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Abstract

In this paper, we prove that every 3-connected claw-free graph G on n vertices contains a cycle of length at least min{n, 66 — 15},
thereby generalizing several known results.
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1. Introduction

We use [1] for terminology and notation not defined here, and consider loopless finite simple graphs only. Let G be
a graph. We denote by C,, an n-cycle and denote by O (G) the set of all vertices in G with odd degrees. A graph G is
eulerian if O(G) = ) and G is connected. A circuit C of G is a connected eulerian subgraph. A cycle is a connected
circuit with all vertices of degree 2. Let C be a circuit of a graph G. We use E(C) to denote the set of edges in G which
are incident with some vertex in C. Let &(C) = |E(C)|. The minimum degree and the edge independence number of
G are denoted by §(G) and &'(G), respectively. An edge e = uv is called a pendant edge if either dg(u) = 1 or
dg(v) = 1. A subgraph H of G (denoted by H C G) is dominating if G — V(H) is edgeless. For x € V(G), let
Nu(x) = {v e V(H) : vx € E(G)} and dy(x) = |[Ng(x)|. If § € V(G), G[S] is the subgraph induced in G
by S. For A, B € V(G) with AN B = @, let Ny(A) = Uyea Nu(v), Eg[A, B] = {uv € E(G)|lu € A,v € B},
and G — A = G[V(G) — A]. When A = {v}, weuse G — v for G — {v}. If H € G, then for an edge subset
X C E(G)—E(H),we write H+ X for G[E(H)UX]. For an integer i > 1, define D; (G) = {v € V(G)|dg(v) = i}.

Let X € E(G). The contraction G/ X is the graph obtained from G by identifying the two ends of each edge in X
and then deleting the resulting loops. We define G/ = G. If K is a subgraph of G, then we write G/K for G/E(K).
If K is a connected subgraph of G, and if vk is the vertex in G/K onto which K is contracted, then K is called the
preimage of vk, and is denoted by PI(vk). A vertex v in a contraction of G is nontrivial if P1I(v) has at least one
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edge. A complete bipartite graph K , with two disjoint vertex sets Vi and V> such that |Vi| = 1 and |V2| = p and
p > 1is called a star, and the vertex of Vj is called the center of the star.

The line graph of a graph G, denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent
if and only if the corresponding edges in G are adjacent. Let H be the line graph L(G) of a graph G. Then the order
|V (H)| of H is equal to the number m(G) of edges of G, and §(H) = min{dg(x) + dg(y) — 2 : xy € E(G)}. Let
C be a circuit of G. Then the circumference of L(G) is at least e(C). If L(G) is k-connected, then G is essentially
k-edge-connected, which means that the only edge-cut sets of G having less than k edges are the sets of edges incident
with some vertex of G. Harary and Nash-Williams showed that there is a closed relationship between a graph and its
line graph as regards hamiltonian cycles.

Theorem 1.1 (Harary and Nash-Williams [4]). The line graph L(G) of a graph G is hamiltonian if and only if G
has a dominating eulerian subgraph.

A graph H is claw-free if it does not contain K; 3 as an induced subgraph. A vertex v € H is locally connected
if H[Ng (v)] is connected. In [9], Ryjacek defined the closure cl(H) of a claw-free graph H to be one obtained by
recursively adding edges to join two nonadjacent vertices in the neighborhood of any locally connected vertex of H,
as long as this is possible.

Theorem 1.2 (Ryjdcek [9]). Let H be a claw-free graph and cl(H) its closure. Then
(1) cl(H) is well defined, and k (cl(H)) > k(H),

(i) there is triangle-free graph G such that cl(H) = L(G),

(iii) the two graphs H and cl(H) have the same circumference.

Many works have been done to give circumferences for a claw-free graph H in terms of its minimum degree 6 (H ).
These conditions depend on the connectivity « (H). For x (H) = 2, Matthews and Sumner [8] proved that every 2-
connected claw-free graph on n vertices contains a cycle of length at least min{n, 25§ +4}. For k (H) = 3, the following
result was proved.

Theorem 1.3 (Li [6]). If H is a 3-connected claw-free graph on n vertices, then H has a cycle of length at least min
{n,56 — 5}.

Favaron and Fraisse [3] proved the following result on hamiltonian cycles.

Theorem 1.4 (Favaron and Fraisse [3]). If H is a 3-connected claw-free simple graph with order v, and if

8(H) > ”'{'37, then H is hamiltonian.

Lai, Shao and Zhan [5] improved the result above as follows.

Theorem 1.5 (Lai, Shao and Zhan [5]). If H is a 3-connected claw-free graph on n vertices with n > 196, and if

§(H) > "3 then either H is hamiltonian, or 6(H) = % and cl(H) is the line graph of G obtained from the

10~
Petersen graph PT S1o by adding ”TOIS pendant edges at each vertex of PT So.

Let J1 = {H: H is a 3-connected non-hamiltonian claw-free graph and its Ryjacek’s closure c/(H) is the line
graph of the graph obtained from the Petersen graph PT S19 by adding at least one pendant edge at each vertex of
PT Sy and by subdividing m edges of PT S1g form = 0,1,2,...,15}. Theorem 1.4 and Theorem 1.5 have been
improved as follows by Li [7] in 2006.

Theorem 1.6 (Li [7]). If H is a 3-connected claw-free graph on n > 220 vertices, and if §(H) > "TIB, then either
H is hamiltonian, or H € 7.

In this paper, our purpose is to make use of the proof techniques of [3,5,7] to improve Theorem 1.3. That is, we
prove the following theorem.
Theorem 1.7. Every 3-connected claw-free graph on n vertices contains a cycle of length at least min {n, 65 — 15}.
Finally, we make the following conjecture. Note that the bound 9§ — 6 is best possible, and the example can be

found in [5].

Conjecture 1.8. Every 3-connected claw-free graph on n vertices contains a cycle of length at least min {n, 9§ — 6}.
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2. Lemmas
In this section, we provide some lemmas needed in the proof of Theorem 1.7. We start with the following lemma.

Lemma 2.1 (Chen, Lai, Li, Li and Mao [2]). Let G be a 3-edge-connected graph and let S C V (G) be a vertex subset
such that |S| < 12. Then either G has a circuit C such that S C V(C), or G can be contracted to the Petersen graph
in such a way that the preimage of each vertex of the Petersen graph PT S1o contains at least one vertex in S.

Lemma 2.2. Let S be a set of vertices of a graph G and C a maximal circuit of G containing S. Assume that some
component A of G — V(C) is not an isolated vertex and is related to C by at least r edges. Then

(1) C contains a matching T of r edges such that at most r edges of G are adjacent to two distinct edges of T.
(i) e(C) = rd(L(G)).

Proof. We use similar techniques to Favaron and Fraisse’s proof [3]. We first have the following claim.

Claim 1. For any vertex x on C, ds(x) < 1. At least r vertices on C are adjacent to some vertex of A.

Proof. If some vertex x of C has two distinct neighbors y; and y, in A, then there is a path P in A joining y; and
y2, and so C + xy; Pyyx is a circuit of G longer than C, a contradiction. Thus d4(x) < 1 for any vertex x on C.
Since there are at least 7 edges between C and A, there are at least r vertices on C adjacent to some vertex of A. Thus
Claim 1 is true.

We fix an orientation of C, and so induce a set of transitions at each vertex of C and an orientation of each edge. If
ap is the end-vertex on C of some edge between A and C, then we choose a successor ai of a; on the oriented circuit
C and describe C following its orientation. Let as, . . ., a, be the extremities on C, encountered in this order, of r — 1
other edges between C and A. Fori =2,...,r,let alf be the successor of ;. Since A is connected, there is a path P;;
between a; and a; whose internal vertices are in A. Let T = {a;ai e E(C):i=1,2,...,r}. Then we further have
the following claim.

Claim 2. T is a matching of C and at most r edges are joined to two distinct edges of T.

Proof. Obviously, the edges alfai fori = 1,2,...,r are on C. Note that all vertices a; are distinct. Assume that
ai = a;. for i # j. Then, replacing the edge a ja;. by the path P;;, we obtain a new circuit C’ longer than C, which
contradicts the maximality of C. If ¢ = a;. fori # j, then we obtain a new circuit C’ = g; P;ja;a;. By the orientation
of a;a; and aja;, the circuit C contains a path between a; and a;, and a path between a} and a;, avoiding the edges a;a;
and a; alf . Hence, the deletion of these two edges does not disconnect C at alf ,and thus C + C’ is a circuit contradicting
the maximality of C. Thus T is a matching of C. By a similar proof to that for Case 2 of Lemma 1 in [3] (Page 300),
we obtain that at most r edges are joined to two different edges of 7. So Claim 2 is true.

Now we complete the proof of Lemma 2.2.

From Claims 1 and 2, there are at least |7|§(L(G)) edges of G not belonging to T and adjacent to at least one
edge of T. Among them, at most r edges are adjacent to two distinct edges of T, and are thus counted twice. Thus
e(C) = |TI6(L(G)) —r +|T| = |T|6(L(G)) with |T| = r. So Lemma 2.2 is proved. [

3. Proof of Theorem 1.7

In this section, we will provide the proof of our result. In our proof, we use proof techniques similar to those
from [3] by Favaron and Fraisse, [5] by Lai, Shao and Zhan, and [7] by Li.

Proof of Theorem 1.7. Let H be a 3-connected claw-free graph. Then, by Theorem 1.2, we can assume, without
loss of generality, that H = cI(H). Hence H is the line graph of a triangle-free graph G, and H is 3-connected.
Obviously, G does not contain a dominating circuit; otherwise H is hamiltonian. Let C’ be a longest cycle of H. If
[V(C") > 68(H) — 15, then we are done. Thus |V (C’)| < 66(H) — 16, and so, by Theorem 1.3, we have §(H) > 11
since 58(H) — 5 < |V(C")| < 65(H) — 16.

Let B = {v € V(G)|dg(v) = 1,2}. Since H is 3-connected, the sum of degrees of the two ends of each edge
in G is at least 5 and thus B is independent. Let Xo = N (B). We name the vertices of Xg as x, x2, ..., xp in the
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following way. Assume the vertices xp, ..., x; are already defined or else put i = 0. Let y;4 denote a vertex of B
which is adjacent to some vertex of Xo — {x1, ..., x;}. Either y; | has exactly one neighbor in X¢ — {x, ..., x;} and
we name it x;41, or y;+1 has exactly two neighbors in Xg — {xy, ..., x;} and we name them x; 4 and x;4> and put

Yi+2 = Yi+1. Let Yo = {y1, ..., yp}. Wenote thatif 1 <i < j < p,then y;y; ¢ E(G) and y;x; ¢ E(G), except for
the edges y;x;+1 when y; = y;41; and that the components of the subgraph induced by the edges x;y;, 1 <i < p, are
paths of length 1 or 2.

Consider now a matching M of G formed by ¢ — p edges x;y; of G, p + 1 <i < g, considered in this order and
such that

(i) the sets Xo, Yo, X = {xp41,..., x4} and ¥ = {yp41, ..., ¥4} are pairwise disjoint,
(i) for p+1<i <j=<q,yvyj vixj € E(G).

We choose this matching as large as possible subject to the conditions (i) and (ii). Note that by the definition of X
and Y, the whole set B is disjoint from X U Y and that Property (ii) holds for any i and j with 1 <i < j < g except
for the edges yixi+1, 1 <i < p,when y; = y;y1.

Let J be the set of indices j between p + 1 and g such that y; is adjacent to some vertex z ¢ XoUYoU X UY
with yrz ¢ E(G) for 1 < k < j.Foreach j € J we choose such a vertex z; and weput I = {p+1,...,9} — J.
Let X; ={x; € X|li e I}, Xy ={x;i € X|li e J}, Y ={yi € Y|i e I}and Y; = {y; € Y|i € J}, and let
S = XoU X7 UYj. Then we have the following claim.

Claim 1. S is not contained in any circuit of G.

Proof. Suppose Claim 1 is false and let C be a maximal circuit of G containing S = Xo U X; U Y; and
R = V(G) — V(C). Since G has no dominating circuit, at least one component A of G[R] has two vertices, and
so A is disjoint from Y since the vertices of Y are isolated in G[R]. Let r denote the number of edges between A
and C.

If every vertex of A has a neighbor in C, then r > d¢c(u) + dc (v) + |A| — 2, where u and v are two end-vertices of
some edge uv in A. Since G is triangle-free, d4 (1) + d4(v) < |A| and dg(u) + dg (v) = dc(u) + dc(v) + da(u) +
da(v) <dcm)+dc(v)+]Al.Hencer > dg(u)+dg(v)—2 > §(H) > 11. ByLemma 2.2, ¢e(C) > ré(H) > 116(H).
Thus A contains a vertex z such that N¢(z) = @. It follows that z & X U Yy U X U Y and the neighbors of z are all in
YTUX;UR— YUY UXy ).

If z has a neighbor in Yy, let i be the least index such that y; € Y; and zy; € E(G). Since z has no neighbor in Y,
2k & E(G) for all k < i, in contradiction to the definition of /. Hence z has no neighbor in Y;, and thus in Y.

If z has a neighbor in X, let x; be the vertex of Ng(z) N X; with the largest index. Consider the ordered
sets X' = {Xpils.oo s Xjm 1, X, 25 Xjg1s oo s Xgy and Y = {ypq1, ..., ¥j=1,2, ¥, Yj+1, ---» Yg}. Then vertex z
is neither adjacent to any x; with k > j, by the definition of x; and since z has no neighbor in X/, nor to any vertex
of Y, as said above. The vertex z; is not adjacent to any vertex y; with k < j by the choice of z;. If zz; & E(G), then
the sets X" and Y’ define a matching M’ which satisfies (i) and (ii), and thus which contradicts the maximality of M.
If zz; € E(G), then the eulerian subgraph G[(E(C) — E(C")) U (E(C") — E(C))], with C" = y;z;zx;y;, satisfies
V(C)NV(C’) = {y;} since z has no neighbor in C, and thus contradicts the maximality of C. Hence Ng(z) N X; = ¢
and z has no neighbor in X.

Finally if z has a neighbor ¢ in R — (Yo U Y; U X ), then the matching M" corresponding to the ordered sets
X" =A{t,xpt1,....x5} and Y" = {z, yp41. ..., yq} satisfies the conditions (i) and (ii) since z has no neighbor in
X UY. This contradicts the maximality of M and achieves the proof of Claim 1. [

Claim 2. G is not contractible to the Petersen graph PT Syo.

Proof. Suppose that G can be contracted to the Petersen graph PT S1g (see Fig. 1). Let vy, va, ..., vig be the ten
vertices of the Petersen graph PT S19, and W; be the preimage of v; ( = 1,2, ..., 10). Let

SY={wveV(G):dg(v)>7} and SW={W;:i=1,2,...,10}.

Since dg () + dg(v) —2 > §(H) > 11 for every edge e = uv € E(G), we have either dg(u) > 7 or dg(v) > 7. So
we have the following fact.

Claim 2.1. For every edge e = uv € E(G), either u € SV or v € SV. Equivalently, if u,v & SV, then uv & E(G).
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Fig. 1. Petersen graph PT Syg.

Let W € SW and let W’ be a graph obtained from W by deleting the vertices of degree 1 for W € SW. Then we
have the following claim.

Claim 2.2. If o/ (W) = 1, then W = K1,p for some p > 1. That is, W is a star.

Claim 2.3. If /(W) > 2, then E(W') # @ and W' is 2-edge-connected, and contains some cycle.

Proof. Assume that W is the preimage of some vertex v;, and that Eg[V (W), V(G) — V(W)] = {e1, e2, e3}, where
e1, e, e3 are edges adjacent to v; in PT Syg. Let /(W) =t > 2 and let {z;y; : i = 1,2,...,t} be a matching
of W. Without loss of generality assume that z; € SV fori = 1,2,...,r. If E(W') = @, then dw(y) = 1 for
yeVW) —{z1,z2,...,z}and z;z; € E(G) fori # jandi, j =1,2,...,t. Itis easy to see that at least one edge
of {e1, e3, e3} is a cut-edge of G, a contradiction. Thus E(W') # @.

Suppose that W’ contains a cut-edge e = z1z3. Then e is also a cut-edge of W. Let (U, V}) be the partition of
V(W) such that Ew([Uy, Vi] = {e} and z; € Uy and zp € Vj. Since z1,z2 € V(W’), we have dw(z1) > 2 and
dw(z2) = 2. Thus E(G[U1]) # @ and E(G[V1]) # @. Note that Eg[V (W), V(G) — V(W)] = {ey, e2, e3}. We may
assume that the number of edges joining Uy and V(G) — V(W) is 1, call it e;. Then {ey, e} is an essential edge-cut in
G, a contradiction. So Claim 2.3 holds. [

By the definition of contraction, without loss of generality assume that v; € V(G) fori = 1,2,...,10. Let
w, wh, wy € Nw, (V(G) = V(W;)) fori € {1,2,3,..., 10} for &’(W;) > 1. Then we have the following fact.

Claim 2.4. If o/ (W;) > 2, then
W) dw, () = 2if wiy = w' for j = 1,2 and dw, (w}) = 2if w} = ws;
(I) there are paths P; with at least two vertices in W; connecting u)’j and wlj 1 for j = 1,2 and path P3 with at least

two vertices in W; connecting w| and wy.

Proof. (I) If w’i = wé, then dy, (w’i) > 2 since otherwise {w’ix, wé v;} is a cut-edge set of two edges of G (where
x € Wi,vj € V(PTSyp)), a contradiqtion. Similarly, we can prove other parts of (I).

(ID) Let W/ = W; — D1(W;). If w| = w5, then, by (), dw, (w}) > 2. Thus w; € W/. By Claim 2.3, W/ is 2-edge-
connected. Let zw’i be an edge of W/. Then there is a cycle C; in W/ containing the edge zw’i. That is, there is a
path P; connecting w’i and wé. Since G is triangle-free, |V (P1)| > 4.

Assume that w’1 #* wé. It w’i wé is an edge of W;, then P = w’i wé is the path that we required. Thus wi w’2 g E(G).
Adding the new edge wjw), into W;, we obtain that W = W; + {wjw5} — D1(W;) is 2-edge-connected. Thus W/
has a cycle C’ containing the edge w’] wg. That is, W; has a path P; with at least three vertices connecting w’i and wé.
Similarly, we can prove the other parts of (II). Thus Claim 2.4 is true. [J

Now we complete the proof of Claim 2.

Let Z = {v;|v; is a trivial vertex in PT S1o}. Then, by claim 2.1, Z is independent. Since a(PT S19) = 4, we have
0 < |Z] < 4.1f |Z] = 1, then without loss of generality assume that vi € Z. We know that PT Sj9 — {v1} has a
spanning cycle C’. Since |Z| < 4, C’ contains at least six vertices (such as vs, vg, ..., v19) which do not belong to Z.
Without loss of generality assume that C’ = (vyv5v6V4v10V9V3V8V7V2) is a 9-cycle in PT S19 — {v} (see Fig. 1). Let
M be the set of edges of G that will be defined recursively as follows:
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Initialize M = ; then we add edges into M according to the value of &’ (W;) fori = 1,2, ..., 10 in the following.

If o/ (W;) = 1, then, by Claim 2.2, W; = K1, p,; for some p; > 1 _is a star. Let V(_Wl-) = .Vl U V; such that V| = {v;}
and |V2| = p;. Then v; is the center of the star W;. If w}, w;, ws € V2, then w’j # wy for {j, k} C {1,2,3} and
J # k since otherwise, for example, wj = wj, {v;w], v;w4} is an essential cut of G, a contradiction. Similarly, if two
vertices of {w’i, wé, wé} belong to V>, then the two vertices must be distinct. It is easy to see that there is a (wj., w,i)—
path Pi(j, k) containing v; connecting w§ and w,i for {j, k} C {1,2,3} and j # k, and there is a vertex v; € W; such
that e; = viv] € E(W;) and v] & {w], wh, w}}. Note that it is possible that w’; = wj = v;. Let M = M U {¢;}.

If o/(W;) > 2, then, by claim 2.3, W; is 2-edge-connected and contains some cycle. If w’i = wé = wé, then
dw; (w’i) > 3 since otherwise, Ny, (w’i) is an essential edge-cut of G with size at most 2, a contradiction. Thus there
isa (wj., w,i)—path Pi(j, k) containing v; connecting w‘/ and w,i for {j, k} C {1, 2,3} and j # k, and there is a vertex
v, € W; such that ¢; = v;v; € E(W;) and v] ¢ {wi, wé, wé}. Note that it is possible that wj. = w,i = v;. Let
M = MU {e;}.

If w’i = wé = wg is not true, that is, |[Nw, (V(G) — V(W;))| = 2, then it is easy to see that there is a (wg., w,i)-path
P'(j, k) with at least one vertex in W; connecting w’j and wy for {j, k} C {1,2,3}and j # k. If [V(P'(j, k)| =1,
then w;. = w,i, and there is a vertex v; € W; such that e; = w’]vl/ € E(W;) and v & {wi, wé, wé}. Let M = MU {e;}.
If [V(P'(j, k))| = 2, then pick up one edge ¢; in P'(j, k) such thate; € E(W;). Let M = M U {¢;}.

For the convenience of the proof, we can assume that |Z| = 4 and Z = {vy, vy, v3, v4} (and the proofs of other cases
are similar). Since C’ = (v2v5V6V4V10V9V3V8V7V) is @ 9-cycle in PT Syo — {v1} (see Fig. 1), without loss of generality
assume that vyw?, ww3 € EG[V(Ws), G — V(Ws)], wiws, wws € Eg[V(We), G — V(We)l, vow!, wiw$ €
EGIV(W7), G — V(W9)l, vawd, wlws € EGIV(Ws), G — V(Wg)], vzw], wl®w) € EGIV (W), G — V(Wo)], and
wiwl® vwll € EGIV(Wip), G — V(Wio)]. Let

F = {vzw?, w%w?, wgv4, v4wéo, wllowg, w?vg, v3w?, wg‘w;, wng}.
Then C = F;| + 2}25 Pi(1,2) is a circuit of G and M is a match of G. Note that |[M| > 6 since |Z| < 4.
Let dg(e) denote the value of dg(u.) + dg(ve) — 2 for an edge e of G. Then dg(e) > 6(H), and so e(C) >
Y eem dc(e) — 1546 > 65(H) — 9. Note that the edges of the Petersen graph PT Sjp may be counted twice, and 6
is the cardinality of M. This contradiction shows that Claim 2 is true. [J

Now we complete the proof of our theorem.

Let G! be the graph or multigraph obtained from G by deleting the vertices of degree 1 or 2 and replacing each path
ayb where dg(y) = 2 by the edge ab. Since G is essentially 3-edge-connected, G' is 3-edge-connected. Moreover,
to each circuit subgraph C of G' corresponds a circuit of G containing V (C). Since S N\ B = @, S is contained in
V(GY). Since S is not contained in any circuit of G by Claim 1, § is not contained in any circuit of G!l. By Lemma 2.1,
S| = |XoU X7 UXy| > 13. Let F = {x;y;|l <i <12} suchthat P = {x;|1 <i < 12} contains as many vertices
of Xy as possible, and Q = {y;|l <i < 12}. Then P C Xg or Xo C P or Xog = P. We suppose that F consists of
I paths of length 2 with 0 < [ < 6 and 12 — 2/ edges of a matching. Then |P| = 12 and |Q| = 12 — [. We know
that Q is independent, that y;x; ¢ E(G) — F forany y; € Qand x; € P with1 <i < j < 12, and that G is
triangle-free. Hence, two different edges of F are joined by at most one edge of G which is of type x;x; or x;y; with
1 <i < j < 12. More precisely, we can give an upper bound on the number p of edges of G which are adjacent to
two different edges of F. For a given value of /, this number can be maximum if the / paths of F' occur with smaller
indices than those of the 12 — 2/ edges of the matching. This is due to the fact that the / vertices y; belonging to paths
of length 2 have degree 2 and thus they cannot be adjacent by an edge not in F' to any vertex x; withi < j. When this
condition is fulfilled, there are at most /2 edges between the vertices x1, x2, ..., x; (since the number of edges of a
triangle-free graph of order 2/ is at most (21)2 /4), 21(12 — 2I) edges of type x;y; between the sets {x, x2, ..., x}
and {y2;41, Y2142, - - -, Y12}, and % edges of type x;x; or x;y; withi < j between the vertices of the set
{X2041, + oy X12, Y2U4+15 -+ > Y12} Then p < 1% +21(12 — 21y  12=22DMZAZD 12 4 6,

By Lemma 2.1 and Claim 2, P is contained in a circuit C of G. If P is a subset of Xg or P = X, then,
counting the edges of G — F adjacent to some edge of F, we find at least (12 — 2/)6(H) edges adjacent to an
edge of a matching of F and 2/(§(H) — 1) edges adjacent to an edge of a path of length 2 (since each vertex
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y; on such a path has degree 2 in G). At most [ — I + 66 of these edges have their two end-vertices in P U Q
and are thus counted twice. Hence e(C) > (12 — 2D)6(H) + 21(6(H) — 1) — (I — 12 + 66) + 12, that is,
e(C) > 1286(H) + 12 — 31 — 54 = 68(H) — 14 + (68 + 12 — 31 — 40) since [ is an integer between 0 and 6, a
contradiction. Thus X is a subset of P and P # Xj. It follows that p = |Xo| < 12. If [ > 3, then we easily prove
that e(C) > 2I6(H) — 1?2 > 65 — 14, a contradiction. Thus [ < 2.

If p is even, assume that

P/ = X() U {xp+1, Yp+1s .- ,xp+(6,g), yp+(6,g)}
and

Fz{xiyi|1§i§6+§}.

Then | P’| = 12 and F consists of  paths of length 2 with 0 </ < 2 and (p — 2I) + (6 — %) edges of a matching. If
p is odd, assume that

P = X0 U{Xpt1s Yptis e vs Xpr(6—(p+1)/2)» Yp+(6—(p+1)/2)}

and
. p—1
F = x,~y,~|l§z§5+T .

Then |P’| = 11, and F consists of [ paths of length 2 with 0 < [ < 2 and (p — 2I) + (6 — pTH) edges of a
matching. Recall that X = {x,1,...,x;} and ¥ = {ypy1,..., ¥4} and Xo, X and Y are pairwise disjoint. Thus
P'C XoUXUY.

Thus P’ is contained in a circuit of G by Lemma 2.1 since |P’| < 12. Now we estimate the upper bound on the
number u. It is easy to see that there are at most 2 edges between the vertices x1, x2, ..., xo; (since the number of
edges of a triangle-free graph of order 2/ is at most (21)%/4).

If p is even, then 2/(6 + p/2 — 2I) edges of type x;y; between the sets {x1,x2,...,xy} and
(Y241, Y2142+ -+ Ypt(6—p/2) 1> and (6+”/2_21)(f2’+”/2_2’_1) edges of type x;x; or x;y; withi < j between the vertices

of the set {x2/41, ..., Xp4(6-p/2)> Y2415 --+» Yp+©6-p/2)}. Then

(p+p/2=-2D(p+p/2-20-1 _
2

p > 11p p?
<Pt+2(6+L 2 - +15+ L4+ P
w<i®+ (+2 )+ +15+ ==+

So

11 2
Z(C) > <6+§—21>8(H)+21(8(H)—1)— (1—12+15+Zp+%)+6+§.

That is,

9 2
é(C) 265(H)+§6(H)+12—9— Zp—%—?)l

:68(H)—9+§<8(H)—§—§>+l2—31268(H)—11.

Note that /2 — 3] > —2for/ < 2and §(H) — £ — 3 > #=10=18 — 4 for p < 12 even and §(H) > 11. Similarly, if
p is odd, then we also get a contradiction. Thus the proof of Theorem 1.7 is completed. [
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