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Abstract

In this paper, we prove that every 3-connected claw-free graph G on n vertices contains a cycle of length at least min{n, 6δ−15},
thereby generalizing several known results.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

We use [1] for terminology and notation not defined here, and consider loopless finite simple graphs only. Let G be
a graph. We denote by Cn an n-cycle and denote by O(G) the set of all vertices in G with odd degrees. A graph G is
eulerian if O(G) = ∅ and G is connected. A circuit C of G is a connected eulerian subgraph. A cycle is a connected
circuit with all vertices of degree 2. Let C be a circuit of a graph G. We use Ē(C) to denote the set of edges in G which
are incident with some vertex in C . Let ē(C) = |Ē(C)|. The minimum degree and the edge independence number of
G are denoted by δ(G) and α′(G), respectively. An edge e = uv is called a pendant edge if either dG(u) = 1 or
dG(v) = 1. A subgraph H of G (denoted by H ⊆ G) is dominating if G − V (H) is edgeless. For x ∈ V (G), let
NH (x) = {v ∈ V (H) : vx ∈ E(G)} and dH (x) = |NH (x)|. If S ⊆ V (G), G[S] is the subgraph induced in G
by S. For A, B ⊆ V (G) with A ∩ B = ∅, let NH (A) = ∪v∈A NH (v), EG[A, B] = {uv ∈ E(G)|u ∈ A, v ∈ B},
and G − A = G[V (G) − A]. When A = {v}, we use G − v for G − {v}. If H ⊆ G, then for an edge subset
X ⊆ E(G)−E(H), we write H+X for G[E(H)∪X ]. For an integer i ≥ 1, define Di (G) = {v ∈ V (G)|dG(v) = i}.

Let X ⊆ E(G). The contraction G/X is the graph obtained from G by identifying the two ends of each edge in X
and then deleting the resulting loops. We define G/∅ = G. If K is a subgraph of G, then we write G/K for G/E(K ).
If K is a connected subgraph of G, and if vK is the vertex in G/K onto which K is contracted, then K is called the
preimage of vK , and is denoted by P I (vK ). A vertex v in a contraction of G is nontrivial if P I (v) has at least one
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edge. A complete bipartite graph K1,p with two disjoint vertex sets V1 and V2 such that |V1| = 1 and |V2| = p and
p ≥ 1 is called a star, and the vertex of V1 is called the center of the star.

The line graph of a graph G, denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent
if and only if the corresponding edges in G are adjacent. Let H be the line graph L(G) of a graph G. Then the order
|V (H)| of H is equal to the number m(G) of edges of G, and δ(H) = min{dG(x) + dG(y) − 2 : xy ∈ E(G)}. Let
C be a circuit of G. Then the circumference of L(G) is at least ē(C). If L(G) is k-connected, then G is essentially
k-edge-connected, which means that the only edge-cut sets of G having less than k edges are the sets of edges incident
with some vertex of G. Harary and Nash-Williams showed that there is a closed relationship between a graph and its
line graph as regards hamiltonian cycles.

Theorem 1.1 (Harary and Nash-Williams [4]). The line graph L(G) of a graph G is hamiltonian if and only if G
has a dominating eulerian subgraph.

A graph H is claw-free if it does not contain K1,3 as an induced subgraph. A vertex v ∈ H is locally connected
if H [NH (v)] is connected. In [9], Ryjác̆ek defined the closure cl(H) of a claw-free graph H to be one obtained by
recursively adding edges to join two nonadjacent vertices in the neighborhood of any locally connected vertex of H ,
as long as this is possible.

Theorem 1.2 (Ryjác̆ek [9]). Let H be a claw-free graph and cl(H) its closure. Then
(i) cl(H) is well defined, and κ(cl(H)) ≥ κ(H),

(ii) there is triangle-free graph G such that cl(H) = L(G),
(iii) the two graphs H and cl(H) have the same circumference.

Many works have been done to give circumferences for a claw-free graph H in terms of its minimum degree δ(H).
These conditions depend on the connectivity κ(H). For κ(H) = 2, Matthews and Sumner [8] proved that every 2-
connected claw-free graph on n vertices contains a cycle of length at least min{n, 2δ+4}. For κ(H) = 3, the following
result was proved.

Theorem 1.3 (Li [6]). If H is a 3-connected claw-free graph on n vertices, then H has a cycle of length at least min
{n, 5δ − 5}.

Favaron and Fraisse [3] proved the following result on hamiltonian cycles.

Theorem 1.4 (Favaron and Fraisse [3]). If H is a 3-connected claw-free simple graph with order ν, and if
δ(H) ≥ ν+37

10 , then H is hamiltonian.

Lai, Shao and Zhan [5] improved the result above as follows.

Theorem 1.5 (Lai, Shao and Zhan [5]). If H is a 3-connected claw-free graph on n vertices with n ≥ 196, and if
δ(H) ≥ n+5

10 , then either H is hamiltonian, or δ(H) = n+5
10 and cl(H) is the line graph of G obtained from the

Petersen graph PT S10 by adding n−15
10 pendant edges at each vertex of PT S10.

Let J1 = {H : H is a 3-connected non-hamiltonian claw-free graph and its Ryjác̆ek’s closure cl(H) is the line
graph of the graph obtained from the Petersen graph PT S10 by adding at least one pendant edge at each vertex of
PT S10 and by subdividing m edges of PT S10 for m = 0, 1, 2, . . . , 15}. Theorem 1.4 and Theorem 1.5 have been
improved as follows by Li [7] in 2006.

Theorem 1.6 (Li [7]). If H is a 3-connected claw-free graph on n ≥ 220 vertices, and if δ(H) ≥ n+23
11 , then either

H is hamiltonian, or H ∈ J1.

In this paper, our purpose is to make use of the proof techniques of [3,5,7] to improve Theorem 1.3. That is, we
prove the following theorem.

Theorem 1.7. Every 3-connected claw-free graph on n vertices contains a cycle of length at least min {n, 6δ − 15}.

Finally, we make the following conjecture. Note that the bound 9δ − 6 is best possible, and the example can be
found in [5].

Conjecture 1.8. Every 3-connected claw-free graph on n vertices contains a cycle of length at least min {n, 9δ − 6}.
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2. Lemmas

In this section, we provide some lemmas needed in the proof of Theorem 1.7. We start with the following lemma.

Lemma 2.1 (Chen, Lai, Li, Li and Mao [2]). Let G be a 3-edge-connected graph and let S ⊆ V (G) be a vertex subset
such that |S| ≤ 12. Then either G has a circuit C such that S ⊆ V (C), or G can be contracted to the Petersen graph
in such a way that the preimage of each vertex of the Petersen graph PT S10 contains at least one vertex in S.

Lemma 2.2. Let S be a set of vertices of a graph G and C a maximal circuit of G containing S. Assume that some
component A of G − V (C) is not an isolated vertex and is related to C by at least r edges. Then

(i) C contains a matching T of r edges such that at most r edges of G are adjacent to two distinct edges of T .
(ii) ē(C) ≥ rδ(L(G)).

Proof. We use similar techniques to Favaron and Fraisse’s proof [3]. We first have the following claim.

Claim 1. For any vertex x on C, dA(x) ≤ 1. At least r vertices on C are adjacent to some vertex of A.

Proof. If some vertex x of C has two distinct neighbors y1 and y2 in A, then there is a path P in A joining y1 and
y2, and so C + xy1 Py2x is a circuit of G longer than C , a contradiction. Thus dA(x) ≤ 1 for any vertex x on C .
Since there are at least r edges between C and A, there are at least r vertices on C adjacent to some vertex of A. Thus
Claim 1 is true.

We fix an orientation of C , and so induce a set of transitions at each vertex of C and an orientation of each edge. If
a1 is the end-vertex on C of some edge between A and C , then we choose a successor a′1 of a1 on the oriented circuit
C and describe C following its orientation. Let a2, . . . , ar be the extremities on C , encountered in this order, of r − 1
other edges between C and A. For i = 2, . . . , r , let a′i be the successor of ai . Since A is connected, there is a path Pi j
between ai and a j whose internal vertices are in A. Let T = {a′i ai ∈ E(C) : i = 1, 2, . . . , r}. Then we further have
the following claim.

Claim 2. T is a matching of C and at most r edges are joined to two distinct edges of T .

Proof. Obviously, the edges a′i ai for i = 1, 2, . . . , r are on C . Note that all vertices ai are distinct. Assume that
ai = a′j for i 6= j . Then, replacing the edge a j a′j by the path Pi j , we obtain a new circuit C ′ longer than C , which
contradicts the maximality of C . If a′i = a′j for i 6= j , then we obtain a new circuit C ′ = ai Pi j a j ai . By the orientation
of ai a′i and a j a′i , the circuit C contains a path between a′i and ai , and a path between a′j and a j , avoiding the edges ai a′i
and a j a′i . Hence, the deletion of these two edges does not disconnect C at a′i , and thus C+C ′ is a circuit contradicting
the maximality of C . Thus T is a matching of C . By a similar proof to that for Case 2 of Lemma 1 in [3] (Page 300),
we obtain that at most r edges are joined to two different edges of T . So Claim 2 is true.

Now we complete the proof of Lemma 2.2.
From Claims 1 and 2, there are at least |T |δ(L(G)) edges of G not belonging to T and adjacent to at least one

edge of T . Among them, at most r edges are adjacent to two distinct edges of T , and are thus counted twice. Thus
ē(C) ≥ |T |δ(L(G))− r + |T | = |T |δ(L(G)) with |T | = r . So Lemma 2.2 is proved. �

3. Proof of Theorem 1.7

In this section, we will provide the proof of our result. In our proof, we use proof techniques similar to those
from [3] by Favaron and Fraisse, [5] by Lai, Shao and Zhan, and [7] by Li.

Proof of Theorem 1.7. Let H be a 3-connected claw-free graph. Then, by Theorem 1.2, we can assume, without
loss of generality, that H = cl(H). Hence H is the line graph of a triangle-free graph G, and H is 3-connected.
Obviously, G does not contain a dominating circuit; otherwise H is hamiltonian. Let C ′ be a longest cycle of H . If
|V (C ′) ≥ 6δ(H)− 15, then we are done. Thus |V (C ′)| ≤ 6δ(H)− 16, and so, by Theorem 1.3, we have δ(H) ≥ 11
since 5δ(H)− 5 ≤ |V (C ′)| ≤ 6δ(H)− 16.

Let B = {v ∈ V (G)|dG(v) = 1, 2}. Since H is 3-connected, the sum of degrees of the two ends of each edge
in G is at least 5 and thus B is independent. Let X0 = NG(B). We name the vertices of X0 as x1, x2, . . . , x p in the
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following way. Assume the vertices x1, . . . , xi are already defined or else put i = 0. Let yi+1 denote a vertex of B
which is adjacent to some vertex of X0 − {x1, . . . , xi }. Either yi+1 has exactly one neighbor in X0 − {x1, . . . , xi } and
we name it xi+1, or yi+1 has exactly two neighbors in X0 − {x1, . . . , xi } and we name them xi+1 and xi+2 and put
yi+2 = yi+1. Let Y0 = {y1, . . . , yp}. We note that if 1 ≤ i < j ≤ p, then yi y j 6∈ E(G) and yi x j 6∈ E(G), except for
the edges yi xi+1 when yi = yi+1; and that the components of the subgraph induced by the edges xi yi , 1 ≤ i ≤ p, are
paths of length 1 or 2.

Consider now a matching M of G formed by q − p edges xi yi of G, p + 1 ≤ i ≤ q, considered in this order and
such that

(i) the sets X0, Y0, X = {x p+1, . . . , xq} and Y = {yp+1, . . . , yq} are pairwise disjoint,
(ii) for p + 1 ≤ i < j ≤ q , yi y j , yi x j 6∈ E(G).

We choose this matching as large as possible subject to the conditions (i) and (ii). Note that by the definition of X0
and Y0, the whole set B is disjoint from X ∪ Y and that Property (ii) holds for any i and j with 1 ≤ i < j ≤ q except
for the edges yi xi+1, 1 ≤ i ≤ p, when yi = yi+1.

Let J be the set of indices j between p + 1 and q such that y j is adjacent to some vertex z 6∈ X0 ∪ Y0 ∪ X ∪ Y
with yk z 6∈ E(G) for 1 ≤ k < j . For each j ∈ J we choose such a vertex z j and we put I = {p + 1, . . . , q} − J .
Let X I = {xi ∈ X |i ∈ I }, X J = {xi ∈ X |i ∈ J }, YI = {yi ∈ Y |i ∈ I } and YJ = {yi ∈ Y |i ∈ J }, and let
S = X0 ∪ X I ∪ YJ . Then we have the following claim.

Claim 1. S is not contained in any circuit of G.

Proof. Suppose Claim 1 is false and let C be a maximal circuit of G containing S = X0 ∪ X I ∪ YJ and
R = V (G) − V (C). Since G has no dominating circuit, at least one component A of G[R] has two vertices, and
so A is disjoint from Y0 since the vertices of Y0 are isolated in G[R]. Let r denote the number of edges between A
and C .

If every vertex of A has a neighbor in C , then r ≥ dC (u)+ dC (v)+ |A| − 2, where u and v are two end-vertices of
some edge uv in A. Since G is triangle-free, dA(u)+ dA(v) ≤ |A| and dG(u)+ dG(v) = dC (u)+ dC (v)+ dA(u)+
dA(v) ≤ dC (u)+dC (v)+|A|. Hence r ≥ dG(u)+dG(v)−2 ≥ δ(H) ≥ 11. By Lemma 2.2, ē(C) ≥ rδ(H) ≥ 11δ(H).
Thus A contains a vertex z such that NC (z) = ∅. It follows that z 6∈ X0 ∪ Y0 ∪ X ∪ Y and the neighbors of z are all in
YI ∪ X J ∪ (R − (Y0 ∪ YI ∪ X J )).

If z has a neighbor in YI , let i be the least index such that yi ∈ YI and zyi ∈ E(G). Since z has no neighbor in YJ ,
zyk 6∈ E(G) for all k < i , in contradiction to the definition of I . Hence z has no neighbor in YI , and thus in Y .

If z has a neighbor in X J , let x j be the vertex of NG(z) ∩ X J with the largest index. Consider the ordered
sets X ′ = {x p+1, . . . , x j−1, x j , z j , x j+1, . . . , xq} and Y ′ = {yp+1, . . . , y j−1, z, y j , y j+1, . . . , yq}. Then vertex z
is neither adjacent to any xk with k > j , by the definition of x j and since z has no neighbor in X I , nor to any vertex
of Y , as said above. The vertex z j is not adjacent to any vertex yk with k < j by the choice of z j . If zz j 6∈ E(G), then
the sets X ′ and Y ′ define a matching M ′ which satisfies (i) and (ii), and thus which contradicts the maximality of M .
If zz j ∈ E(G), then the eulerian subgraph G[(E(C) − E(C ′)) ∪ (E(C ′) − E(C))], with C ′ = y j z j zx j y j , satisfies
V (C)∩V (C ′) = {y j } since z has no neighbor in C , and thus contradicts the maximality of C . Hence NG(z)∩ X J = ∅

and z has no neighbor in X .
Finally if z has a neighbor t in R − (Y0 ∪ YI ∪ X J ), then the matching M ′′ corresponding to the ordered sets

X ′′ = {t, x p+1, . . . , xq} and Y ′′ = {z, yp+1, . . . , yq} satisfies the conditions (i) and (ii) since z has no neighbor in
X ∪ Y . This contradicts the maximality of M and achieves the proof of Claim 1. �

Claim 2. G is not contractible to the Petersen graph PT S10.

Proof. Suppose that G can be contracted to the Petersen graph PT S10 (see Fig. 1). Let v1, v2, . . . , v10 be the ten
vertices of the Petersen graph PT S10, and Wi be the preimage of vi (i = 1, 2, . . . , 10). Let

S V = {v ∈ V (G) : dG(v) ≥ 7} and S W = {Wi : i = 1, 2, . . . , 10}.

Since dG(u)+ dG(v)− 2 ≥ δ(H) ≥ 11 for every edge e = uv ∈ E(G), we have either dG(u) ≥ 7 or dG(v) ≥ 7. So
we have the following fact.

Claim 2.1. For every edge e = uv ∈ E(G), either u ∈ S V or v ∈ S V . Equivalently, if u, v 6∈ S V , then uv 6∈ E(G).
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Fig. 1. Petersen graph PT S10.

Let W ∈ S W and let W ′ be a graph obtained from W by deleting the vertices of degree 1 for W ∈ S W . Then we
have the following claim.

Claim 2.2. If α′(W ) = 1, then W = K1,p for some p ≥ 1. That is, W is a star.

Claim 2.3. If α′(W ) ≥ 2, then E(W ′) 6= ∅ and W ′ is 2-edge-connected, and contains some cycle.

Proof. Assume that W is the preimage of some vertex vi , and that EG[V (W ), V (G)− V (W )] = {e1, e2, e3}, where
e1, e2, e3 are edges adjacent to vi in PT S10. Let α′(W ) = t ≥ 2 and let {zi yi : i = 1, 2, . . . , t} be a matching
of W . Without loss of generality assume that zi ∈ S V for i = 1, 2, . . . , t . If E(W ′) = ∅, then dW (y) = 1 for
y ∈ V (W )− {z1, z2, . . . , zt } and zi z j 6∈ E(G) for i 6= j and i, j = 1, 2, . . . , t . It is easy to see that at least one edge
of {e1, e2, e3} is a cut-edge of G, a contradiction. Thus E(W ′) 6= ∅.

Suppose that W ′ contains a cut-edge e = z1z2. Then e is also a cut-edge of W . Let (U1, V1) be the partition of
V (W ) such that EW [U1, V1] = {e} and z1 ∈ U1 and z2 ∈ V1. Since z1, z2 ∈ V (W ′), we have dW (z1) ≥ 2 and
dW (z2) ≥ 2. Thus E(G[U1]) 6= ∅ and E(G[V1]) 6= ∅. Note that EG[V (W ), V (G)− V (W )] = {e1, e2, e3}. We may
assume that the number of edges joining U1 and V (G)− V (W ) is 1, call it e1. Then {e1, e} is an essential edge-cut in
G, a contradiction. So Claim 2.3 holds. �

By the definition of contraction, without loss of generality assume that vi ∈ V (G) for i = 1, 2, . . . , 10. Let
wi

1, w
i
2, w

i
3 ∈ NWi (V (G)− V (Wi )) for i ∈ {1, 2, 3, . . . , 10} for α′(Wi ) ≥ 1. Then we have the following fact.

Claim 2.4. If α′(Wi ) ≥ 2, then

(I) dWi (w
i
j ) ≥ 2 if wi

j = w
i
j+1 for j = 1, 2, and dWi (w

i
1) ≥ 2 if wi

1 = w
i
3;

(II) there are paths Pj with at least two vertices in Wi connecting wi
j and wi

j+1 for j = 1, 2 and path P3 with at least

two vertices in Wi connecting wi
1 and wi

3.

Proof. (I) If wi
1 = w

i
2, then dWi (w

i
1) ≥ 2 since otherwise {wi

1x, wi
3v j } is a cut-edge set of two edges of G (where

x ∈ Wi , v j ∈ V (PT S10)), a contradiction. Similarly, we can prove other parts of (I).
(II) Let W ′i = Wi − D1(Wi ). If wi

1 = w
i
2, then, by (I), dWi (w

i
1) ≥ 2. Thus wi

1 ∈ W ′i . By Claim 2.3, W ′i is 2-edge-
connected. Let zwi

1 be an edge of W ′i . Then there is a cycle C ′i in W ′i containing the edge zwi
1. That is, there is a

path P1 connecting wi
1 and wi

2. Since G is triangle-free, |V (P1)| ≥ 4.

Assume thatwi
1 6= w

i
2. Ifwi

1w
i
2 is an edge of Wi , then P1 = w

i
1w

i
2 is the path that we required. Thuswi

1w
i
2 6∈ E(G).

Adding the new edge wi
1w

i
2 into Wi , we obtain that W ′′i = Wi + {w

i
1w

i
2} − D1(Wi ) is 2-edge-connected. Thus W ′′i

has a cycle C ′ containing the edge wi
1w

i
2. That is, Wi has a path P1 with at least three vertices connecting wi

1 and wi
2.

Similarly, we can prove the other parts of (II). Thus Claim 2.4 is true. �

Now we complete the proof of Claim 2.
Let Z = {vi |vi is a trivial vertex in PT S10}. Then, by claim 2.1, Z is independent. Since α(PT S10) = 4, we have

0 ≤ |Z | ≤ 4. If |Z | ≥ 1, then without loss of generality assume that v1 ∈ Z . We know that PT S10 − {v1} has a
spanning cycle C ′. Since |Z | ≤ 4, C ′ contains at least six vertices (such as v5, v6, . . . , v10) which do not belong to Z .
Without loss of generality assume that C ′ = (v2v5v6v4v10v9v3v8v7v2) is a 9-cycle in PT S10 − {v1} (see Fig. 1). Let
M be the set of edges of G that will be defined recursively as follows:
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Initialize M = ∅; then we add edges into M according to the value of α′(Wi ) for i = 1, 2, . . . , 10 in the following.
If α′(Wi ) = 1, then, by Claim 2.2, Wi = K1,pi for some pi ≥ 1 is a star. Let V (Wi ) = V1∪V2 such that V1 = {vi }

and |V2| = pi . Then vi is the center of the star Wi . If wi
1, w

i
2, w

i
3 ∈ V2, then wi

j 6= wi
k for { j, k} ⊂ {1, 2, 3} and

j 6= k since otherwise, for example, wi
1 = w

i
2, {viw

i
1, viw

i
3} is an essential cut of G, a contradiction. Similarly, if two

vertices of {wi
1, w

i
2, w

i
3} belong to V2, then the two vertices must be distinct. It is easy to see that there is a (wi

j , w
i
k)-

path P i ( j, k) containing vi connecting wi
j and wi

k for { j, k} ⊂ {1, 2, 3} and j 6= k, and there is a vertex v′i ∈ Wi such

that ei = viv′i ∈ E(Wi ) and v′i 6∈ {w
i
1, w

i
2, w

i
3}. Note that it is possible that wi

j = w
i
k = vi . Let M = M ∪ {ei }.

If α′(Wi ) ≥ 2, then, by claim 2.3, Wi is 2-edge-connected and contains some cycle. If wi
1 = wi

2 = wi
3, then

dWi (w
i
1) ≥ 3 since otherwise, NWi (w

i
1) is an essential edge-cut of G with size at most 2, a contradiction. Thus there

is a (wi
j , w

i
k)-path P i ( j, k) containing vi connecting wi

j and wi
k for { j, k} ⊂ {1, 2, 3} and j 6= k, and there is a vertex

v′i ∈ Wi such that ei = viv
′

i ∈ E(Wi ) and v′i 6∈ {w
i
1, w

i
2, w

i
3}. Note that it is possible that wi

j = wi
k = vi . Let

M = M ∪ {ei }.
If wi

1 = w
i
2 = w

i
3 is not true, that is, |NWi (V (G)− V (Wi ))| ≥ 2, then it is easy to see that there is a (wi

j , w
i
k)-path

P i ( j, k) with at least one vertex in Wi connecting wi
j and wi

k for { j, k} ⊂ {1, 2, 3} and j 6= k. If |V (P i ( j, k))| = 1,

then wi
j = w

i
k , and there is a vertex v′i ∈ Wi such that ei = w

i
jv
′

i ∈ E(Wi ) and v′i 6∈ {w
i
1, w

i
2, w

i
3}. Let M = M ∪ {ei }.

If |V (P i ( j, k))| ≥ 2, then pick up one edge ei in P i ( j, k) such that ei ∈ E(Wi ). Let M = M ∪ {ei }.
For the convenience of the proof, we can assume that |Z | = 4 and Z = {v1, v2, v3, v4} (and the proofs of other cases

are similar). Since C ′ = (v2v5v6v4v10v9v3v8v7v2) is a 9-cycle in PT S10−{v1} (see Fig. 1), without loss of generality
assume that v2w

5
1, w

6
1w

5
2 ∈ EG[V (W5),G − V (W5)], w5

2w
6
1, v4w

6
2 ∈ EG[V (W6),G − V (W6)], v2w

7
1, w

7
2w

8
2 ∈

EG[V (W7),G − V (W7)], v3w
8
1, w

7
2w

8
2 ∈ EG[V (W8),G − V (W8)], v3w

9
1, w

10
1 w

9
2 ∈ EG[V (W9),G − V (W9)], and

w9
2w

10
1 , v4w

10
2 ∈ EG[V (W10),G − V (W10)]. Let

F1 = {v2w
5
1, w

5
2w

6
1, w

6
2v4, v4w

10
2 , w

10
1 w

9
2, w

9
1v3, v3w

8
1, w

8
2w

7
2, w

7
1v2}.

Then C = F1 +
∑10

i=5 P i (1, 2) is a circuit of G and M is a match of G. Note that |M | ≥ 6 since |Z | ≤ 4.
Let dG(e) denote the value of dG(ue) + dG(ve) − 2 for an edge e of G. Then dG(e) ≥ δ(H), and so ē(C) ≥∑

e∈M dG(e)− 15+ 6 ≥ 6δ(H)− 9. Note that the edges of the Petersen graph PT S10 may be counted twice, and 6
is the cardinality of M . This contradiction shows that Claim 2 is true. �

Now we complete the proof of our theorem.
Let G1 be the graph or multigraph obtained from G by deleting the vertices of degree 1 or 2 and replacing each path

ayb where dG(y) = 2 by the edge ab. Since G is essentially 3-edge-connected, G1 is 3-edge-connected. Moreover,
to each circuit subgraph C of G1 corresponds a circuit of G containing V (C). Since S ∩ B = ∅, S is contained in
V (G1). Since S is not contained in any circuit of G by Claim 1, S is not contained in any circuit of G1. By Lemma 2.1,
|S| = |X0 ∪ X I ∪ X J | ≥ 13. Let F = {xi yi |1 ≤ i ≤ 12} such that P = {xi |1 ≤ i ≤ 12} contains as many vertices
of X0 as possible, and Q = {yi |1 ≤ i ≤ 12}. Then P ⊂ X0 or X0 ⊂ P or X0 = P . We suppose that F consists of
l paths of length 2 with 0 ≤ l ≤ 6 and 12 − 2l edges of a matching. Then |P| = 12 and |Q| = 12 − l. We know
that Q is independent, that yi x j 6∈ E(G) − F for any yi ∈ Q and x j ∈ P with 1 ≤ i < j ≤ 12, and that G is
triangle-free. Hence, two different edges of F are joined by at most one edge of G which is of type xi x j or xi y j with
1 ≤ i < j ≤ 12. More precisely, we can give an upper bound on the number µ of edges of G which are adjacent to
two different edges of F . For a given value of l, this number can be maximum if the l paths of F occur with smaller
indices than those of the 12− 2l edges of the matching. This is due to the fact that the l vertices yi belonging to paths
of length 2 have degree 2 and thus they cannot be adjacent by an edge not in F to any vertex xi with i < j . When this
condition is fulfilled, there are at most l2 edges between the vertices x1, x2, . . . , x2l (since the number of edges of a
triangle-free graph of order 2l is at most (2l)2/4), 2l(12 − 2l) edges of type xi y j between the sets {x1, x2, . . . , x2l}

and {y2l+1, y2l+2, . . . , y12}, and (12−2l)(12−2l−1)
2 edges of type xi x j or xi y j with i < j between the vertices of the set

{x2l+1, . . . , x12, y2l+1, . . . , y12}. Then µ ≤ l2
+ 2l(12− 2l)+ (12−2l)(12−2l−1)

2 = l − l2
+ 66.

By Lemma 2.1 and Claim 2, P is contained in a circuit C of G. If P is a subset of X0 or P = X0, then,
counting the edges of G − F adjacent to some edge of F , we find at least (12 − 2l)δ(H) edges adjacent to an
edge of a matching of F and 2l(δ(H) − 1) edges adjacent to an edge of a path of length 2 (since each vertex
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yi on such a path has degree 2 in G). At most l − l2
+ 66 of these edges have their two end-vertices in P ∪ Q

and are thus counted twice. Hence ē(C) ≥ (12 − 2l)δ(H) + 2l(δ(H) − 1) − (l − l2
+ 66) + 12, that is,

ē(C) ≥ 12δ(H) + l2
− 3l − 54 = 6δ(H) − 14 + (6δ + l2

− 3l − 40) since l is an integer between 0 and 6, a
contradiction. Thus X0 is a subset of P and P 6= X0. It follows that p = |X0| < 12. If l ≥ 3, then we easily prove
that ē(C) ≥ 2lδ(H)− l2

≥ 6δ − 14, a contradiction. Thus l ≤ 2.
If p is even, assume that

P ′ = X0 ∪ {x p+1, yp+1, . . . , x p+(6− p
2 )
, yp+(6− p

2 )
}

and

F =
{

xi yi |1 ≤ i ≤ 6+
p

2

}
.

Then |P ′| = 12 and F consists of l paths of length 2 with 0 ≤ l ≤ 2 and (p − 2l)+ (6− p
2 ) edges of a matching. If

p is odd, assume that

P ′ = X0 ∪ {x p+1, yp+1, . . . , x p+(6−(p+1)/2), yp+(6−(p+1)/2)}

and

F =

{
xi yi |1 ≤ i ≤ 5+

p − 1
2

}
.

Then |P ′| = 11, and F consists of l paths of length 2 with 0 ≤ l ≤ 2 and (p − 2l) + (6 − p+1
2 ) edges of a

matching. Recall that X = {x p+1, . . . , xq} and Y = {yp+1, . . . , yq} and X0, X and Y are pairwise disjoint. Thus
P ′ ⊂ X0 ∪ X ∪ Y .

Thus P ′ is contained in a circuit of G by Lemma 2.1 since |P ′| ≤ 12. Now we estimate the upper bound on the
number µ. It is easy to see that there are at most l2 edges between the vertices x1, x2, . . . , x2l (since the number of
edges of a triangle-free graph of order 2l is at most (2l)2/4).

If p is even, then 2l(6 + p/2 − 2l) edges of type xi y j between the sets {x1, x2, . . . , x2l} and
{y2l+1, y2l+2, . . . , yp+(6−p/2)}, and (6+p/2−2l)(6+p/2−2l−1)

2 edges of type xi x j or xi y j with i < j between the vertices
of the set {x2l+1, . . . , x p+(6−p/2), y2l+1, . . . , yp+(6−p/2)}. Then

µ ≤ l2
+ 2l

(
6+

p

2
− 2l

)
+
(p + p/2− 2l)(p + p/2− 2l − 1)

2
= l − l2

+ 15+
11p

4
+

p2

8
.

So

ē(C) ≥
(

6+
p

2
− 2l

)
δ(H)+ 2l(δ(H)− 1)−

(
l − l2

+ 15+
11
4

p +
p2

8

)
+ 6+

p

2
.

That is,

ē(C) ≥ 6δ(H)+
p

2
δ(H)+ l2

− 9−
9
4

p −
p2

8
− 3l

= 6δ(H)− 9+
p

2

(
δ(H)−

p

4
−

9
2

)
+ l2
− 3l ≥ 6δ(H)− 11.

Note that l2
− 3l ≥ −2 for l ≤ 2 and δ(H)− p

4 −
9
2 ≥

44−10−18
4 = 4 for p < 12 even and δ(H) ≥ 11. Similarly, if

p is odd, then we also get a contradiction. Thus the proof of Theorem 1.7 is completed. �
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