part of this dissertation gives a proof for each of the two conjectures. The second part focuses on some problems about {\it Halin graphs}, which is a class of graphs closely related to HITs and HISTs. A {\it Halin graph} is obtained from a plane embedding of a HIT of at least 4 vertices by connecting its leaves into a cycle following the cyclic order determined by the embedding. And a {\it generalized Halin graph} is obtained from a HIT of at least 4 vertices by connecting the leaves into a cycle. Let GG be a sufficiently large nn-vertex graph. Applying the Regularity Lemma and the Blow-up Lemma, it is shown that GG contains a spanning Halin subgraph if it has minimum degree at least (n+1)/2(n+1)/2 and GG contains a spanning generalized Halin subgraph if it is 3-connected and has minimum degree at least (2n+3)/5(2n+3)/5. The minimum degree conditions are best possible. The last part estimates the length of longest cycles in 3-connected graphs with bounded maximum degrees. In 1993 Jackson and Wormald conjectured that for any positive integer d4d\ge 4, there exists a positive real number α\alpha depending only on dd such that if GG is a 3-connected nn-vertex graph with maximum degree dd, then GG has a cycle of length at least αnlogd12\alpha n^{\log_{d-1} 2}. They showed that the exponent in the bound is best possible if the conjecture is true. The conjecture is confirmed for d425d\ge 425

    Sound source contributions for the prediction of vehicle pass-by noise

    Get PDF
    Current European legislation aims to limit vehicle noise emissions since many people are exposed to road traffic noise in urban areas. Vehicle pass-by noise is measured according to the international standard ISO 362 in Europe. More recent investigations of urban traffic have led to the proposal of a revised ISO 362 which includes a constant-speed test in addition to the traditional accelerated test in order to determine the pass-by noise value. In order to meet the legal pass-by noise requirements, vehicle manufacturers and suppliers must analyse and quantify vehicle noise source characteristics during the development phase of the vehicle. In addition, predictive tools need to be available for the estimation of the final pass-by noise value. This thesis aims to contribute to the understanding of vehicle pass-by noise and of the characteristics of the vehicle noise sources contributing to pass-by noise. This is supported through an extensive literature review in which current pass-by noise prediction methods are reviewed as well. Furthermore, three vehicle noise sources are replicated experimentally under laboratory conditions. This involves an orifice noise source, represented by a specially designed loudspeaker on a moving trolley, shell noise, represented by a metal cylinder structure, and tyre cavity and sidewall noise, represented by an annular membrane mounted on a tyre-like structure. The experimentally determined directivity characteristics of the acoustically excited noise sources are utilised in the pass-by noise prediction method. The predictive results are validated against experimental measurements of the three vehicle-like noise sources made within an anechoic chamber

    Some problems in combinatorial topology of flag complexes

    Get PDF
    In this work we study simplicial complexes associated to graphs and their homotopical and combinatorial properties. The main focus is on the family of flag complexes, which can be viewed as independence complexes and clique complexes of graphs. In the first part we study independence complexes of graphs using two cofibre sequences corresponding to vertex and edge removals. We give applications to the connectivity of independence complexes of chordal graphs and to extremal problems in topology and we answer open questions about the homotopy types of those spaces for particular families of graphs. We also study the independence complex as a space of configurations of particles in the so-called hard-core models on various lattices. We define, and investigate from an algorithmic perspective, a special family of combinatorially defined homology classes in independence complexes. This enables us to give algorithms as well as NP-hardness results for topological properties of some spaces. As a corollary we prove hardness of computing homology of simplicial complexes in general. We also view flag complexes as clique complexes of graphs. That leads to the study of various properties of Vietoris-Rips complexes of graphs. The last result is inspired by a problem in face enumeration. Using methods of extremal graph theory we classify flag triangulations of 3-manifolds with many edges. As a corollary we complete the classification of face vectors of flag simplicial homology 3-spheres

    Designing a Wearable Shoulder Exoskeleton for Hemiparetic Patients

    Get PDF
    Hemiparesis affects over 80 percent of stroke victims, which can reduce the overall quality of life in affected individuals. There are currently no upper-extremity assistive devices on the market to address shoulder hemiparesis, and current treatment options are expensive and ineffective. To address this need, a cable driven device was created to actively lift the affected arm. The activation and position of the device can be controlled by the user for independently performing activities of daily living (ADLs). Validation testing confirmed that the device could accurately and consistently provide the desired range of motion in both flexion/extension and abduction/adduction. The device was proven to be comfortable and intuitive, and was able to allow users to increase their ADL performance

    Studies on cartilage and bone disease in Mucopolysaccharidoses and Mucolipidoses

    Get PDF
    Mucopolysaccharidosis (MPS) and Mucolipidosis (ML II and III) are lysosomal storage disorders with multisystem involvement. In MPS, deficiencies of glycosaminoglycans (GAGs) degrading enzymes lead to intralysosomal GAG storage. In the MLs, defective trafficking of lysosomal enzymes to the lysosome, leads to accumulation of a combination of GAGs and several other complex molecules. GAGs are degraded by enzymes, in part extracellularly and in part intracellularly in the lysosomes after uptake through endocytosis. Intralysosomal storage in MPS and ML patients gives rise to loss of cellular function by disturbed autophagy, polyubiquitination, mitochondrial dysfunction, inflammation, apoptosis, and loss of lysosomal membrane integrity, followed by tissue damage and organ dysfunction. These events eventually determine the clinical symptoms observed in the patients. Skeletal abnormalities are common in MPS and ML patients and originate from intralysosomal storage in cells of the cartilage, bones and ligaments. A major problem of these tissues is that they are difficult to treat as vascularization is poor and cell renewal (division) is slow. The existing therapies for these diseases are unable to fully correct or prevent the abnormalities occurring in bones and cartilage. To enable development of new therapies it is crucial to understand the processes involved in abnormal cartilage and bone development as observed in MPS and ML and relate them to normal skeletal development. The aim of this thesis is to create a better understanding of the etiology and pathophysiology of cartilage and bone development in patients with mucopolysaccharidosis and mucolipidosis, the clinical course and therapeutic challenges of skeletal disease in these disorders
    corecore