Circumferences and minimum degrees in 3-connected claw-free graphs ${ }^{\star}$

MingChu Li ${ }^{\text {a }}$, Yongrui Cui ${ }^{\text {a }}$, Liming Xiong ${ }^{\text {b,* }}$, Yuan Tian ${ }^{\text {a }}$, He Jiang ${ }^{\text {a }}$, Xu Yuan ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Software, Dalian University of Technology, Dalian 116620, China
${ }^{\mathrm{b}}$ Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China

Received 29 October 2005; accepted 18 December 2007
Available online 20 February 2008

Abstract

In this paper, we prove that every 3 -connected claw-free graph G on n vertices contains a cycle of length at least $\min \{n, 6 \delta-15\}$, thereby generalizing several known results. (c) 2008 Elsevier B.V. All rights reserved.

Keywords: Claw-free graph; Circumference; 3-connectedness; Minimum degree

1. Introduction

We use [1] for terminology and notation not defined here, and consider loopless finite simple graphs only. Let G be a graph. We denote by C_{n} an n-cycle and denote by $O(G)$ the set of all vertices in G with odd degrees. A graph G is eulerian if $O(G)=\emptyset$ and G is connected. A circuit C of G is a connected eulerian subgraph. A cycle is a connected circuit with all vertices of degree 2 . Let C be a circuit of a graph G. We use $\bar{E}(C)$ to denote the set of edges in G which are incident with some vertex in C. Let $\bar{e}(C)=|\bar{E}(C)|$. The minimum degree and the edge independence number of G are denoted by $\delta(G)$ and $\alpha^{\prime}(G)$, respectively. An edge $e=u v$ is called a pendant edge if either $d_{G}(u)=1$ or $d_{G}(v)=1$. A subgraph H of G (denoted by $H \subseteq G$) is dominating if $G-V(H)$ is edgeless. For $x \in V(G)$, let $N_{H}(x)=\{v \in V(H): v x \in E(G)\}$ and $d_{H}(x)=\left|N_{H}(x)\right|$. If $S \subseteq V(G), G[S]$ is the subgraph induced in G by S. For $A, B \subseteq V(G)$ with $A \cap B=\emptyset$, let $N_{H}(A)=\cup_{v \in A} N_{H}(v), E_{G}[A, B]=\{u v \in E(G) \mid u \in A, v \in B\}$, and $G-A=G[V(G)-A]$. When $A=\{v\}$, we use $G-v$ for $G-\{v\}$. If $H \subseteq G$, then for an edge subset $X \subseteq E(G)-E(H)$, we write $H+X$ for $G[E(H) \cup X]$. For an integer $i \geq 1$, define $D_{i}(G)=\left\{v \in V(G) \mid d_{G}(v)=i\right\}$.

Let $X \subseteq E(G)$. The contraction G / X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. We define $G / \emptyset=G$. If K is a subgraph of G, then we write G / K for $G / E(K)$. If K is a connected subgraph of G, and if v_{K} is the vertex in G / K onto which K is contracted, then K is called the preimage of v_{K}, and is denoted by $P I\left(v_{K}\right)$. A vertex v in a contraction of G is nontrivial if $P I(v)$ has at least one

[^0]edge. A complete bipartite graph $K_{1, p}$ with two disjoint vertex sets V_{1} and V_{2} such that $\left|V_{1}\right|=1$ and $\left|V_{2}\right|=p$ and $p \geq 1$ is called a star, and the vertex of V_{1} is called the center of the star.

The line graph of a graph G, denoted by $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are adjacent. Let H be the line graph $L(G)$ of a graph G. Then the order $|V(H)|$ of H is equal to the number $m(G)$ of edges of G, and $\delta(H)=\min \left\{d_{G}(x)+d_{G}(y)-2: x y \in E(G)\right\}$. Let C be a circuit of G. Then the circumference of $L(G)$ is at least $\bar{e}(C)$. If $L(G)$ is k-connected, then G is essentially k-edge-connected, which means that the only edge-cut sets of G having less than k edges are the sets of edges incident with some vertex of G. Harary and Nash-Williams showed that there is a closed relationship between a graph and its line graph as regards hamiltonian cycles.

Theorem 1.1 (Harary and Nash-Williams [4]). The line graph $L(G)$ of a graph G is hamiltonian if and only if G has a dominating eulerian subgraph.
A graph H is claw-free if it does not contain $K_{1,3}$ as an induced subgraph. A vertex $v \in H$ is locally connected if $H\left[N_{H}(v)\right.$] is connected. In [9], Ryjácek defined the closure $c l(H)$ of a claw-free graph H to be one obtained by recursively adding edges to join two nonadjacent vertices in the neighborhood of any locally connected vertex of H, as long as this is possible.

Theorem 1.2 (Ryjáček [9]). Let H be a claw-free graph and cl (H) its closure. Then
(i) $\operatorname{cl}(H)$ is well defined, and $\kappa(\operatorname{cl}(H)) \geq \kappa(H)$,
(ii) there is triangle-free graph G such that $\operatorname{cl}(H)=L(G)$,
(iii) the two graphs H and $c l(H)$ have the same circumference.

Many works have been done to give circumferences for a claw-free graph H in terms of its minimum degree $\delta(H)$. These conditions depend on the connectivity $\kappa(H)$. For $\kappa(H)=2$, Matthews and Sumner [8] proved that every 2 connected claw-free graph on n vertices contains a cycle of length at least $\min \{n, 2 \delta+4\}$. For $\kappa(H)=3$, the following result was proved.

Theorem 1.3 (Li [6]). If H is a 3-connected claw-free graph on n vertices, then H has a cycle of length at least min $\{n, 5 \delta-5\}$.

Favaron and Fraisse [3] proved the following result on hamiltonian cycles.
Theorem 1.4 (Favaron and Fraisse [3]). If H is a 3-connected claw-free simple graph with order v, and if $\delta(H) \geq \frac{v+37}{10}$, then H is hamiltonian.

Lai, Shao and Zhan [5] improved the result above as follows.
Theorem 1.5 (Lai, Shao and Zhan [5J). If H is a 3-connected claw-free graph on n vertices with $n \geq 196$, and if $\delta(H) \geq \frac{n+5}{10}$, then either H is hamiltonian, or $\delta(H)=\frac{n+5}{10}$ and $\operatorname{cl}(H)$ is the line graph of G obtained from the Petersen graph PTS S_{10} by adding $\frac{n-15}{10}$ pendant edges at each vertex of PTS S_{10}.

Let $\mathcal{J}_{1}=\{H: H$ is a 3-connected non-hamiltonian claw-free graph and its Ryjáček's closure $c l(H)$ is the line graph of the graph obtained from the Petersen graph $P T S_{10}$ by adding at least one pendant edge at each vertex of $P T S_{10}$ and by subdividing m edges of $P T S_{10}$ for $\left.m=0,1,2, \ldots, 15\right\}$. Theorem 1.4 and Theorem 1.5 have been improved as follows by Li [7] in 2006.

Theorem 1.6 (Li [7]). If H is a 3-connected claw-free graph on $n \geq 220$ vertices, and if $\delta(H) \geq \frac{n+23}{11}$, then either H is hamiltonian, or $H \in \mathcal{J}_{1}$.

In this paper, our purpose is to make use of the proof techniques of $[3,5,7]$ to improve Theorem 1.3. That is, we prove the following theorem.
Theorem 1.7. Every 3-connected claw-free graph on n vertices contains a cycle of length at least min $\{n, 6 \delta-15\}$.
Finally, we make the following conjecture. Note that the bound $9 \delta-6$ is best possible, and the example can be found in [5].

Conjecture 1.8. Every 3-connected claw-free graph on n vertices contains a cycle of length at least min $\{n, 9 \delta-6\}$.

2. Lemmas

In this section, we provide some lemmas needed in the proof of Theorem 1.7. We start with the following lemma.
Lemma 2.1 (Chen, Lai, Li, Li and Mao [2]). Let G be a 3-edge-connected graph and let $S \subseteq V(G)$ be a vertex subset such that $|S| \leq 12$. Then either G has a circuit C such that $S \subseteq V(C)$, or G can be contracted to the Petersen graph in such a way that the preimage of each vertex of the Petersen graph PTS S_{10} contains at least one vertex in S.

Lemma 2.2. Let S be a set of vertices of a graph G and C a maximal circuit of G containing S. Assume that some component A of $G-V(C)$ is not an isolated vertex and is related to C by at least r edges. Then
(i) C contains a matching T of r edges such that at most r edges of G are adjacent to two distinct edges of T.
(ii) $\bar{e}(C) \geq r \delta(L(G))$.

Proof. We use similar techniques to Favaron and Fraisse's proof [3]. We first have the following claim.
Claim 1. For any vertex x on $C, d_{A}(x) \leq 1$. At least r vertices on C are adjacent to some vertex of A.
Proof. If some vertex x of C has two distinct neighbors y_{1} and y_{2} in A, then there is a path P in A joining y_{1} and y_{2}, and so $C+x y_{1} P y_{2} x$ is a circuit of G longer than C, a contradiction. Thus $d_{A}(x) \leq 1$ for any vertex x on C. Since there are at least r edges between C and A, there are at least r vertices on C adjacent to some vertex of A. Thus Claim 1 is true.

We fix an orientation of C, and so induce a set of transitions at each vertex of C and an orientation of each edge. If a_{1} is the end-vertex on C of some edge between A and C, then we choose a successor a_{1}^{\prime} of a_{1} on the oriented circuit C and describe C following its orientation. Let a_{2}, \ldots, a_{r} be the extremities on C, encountered in this order, of $r-1$ other edges between C and A. For $i=2, \ldots, r$, let a_{i}^{\prime} be the successor of a_{i}. Since A is connected, there is a path $P_{i j}$ between a_{i} and a_{j} whose internal vertices are in A. Let $T=\left\{a_{i}^{\prime} a_{i} \in E(C): i=1,2, \ldots, r\right\}$. Then we further have the following claim.

Claim 2. T is a matching of C and at most r edges are joined to two distinct edges of T.
Proof. Obviously, the edges $a_{i}^{\prime} a_{i}$ for $i=1,2, \ldots, r$ are on C. Note that all vertices a_{i} are distinct. Assume that $a_{i}=a_{j}^{\prime}$ for $i \neq j$. Then, replacing the edge $a_{j} a_{j}^{\prime}$ by the path $P_{i j}$, we obtain a new circuit C^{\prime} longer than C, which contradicts the maximality of C. If $a_{i}^{\prime}=a_{j}^{\prime}$ for $i \neq j$, then we obtain a new circuit $C^{\prime}=a_{i} P_{i j} a_{j} a_{i}$. By the orientation of $a_{i} a_{i}^{\prime}$ and $a_{j} a_{i}^{\prime}$, the circuit C contains a path between a_{i}^{\prime} and a_{i}, and a path between a_{j}^{\prime} and a_{j}, avoiding the edges $a_{i} a_{i}^{\prime}$ and $a_{j} a_{i}^{\prime}$. Hence, the deletion of these two edges does not disconnect C at a_{i}^{\prime}, and thus $C+C^{\prime}$ is a circuit contradicting the maximality of C. Thus T is a matching of C. By a similar proof to that for Case 2 of Lemma 1 in [3] (Page 300), we obtain that at most r edges are joined to two different edges of T. So Claim 2 is true.

Now we complete the proof of Lemma 2.2.
From Claims 1 and 2, there are at least $|T| \delta(L(G))$ edges of G not belonging to T and adjacent to at least one edge of T. Among them, at most r edges are adjacent to two distinct edges of T, and are thus counted twice. Thus $\bar{e}(C) \geq|T| \delta(L(G))-r+|T|=|T| \delta(L(G))$ with $|T|=r$. So Lemma 2.2 is proved.

3. Proof of Theorem 1.7

In this section, we will provide the proof of our result. In our proof, we use proof techniques similar to those from [3] by Favaron and Fraisse, [5] by Lai, Shao and Zhan, and [7] by Li.

Proof of Theorem 1.7. Let H be a 3-connected claw-free graph. Then, by Theorem 1.2, we can assume, without loss of generality, that $H=\operatorname{cl}(H)$. Hence H is the line graph of a triangle-free graph G, and H is 3-connected. Obviously, G does not contain a dominating circuit; otherwise H is hamiltonian. Let C^{\prime} be a longest cycle of H. If $\mid V\left(C^{\prime}\right) \geq 6 \delta(H)-15$, then we are done. Thus $\left|V\left(C^{\prime}\right)\right| \leq 6 \delta(H)-16$, and so, by Theorem 1.3, we have $\delta(H) \geq 11$ since $5 \delta(H)-5 \leq\left|V\left(C^{\prime}\right)\right| \leq 6 \delta(H)-16$.

Let $B=\left\{v \in V(G) \mid d_{G}(v)=1,2\right\}$. Since H is 3-connected, the sum of degrees of the two ends of each edge in G is at least 5 and thus B is independent. Let $X_{0}=N_{G}(B)$. We name the vertices of X_{0} as $x_{1}, x_{2}, \ldots, x_{p}$ in the
following way. Assume the vertices x_{1}, \ldots, x_{i} are already defined or else put $i=0$. Let y_{i+1} denote a vertex of B which is adjacent to some vertex of $X_{0}-\left\{x_{1}, \ldots, x_{i}\right\}$. Either y_{i+1} has exactly one neighbor in $X_{0}-\left\{x_{1}, \ldots, x_{i}\right\}$ and we name it x_{i+1}, or y_{i+1} has exactly two neighbors in $X_{0}-\left\{x_{1}, \ldots, x_{i}\right\}$ and we name them x_{i+1} and x_{i+2} and put $y_{i+2}=y_{i+1}$. Let $Y_{0}=\left\{y_{1}, \ldots, y_{p}\right\}$. We note that if $1 \leq i<j \leq p$, then $y_{i} y_{j} \notin E(G)$ and $y_{i} x_{j} \notin E(G)$, except for the edges $y_{i} x_{i+1}$ when $y_{i}=y_{i+1}$; and that the components of the subgraph induced by the edges $x_{i} y_{i}, 1 \leq i \leq p$, are paths of length 1 or 2 .

Consider now a matching M of G formed by $q-p$ edges $x_{i} y_{i}$ of $G, p+1 \leq i \leq q$, considered in this order and such that
(i) the sets $X_{0}, Y_{0}, X=\left\{x_{p+1}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{p+1}, \ldots, y_{q}\right\}$ are pairwise disjoint,
(ii) for $p+1 \leq i<j \leq q, y_{i} y_{j}, y_{i} x_{j} \notin E(G)$.

We choose this matching as large as possible subject to the conditions (i) and (ii). Note that by the definition of X_{0} and Y_{0}, the whole set B is disjoint from $X \cup Y$ and that Property (ii) holds for any i and j with $1 \leq i<j \leq q$ except for the edges $y_{i} x_{i+1}, 1 \leq i \leq p$, when $y_{i}=y_{i+1}$.

Let J be the set of indices j between $p+1$ and q such that y_{j} is adjacent to some vertex $z \notin X_{0} \cup Y_{0} \cup X \cup Y$ with $y_{k} z \notin E(G)$ for $1 \leq k<j$. For each $j \in J$ we choose such a vertex z_{j} and we put $I=\{p+1, \ldots, q\}-J$. Let $X_{I}=\left\{x_{i} \in X \mid i \in I\right\}, X_{J}=\left\{x_{i} \in X \mid i \in J\right\}, Y_{I}=\left\{y_{i} \in Y \mid i \in I\right\}$ and $Y_{J}=\left\{y_{i} \in Y \mid i \in J\right\}$, and let $S=X_{0} \cup X_{I} \cup Y_{J}$. Then we have the following claim.

Claim 1. S is not contained in any circuit of G.
Proof. Suppose Claim 1 is false and let C be a maximal circuit of G containing $S=X_{0} \cup X_{I} \cup Y_{J}$ and $R=V(G)-V(C)$. Since G has no dominating circuit, at least one component A of $G[R]$ has two vertices, and so A is disjoint from Y_{0} since the vertices of Y_{0} are isolated in $G[R]$. Let r denote the number of edges between A and C.

If every vertex of A has a neighbor in C, then $r \geq d_{C}(u)+d_{C}(v)+|A|-2$, where u and v are two end-vertices of some edge $u v$ in A. Since G is triangle-free, $d_{A}(u)+d_{A}(v) \leq|A|$ and $d_{G}(u)+d_{G}(v)=d_{C}(u)+d_{C}(v)+d_{A}(u)+$ $d_{A}(v) \leq d_{C}(u)+d_{C}(v)+|A|$. Hence $r \geq d_{G}(u)+d_{G}(v)-2 \geq \delta(H) \geq 11$. By Lemma 2.2, $\bar{e}(C) \geq r \delta(H) \geq 11 \delta(H)$. Thus A contains a vertex z such that $N_{C}(z)=\emptyset$. It follows that $z \notin X_{0} \cup Y_{0} \cup X \cup Y$ and the neighbors of z are all in $Y_{I} \cup X_{J} \cup\left(R-\left(Y_{0} \cup Y_{I} \cup X_{J}\right)\right)$.

If z has a neighbor in Y_{I}, let i be the least index such that $y_{i} \in Y_{I}$ and $z y_{i} \in E(G)$. Since z has no neighbor in Y_{J}, $z y_{k} \notin E(G)$ for all $k<i$, in contradiction to the definition of I. Hence z has no neighbor in Y_{I}, and thus in Y.

If z has a neighbor in X_{J}, let x_{j} be the vertex of $N_{G}(z) \cap X_{J}$ with the largest index. Consider the ordered sets $X^{\prime}=\left\{x_{p+1}, \ldots, x_{j-1}, x_{j}, z_{j}, x_{j+1}, \ldots, x_{q}\right\}$ and $Y^{\prime}=\left\{y_{p+1}, \ldots, y_{j-1}, z, y_{j}, y_{j+1}, \ldots, y_{q}\right\}$. Then vertex z is neither adjacent to any x_{k} with $k>j$, by the definition of x_{j} and since z has no neighbor in X_{I}, nor to any vertex of Y, as said above. The vertex z_{j} is not adjacent to any vertex y_{k} with $k<j$ by the choice of z_{j}. If $z z_{j} \notin E(G)$, then the sets X^{\prime} and Y^{\prime} define a matching M^{\prime} which satisfies (i) and (ii), and thus which contradicts the maximality of M. If $z z_{j} \in E(G)$, then the eulerian subgraph $G\left[\left(E(C)-E\left(C^{\prime}\right)\right) \cup\left(E\left(C^{\prime}\right)-E(C)\right)\right]$, with $C^{\prime}=y_{j} z_{j} z x_{j} y_{j}$, satisfies $V(C) \cap V\left(C^{\prime}\right)=\left\{y_{j}\right\}$ since z has no neighbor in C, and thus contradicts the maximality of C. Hence $N_{G}(z) \cap X_{J}=\emptyset$ and z has no neighbor in X.

Finally if z has a neighbor t in $R-\left(Y_{0} \cup Y_{I} \cup X_{J}\right)$, then the matching $M^{\prime \prime}$ corresponding to the ordered sets $X^{\prime \prime}=\left\{t, x_{p+1}, \ldots, x_{q}\right\}$ and $Y^{\prime \prime}=\left\{z, y_{p+1}, \ldots, y_{q}\right\}$ satisfies the conditions (i) and (ii) since z has no neighbor in $X \cup Y$. This contradicts the maximality of M and achieves the proof of Claim 1.

Claim 2. G is not contractible to the Petersen graph PTS S_{10}.
Proof. Suppose that G can be contracted to the Petersen graph $P T S_{10}$ (see Fig. 1). Let $v_{1}, v_{2}, \ldots, v_{10}$ be the ten vertices of the Petersen graph $P T S_{10}$, and W_{i} be the preimage of $v_{i}(i=1,2, \ldots, 10)$. Let

$$
\mathcal{S V}=\left\{v \in V(G): d_{G}(v) \geq 7\right\} \quad \text { and } \quad \mathcal{S} \mathcal{W}=\left\{W_{i}: i=1,2, \ldots, 10\right\} .
$$

Since $d_{G}(u)+d_{G}(v)-2 \geq \delta(H) \geq 11$ for every edge $e=u v \in E(G)$, we have either $d_{G}(u) \geq 7$ or $d_{G}(v) \geq 7$. So we have the following fact.

Claim 2.1. For every edge $e=u v \in E(G)$, either $u \in \mathcal{S V}$ or $v \in \mathcal{S V}$. Equivalently, if $u, v \notin \mathcal{S V}$, then $u v \notin E(G)$.

Fig. 1. Petersen graph $P T S_{10}$.
Let $W \in \mathcal{S W}$ and let W^{\prime} be a graph obtained from W by deleting the vertices of degree 1 for $W \in \mathcal{S W}$. Then we have the following claim.

Claim 2.2. If $\alpha^{\prime}(W)=1$, then $W=K_{1, p}$ for some $p \geq 1$. That is, W is a star.
Claim 2.3. If $\alpha^{\prime}(W) \geq 2$, then $E\left(W^{\prime}\right) \neq \emptyset$ and W^{\prime} is 2-edge-connected, and contains some cycle.
Proof. Assume that W is the preimage of some vertex v_{i}, and that $E_{G}[V(W), V(G)-V(W)]=\left\{e_{1}, e_{2}, e_{3}\right\}$, where e_{1}, e_{2}, e_{3} are edges adjacent to v_{i} in $P T S_{10}$. Let $\alpha^{\prime}(W)=t \geq 2$ and let $\left\{z_{i} y_{i}: i=1,2, \ldots, t\right\}$ be a matching of W. Without loss of generality assume that $z_{i} \in \mathcal{S V}$ for $i=1,2, \ldots, t$. If $E\left(W^{\prime}\right)=\emptyset$, then $d_{W}(y)=1$ for $y \in V(W)-\left\{z_{1}, z_{2}, \ldots, z_{t}\right\}$ and $z_{i} z_{j} \notin E(G)$ for $i \neq j$ and $i, j=1,2, \ldots, t$. It is easy to see that at least one edge of $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a cut-edge of G, a contradiction. Thus $E\left(W^{\prime}\right) \neq \emptyset$.

Suppose that W^{\prime} contains a cut-edge $e=z_{1} z_{2}$. Then e is also a cut-edge of W. Let $\left(U_{1}, V_{1}\right)$ be the partition of $V(W)$ such that $E_{W}\left[U_{1}, V_{1}\right]=\{e\}$ and $z_{1} \in U_{1}$ and $z_{2} \in V_{1}$. Since $z_{1}, z_{2} \in V\left(W^{\prime}\right)$, we have $d_{W}\left(z_{1}\right) \geq 2$ and $d_{W}\left(z_{2}\right) \geq 2$. Thus $E\left(G\left[U_{1}\right]\right) \neq \emptyset$ and $E\left(G\left[V_{1}\right]\right) \neq \emptyset$. Note that $E_{G}[V(W), V(G)-V(W)]=\left\{e_{1}, e_{2}, e_{3}\right\}$. We may assume that the number of edges joining U_{1} and $V(G)-V(W)$ is 1 , call it e_{1}. Then $\left\{e_{1}, e\right\}$ is an essential edge-cut in G, a contradiction. So Claim 2.3 holds.

By the definition of contraction, without loss of generality assume that $v_{i} \in V(G)$ for $i=1,2, \ldots, 10$. Let $w_{1}^{i}, w_{2}^{i}, w_{3}^{i} \in N_{W_{i}}\left(V(G)-V\left(W_{i}\right)\right)$ for $i \in\{1,2,3, \ldots, 10\}$ for $\alpha^{\prime}\left(W_{i}\right) \geq 1$. Then we have the following fact.

Claim 2.4. If $\alpha^{\prime}\left(W_{i}\right) \geq 2$, then
(I) $d_{W_{i}}\left(w_{j}^{i}\right) \geq 2$ if $w_{j}^{i}=w_{j+1}^{i}$ for $j=1,2$, and $d_{W_{i}}\left(w_{1}^{i}\right) \geq 2$ if $w_{1}^{i}=w_{3}^{i}$;
(II) there are paths P_{j} with at least two vertices in W_{i} connecting w_{j}^{i} and w_{j+1}^{i} for $j=1,2$ and path P_{3} with at least two vertices in W_{i} connecting w_{1}^{i} and w_{3}^{i}.
Proof. (I) If $w_{1}^{i}=w_{2}^{i}$, then $d_{W_{i}}\left(w_{1}^{i}\right) \geq 2$ since otherwise $\left\{w_{1}^{i} x, w_{3}^{i} v_{j}\right\}$ is a cut-edge set of two edges of G (where $x \in W_{i}, v_{j} \in V\left(P T S_{10}\right)$), a contradiction. Similarly, we can prove other parts of (I).
(II) Let $W_{i}^{\prime}=W_{i}-D_{1}\left(W_{i}\right)$. If $w_{1}^{i}=w_{2}^{i}$, then, by (I), $d_{W_{i}}\left(w_{1}^{i}\right) \geq 2$. Thus $w_{1}^{i} \in W_{i}^{\prime}$. By Claim 2.3, W_{i}^{\prime} is 2-edgeconnected. Let $z w_{1}^{i}$ be an edge of W_{i}^{\prime}. Then there is a cycle C_{i}^{\prime} in W_{i}^{\prime} containing the edge $z w_{1}^{i}$. That is, there is a path P_{1} connecting w_{1}^{i} and w_{2}^{i}. Since G is triangle-free, $\left|V\left(P_{1}\right)\right| \geq 4$.
Assume that $w_{1}^{i} \neq w_{2}^{i}$. If $w_{1}^{i} w_{2}^{i}$ is an edge of W_{i}, then $P_{1}=w_{1}^{i} w_{2}^{i}$ is the path that we required. Thus $w_{1}^{i} w_{2}^{i} \notin E(G)$. Adding the new edge $w_{1}^{i} w_{2}^{i}$ into W_{i}, we obtain that $W_{i}^{\prime \prime}=W_{i}+\left\{w_{1}^{i} w_{2}^{i}\right\}-D_{1}\left(W_{i}\right)$ is 2-edge-connected. Thus $W_{i}^{\prime \prime}$ has a cycle C^{\prime} containing the edge $w_{1}^{i} w_{2}^{i}$. That is, W_{i} has a path P_{1} with at least three vertices connecting w_{1}^{i} and w_{2}^{i}. Similarly, we can prove the other parts of (II). Thus Claim 2.4 is true.

Now we complete the proof of Claim 2.
Let $Z=\left\{v_{i} \mid v_{i}\right.$ is a trivial vertex in $\left.P T S_{10}\right\}$. Then, by claim 2.1, Z is independent. Since $\alpha\left(P T S_{10}\right)=4$, we have $0 \leq|Z| \leq 4$. If $|Z| \geq 1$, then without loss of generality assume that $v_{1} \in Z$. We know that $P T S_{10}-\left\{v_{1}\right\}$ has a spanning cycle C^{\prime}. Since $|Z| \leq 4, C^{\prime}$ contains at least six vertices (such as $v_{5}, v_{6}, \ldots, v_{10}$) which do not belong to Z. Without loss of generality assume that $C^{\prime}=\left(v_{2} v_{5} v_{6} v_{4} v_{10} v_{9} v_{3} v_{8} v_{7} v_{2}\right)$ is a 9 -cycle in PTS $S_{10}-\left\{v_{1}\right\}$ (see Fig. 1). Let M be the set of edges of G that will be defined recursively as follows:

Initialize $M=\emptyset$; then we add edges into M according to the value of $\alpha^{\prime}\left(W_{i}\right)$ for $i=1,2, \ldots, 10$ in the following.
If $\alpha^{\prime}\left(W_{i}\right)=1$, then, by Claim 2.2, $W_{i}=K_{1, p_{i}}$ for some $p_{i} \geq 1$ is a star. Let $V\left(W_{i}\right)=V_{1} \cup V_{2}$ such that $V_{1}=\left\{v_{i}\right\}$ and $\left|V_{2}\right|=p_{i}$. Then v_{i} is the center of the star W_{i}. If $w_{1}^{i}, w_{2}^{i}, w_{3}^{i} \in V_{2}$, then $w_{j}^{i} \neq w_{k}^{i}$ for $\{j, k\} \subset\{1,2,3\}$ and $j \neq k$ since otherwise, for example, $w_{1}^{i}=w_{2}^{i},\left\{v_{i} w_{1}^{i}, v_{i} w_{3}^{i}\right\}$ is an essential cut of G, a contradiction. Similarly, if two vertices of $\left\{w_{1}^{i}, w_{2}^{i}, w_{3}^{i}\right\}$ belong to V_{2}, then the two vertices must be distinct. It is easy to see that there is a $\left(w_{j}^{i}, w_{k}^{i}\right)$ path $P^{i}(j, k)$ containing v_{i} connecting w_{j}^{i} and w_{k}^{i} for $\{j, k\} \subset\{1,2,3\}$ and $j \neq k$, and there is a vertex $v_{i}^{\prime} \in W_{i}$ such that $e_{i}=v i v_{i}^{\prime} \in E\left(W_{i}\right)$ and $v_{i}^{\prime} \notin\left\{w_{1}^{i}, w_{2}^{i}, w_{3}^{i}\right\}$. Note that it is possible that $w_{j}^{i}=w_{k}^{i}=v_{i}$. Let $M=M \cup\left\{e_{i}\right\}$.

If $\alpha^{\prime}\left(W_{i}\right) \geq 2$, then, by claim 2.3, W_{i} is 2-edge-connected and contains some cycle. If $w_{1}^{i}=w_{2}^{i}=w_{3}^{i}$, then $d_{W_{i}}\left(w_{1}^{i}\right) \geq 3$ since otherwise, $N_{W_{i}}\left(w_{1}^{i}\right)$ is an essential edge-cut of G with size at most 2 , a contradiction. Thus there is a $\left(w_{j}^{i}, w_{k}^{i}\right)$-path $P^{i}(j, k)$ containing v_{i} connecting w_{j}^{i} and w_{k}^{i} for $\{j, k\} \subset\{1,2,3\}$ and $j \neq k$, and there is a vertex $v_{i}^{\prime} \in W_{i}$ such that $e_{i}=v_{i} v_{i}^{\prime} \in E\left(W_{i}\right)$ and $v_{i}^{\prime} \notin\left\{w_{1}^{i}, w_{2}^{i}, w_{3}^{i}\right\}$. Note that it is possible that $w_{j}^{i}=w_{k}^{i}=v_{i}$. Let $M=M \cup\left\{e_{i}\right\}$.

If $w_{1}^{i}=w_{2}^{i}=w_{3}^{i}$ is not true, that is, $\left|N_{W_{i}}\left(V(G)-V\left(W_{i}\right)\right)\right| \geq 2$, then it is easy to see that there is a $\left(w_{j}^{i}, w_{k}^{i}\right)$-path $P^{i}(j, k)$ with at least one vertex in W_{i} connecting w_{j}^{i} and w_{k}^{i} for $\{j, k\} \subset\{1,2,3\}$ and $j \neq k$. If $\left|V\left(P^{i}(j, k)\right)\right|=1$, then $w_{j}^{i}=w_{k}^{i}$, and there is a vertex $v_{i}^{\prime} \in W_{i}$ such that $e_{i}=w_{j}^{i} v_{i}^{\prime} \in E\left(W_{i}\right)$ and $v_{i}^{\prime} \notin\left\{w_{1}^{i}, w_{2}^{i}, w_{3}^{i}\right\}$. Let $M=M \cup\left\{e_{i}\right\}$. If $\left|V\left(P^{i}(j, k)\right)\right| \geq 2$, then pick up one edge e_{i} in $P^{i}(j, k)$ such that $e_{i} \in E\left(W_{i}\right)$. Let $M=M \cup\left\{e_{i}\right\}$.

For the convenience of the proof, we can assume that $|Z|=4$ and $Z=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ (and the proofs of other cases are similar). Since $C^{\prime}=\left(v_{2} v_{5} v_{6} v_{4} v_{10} v_{9} v_{3} v_{8} v_{7} v_{2}\right)$ is a 9-cycle in $P T S_{10}-\left\{v_{1}\right\}$ (see Fig. 1), without loss of generality assume that $v_{2} w_{1}^{5}, w_{1}^{6} w_{2}^{5} \in E_{G}\left[V\left(W_{5}\right), G-V\left(W_{5}\right)\right], w_{2}^{5} w_{1}^{6}, v_{4} w_{2}^{6} \in E_{G}\left[V\left(W_{6}\right), G-V\left(W_{6}\right)\right], v_{2} w_{1}^{7}, w_{2}^{7} w_{2}^{8} \in$ $E_{G}\left[V\left(W_{7}\right), G-V\left(W_{7}\right)\right], v_{3} w_{1}^{8}, w_{2}^{7} w_{2}^{8} \in E_{G}\left[V\left(W_{8}\right), G-V\left(W_{8}\right)\right], v_{3} w_{1}^{9}, w_{1}^{10} w_{2}^{9} \in E_{G}\left[V\left(W_{9}\right), G-V\left(W_{9}\right)\right]$, and $w_{2}^{9} w_{1}^{10}, v_{4} w_{2}^{10} \in E_{G}\left[V\left(W_{10}\right), G-V\left(W_{10}\right)\right]$. Let

$$
F_{1}=\left\{v_{2} w_{1}^{5}, w_{2}^{5} w_{1}^{6}, w_{2}^{6} v_{4}, v_{4} w_{2}^{10}, w_{1}^{10} w_{2}^{9}, w_{1}^{9} v_{3}, v_{3} w_{1}^{8}, w_{2}^{8} w_{2}^{7}, w_{1}^{7} v_{2}\right\} .
$$

Then $C=F_{1}+\sum_{i=5}^{10} P^{i}(1,2)$ is a circuit of G and M is a match of G. Note that $|M| \geq 6$ since $|Z| \leq 4$. Let $d_{G}(e)$ denote the value of $d_{G}\left(u_{e}\right)+d_{G}\left(v_{e}\right)-2$ for an edge e of G. Then $d_{G}(e) \geq \delta(H)$, and so $\bar{e}(C) \geq$ $\sum_{e \in M} d_{G}(e)-15+6 \geq 6 \delta(H)-9$. Note that the edges of the Petersen graph $P T S_{10}$ may be counted twice, and 6 is the cardinality of M. This contradiction shows that Claim 2 is true.

Now we complete the proof of our theorem.
Let G^{1} be the graph or multigraph obtained from G by deleting the vertices of degree 1 or 2 and replacing each path $a y b$ where $d_{G}(y)=2$ by the edge $a b$. Since G is essentially 3 -edge-connected, G^{1} is 3-edge-connected. Moreover, to each circuit subgraph C of G^{1} corresponds a circuit of G containing $V(C)$. Since $S \cap B=\emptyset, S$ is contained in $V\left(G^{1}\right)$. Since S is not contained in any circuit of G by Claim $1, S$ is not contained in any circuit of G^{1}. By Lemma 2.1, $|S|=\left|X_{0} \cup X_{I} \cup X_{J}\right| \geq 13$. Let $F=\left\{x_{i} y_{i} \mid 1 \leq i \leq 12\right\}$ such that $P=\left\{x_{i} \mid 1 \leq i \leq 12\right\}$ contains as many vertices of X_{0} as possible, and $Q=\left\{y_{i} \mid 1 \leq i \leq 12\right\}$. Then $P \subset X_{0}$ or $X_{0} \subset P$ or $X_{0}=P$. We suppose that F consists of l paths of length 2 with $0 \leq l \leq 6$ and $12-2 l$ edges of a matching. Then $|P|=12$ and $|Q|=12-l$. We know that Q is independent, that $y_{i} x_{j} \notin E(G)-F$ for any $y_{i} \in Q$ and $x_{j} \in P$ with $1 \leq i<j \leq 12$, and that G is triangle-free. Hence, two different edges of F are joined by at most one edge of G which is of type $x_{i} x_{j}$ or $x_{i} y_{j}$ with $1 \leq i<j \leq 12$. More precisely, we can give an upper bound on the number μ of edges of G which are adjacent to two different edges of F. For a given value of l, this number can be maximum if the l paths of F occur with smaller indices than those of the $12-2 l$ edges of the matching. This is due to the fact that the l vertices y_{i} belonging to paths of length 2 have degree 2 and thus they cannot be adjacent by an edge not in F to any vertex x_{i} with $i<j$. When this condition is fulfilled, there are at most l^{2} edges between the vertices $x_{1}, x_{2}, \ldots, x_{2 l}$ (since the number of edges of a triangle-free graph of order $2 l$ is at most $\left.(2 l)^{2} / 4\right), 2 l(12-2 l)$ edges of type $x_{i} y_{j}$ between the sets $\left\{x_{1}, x_{2}, \ldots, x_{2 l}\right\}$ and $\left\{y_{2 l+1}, y_{2 l+2}, \ldots, y_{12}\right\}$, and $\frac{(12-2 l)(12-2 l-1)}{2}$ edges of type $x_{i} x_{j}$ or $x_{i} y_{j}$ with $i<j$ between the vertices of the set $\left\{x_{2 l+1}, \ldots, x_{12}, y_{2 l+1}, \ldots, y_{12}\right\}$. Then $\mu \leq l^{2}+2 l(12-2 l)+\frac{(12-2 l)(12-2 l-1)}{2}=l-l^{2}+66$.

By Lemma 2.1 and Claim 2, P is contained in a circuit C of G. If P is a subset of X_{0} or $P=X_{0}$, then, counting the edges of $G-F$ adjacent to some edge of F, we find at least $(12-2 l) \delta(H)$ edges adjacent to an edge of a matching of F and $2 l(\delta(H)-1$) edges adjacent to an edge of a path of length 2 (since each vertex
y_{i} on such a path has degree 2 in G). At most $l-l^{2}+66$ of these edges have their two end-vertices in $P \cup Q$ and are thus counted twice. Hence $\bar{e}(C) \geq(12-2 l) \delta(H)+2 l(\delta(H)-1)-\left(l-l^{2}+66\right)+12$, that is, $\bar{e}(C) \geq 12 \delta(H)+l^{2}-3 l-54=6 \delta(H)-14+\left(6 \delta+l^{2}-3 l-40\right)$ since l is an integer between 0 and 6 , a contradiction. Thus X_{0} is a subset of P and $P \neq X_{0}$. It follows that $p=\left|X_{0}\right|<12$. If $l \geq 3$, then we easily prove that $\bar{e}(C) \geq 2 l \delta(H)-l^{2} \geq 6 \delta-14$, a contradiction. Thus $l \leq 2$.

If p is even, assume that

$$
P^{\prime}=X_{0} \cup\left\{x_{p+1}, y_{p+1}, \ldots, x_{p+\left(6-\frac{p}{2}\right)}, y_{p+\left(6-\frac{p}{2}\right)}\right\}
$$

and

$$
F=\left\{x_{i} y_{i} \left\lvert\, 1 \leq i \leq 6+\frac{p}{2}\right.\right\} .
$$

Then $\left|P^{\prime}\right|=12$ and F consists of l paths of length 2 with $0 \leq l \leq 2$ and $(p-2 l)+\left(6-\frac{p}{2}\right)$ edges of a matching. If p is odd, assume that

$$
P^{\prime}=X_{0} \cup\left\{x_{p+1}, y_{p+1}, \ldots, x_{p+(6-(p+1) / 2)}, y_{p+(6-(p+1) / 2)}\right\}
$$

and

$$
F=\left\{x_{i} y_{i} \left\lvert\, 1 \leq i \leq 5+\frac{p-1}{2}\right.\right\}
$$

Then $\left|P^{\prime}\right|=11$, and F consists of l paths of length 2 with $0 \leq l \leq 2$ and $(p-2 l)+\left(6-\frac{p+1}{2}\right)$ edges of a matching. Recall that $X=\left\{x_{p+1}, \ldots, x_{q}\right\}$ and $Y=\left\{y_{p+1}, \ldots, y_{q}\right\}$ and X_{0}, X and Y are pairwise disjoint. Thus $P^{\prime} \subset X_{0} \cup X \cup Y$.

Thus P^{\prime} is contained in a circuit of G by Lemma 2.1 since $\left|P^{\prime}\right| \leq 12$. Now we estimate the upper bound on the number μ. It is easy to see that there are at most l^{2} edges between the vertices $x_{1}, x_{2}, \ldots, x_{2 l}$ (since the number of edges of a triangle-free graph of order $2 l$ is at most $\left.(2 l)^{2} / 4\right)$.

If p is even, then $2 l(6+p / 2-2 l)$ edges of type $x_{i} y_{j}$ between the sets $\left\{x_{1}, x_{2}, \ldots, x_{2 l}\right\}$ and $\left\{y_{2 l+1}, y_{2 l+2}, \ldots, y_{p+(6-p / 2)}\right\}$, and $\frac{(6+p / 2-2 l)(6+p / 2-2 l-1)}{2}$ edges of type $x_{i} x_{j}$ or $x_{i} y_{j}$ with $i<j$ between the vertices of the set $\left\{x_{2 l+1}, \ldots, x_{p+(6-p / 2)}, y_{2 l+1}, \ldots, y_{p+(6-p / 2)}\right\}$. Then

$$
\mu \leq l^{2}+2 l\left(6+\frac{p}{2}-2 l\right)+\frac{(p+p / 2-2 l)(p+p / 2-2 l-1)}{2}=l-l^{2}+15+\frac{11 p}{4}+\frac{p^{2}}{8}
$$

So

$$
\bar{e}(C) \geq\left(6+\frac{p}{2}-2 l\right) \delta(H)+2 l(\delta(H)-1)-\left(l-l^{2}+15+\frac{11}{4} p+\frac{p^{2}}{8}\right)+6+\frac{p}{2} .
$$

That is,

$$
\begin{aligned}
\bar{e}(C) & \geq 6 \delta(H)+\frac{p}{2} \delta(H)+l^{2}-9-\frac{9}{4} p-\frac{p^{2}}{8}-3 l \\
& =6 \delta(H)-9+\frac{p}{2}\left(\delta(H)-\frac{p}{4}-\frac{9}{2}\right)+l^{2}-3 l \geq 6 \delta(H)-11
\end{aligned}
$$

Note that $l^{2}-3 l \geq-2$ for $l \leq 2$ and $\delta(H)-\frac{p}{4}-\frac{9}{2} \geq \frac{44-10-18}{4}=4$ for $p<12$ even and $\delta(H) \geq 11$. Similarly, if p is odd, then we also get a contradiction. Thus the proof of Theorem 1.7 is completed.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
[2] Z.-H. Chen, H.-J. Lai, X. Li, D. Li, J. Mao, Eulerian subgraphs in 3-edge-connected graphs and hamiltonian line graphs, J. Graph Theory 42 (2003) 308-319.
[3] O. Favaron, P. Fraisse, Hamiltonicity and minimum degree in 3-connected claw-free graphs, J. Combin. Theory Ser. B 82 (2001) $297-305$.
[4] F. Harary, C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-709.
[5] H.-J. Lai, Y. Shao, M. Zhan, Hamiltonicity in 3-connected claw-free graphs, J. Combin. Theory Ser. B 96 (2006) $493-504$.
[6] MingChu Li, Hamiltonian properties of claw-free graphs, Ph.D. Thesis, University of Toronto, 1998.
[7] MingChu Li, Cycles and minimum degrees in 3-connected claw-free graphs, 2006 (Preprint).
[8] M.M. Matthews, D.P. Sumner, Longest cycles paths in $K_{1,3}$-free graphs, J. Graph Theory 9 (1985) 269-277.
[9] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217-224.

[^0]: ${ }^{*}$ Supported by the Natural Science Foundation of China under grant No. 60673046 and 90715037 (M. Li) and 10671014 (L. Xiong), by the Natural Science Foundation Project of Chongqing, CSTC under grant No. 2007BA2024 (M. Li) and by the Excellent Young Scholars Research Fund of Beijing Institute of Technology (No. 000Y07-28) (L. Xiong).

 * Corresponding author.

 E-mail addresses: li_mingchu@yahoo.com (M. Li), lmxiong@eyou.com (L. Xiong).

