
Georgia State University
ScholarWorks @ Georgia State University

Mathematics Dissertations Department of Mathematics and Statistics

5-11-2015

Homeomorphically Irreducible Spanning Trees,
Halin Graphs, and Long Cycles in 3-connected
Graphs with Bounded Maximum Degrees
Songling Shan

Follow this and additional works at: https://scholarworks.gsu.edu/math_diss

This Dissertation is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks @ Georgia State
University. It has been accepted for inclusion in Mathematics Dissertations by an authorized administrator of ScholarWorks @ Georgia State
University. For more information, please contact scholarworks@gsu.edu.

Recommended Citation
Shan, Songling, "Homeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in 3-connected Graphs with
Bounded Maximum Degrees." Dissertation, Georgia State University, 2015.
https://scholarworks.gsu.edu/math_diss/23

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71426166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_diss?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/math_diss?utm_source=scholarworks.gsu.edu%2Fmath_diss%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu


Homeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in

3-connected Graphs with Bounded Maximum Degrees

by

Songling Shan

Under the Direction of Guantao Chen, PhD

ABSTRACT

A tree T with no vertex of degree 2 is called a homeomorphically irreducible tree (HIT)

and if T is spanning in a graph, then T is called a homeomorphically irreducible spanning

tree (HIST). Albertson, Berman, Hutchinson and Thomassen asked if every triangulation

of at least 4 vertices has a HIST and if every connected graph with each edge in at least

two triangles contains a HIST. These two questions were restated as two conjectures by

Archdeacon in 2009. The first part of this dissertation gives a proof for each of the two



conjectures. The second part focuses on some problems about Halin graphs, which is a

class of graphs closely related to HITs and HISTs. A Halin graph is obtained from a plane

embedding of a HIT of at least 4 vertices by connecting its leaves into a cycle following the

cyclic order determined by the embedding. And a generalized Halin graph is obtained from

a HIT of at least 4 vertices by connecting the leaves into a cycle. Let G be a sufficiently

large n-vertex graph. Applying the Regularity Lemma and the Blow-up Lemma, it is shown

that G contains a spanning Halin subgraph if it has minimum degree at least (n+ 1)/2 and

G contains a spanning generalized Halin subgraph if it is 3-connected and has minimum

degree at least (2n + 3)/5. The minimum degree conditions are best possible. The last

part estimates the length of longest cycles in 3-connected graphs with bounded maximum

degrees. In 1993 Jackson and Wormald conjectured that for any positive integer d ≥ 4, there

exists a positive real number α depending only on d such that if G is a 3-connected n-vertex

graph with maximum degree d, then G has a cycle of length at least αnlogd−1 2. They showed

that the exponent in the bound is best possible if the conjecture is true. The conjecture is

confirmed for d ≥ 425.

INDEXWORDS: Homeomorphically irreducible spanning tree, Halin graph, Genaralized
Halin graph, 3-connected graphs, Tutte decomposition.
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PART 1

INTRODUCTION

Finding longest cycles, in particular a hamiltonian cycle in a graph, is one of a few

fundamental yet very difficult problems in graph theory. In fact, to determine whether a

graph is hamiltonian is a classic NP-complete problem. Moreover, Karger, Motwani, and

Ramkumar [35] showed that, unless P = NP, it is impossible to find, in polynomial time, a

path of length n − nǫ in an n-vertex hamiltonian graph for any ǫ < 1. On the other hand,

inspired by classic results obtained by Dirac [19] in 1954 and Tutte [51] in 1956, respectively,

many sufficient conditions for hamiltonian graphs have been obtained. For examples, see [25].

Accompanying with each of these sufficient conditions, various stronger results such as being

hamiltonian connected and pancyclic have also been established.

As an antithetical class to hamiltonian paths/cycles, homeomorphically irreducible

graphs, graphs which have no vertex of degree 2, were introduced by graph theorists in

1970s. A homeorphically irreducible tree is called a HIT, and a homeomorphically irreducible

spanning tree of a graph is called a HIST of the graph. As graphs of at most three vertices

contain no HIST, we assume the graphs in consideration are of at least four vertices when

we considering HISTs. In the first part of this dissertation, we show the existence of a HIST

in surface triangulations and connected graphs with each edge contained in at least two

triangles. This confirms the two conjectures raised by Albertson, Berman, Hutchinson, and

Thomassen [1].

Another class of graphs which is closely related to HITs and HISTs is the class of Halin

graphs. Let T be a HIT of at least 4 vertices. Then a Halin graph H is obtained from a

plane embedding of T by connecting the leaves into a cycle C following the cyclic order

determined by the plane embedding. In this notation, we may write the Halin graph as

H = T ∪ C. A wheel is an example of a Halin graph. Since a HIT of at least 4 vertices
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contains two leaves sharing the same parent, a Halin graph contains a triangle, and thus

is not bipartite. Moreover, cubic Halin graphs are in one-to-one correspondence (via weak

duality) with the plane triangulations of the disc. Halin constructed Halin graphs in [27]

for the study of minimally 3-connected graphs. Lovász and Plummer named such graphs as

Halin graphs in their study of planar bicritical graphs [40], which are planar graphs having

a 1-factor after deleting any two vertices. It was conjectured by Lovász and Plummer [40]

that every 4-connected plane triangulation contains a spanning Halin subgraph (disproved

in [10]). Although the conjecture is not true, it inspires new questions and problems. We

may ask, can we find any other class of graphs which contain a spanning Halin subgraph or

a spanning generalized Halin subgraph? The second part of this dissertation considers the

existence of spanning Halin subgraphs and spanning generalized Halin subgraphs in graphs

with large minimum degree. Halin graphs possess very nice hamiltonicity properties. Hence

finding the existence of a spanning Halin subgraph can be viewed as a generalization of

finding hamiltonian paths/cycles in graphs.

Finally, in the last part, the problem of finding longest cycles in 3-connected graphs

with bounded maximum degrees is investigated. In 1993 Jackson and Wormald conjectured

that for any positive integer d ≥ 4, there exists a positive real number α depending only on

d such that if G is a 3-connected n-vertex graph with maximum degree d, then G has a cycle

of length at least αnlogd−1 2. They showed that the exponent in the bound is best possible if

the conjecture is true. The conjecture is confirmed for d ≥ 425.

Throughout this report, we limit our attention to simple and connected graphs, and

further assume graphs to be finite unless we specify otherwise; and refer to Bondy and

Murty [7] for notations and terminologies used but not defined. The vertex set and edge

set of a graph G are denoted by V (G) and E(G), respectively. For S ⊆ V (G), let G[S]

denote the subgraph of G induced by S. Similarly, G[F ] is the subgraph induced on F if

F ⊆ E(G). The minimum degree and maximum degree of G are denoted by δ(G) and ∆(G),

respectively. Other specified notations are introduced in each chapters.
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PART 2

THE EXISTENCE OF HISTS IN SURFACE TRIANGULATIONS AND

CONNECTED GRAPHS WITH EACH EDGE IN AT LEAST TWO

TRIANGLES

Recall that a tree is called homeomorphically irreducible if it does not contain vertices of

degree 2 and a homeomorphically irreducible spanning tree of a graph G is called a HIST of G.

Albertson, Berman, Hutchinson, and Thomassen [1] obtained various sufficient conditions

for a graph to contain a HIST. They also showed that it is NP -complete to decide whether a

graph G contains a HIST. Hill [28] conjectured that every triangulation of the plane contains

a HIST. Malkevitch [41] conjectured that the same result hold for near-triangulations of the

plane (2-connected plane graphs such that all, but at most one, faces are triangles). Albert-

son, Berman, Hutchinson, and Thomassen [1] confirmed the conjecture. Furthermore, they

asked whether every graph that triangulates some surface has a HIST, and more generally if

every connected graph with each edge contained in two triangles contains a HIST. To estab-

lish a strategy to tackle the problem, Ellingham [20] asked whether every triangulation of a

given surface with sufficiently large representativity contains a HIST. Huneke observed that

every triangulation of the projective plane contains a spanning plane subgraph such that

every face is a triangle with one possible exception, so every triangulation of the projective

plane contains a HIST. Davidow, Hutchinson, and Huneke [18] showed that every triangu-

lation of the torus contains a HIST. In 2009, Achdeacon [4] (Chapter 15) restated the above

two questions as two conjectures.

Conjecture 2.1. Every surface triangulation contains a HIST.

Conjecture 2.2. Every connected graph with each edge in at least two triangles contains a

HIST.

We confirm the two conjectures in this Chapter. The proofs can also be found in [11]
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and [13].

2.1 Proof of Conjecture 2.1

A graph G is locally connected if for every vertex v ∈ V (G), the subgraph induced by

the neighborhood N(v) is connected. Ringel [46] showed that every triangulation (includes

orientable and nonorientable ) is a connected and locally connected graph. In this section, we

prove the following much more general result, which confirms the conjecture by Archdeacon

and answers the first question asked by Albertson, Berman, Hutchinson, and Thomassen

positively.

Theorem 2.1.1. Every connected and locally connected graph with order at least four con-

tains a HIST.

Corollary 2.1.1. Let Π be a surface (orientable or nonorientable). Then every triangulation

of Π with at least four vertices contains a HIST.

Let G be a graph. Write v ∈ G if v ∈ V (G) and similarly e ∈ G if e ∈ E(G).

2.1.1 Proof of Theorem 2.1.1

Let k be a positive integer. A graph G is called a k-tree if there is an ordering v1 ≺ v2 ≺
· · · ≺ vn of V (G) such that (i) G[{v1, v2, . . . , vk}] is a complete graph and (ii), for each i > k,

N(vi) ∩ {v1, v2, . . . , vi−1} induces a clique of order k. Clearly, 1-trees are the same as trees.

Hwang, Richards, and Winter [31] proved that 2-trees are maximal series-parallel graphs.

As shown in Lemma 2.2 and 2.3, we observe that every 2-tree with more than three vertices

contains a HIST. However, not every connected and locally connected graph contains a 2-

tree as a spanning subgraph. Let Wn := K1 + Cn be a wheel of order n + 1 and let Gn be

obtained from Wn by adding n new vertices such that each is adjacent to a distinct pair of

two consecutive vertices on the cycle Cn. It is not difficult to verify that Gn does not contain

a spanning 2-tree. G4 is depicted below.
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Figure (2.1) G4, a locally connected graph without a spanning 2-tree

Let G be a graph and v be a vertex not in V (G). We write H = G ⊕ v if there

exist two distinct vertices u1, u2 ∈ G such that V (H) = V (G) ∪ {v} and E(H) = E(G) ∪
{u1v, u2v, u1u2}. Note that the edge u1u2 may already exist in G. We let P (v) := {u1, u2}
and call u1 and u2 the parents of v.

Definition 2.1.1. A graph T of order n ≥ 3 is called a weak 2-tree (W2-tree) if there is an

ordering ≺: v1 ≺ v2 ≺ · · · ≺ vn of vertices of T and a sequence of graphs G3 ⊂ G4 ⊂ · · · ⊂
Gn = T such that the following properties hold.

(1) G3 = T [{v1, v2, v3}] ∼= K3, and

(2) for each i = 3, 4, . . . , n− 1, Gi+1
∼= Gi ⊕ vi+1.

In addition, we call the ordering ≺ a W2-tree ordering of T .

Clearly, every 2-tree is a W2-tree. However, the converse is not true, for example, the

above graphs Gn are W2-trees but not 2-trees.

Given a W2-tree with a W2-tree ordering ≺, if we shift a degree 2 vertex to the end

and keep the remaining ordering unchanged, we obtain another W2-tree ordering. So, the

following result holds.

Lemma 2.1.1. Let G be a W2-tree with n ≥ 4 vertices. Let w ∈ G be a degree 2 vertex and

N(w) = {u, v}. Then either G− w or G− w − uv is a W2-tree.
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Lemma 2.1.2. Let T be W2-tree with n ≥ 4 vertices. Then, there exist two vertices u and

v such that T = (T ′ ⊕ u)⊕ v and N [u] ∩ N(v) 6= ∅, where T ′ is a W2-tree, K3, or K2. In

this case, {u, v} is called a removable pair of T .

Proof. We prove Lemma 2.1.2 by applying induction on n = |V (G)|. Since K−
4 (K4

minus an edge) is the unique W2-tree with 4 vertices, Lemma 2.1.2 holds for n = 4.

Suppose n ≥ 5 and that Lemma 2.1.2 holds for all W2-trees with less than n vertices.

Let T be a W2-tree with n vertices and w be the last vertex in a W2-ordering of T . Moreover,

we assume that T = T ′ ⊕w, where T ′ is a W2-tree with n− 1 vertices. Suppose that {u, v}
is a removable pair of T ′ and T ′ = (T ∗ ⊕ u) ⊕ v, where T ∗ is a W2-tree, K3, or K2. We

complete the proof by considering the following five cases regarding N(w) ∩ {u, v}.

• if N(w) ∩ {u, v} = ∅, then T = [(T ∗ ⊕ w)⊕ u]⊕ v, so {u, v} is a removable pair of T ;

• if N(w) ∩ {u, v} = {v}, then T = [(T ∗ ⊕ u)⊕ v]⊕ w, so {v, w} is a removable pair of

T ;

• if N(w) ∩ {u, v} = {u} and uv /∈ E(T ′), then T = [(T ∗ ⊕ v) ⊕ u] ⊕ w, so {u, w} is a

removable pair of T ;

• if N(w) ∩ {u, v} = {u} and uv ∈ E(T ′), then T = [(T ∗ ⊕ u) ⊕ v] ⊕ w, so {v, w} is a

removable pair of T ;

• if N(w) = {u, v}, then T = [(T ∗ ⊕ u)⊕ v]⊕ w, so {v, w} is a removable pair of T .

�

Lemma 2.1.3. A W2-tree with at least 4 vertices contains a HIST.

Proof. Let G be a W2-tree with n ≥ 4 vertices. We proceed by induction on n. If

n = 4, then G = K−
4 , which contains a spanning star. If n = 5, by case analysis, we can

show that G contains a spanning star, so a HIST .
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Assume n > 6 and let G be a W2-tree with n vertices. By Lemma 2.1.2, let {u, v} be a

removable pair of G and assume G = (G′⊕u)⊕v, where G′ is a W2-tree with n−2 vertices.

By the induction hypothesis, G′ contains a HIST, say, T ′. Since {u, v} is a removable pair

of G, N [u] ∩ N(v) 6= ∅. If uv /∈ E(G), then N(u) ∩ N(v) 6= ∅; if uv ∈ E(G), by the

definition of ⊕, the other neighbor of v is adjacent to u. In either case, there exists a vertex

w ∈ N(u) ∩N(v). Then, T := T ′ ∪ {wu,wv} is a HIST of G. �

Lemma 2.1.4. Every connected and locally connected graph with at least three vertices con-

tains a spanning W2-tree.

Proof. Let G be a connected and locally connected graph of order n ≥ 3. Since every

triangle is a W2-tree, G contains W2-trees as subgraphs. Let T ⊆ G be a W2-tree such that

|V (T )| is maximum. We claim that V (T ) = V (G). Otherwise, W := V (G) − V (T ) 6= ∅.
Since G is connected, there is a vertex v ∈ V (T ) such that NW (v) 6= ∅, where NW (v) is the

set of neighbors of v in W . Since T is a W2-tree, N(v)∩ V (T ) ⊇ NT (v) 6= ∅. Since G[N(v)]

is connected, there is an edge uw ∈ E(G) with u ∈ NT (v) and w ∈ NW (v). Then, T ⊕ w is

a W2-tree containing more vertices than T , where P (w) = {u, v}. Since uv, wv, uw ∈ E(G)

and T ⊆ G, we have T ⊕ w ⊆ G, which contradicts the maximality of |V (T )|. �

So, the proof of Theorem 2.1.1 is completed.

2.2 Proof of Conjecture 2.2

We now answer the second question raised by Albertson et al. positively as follows,

whose proof will be given in the next section. We would like to mention that the main proof

technique used in the proof is similar to that for Conjecture 2.1 in the first section. However,

the induction proceeded on the spanning Θ−patch graph H (we will give the definition very

shortly) of G is not straightforward. In fact, when H has property Q2(defined in subsection

2), we can not directly proceed the induction. The new approach in dealing with this case,

looks easy and natural, yet really took efforts to come out.
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Theorem 2.2.1. Let G be a graph with every edge in at least two triangles. Then G contains

a HIST.

2.2.1 Proof of Theorem 2.2.1

The proof consists of three main components: (1) define a class of graphs called Θ-

patch graphs(we will define this class of graphs very shortly), and show that every graph

with each edge in at least two triangles contains a spanning Θ-patch graph; (2) prove a

rearrangeability of Θ-patch graphs; and (3) show every Θ-patch graph contains a HIST.

Throughout this section, a graph isomorphic to K−
4 (K4 with exactly one edge removed) is

called a Θ-graph.

Definition 2.2.1. Given a graph H and a vertex v /∈ V (H), let H∆v be a graph with

V (H∆v) = V (H) ∪ {v} and E(H∆v) = E(H) ∪ {u1v, u2v, u1u2}, where u1, u2 ∈ V (H) are

two distinct vertices. That is, H∆v is obtained from H by adding a new vertex v and edges

u1v, u2v, and u1u2 if u1u2 /∈ E(H). We name such an operation ∆-operation and denote by

A(v) := {u1, u2}, the set of attachments of v on H. Moreover, we let A[v] := A(v) ∪ {v}.
Note that u1u2 may or may not be an edge of H .

Definition 2.2.2. Given a graph H and a Θ-graph F with a specified degree 3 vertex, let

HΘF be the graph obtained by identifying the specified vertex of F with a vertex u in H.

Let A(F ) = {u} be the set of the attachment of F on H. Such an operation is called a

Θ-operation.

We use ⊕ to denote either a ∆-operation or a Θ−operation.

Definition 2.2.3. A graph G is called a Θ-patch graph if there exists a subgraph sequence

G1 ⊂ G2 ⊂ · · · ⊂ Gs = G with s > 2 such that

(1) G1
∼= K3, and

(2) Gi+1 is obtained from Gi by a ⊕-operation for each i (1 6 i 6 s− 1 ).

By the above definition, a Θ-patch graph has at least 4 vertices, and a Θ-patch graph

with exactly 4 vertices is a Θ-graph.
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uu

v

u1

u2

H H

Figure (2.2) Θ-graph, ∆-operation, Θ-operation

Lemma 2.2.1. A connected graph with every edge in at least two triangles contains a Θ-patch

graph as a spanning subgraph.

Proof. Let G be a graph such that every edge is in at least two triangles. Since

two triangles sharing a common edge induce a Θ-graph, G contains a Θ-graph, which is

also a Θ-patch graph by Definition 2.2.3. Let H ⊂ G be a Θ-patch graph such that

|V (H)| is maximum. If V (H) = V (G), the proof is completed. So assume the contrary:

W = V (G) − V (H) 6= ∅. Since G is connected, there is an edge uw ∈ E(G) such that

u ∈ V (H) and w ∈ W . Let v1uwv1 and v2uwv2 be two distinct triangles containing uw.

If vi ∈ V (H) for some i = 1, 2, then H∆w with A(w) = {u, vi} is a Θ-patch graph larger

than H , contradicting the maximality of H . Hence, we have both v1, v2 ∈ W . Clearly,

G[{u, v1, v2, w}], the subgraph induced on {u, v1, v2, w}, contains a Θ-graph F . So HΘF

with A(F ) = {u} is a Θ-patch graph larger than H , contradicting the maximality of H .

It will be shown in the following lemma that the ordering of subgraph sequence in the

definition of Θ-patch graphs can be rearranged to preserve a nice recursive property.

Lemma 2.2.2. Let G be a Θ-patch graph of order n > 5. Then there exist a subgraph H

which is either a Θ-patch graph or isomorphic to K3 such that one of the following properties
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holds:

P : G = (H∆x1)∆x2 and A(x2) ∩ A[x1] 6= ∅;

Qk (0 ≤ k ≤ 3) : There exist vertices x1, x2, · · · , xk such that

G = (HΘF )∆x1∆x2 · · ·∆xk (G = HΘF when k = 0) with A[xi] ∩ A[xj ] = ∅ for all

i 6= j and A(xi) ∩ (V (F )− V (H)) 6= ∅ for i = 1, 2, · · · , k.
Proof. If n = 5, from the definition of Θ-patch graphs, there exist two vertices x1 and

x2 such that G = K3∆x1∆x2 and A(x2)∩A[x1] 6= ∅, so P holds. We assume that n > 6 and

Lemma 2.2.2 holds for graphs with order < n.

By the definition of Θ-patch graphs, G = H∗ ⊕ F ∗, where H∗ is a Θ-patch graph, and

F ∗ is either a single vertex or a Θ-graph. If F ∗ is a Θ-graph, then Q0 holds. So, we assume

F ∗ is a single vertex graph, and say V (F ∗) = {w}. By applying Lemma 2.2.2 to H∗, we

divide the remaining proof into two cases below.

Case P . H∗ = (H∆x1)∆x2 and A(x2) ∩ A[x1] 6= ∅.
If A(w)∩ {x1, x2} = ∅, let H ′ := H∆w, which is a Θ-patch graph and a subgraph of G.

Then G = (H ′∆x1)∆x2, so P holds.

Suppose A(w) ∩ {x1, x2} 6= ∅. If x1 ∈ A(x2) or x2 ∈ A(w), H ′ := H∆x1 ⊂ G is a Θ-

patch graph. Then, we have G = (H ′∆x2)∆w and either x1 ∈ A(w)∩A[x2] or x2 ∈ A(w), so

P holds. We may assume that x1 /∈ A(x2) and x2 /∈ A(w). In this case, we have x1 ∈ A(w).

Let H ′ = H∆x2, which is a Θ-patch graph and a subgraph of G. Then G = H ′∆x1∆w, so

P holds.

Case Qk. H∗ = (HΘF )∆x1∆x2 · · ·∆xk, where F is a Θ-graph and xi is a vertex in H∗.

If A(w) ∩ ((V (F )− V (H)) ∪ {x1, x2, · · · , xk}) = ∅, then

G = ((H∆w)ΘF )∆x1∆x2 · · ·∆xk,

so Qk holds. If A(w) ∩ A[xi] 6= ∅, w.l.o.g., say A(w) ∩A[xk] 6= ∅, then

G = (HΘF∆x1∆x2 · · ·∆xk−1)∆xk∆w,



11

so P holds. Hence, we assume A(w) ∩ (V (F ) − V (H)) 6= ∅ and A(w) ∩ A[xi] = ∅ for

i = 1, 2, · · · , k. Under this assumption together with the assumption that A[xi] ∩A[xj ] = ∅
for i 6= j and A(xi) ∩ (V (F )− V (H)) 6= ∅ for i = 1, 2, · · · , k, we have k ≤ 2. Then, we have

G = (HΘF )∆x1∆x2 · · ·∆xk∆w,

so Qk+1 holds.

Lemma 2.2.3. Every Θ-patch graph contains a HIST.
Proof. We use induction on n = |V (G)|. When n = 4, G ∼= K−

4 is a Θ-graph. Clearly,

G contains a HIST. Suppose n > 5, and assume that Lemma 2.2.3 holds for graphs of order

< n. We divide the remaining proof into five cases according to the five properties given in

Lemma 2.2.2.

If G has property Qi for some i = 0, 1, 2 or 3, we follow the notations given in

Lemma 2.2.2, and assume that A(F ) = {u} and V (F ) − V (H) = {v1, v2, v3}. If G has

property P then u is a specially selected vertex in H . We let T be a HIST of H if H is a

Θ-patch graph, and let T ∼= P3 with dT (u) = 2 if H ∼= K3. The case that G satisfies property

Q2 is the most complicated one, and we can not straightforwardly play induction on it, so

we defer this case to the end.

Property P holds. Suppose that G = H∆x1∆x2 and A(x2) ∩ A[x1] 6= ∅.
In this case, we first show that N(x1) ∩ N(x2) ∩ V (H) 6= ∅. This is clearly true if

A(x1) ∩ A(x2) 6= ∅, so we may assume x1 ∈ A(x2). Let u be the other vertex in A(x2).

Since E(G) = E((H∆x1)∆x2) = E(H∆x1)∪ {x2u, x2x1, ux1}, we have ux1 ∈ E(G), that is,

u ∈ N(x1) ∩N(x2).

Let u ∈ N(x1) ∩N(x2). Then, it is readily seen that T ∪ {ux1, ux2} is a HIST of G.

Property Q0 holds. Let G = HΘF .

In this case, T ∪ {uv1, uv2, uv3} is a HIST of G.

Property Q1 holds. Let G = (HΘF )∆x1, and assume, without loss of generality, v1 ∈
A(x1) ∩ (V (F )− V (H)), and let w1 be another vertex of A(x1).
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In this case, T ∪{w1v1, w1x1, uv2, uv3} is a HIST of G regardless of whether w1 ∈ V (F )

or not.

Property Q3 holds. Let G = (HΘF )∆x1∆x2∆x3 and assume that A(xi) = {vi, wi} for

each i = 1, 2, 3 with w1, w2, w3 ∈ V (H).

By the definition of ∆-operation, all three edges w1v1, w2v2, w3v3 are in E(G). Then,

T ∪ {w1x1, w1v1, w2x2, w2v2, w3x3, w3v3} is a HIST in G.

Property Q2 holds. Let G = (HΘF )∆x1∆x2 such that A(xi) ∩ (V (F ) − V (H)) 6= ∅ for

each i = 1, 2, and A[x2] ∩A[x1] = ∅. Assume that A(xi) = {vi, wi} for i = 1, 2.

We may assume wi 6= u for each i = 1, 2; otherwise, say w1 = u, then T ∪
{w2v2, w2x2, uv1, ux1, uv3} is a HIST of G. Since A[x2] ∩ A[x1] = ∅, we may assume that

w1 ∈ V (H) − {u}. Moreover, under the assumption that w1 ∈ V (H) − {u}, let notation

be chosen so that v1 is the degree 2 vertex in F − u whenever it is possible, that is, if

w2 ∈ V (H)− {u} and v2 is the degree two vertex in F − u, we rename x2, v2 and w2 as x1,

v1 and w1, and vice versa.

Let z /∈ V (G) be a vertex and G′ := H∆z with A(z) = {u, w1}. Clearly, uw1 ∈ E(G′)

although uw1 may not be in E(G). Clearly, G′ is a Θ-patch graph and |V (G′| < n, so it

contains a HIST T ′. Since dG′(z) = 2, z is a degree 1 vertex of T ′. So, we have either

w1z ∈ E(T ′) or uz ∈ E(T ′) but not both. Let TH := T ′ − z.

Subcase 1. uw1 /∈ E(T ′) or uw1 ∈ E(T ′) ∩ E(G).

Note that dT ′(z) = 1. If uz ∈ E(T ′), let T ∗ := TH ∪ {uv3, w1v1, w1x1, w2v2, w2x2}, as
depicted in Figure 2.3. It is routine to check that T ∗ is a spanning tree of G and the following
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HH

Figure (2.3) uw1 /∈ E(T ′) or uw1 ∈ E(T ′) ∩ E(G)

equalities/inequalities hold.

dT ∗(u) = dT ′(u)− |{uz}|+ |{uv3}| = dT ′(u) 6= 2

dT ∗(w1) = dT ′(w1) + |{w1v1, w1x2}| = dT ′(w1) + 2 6= 2

dT ∗(w2) =







dT ′(w2) + |{w2v2, w2x2}| = dT ′(w2) + 2 6= 2, if w2 ∈ V (H);

|{w2v2, w2x2, uv3}| = 3, if w2 = v3.

dT ∗(x) = dT ′(x) 6= 2 for all other vertices x ∈ V (H), and

dT ∗(x) 6= 2 for each vertex x ∈ {v1, v2, v3, x1, x2}.

Consequently, T ∗ is a HIST of G.

If w1z ∈ E(T ′), let T ∗ := TH ∪ {w1x1, uv1, uv3, w2v2, w2x2}, as depicted in Figure 2.3.

(w2 = v3 may occur.) As in the previous case, we can show that T ∗ is a HIST of G.
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Subcase 2. uw1 ∈ E(T ′)− E(G).

In this case, T1 := TH − uw1 has exactly two components. We construct a HIST of G

from T1 according to whether uz ∈ E(T ′) or w1z ∈ E(T ′).

If uz ∈ E(T ′), let T ∗ = T1∪{uv3, uv1, v1w1, v1x1, w2v2, w2x2}, as depicted in Figure 2.4.

It is routine to check that T ∗ is a spanning tree of G and the following equalities/inequalities

hold.

dT ∗(u) = dT ′(u)− |{uw1, uz}|+ |{uv1, uv3}| = dT ′(u) 6= 2

dT ∗(w1) = dT ′(w1)− |{uw1}|+ |{v1w1}| = dT ′(w1) 6= 2

dT ∗(w2) =







dT ′(w2) + |{w2v2, w2x2}| = dT ′(w2) + 2 6= 2, if w2 ∈ V (H);

|{w2v2, w2x2, uv3}| = 3, if w2 = v3.

dT ∗(x) = dT ′(x) 6= 2 for all other vertices x ∈ V (H), and

dT ∗(x) 6= 2 for each vertex x ∈ {v1, v2, v3, x1, x2}.

So, T ∗ is a HIST of G.

In the case w1z ∈ E(T ′), if v1v3 ∈ E(G), let

T ∗ = T1 ∪ {w1x1, w1v1, v1u, v1v3, w2v2, w2x2},

as depicted in Figure 2.4. As in the previous case, we can show that T ∗ is a HIST of G.

To complete the proof, we show that the vertex v1 can be chosen such that v1v3 ∈ E(G). If

v1v3 /∈ E(G), then both v1 and v3 are degree 1 vertices in F − u ∼= P3. So, v2 is the degree 2

vertex in F −u. If w2 ∈ V (H), we would pick x2 as x1 and v2 as our v1 in the very beginning.

So, w2 = v3. In this case, we can simply swap v2 and v3(also w2) to ensure that v1v3 ∈ E(G).

Clearly, the combination of the above three Lemmas gives Theorem 2.2.1.
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Figure (2.4) uw1 ∈ E(T ′)− E(G)
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PART 3

MINIMUM DEGREE CONDITION FOR SPANNING HALIN GRAPHS

AND SPANNING GENERALIZED HALIN GRAPHS

3.1 Notations and definitions

We consider simple and finite graphs only. Let G be a graph. Denote by e(G) the car-

dinality of E(G). Let v ∈ V (G) be a vertex and S ⊆ V (G) a subset. The notation ΓG(v, S)

denotes the set of neighbors of v in S, and degG(v, S) = |ΓG(v, S)|. We let ΓG(v, S) =

S − ΓG(v, S) and degG(v, S) = |ΓG(v, S)|. Given another set U ⊆ V (G), define ΓG(U, S) =

∩u∈UΓG(u, S), degG(U, S) = |ΓG(U, S)|, and NG(U, S) = ∪u∈UΓG(u, S). When U =

{u1, u2, · · · , uk}, we may write ΓG(U, S), degG(U, S), and NG(U, S) as ΓG(u1, u2, · · · , uk, S),

degG(u1, u2, · · · , uk, S), and NG(u1, u2, · · · , uk, S), respectively, in specifying the vertices in

U . When S = V (G), we only write ΓG(U), degG(U), and NG(U). Let U1, U2 ⊆ V (G)

be two disjoint subsets. Then δG(U1, U2) = min{degG(u1, U2) | u1 ∈ U1} and ∆G(U1, U2) =

max{degG(u1, U2) | u1 ∈ U1}. Notice that the notations δG(U1, U2) and ∆G(U1, U2) are not

symmetric with respect to U1 and U2. We denote by EG(U1, U2) the set of edges with one

end in U1 and the other in U2, the cardinality of EG(U1, U2) is denoted as eG(U1, U2). We

may omit the index G if there is no risk of confusion. Let u, v ∈ V (G) be two vertices. We

write u ∼ v if u and v are adjacent. A path connecting u and v is called a (u, v)-path. If G

is a bipartite graph with partite sets A and B, we denote G by G(A,B) in emphasizing the

two partite sets. A matching in G is a set of independent edges; a ∧-matching is a set of

vertex-disjoint copies of K1,2; and a claw-matching is a set of vertex-disjoint copies of K1,3.

The set of degree 2 vertices in a ∧-matching is called the center of the ∧-matching ; and the

set of degree 3 vertices in a claw-matching is called the center of the claw-matching. A cycle

C in a graph G is dominating if G− V (C) is an edgeless graph.



17

3.2 The Regularity Lemma and the Blow-up Lemma

The Regularity Lemma of Szemerédi [50] and Blow-up lemma of Komlós et al. [36] are

main tools used in finding a spanning Halin subgraph or spanning generalized Halin subgraph.

For any two disjoint non-empty vertex-sets A and B of a graph G, the density of A and

B is the ratio d(A,B) := e(A,B)
|A||B|

. Let ε and δ be two positive real numbers. The pair

(A,B) is called ε-regular if for every X ⊆ A and Y ⊆ B with |X| > ε|A| and |Y | > ε|B|,
|d(X, Y )−d(A,B)| < ε holds. In addition, if deg(a, B) > δ|B| for each a ∈ A and deg(b, A) >

δ|A| for each b ∈ B, we say (A,B) an (ε, δ)-super regular pair.

Lemma 3.2.1 (Regularity lemma-Degree form [50]). For every ε > 0 there is an

M = M(ε) such that if G is any graph with n vertices and d ∈ [0, 1] is any real number, then

there is a partition of the vertex set V (G) into l + 1 clusters V0, V1, · · · , Vl, and there is a

spanning subgraph G′ ⊆ G with the following properties.

• l ≤ M ;

• |V0| ≤ εn, all clusters |Vi| = |Vj| ≤ ⌈εn⌉ for all 1 ≤ i 6= j ≤ l;

• degG′(v) > degG(v)− (d+ ε)n for all v ∈ V (G);

• e(G′[Vi]) = 0 for all i ≥ 1;

• all pairs (Vi, Vj) (1 ≤ i < j ≤ l) are ε-regular, each with a density either 0 or greater

than d.

Lemma 3.2.2 (Blow-up lemma-weak version [36]). Given a graph R of order r and

positive parameters δ,∆, there exists a positive ε = ε(δ,∆, r) such that the following holds.

Let n1, n2, · · · , nr be arbitrary positive integers and let us replace the vertices v1, v2, · · · , vr
with pairwise disjoint sets V1, V2, · · · , Vr of sizes n1, n2, · · · , nr (blowing up). We construct

two graphs on the same vertex set V =
⋃

Vi. The first graph K is obtained by replacing

each edge vivj of R with the complete bipartite graph between the corresponding vertex sets

Vi and Vj. A sparser graph G is constructed by replacing each edge vivj arbitrarily with an



18

(ε, δ)-super regular pair between Vi and Vi. If a graph H with ∆(H) ≤ ∆ is embeddable into

K then it is already embeddable into G.

Lemma 3.2.3 (Blow-up lemma-strengthened version [36]). Given c > 0, there are

positive numbers ε = ε(δ,∆, r, c) and γ = γ(δ,∆, r, c) such that the Blow-up lemma in the

equal size case (all |Vi| are the same) remains true if for every i there are certain vertices x

to be embedded into Vi whose images are a priori restricted to certain sets Cx ⊆ Vi provided

that
(i) each Cx within a Vi is of size at least c|Vi|;
(ii) the number of such restrictions within a Vi is not more than γ|Vi|.

Besides the above two lemmas, we also need the two lemmas below regarding regular

pairs.

Lemma 3.2.4. If (A,B) is an ε-regular pair with density d, then for any A′ ⊆ A with

|A′| > ε|A|, there are at most ε|B| vertices b ∈ B such that deg(b, A′) ≤ (d− ε)|A′|.

Lemma 3.2.5 (Slicing lemma). Let (A,B) be an ε-regular pair with density d, and for

some ν > ε, let A′ ⊆ A and B′ ⊆ B with |A′| ≥ ν|A|, |B′| ≥ ν|B|. Then (A′, B′) is an

ε′-regular pair of density d′, where ε′ = max{ε/ν, 2ε} and d′ > d− ε.

The following two results on hamiltonicity are used in finding hamiltonian cycles in the

proofs.

Lemma 3.2.6 ([45]). If G is a graph of order n satisfying d(x)+d(y) ≥ n+1 for every pair

of nonadjacent vertices x, y ∈ V (G), then G is hamiltonian-connected.

Lemma 3.2.7 ([42]). Let G be a balanced bipartite graph with 2n vertices. If d(x) + d(v) ≥
n+ 1 for any two non-adjacent vertices x, y ∈ V (G), then G is hamiltonian.

3.3 Dirac’s sondition for spanning Halin graphs

3.3.1 Introduction

A classic theorem of Dirac [19] from 1952 asserts that every graph on n vertices with

minimum degree at least n/2 is hamiltonian if n ≥ 3. Following Dirac’s result, numerous
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results on hamiltonicity properties on graphs with restricted degree conditions have been

obtained (see, for instance, [26] and [25]). Traditionally, under similar conditions, results for

a graph being hamiltonian, hamiltonian-connected, and pancyclic are obtained separately.

We may ask, under certain conditions, if it is possible to uniformly show a graph possessing

several hamiltonicity properties. The work on finding the square of a hamiltonian cycle in a

graph can be seen as an attempt in this direction. However, it requires quite strong degree

conditions for a graph to contain the square of a hamiltonian cycle, for examples, see [21],

[22], [37], [9], and [49]. For bipartite graphs, finding the existence of a spanning ladder is a

way of simultaneously showing the graph having many hamiltonicity properties (see [16] and

[17]). In this paper, we introduce another approach of uniformly showing the possession of

several hamiltonicity properties in a graph: we show the existence of a spanning Halin graph

in a graph under given minimum degree condition.

A tree with no vertex of degree 2 is called a homeomorphically irreducible tree (HIT).

A Halin graph H is obtained from a HIT T of at least 4 vertices embedded in the plane

by connecting its leaves into a cycle C following the cyclic order determined by the embed-

ding. According to the construction, the Halin graph H is denoted as H = T ∪ C, and the

HIT T is called the underlying tree of H . A wheel graph is an example of a Halin graph,

where the underlying tree is a star. Halin constructed Halin graphs in [27] for the study of

minimally 3-connected graphs. Lovász and Plummer named such graphs as Halin graphs in

their study of planar bicritical graphs [40], which are planar graphs having a 1-factor after

deleting any two vertices. Intensive researches have been done on Halin graphs. Bondy [5] in

1975 showed that a Halin graph is hamiltonian. In the same year, Lovász and Plummer [40]

showed that not only a Halin graph itself is hamiltonian, but each of the subgraph obtained

by deleting a vertex is hamiltonian. In 1987, Barefoot [2] proved that Halin graphs are

hamiltonian-connected, i.e., there is a hamiltonian path connecting any two vertices of the

graph. Furthermore, it was proved that each edge of a Halin graph is contained in a hamil-

tonian cycle and is avoided by another [48]. Bondy and Lovász [6], and Skowrońska [47],

independently, in 1985, showed that a Halin graph is almost pancyclic and is pancyclic if the



20

underlying tree has no vertex of degree 3, where an n-vertex graph is almost pancyclic if it

contains cycles of length from 3 to n with the possible exception of a single even length, and

is pancyclic if it contains cycles of length from 3 to n. Some problems that are NP-complete

for general graphs have been shown to be polynomial time solvable for Halin graphs. For

example, Cornuéjols, Naddef, and Pulleyblank [15] showed that in a Halin graph, a hamilto-

nian cycle can be found in polynomial time. It seems so promising to show the existence of

a spanning Halin subgraph in a given graph in order to show the graph having many hamil-

tonicity properties. But, nothing comes for free, it is NP-complete to determine whether a

graph contains a (spanning) Halin graph [30].

Despite all these nice properties of Halin graphs mentioned above, the problem of deter-

mining whether a graph contains a spanning Halin subgraph has not yet well studied except

a conjecture proposed by Lovász and Plummer [40] in 1975. The conjecture states that every

4-connected plane triangulation contains a spanning Halin subgraph (disproved recently [10]).

In this paper, we investigate the minimum degree condition for implying the existence of

a spanning Halin subgraph in a graph, and thereby giving another approach for uniformly

showing the possession of several hamiltonicity properties in a graph under a given minimum

degree condition. We obtain the following result.

Theorem 3.3.1. There exists n0 > 0 such that for any graph G with n ≥ n0 vertices, if

δ(G) ≥ (n+ 1)/2, then G contains a spanning Halin subgraph.

Note that an n-vertex graph with minimum degree at least (n + 1)/2 is 3-connected if

n ≥ 4. Hence, the minimum degree condition in Theorem 3.3.1 implies the 3-connectedness,

which is a necessary condition for a graph to contain a spanning Halin subgraph, since every

Halin graph is 3-connected. A Halin graph contains a triangle, and bipartite graphs are

triangle-free. Hence, K⌊n
2
⌋,⌈n

2
⌉ contains no spanning Halin subgraph. Immediately, we see

that the minimum degree condition in Theorem 3.3.1 is best possible.
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3.3.2 Ladders and “ladder-like” Halin graphs

In constructing Halin graphs, we use ladder graphs and a class of “ladder-like” graphs

as substructures. We give the description of these graphs below.

Definition 3.3.1. An n-ladder Ln = Ln(A,B) is a balanced bipartite graph with A =

{a1, a2, · · · , an} and B = {b1, b2, · · · , bn} such that ai ∼ bj iff |i − j| ≤ 1. We call aibi

the i-th rung of Ln. If 2n(mod 4) ≡ 0, we call each of the shortest (a1, bn)-path and (b1, an)-

path a side of Ln; otherwise we call each of the shortest (a1, an)-path and (b1, bn)-path a side

of Ln.

Let L be a ladder with xy as one of its rungs. For an edge gh, we say xy and gh are

adjacent if x ∼ g, y ∼ h or x ∼ h, y ∼ g. Suppose L has its first rung as ab and its last

rung as cd. We denote L by ab− L− cd in specifying the two rungs, and we always assume

that the distance between a and c is |V (L)|/2 (we make this assumption for being convenient

in constructing other graphs based on ladders). Under this assumption, we denote L as
−→
ab −L−−→

cd. Let A and B be two disjoint vertex sets. We say the rung xy of L is contained

in A × B if either x ∈ A, y ∈ B or x ∈ B, y ∈ A. Let L′ be another ladder vertex-disjoint

with L. If the last rung of L is adjacent to the first rung of L′, we write LL′ for the new

ladder obtained by concatenating L and L′. In particular, if L′ = gh is an edge, we write

LL′ as Lgh.

We now define five types of “ladder-like” graphs, call them H1, H2, H3, H4 and H5,

respectively. Let Ln be a ladder with a1b1 and anbn as the first and last rung, respectively,

and x, y, z, w, u five new vertices. Then each of Hi is obtained from Ln by adding some

specified vertices and edges as follows. Additionally, for each i with 1 ≤ i ≤ 5, we define a

graph Ti associated with Hi.

H1: Adding two new vertices x, y and the edges xa1, xb1, yan, ybn and xy.

Let T1 = H1[{x, y, a1, b1, an, bn}].

H2: Adding three new vertices x, y, z and the edges za1, zb1, xz, xb1, yan, ybn and xy.
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Let T2 = H2[{x, y, z, a1, b1, an, bn}].

H3: Adding three new vertices x, y, z and the edges xa1, xb1, yan, ybn, either zai or zbi for

some 2 ≤ i ≤ n− 1 and xz, yz.

Let T3 = H3[{x, y, z, a1, b1, an, bn}].

H4: Adding four new vertices x, y, z, w and the edges wa1, wb1, xw, xb1, yan, ybn, either zai

or zbi for some 2 ≤ i ≤ n− 1 and xz, yz.

Let T4 = H4[{x, y, z, w, a1, b1, an, bn}].

H5: Adding five new vertices x, y, z, w, u.

If 2(n− 1)(mod 4) ≡ 2, adding the edges wa1, wb1, xw, xb1, uan, ubn, yu, ybn, either zai

or zbi for some 2 ≤ i ≤ n− 1 and xz, yz ;

and if 2(n−1)(mod 4) ≡ 0, adding the edges wa1, wb1, xw, xb1, uan, ubn, yu, yan, either

zai or zbi for some 2 ≤ i ≤ n− 1 and xz, yz.

Let T5 = H5[{x, y, z, w, u, a1, b1, an, bn}].

Let i = 1, 2, · · · , 5. Notice that each of Hi is a Halin graph and except H1, each Hi has

a unique underlying tree. Notice also that xy is an edge on the cycle along the leaves of any

underlying tree of Hi. For each Hi, call x the left end and y the right end, and call a vertex of

degree at least 3 in the underlying tree of Hi a Halin constructible vertex. By analyzing the

structure of Hi, we see that each of the vertices on one side of the ladder Hi −{x, y, z, w, u}
is a Halin constructible vertex. Noting that any vertex in V (H1) − {x, y} can be a Halin

constructible vertex. In Figure 3.1, we depict a ladder L4, H1, H2, H3, H4, H5 constructed

from L4, and the graph Ti associated with Hi. We call a1b1 the head link of Ti and anbn the

tail link of Ti, and for each of T3, T4, T5, we call the vertex z not contained in any triangles

the pendent vertex . The notations of Hi and Ti are fixed hereafter.

Let T ∈ {T1, · · · , T5} be a subgraph of a graph G. Suppose that T has head link ab,

tail link cd, and possibly the pendent vertex z. It is clear that if G − V (T ) contains a
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spanning ladder L with first rung c1d1 and last rung cndn such that c1d1 is adjacent to ab,

cndn is adjacent to cd, and z is adjacent some vertex z′ on some internal rung of L if z

exists, then abLcd ∪ T or abLcd ∪ T ∪ {zz′} when z exists is a spanning Halin subgraph of

G. This technique is frequently used later on in constructing a Halin graph. The following

proposition gives another way of constructing a Halin graph based on H1 and H2.

Proposition 3.3.1. For i = 1, 2, let Gi ∈ {H1, H2} with left end xi and right end yi

be defined as above, and let ui ∈ V (Gi) be a Halin constructible vertex, then G1 ∪ G2 −
{x1y1, x2y2} ∪ {x1x2, y1y2, u1u2} is a Halin graph spanning on V (G1) ∪ V (G2).

Proof. For i = 1, 2, let Gi be embedded in the plane, and let TGi
be a underlying plane

tree of Gi. Then T ′ := TG1 ∪ TG2 ∪ {u1u2} is a homeomorphically irreducible tree spanning

on V (G1) ∪ V (G2). Moreover, we can draw the edge u1u2 such that TG1 ∪ TG2 ∪ {u1u2} is

a plane graph. Since Gi[E(Gi − TGi
) − {xiyi}] is an (xi, yi)-path spanning on the leaves of

TGi
obtained by connecting the leaves following the order determined by the embedding, we

see G1[E(G1 − TG1)−{x1y1}]∪G2[E(G2 − TG2)−{x2y2}]∪ {x1x2, y1y2} is a cycle spanning

on the leaves of T ′ obtained by connecting the leaves following the order determined by the

embedding of T ′. Thus G1 ∪G2 − {x1y1, x2y2} ∪ {x1x2, y1y2, u1u2} is a Halin graph.

3.3.3 Proof of Theorem 3.3.1

In this section, we prove Theorem 3.3.1. Following the standard setup of proofs applying

the Regularity Lemma, we divide the proof into non-extremal case and extremal cases. For

this purpose, we define the two extremal cases in the following.

Let G be an n-vertex graph and V its vertex set. Given 0 ≤ β ≤ 1, the two extremal

cases are defined as below.

Extremal Case 1. G has a vertex-cut of size at most 5βn.

Extremal Case 2. There exists a partition V1 ∪ V2 of V such that |V1| ≥ (1/2− 7β)n and

∆(G[V1]) ≤ βn.

Non-extremal case. We say that an n-vertex graph with minimum degree at least (n+1)/2

is in non-extremal case if it is in neither of Extremal Case 1 and Extremal Case 2.
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T1 T2 T3 T4 T5

Figure (3.1) L4, Hi constructed from L4, and Ti associated with Hi for each i = 1, 2, · · · , 5

The following three theorems deal with the non-extremal case and the two extremal

cases, respectively, and thus give a proof of Theorem 3.3.1.

Theorem 3.3.2. Suppose that 0 < β ≪ 1/(20 · 173) and n is a sufficiently large integer.

Let G be a graph on n vertices with δ(G) ≥ (n + 1)/2. If G is in Extremal Case 1, then G

contains a spanning Halin subgraph.

Theorem 3.3.3. Suppose that 0 < β ≪ 1/(20 · 173) and n is a sufficiently large integer.

Let G be a graph on n vertices with δ(G) ≥ (n + 1)/2. If G is in Extremal Case 2, then G

contains a spanning Halin subgraph.

Theorem 3.3.4. Let n be a sufficiently large integer and G an n-vertex graph with δ(G) ≥
(n+ 1)/2. If G is in the Non-extremal case, then G has a spanning Halin subgraph.

We need the following “Absorbing Lemma” in each of the proofs of Theorems 3.3.2 -

3.4.3 in dealing with “garbage” vertices.

Lemma 3.3.1 (Absorbing Lemma). Let F be a graph such that V (F ) is partitioned as S∪R.

Suppose that (i) δ(R, S) ≥ 3|R|, (ii) for any two vertices u, v ∈ N(R, S), deg(u, v, S) ≥ 6|R|,
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and (iii) for any three vertices u, v, w ∈ N(N(R, S), S), deg(u, v, w, S) ≥ 7|R|. Then there

is a ladder spanning on R and some other 7|R| − 2 vertices from S.

Proof. Let R = {w1, w2, · · · , wr}. Consider first that |r| = 1. Choose x11, x12, x13 ∈
Γ(w1, S). By (ii), there are distinct vertices y112 ∈ Γ(x11, x12, S) and y123 ∈ Γ(x12, x13, S).

Then the graph L on {w1, x11, x12, x13, y
1
12, y

1
23} with edges in

{w1x11, w1x12, w1x13, y
1
12x11, y

1
12x12, y

1
23x12, y

1
23x13}

is a ladder covering R with |V (L)| = 6. Suppose now r ≥ 2. For each i with 1 ≤ i ≤ r, choose

distinct (and unchosen) vertices xi1, xi2, xi3 ∈ Γ(wi, S). This is possible since deg(x, S) ≥
3|R| for each x ∈ R. By (ii), we choose distinct vertices y112, y

1
23, · · · , yr12, yr23 different from the

existing vertices already chosen such that yi12 ∈ Γ(xi1, xi2, S) and yi23 ∈ Γ(xi2, xi3, S) for each

i, and at the same time, we chose distinct vertices z1, z2, · · · , zr−1 from the unchosen vertices

in S such that zi ∈ Γ(xi3, x(i+1),1, S) for each 1 ≤ i ≤ r − 1. Finally, by (iii), choose distinct

vertices u1, u2, · · · , ur−1 from the unchosen vertices in S such that ui ∈ Γ(xi3, xi+1,1, zi, S).

Let L be the graph with

V (L) = R ∪ {xi1, xi2, xi3, y
i
12, y

i
23, zi, ui, xr1, xr2, xr3, y

r
12, y

r
23 | 1 ≤ i ≤ r − 1} and

E(L) consisting of the edges wrxr1, wrxr2, wrxr3, y
r
12xr1, y

r
12xr2, y

r
23xr2, y

r
23xr3 and the edges

indicated below for each 1 ≤ i ≤ r − 1:

wi ∼ xi1, xi2, xi3; y
i
12 ∼ xi1, xi2; y

i
23 ∼ xi2, xi3; zi ∼ xi3, xi+1,1; ui ∼ xi3, xi+1,1, zi.

It is easy to check that L is a ladder covering R with |V (L)| = 8r − 2. Figure 3.2 gives a

depiction of L for |R| = 2.

The following simple observation is heavily used in the proofs explicitly or implicitly.

Lemma 3.3.2. Let U = {u1, u2 · · · , uk}, S ⊆ V (G) be subsets. Then deg(u1, u2, · · · , uk, S) ≥
|S| − (degG(u1, S) + · · ·+ degG(uk, S)) ≥ |S| − k(|S| − δ(U, S)).
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w1 w2

x11

x12

x13 x21

x22

x23

y112 y123 y212 y223

u1

z1

Figure (3.2) Ladder L of order 14

Extremal Case 1 is relatively easy among the three cases, therefore we prove Theo-

rem 3.3.2 first below.

3.3.3.1 Proof of Theorem 3.3.2 We assume that G has a vertex-cut W such that

|W | ≤ 5βn. As δ(G) ≥ (n + 1)/2, by simply counting degrees we see G − W has exactly

two components. Let V1 and V2 be the vertex set of the two components, respectively. Then

(1/2− 5β)n ≤ |Vi| ≤ (1/2 + 5β)n. We partition W into two subsets as follows:

W1 = {w ∈ W | deg(w, V1) ≥ (n+ 1)/4− 2.5βn} and W2 = W −W1.

As δ(G) ≥ (n + 1)/2, we have deg(w, V2) ≥ (n + 1)/4 − 2.5βn for any w ∈ W2. Since G

is 3-connected and (1/2− 5β)n > 3, there are three independent edges p1p2, q1q2, and r1r2

between G[V1 ∪W1] and G[V2 ∪W2] with p1, q1, r1 ∈ V1 ∪W1 and p2, q2, r2 ∈ V2 ∪W2.

For i = 1, 2, by the partition of Wi, we see that δ(Wi, Vi) ≥ 3|Wi| + 3. As δ(G) ≥
(n + 1)/2, we have δ(G[Vi]) ≥ (1/2 − 5β)n. Then, as |Vi| ≤ (1/2 + 5β)n, for any u, v ∈ Vi,

deg(u, v, Vi) ≥ (1/2 − 25β)n ≥ 6|Wi| + 2, and for any u, v, w ∈ Vi, deg(u, v, w, Vi) ≥ (1/2 −
35β)n ≥ 7|Wi|+2. By Lemma 3.4.2, we can find a ladder Li spans Wi−{pi, qi} and another

7|Wi − {pi, qi}| − 2 vertices from Vi − {pi, qi} if Wi − {pi, qi} 6= ∅. Denote aibi and cidi the
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first and last rung of Li (if Li exists), respectively. Let

Gi = G[Vi − V (Li)] and ni = |V (Gi)|.

Then for i = 1, 2,

ni ≥ (n+1)/2−5βn−7|Wi| ≥ (n+1)/2−40βn and δ(Gi) ≥ δ(G[Vi])−7|Wi| ≥ (n+1)/2−40βn.

Let i = 1, 2. We now show that Gi contains a spanning subgraph isomorphic to either

H1 or H2 as defined in the beginning of this section. Since |ni| ≤ (1/2 + 5β)n and δ(Gi) ≥
(n+1)/2−40βn, any subgraph of Gi induced on at least (1/4−40β)n vertices has minimum

degree at least (1/4− 85β)n, and thus has a matching of size at least 2. Hence, when ni is

even, we can choose independent edges ei = xiyi and fi = ziwi with

xi, yi ∈ ΓGi
(pi)− {qi} and zi, wi ∈ ΓGi

(qi)− {pi}.

(Notice that pi or qi may be contained in Wi, and in this case we have degGi
(pi), degGi

(qi) ≥
(1/4− 40β)n.) And if ni is odd, we can choose independent edges giyi and fi = ziwi with

gi, xi, yi ∈ ΓGi
(pi)− {qi}, xi ∈ ΓGi

(gi, yi)− {pi, qi} and zi, wi ∈ ΓGi
(qi)− {xi, pi},

where the existence of the vertex xi is possible since the subgraph of Gi induced on ΓGi
(pi)

has minimum degree at least (1/2 − 40β)n− ((1/2 + 5β)n − |ΓGi
(pi)|) ≥ |ΓGi

(pi)| − 45βn,

and hence contains a triangle. In this case, again, denote ei = xiyi. Let















G′
i = Gi − {pi, qi}, if ni is even;

G′
i = Gi − {pi, qi, gi}, if ni is odd.

By the definition above, |V (G′
i)| is even.

The following claim is a modification of (1) of Lemma 2.2 in [17].
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Claim 3.3.1. For i = 1, 2, let a′ib
′
i, c

′
id

′
i ∈ E(G′

i) be two independent edges. Then G′
i contains

two vertex disjoint ladders Qi1 and Qi2 spanning on V (G′
i) such that Qi1 has ei = xiyi as

its first rung, a′ib
′
i as its last rung, and Qi2 has c′id

′
i as its first rung and fi = ziwi as its last

rung, where ei and fi are defined prior to this claim.

Proof. We only show the claim for i = 1 as the case for i = 2 is similar. Notice that by

the definition of G′
1, |V (G′

1)| is even. Since |V (G′
1)| ≤ (1/2+ 5β)n and δ(G′

1) ≥ (n+ 1)/2−
40βn − 2 ≥ |V (G′

1)|/2 + 8, G′
1 has a perfect matching M containing e1, f1, a

′
1b

′
1, c

′
1d

′
1. We

identify a′1 and c′1 into a vertex called s′, and identify b′1 and d′1 into a vertex called t′. Denote

G′′
1 as the resulting graph and let s′t′ ∈ E(G′′

1) if the two vertices are not adjacent. Partition

V (G′′
1) arbitrarily into U and V with |U | = |V | such that x1, z1, s

′ ∈ U , y1, w1, t
′ ∈ V , and let

M ′ := M − {a′1b′1, c′1d′1} ∪ {s′t′} ⊆ EG′
1
(U, V ). Define an auxiliary graph H ′ with vertex set

M ′ and edge set defined as follows. If xy, uv ∈ M ′ with x, u ∈ U then xy ∼H′ uv if and only

if x ∼G′
1
v and y ∼G′

1
u (we do not include the case that x ∼G′

1
u and y ∼G′

1
v as we defined

a bipartition here). Particularly, for any pq ∈ M ′ − {s′t′} with p ∈ U , pq ∼H′ s′t′ if and

only if p ∼G′
1
b′1, d

′
1 and q ∼G′

1
a′1, c

′
1. Notice that a ladder with rungs in M ′ is corresponding

to a path in H ′ and vice versa. Since (1/2 − 40β)n − 2 ≤ |V (G′
1)| ≤ (1/2 + 5β)n − 2 and

δ(G′
1) ≥ (n + 1)/2 − 40βn− 2, any two vertices in G′

1 has at least (1/2 − 130β)n common

neighbors. This together with the fact that |U | = |V | ≤ |V (G′′
1)|/2 ≤ (1/4 + 2.5β)n gives

that δ(U, V ), δ(V, U) ≥ (1/4− 132.5β)n. Hence

δ(H ′) ≥ (1/4−132.5β)n−((1/4 + 2.5β)n− (1/4− 132.5β)n) = (1/4−267.5β)n ≥ |V (H ′)|/2+1,

since β < 1/2200 and n is very large. Hence H ′ has a hamiltonian path starting with e1,

ending with f1, and having s′t′ as an internal vertex. The path with s′t′ replaced by a′1b
′
1

and c′1d
′
1 is corresponding to the required ladders in G′

1.

We may assume n1 is even and n2 is odd and construct a spanning Halin subgraph

of G (the construction for the other three cases follow a similar argument). Recall that

p1p2, q1q2, r1r2 are the three prescribed independent edges between G[V1∪W1] and G[V2∪W2],
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where p1, q1, r1 ∈ V1 ∪ W1 and p2, q2, g2, r2 ∈ V2 ∪ W2. For a uniform discussion, we may

assume that both of the ladders L1 and L2 exist. Let i = 1, 2. Recall that Li has aibi

as its first rung and cidi as its last rung. Choose a′i ∈ ΓG′
i
(ai), b′i ∈ ΓG′

i
(bi) such that

a′ib
′
i ∈ E(G) and c′i ∈ ΓG′

i
(ci), d′i ∈ ΓG′

i
(di) such that c′id

′
i ∈ E(G). This is possible as

δ(G′
i) ≥ (n+1)/2−40βn−2. Let Q1i and Q2i be the ladders of G

′
i given by Claim 3.3.1. Set

Ha = Q11L1Q12 ∪ {p1x1, p1y1, q1z1, q1w1}. Assume Q21L2Q22 is a ladder can be denoted as

−−→x2y2 −Q21L2Q22 −−−→z2w2. To make r2 a Halin constructible vertex, we let Hb = Q21L2Q22 ∪
{g2x2, g2y2, p2g2, p2y2, q2z2, q2w2} if r2 is on the shortest (y2, w2)-path in Q21L2Q22, and let

Hb = Q21L2Q22∪{g2x2, g2y2, p2g2, p2x2, q2z2, q2w2} if r2 is on the shortest (x2, z2)-path (recall

that g1, x1, y1 ∈ ΓG1(p1)). Let H = Ha ∪Hb ∪ {p1p2, r1r2, q1q2}. Then H is a spanning Halin

subgraph of G by Proposition 3.3.1 as Ha ∪ {p1q1} ∼= H1 and Hb ∪ {p2q2} ∼= H2. Figure 3.3

gives a construction of H for the above case when r2 is on the shortest (y2, w2)-path in

Q21L2Q22.

x1

x2

y1
y2

a2

a′2
b2 c2

d2

a1

b1 c1

d1

L2

L1

b′2 c′2

d′2

a′1

b′1 c′1

d′1

z1

z2

w1

w2

g2

p1

p2

q1

q2
r1

r2

Q11 Q12

Q21
Q22

Figure (3.3) A Halin graph H
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3.3.3.2 Proof of Theorem 3.3.3 Recall Extremal Case 2: There exists a partition

V1 ∪ V2 of V such that |V1| ≥ (1/2− 7β)n and ∆(G[V1]) ≤ βn. Since δ(G) ≥ (n+ 1)/2, the

assumptions imply that

(1/2− 7β)n ≤ |V1| ≤ (1/2 + β)n and (1/2− β)n ≤ |V2| ≤ (1/2 + 7β)n.

Let β and α be real numbers satisfying β ≤ α/20 and α ≤ (1/17)3. Set α1 = α1/3 and

α2 = α2/3 We first repartition V (G) as follows.

V ′
2 = {v ∈ V2 | deg(v, V1) ≥ (1− α1)|V1|}, V01 = {v ∈ V2 − V ′

2 | deg(v, V ′
2) ≥ (1− α1)|V ′

2 |},

V ′
1 = V1 ∪ V01, and V0 = V2 − V ′

2 − V01.

Claim 3.3.2. |V01|, |V0| ≤ |V2 − V ′
2 | ≤ α2|V2|.

Proof. Notice that e(V1, V2) ≥ (1/2 − 7β)n|V2| ≥ 1/2−7β
1/2+β

|V1||V2| ≥ (1 − α)|V1||V2| as
β ≤ α/20. Hence,

(1− α)|V1||V2| ≤ e(V1, V2) ≤ e(V1, V
′
2) + e(V1, V2 − V ′

2) ≤ |V1||V ′
2 |+ (1− α1)|V1||V2 − V ′

2 |.

This gives that |V2 − V ′
2 | ≤ α2|V2|, and thus |V01|, |V0| ≤ |V2 − V ′

2 | ≤ α2|V2|.
As a result of moving vertices from V2 to V1 and by Claim 3.3.2, we have the following.

∆(G[V ′
1 ]) ≤ βn+ |V01| ≤ βn+ α2|V2|,

δ(V ′
1 , V

′
2) ≥ (1/2− β)n− |V2 − V ′

2 | ≥ (1/2− β)n− α2|V2|,

δ(V ′
2 , V

′
1) ≥ (1− α1)|V1| ≥ (1− α1)(1/2− 7β)n, (3.1)

δ(V0, V
′
1) ≥ (n+ 1)/2− (1− α1)|V ′

2 | − |V0| ≥ 3α2n+ 8 ≥ 3|V0|+ 10,

δ(V0, V
′
2) ≥ (n+ 1)/2− (1− α1)|V1| − |V0| ≥ 3α2n + 8 ≥ 3|V0|+ 10,

where the last two inequalities hold because we have 7β + 10/n ≤ α, and α ≤ (1/8)3.
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Claim 3.3.3. We may assume that ∆(G) < n− 1.

Proof. Suppose on the contrary and let w ∈ V (G) such that deg(w) = n − 1. Then

by δ(G) ≥ (n + 1)/2 we have δ(G − w) ≥ (n − 1)/2, and thus G − w has a hamiltonian

cycle. This implies that G has a spanning wheel subgraph, in particular, a spanning Halin

subgraph of G.

Claim 3.3.4. There exists a subgraph T ⊆ G such that |V (T )| ≡ n (mod 2), where T is

isomorphic to some graph in {T1, T2, · · · , T5}. Assume that T has head link x1x2 and tail

link y1y2. Let m = n−|V (T )|. Then G−V (T ) contains a balanced spanning bipartite graph

G′ with partite sets U1 and U2 and a subset W of U1 ∪ U2 with at most α2n vertices such

that the following holds:

(i) degG′(x, V (G′)−W ) ≥ (1− α1 − 2α2)m for all x 6∈ W ;

(ii) There exists x′
1x

′
2, y

′
1y

′
2 ∈ E(G′) such that x′

i, y
′
i ∈ Ui−W , x′

3−i ∼ xi, and y′3−i ∼ yi, for

i = 1, 2; and if T has a pendent vertex, then the vertex is contained in V ′
1 ∪ V ′

2 −W .

(iii) There are |W | vertex-disjoint 3-stars (K1,3s) in G′′ − {x′
1, x

′
2, y

′
1, y

′
2} with the vertices

in W as their centers.

Proof. By (3.1), for i = 1, 2, we notice that for any u, v, w ∈ V ′
i ,

deg(u, v, w, V ′
3−i) ≥ |V ′

3−i| − 3(|V ′
3−i| − δ(V ′

i , V
′
3−i)) ≥ (1/2− 28β − 3α1)n > n/4.(3.2)

We now separate the proof into two cases according to the parity of n.

Case 1. n is even.

Suppose first that max{|V ′
1 |, |V ′

2 |} ≤ n/2. We arbitrarily partition V0 into V10 and

V20 such that |V ′
1 ∪ V10| = |V ′

2 ∪ V20| = n/2. Suppose G[V ′
1 ] contains an edge x1u1 and

there is a vertex u2 ∈ Γ(u1, V
′
2) such that u2 is adjacent to a vertex y2 ∈ V ′

2 . By (3.2),

there exist distinct vertices x2 ∈ Γ(x1, u1, V
′
2)− {y2, u1}, y1 ∈ Γ(y2, u2, V

′
1) − {x1, u1}. Then

G[{x1, u1, x2, y1, u1, y2}] contains a subgraph T isomorphic to T1. So we assume G[V ′
1 ]
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contains an edge x1u1 and no vertex in Γ(u1, V
′
2) is adjacent to any vertex in V ′

2 . As

δ(G) ≥ (n + 1)/2, δ(G[V ′
2 ∪ V20]) ≥ 1. Let u2 ∈ Γ(u1, V

′
2) and u2y2 ∈ E(G[V ′

2 ∪ V20]).

Since deg(u2, V
′
1) ≥ (n + 1)/2 − |V0| > |V ′

1 ∪ V10| − |V0| and deg(y2, V
′
1) ≥ 3|V0| + 10,

deg(u2, y2, V
′
1∪V10) ≥ 2|V0|+10. Let x2 ∈ Γ(x1, u1, V

′
2)−{y2, u2}, y1 ∈ Γ(y2, u2, V

′
1)−{x1, u1}.

Then G[{x1, u1, x2, y1, u2, y2}] contains a subgraph T isomorphic to T1. By symmetry, we

can find T ∼= T1 if G[V ′
2 ] contains an edge. Hence we assume that both V ′

1 and V ′
2 are

independent sets. Again, as δ(G) ≥ (n + 1)/2, δ(G[V ′
1 ∪ V10]), δ(G[V ′

2 ∪ V20]) ≥ 1. Let

x1u1 ∈ E(G[V ′
1 ∪ V10]) and y2u2 ∈ E(G[V ′

2 ∪ V20]) such that x1 ∈ V ′
1 and u2 ∈ Γ(u1, V

′
2).

Since deg(x1, V
′
2) ≥ (n + 1)/2 − |V0| > |V ′

2 ∪ V20| − |V0| and deg(u1, V
′
2) ≥ 3|V0| + 10, we

have deg(x1, u1, V
′
2) ≥ 2|V0|+10. Hence, there exists x2 ∈ Γ(x1, u1, V

′
2)−{y2, u2}. Similarly,

there exists y1 ∈ Γ(y2, u2, V
′
1)− {x1, u1}. Then G[{x1, u1, x2, y1, u2, y2}] contains a subgraph

T isomorphic to T1. Let m = (n− 6)/2, U1 = (V ′
1 −V (T ))∪V10 and U2 = (V ′

2 −V (T ))∪V20,

and W = V0 − V (T ). We then have |U1| = |U2| = m.

Let G′ = (V (G) − V (T ), EG(U1, U2)) be the bipartite graph with partite sets U1 and

U2. Notice that |W | ≤ |V0| ≤ α2|V2| < α2n. By (3.1), we have degG′(x, V (G′) − W ) ≥
(1 − α1 − 2α2)m for all x /∈ W . This shows (i). By the construction of T above, we have

x1, y1 ∈ V ′
1 . Let i = 1, 2. By (3.1), we have δ(V0, Ui −W ) ≥ 3|V0| + 6. Applying statement

(i), we have eG′(ΓG′(x1, U2 −W ),ΓG′(x2, U1 −W )), eG′(ΓG′(y1, U2 −W ),ΓG′(y2, U1 −W )) ≥
(3|V0| + 4)(1 − 2α1 − 4α2)m > 2m. Hence, we can find independent edges x′

1x
′
2 and y′1y

′
2

such that x′
i, y

′
i ∈ Ui − W , x′

3−i ∼ xi, and y′3−i ∼ yi. This gives statement (ii). Finally, as

δ(V0, Ui −W ) ≥ 3|V0|+ 6, we have δ(V0, Ui −W − {x′
1, x

′
2, y

′
1, y

′
2}) ≥ 3|V0|+ 2. Hence, there

are |W | vertex-disjoint 3-stars with their centers in W .

Otherwise we have max{|V ′
1 |, |V ′

2|} > n/2. Assume, w.l.o.g., that |V ′
1 | ≥ n/2 + 1.

Then δ(G[V ′
1 ]) ≥ 2 and thus G[V ′

1 ] contains two vertex-disjoint paths isomorphic to P3

and P2, respectively. Let m = (n − 8)/2. We consider three cases here. Case (a):

|V ′
1 | − 5 ≤ m. Then let x1u1w1, y1v1 ⊆ G[V ′

1 ] be two vertex-disjoint paths, and let

x2 ∈ Γ(x1, u1, w1, V
′
2), y2 ∈ Γ(y1, v1, V

′
2) and z ∈ Γ(w1, v1, V

′
2) be three distinct vertices.

Then G[{x1, u1, w1, x2, z, y1, v1, y2}] contains a subgraph T isomorphic to T4. Notice that
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|V ′
2 − V (T )| ≤ m. We arbitrarily partition V0 into V10 and V20 such that |V ′

1 ∪ V10| =

|V ′
2 ∪ V20| = m. Let U1 = (V ′

1 − V (T )) ∪ V10, U2 = (V ′
2 − V (T )) ∪ V20, and W = V0. Hence

we assume |V ′
1 | − 5 = m+ t1 for some t1 ≥ 1. This implies that |V ′

1 | ≥ n/2+ t1 +1 and thus

δ(G[V ′
1 ]) ≥ t1 + 2. Let V 0

1 be the set of vertices u ∈ V ′
1 such that deg(u, V ′

1) ≥ α1m. Case

(b): |V 0
1 | ≥ |V ′

1 | − 5−m. Then we form a set W with |V ′
1 | − 5−m vertices from V 0

1 and all

the vertices of V0. Then |V ′
1 −W | = m + 5 + t1 − (|V ′

1 | − 5 −m) = m + 5 = n/2 + 1, and

hence δ(G[V ′
1 −W ]) ≥ 2. Similarly as in Case (a), we can find a subgraph T of G contained

in G[V ′
1 − W ] isomorphic to T4. Let U1 = V ′

1 − V (T ) − W , U2 = (V ′
2 − V (T )) ∪ W .

Then |U1| = |U2| = m. Thus we have Case (c): |V 0
1 | < |V ′

1 | − 5 − m. Suppose

that |V ′
1 − V 0

1 | = m + 5 + t′1 = n/2 + t′1 + 1 for some t′1 ≥ 1. This implies that

δ(G[V ′
1 − V 0

1 ]) ≥ t′1 + 2. We show that G[V ′
1 − V 0

1 ] contains t′1 + 2 vertex-disjoint 3-stars.

To see this, suppose G[V ′
1 − V 0

1 ] contains a subgraph M of at most s < t′1 + 2 3-stars. By

counting the number of edges between V (M) and V ′
1 − V 0

1 − V (M) in two ways, we get that

t′1|V ′
1 − V 0

1 − V (M)| ≤ eG−V 0
1
(V (M), V ′

1 − V 0
1 − V (M)) ≤ 4s∆(G[V ′

1 − V 0
1 ]) ≤ 4sα1m. Since

|V ′
1−V 0

1 | = m+5+t′1 = n/2+t′1+1, |V ′
1−V 0

1 −V (M)| ≥ m−3t′1 ≥ m−6α2m, where the last

inequality holds as |V ′
1 | ≤ (1/2+β)n+α2|V ′

2 | implying that t′1 ≤ |V ′
1 |−m−5 ≤ 2α2m. This,

together with the assumption that α ≤ (1/8)3 gives that s ≥ t′1+2, showing a contradiction.

Hence we have s ≥ t′1 + 2. Let x1u1w1 and y1v1 be two paths taken from two 3-stars in M .

Then we can find a subgraph T of G isomorphic to T4 the same way as in Case (a). We

take exactly t′1 3-stars from the remaining ones in M and denote the centers of these stars

by W ′. Let U1 = V ′
1 − V 0

1 − V (T ) −W ′, W = W ′ ∪ V 0
1 ∪ V0, and U2 = (V ′

2 − V (T )) ∪W .

Then |U1| = |U2| = m.

For the partition of U1 and U2 in all the cases discussed in the paragraph above, we let

G′ = (V (G)− V (T ), EG(U1, U2)) be the bipartite graph with partite sets U1 and U2. Notice

that |W | ≤ |V0| ≤ α2n if Case (a) occurs, |W | ≤ |V0|+|V ′
1 |−m−5 ≤ (1/2+β)n+|V0|−n/2 ≤

α2n if Case (b) occurs, and |W | = |W ′∪V 0
1 ∪V0| = |V ′

1−U1−V (T )|+|V0| ≤ (1/2+β)n−(1/2−
4)n+ |V0| ≤ α2n if Case (c) occurs. Since δ(V ′

2 , V
′
1) ≥ (1−α1)|V1| from (3.1) and |V ′

1 −U1| ≤
2α2m, we have δ(U2 − W,U1 − W ) ≥ (1 − α1 − 2α2)m. On the other hand, from (3.1),
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δ(V ′
1 , V

′
2) ≥ (1/2 − β)n − α2|V2|. This gives that δ(U1 − W,U2 − W ) ≥ (1 − α1 − 2α2)m.

Hence, we have degG′(x, V (G′)−W ) ≥ (1− α1 − 2α2)m for all x /∈ W . Applying statement

(i), we have eG′(ΓG′(x1, U2 −W ),ΓG′(x2, U1 −W )), eG′(ΓG′(y1, U2 −W ),ΓG′(y2, U1 −W )) ≥
(3|V0|+4)(1−2α1−4α2)m > 2m. Hence, we can find independent edges x′

1x
′
2 and y′1y

′
2 such

that x′
i, y

′
i ∈ Ui −W , x′

3−i ∼ xi, and y′3−i ∼ yi. By the construction of T , T is isomorphic

to T4, and the pendent vertex z ∈ V ′
2 ⊆ V1 ∪ V ′

2 −W . This gives statement (ii). Finally, as

δ(V0, U1 −W ) ≥ 3α2n+ 5 ≥ 3|W |+ 5, we have δ(V0, U1 −W − {x′
1, x

′
2, y

′
1, y

′
2}) ≥ 3|W |+ 1.

By the definition of V 0
1 , we have δ(V 0

1 , V
′
1 −W − {x′

1, x
′
2, y

′
1, y

′
2}) ≥ α1m− α2n− 4 ≥ 3|W |.

For the vertices in W ′ in Case (c), we already know that there are vertex-disjoint 3-stars in

G′ with centers in W ′. Hence, regardless of the construction of W , we can always find |W |
vertex-disjoint 3-stars with their centers in W .

Case 2. n is odd.

Suppose first that max{|V ′
1 |, |V ′

2 |} ≤ (n + 1)/2 and let m = (n − 7)/2. We arbitrarily

partition V0 into V10 and V20 such that, w.l.o.g., say |V ′
1 ∪ V10| = (n + 1)/2 and |V ′

2 ∪
V20| = (n − 1)/2. We show that G[V ′

1 ∪ V10] either contains two independent edges or is

isomorphic to K1,(n−1)/2. As δ(G) ≥ (n + 1)/2, we have δ(G[V ′
1 ∪ V10]) ≥ 1. Since n is

sufficiently large, (n+ 1)/2 > 3. Then it is easy to see that if G[V ′
1 ∪ V10] 6∼= K1,(n−1)/2, then

G[V ′
1 ∪ V10] contains two independent edges. Furthermore, we can choose two independent

edges x1u1 and y1v1 such that u1, v1 ∈ V ′
1 . This is obvious if |V10| ≤ 1. So we assume

|V10| ≥ 2. As δ(V0, V
′
1) ≥ 3|V0| + 10, by choosing x1, y1 ∈ V10, we can choose distinct

vertices u1 ∈ Γ(x1, V
′
1) and v1 ∈ Γ(y1, V

′
1). Let x2 ∈ Γ(x1, u1, V

′
2), y2 ∈ Γ(y1, v1, V

′
2) and

z ∈ Γ(u1, v1, V
′
2). Then G[{x1, u1, x2, y1, v1, y2, z}] contains a subgraph T isomorphic to T3.

We assume now that G[V ′
1 ∪ V10] is isomorphic to K1,(n−1)/2. Let u1 be the center of the

star K1,(n−1)/2. Then each leave of the star has at least (n − 1)/2 neighbors in V ′
2 ∪ V20.

Since |V ′
2 ∪ V20| = (n − 1)/2, we have Γ(v, V ′

2 ∪ V20) = V ′
2 ∪ V20 if v ∈ V ′

1 ∪ V10 − {u1}.
By the definition of V0, ∆(V0, V

′
1) < (1 − α1)|V1| and ∆(V0, V

′
2) < (1 − α1)|V ′

2 |, and so

u1 ∈ V ′
1 , V10 = ∅ and V20 = ∅. We claim that V ′

2 is not an independent set. Otherwise, by

δ(G) ≥ (n + 1)/2, for each v ∈ V ′
2 , Γ(v, V

′
1) = V ′

1 . This in turn shows that u1 has degree



35

n− 1, showing a contradiction to Claim 3.3.3. So let y2v2 ∈ E(G[V ′
2 ]) be an edge. Let w1 ∈

Γ(v2, V
′
1)−{u1} and w1u1x1 the path containing w1. Choose y1 ∈ Γ(y2, v2, V

′
1)−{w1, u1, x1}

and x2 ∈ Γ(x1, u1, w1, V
′
2)−{y1, v1}. Then G[{x1, u1, x2, w1, v2, y2, y1}] contains a subgraph T

isomorphic to T2. Let U1 = (V ′
1−V (T ))∪V10 and U2 = (V ′

2−V (T ))∪V20 andW = V0−V (T ).

We have |U1| = |U2| = m and |W | ≤ |V0| ≤ α2n.

Otherwise we have max{|V ′
1 |, |V ′

2 |} ≥ (n + 1)/2 + 1. Assume, w.l.o.g., that |V ′
1 | ≥

(n + 1)/2 + 1. Then δ(G[V ′
1 ]) ≥ 2 and thus G[V ′

1 ] contains two independent edges. Let

m = (n−7)/2 and V 0
1 be the set of vertices u ∈ V ′

1 such that deg(u, V ′
1) ≥ α1m. We consider

three cases here. Since |V ′
1 | ≥ (n+ 1)/2 + 1 > m+ 4, we assume |V ′

1 | = m+ 4 + t1 for some

t1 ≥ 1. Case (a): |V 0
1 | ≥ |V ′

1 |−m−4. Then we form a setW with |V ′
1 |−4−m vertices from V 0

1

and all the vertices of V0. Then |V ′
1−W | = m+4+t1−(|V ′

1 |−4−m) = m+4 = (n+1)/2+1.

Then we have δ(G[V ′
1 − W ]) ≥ 2. Hence G[V ′

1 − W ] contains two independent edges. Let

x1u1, y1v1 ⊆ E(G[V ′
1 − W ]) be two independent edges, and let x2 ∈ Γ(x1, u1, V

′
2), y2 ∈

Γ(y1, v1, V
′
2) and z ∈ Γ(w1, v1, V

′
2) be three distinct vertices. Then G[{x1, u1, x2, z, y1, v1, y2}]

contains a subgraph T isomorphic to T3. Let U1 = V ′
1 − V (T )−W , U2 = (V ′

2 − V (T )) ∪W .

Then |U1| = |U2| = m and |W | ≤ |V0| + |V ′
1 − U1| ≤ |V2 − V ′

2 | + βn + 4α2n. Thus we

have |V 0
1 | < |V ′

1 | − 4 − m. Suppose that |V ′
1 − V 0

1 | = m + 4 + t′1 = (n + 1)/2 + t′1 for

some t′1 ≥ 1. This implies that δ(G[V ′
1 − V 0

1 ]) ≥ t′1 + 1. Case (b): t′1 ≥ 2. We show that

G[V ′
1 −V 0

1 ] contains t
′
1+2 vertex-disjoint 3-stars. To see this, suppose G[V ′

1 −V 0
1 ] contains a

subgraph M of at most s vertex disjoint 3-stars. We may assume that s < t′1 + 2. Then we

have (t1 − 1)|V ′
1 − V 0

1 − V (M)| ≤ eG−V 0
1
(V (M), V ′

1 − V 0
1 − V (M)) ≤ 4s∆(G[V ′

1 − V 0
1 ]). Since

|V ′
1−V 0

1 | = m+5+t′1 = (n+1)/2+t′1, |V ′
1−V 0

1 −V (M)| ≥ m−3t′1 ≥ m−6α2m, where the last

inequality holds as |V ′
1 | ≤ (1/2+β)n+α2|V ′

2 | implying that t′1 ≤ |V ′
1 |−m−5 ≤ 2α2m. This,

together with the assumption that α ≤ (1/8)3 gives that s ≥ t′1+2, showing a contradiction.

Hence we have s ≥ t′1 + 2. Let x1u1 and y1v1 be two paths taken from two 3-stars in M ,

and we can find a subgraph T of G isomorphic to T3 the same way as in Case (a). We take

exactly t′1 3-stars from the remaining ones in M and denote the centers of these stars by W ′.

Let U1 = V ′
1 − V 0

1 − V (T ) − W ′, W = W ′ ∪ V 0
1 ∪ V0, and U2 = (V ′

2 − V (T )) ∪ W . Then
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|U1| = |U2| = m. Case (c): t′1 = 1. In this case, we let m = (n−9)/2. If G[V ′
1 −V 0

1 ] contains

a vertex adjacent to all other vertices in V ′
1 − V 0

1 , we take this vertex to V ′
2 . This gets back

to Case (a). Hence, we assume that G[V ′
1 − V 0

1 ] has no vertex adjacent to all other vertices

in V ′
1 − V 0

1 . Then by the assumptions that δ(G) ≥ (n+ 1)/2 and |V ′
1 − V 0

1 | = (n+ 1)/2 + 1,

we can find two copies of vertex disjoint P3s in G[V ′
1 − V 0

1 ]. Let x1u1w1 and y1v1z1 be two

P3s in G[V ′
1 ]. There exist distinct vertices x2 ∈ Γ(x1, u1, w1, V

′
2), y2 ∈ Γ(y1, v1, z1, V

′
2) and

z ∈ Γ(w1, z1, V
′
2). Then G[{x1, u1, w1, x2, y1, v1, z1, y2, z}] contains a subgraph T isomorphic

to T5. Let U1 = V ′
1 −V 0

1 −V (T ), W = V 0
1 ∪V0, and U2 = V ′

2 −V (T ). Then |U1| = |U2| = m.

For the partition of U1 and U2 in all the cases discussed in Case 2, we let G′ = (V (G)−
V (T ), EG(U1, U2)) be the bipartite graph with partite sets U1 and U2. Similarly as in Case

1, we can show that all the statements (i)-(iii) hold.

Let W1 = U1 ∩W and W2 = U2 ∩W . For i = 1, 2, by the definition of W , we see that

δ(Wi, Ui −{x′
1, y

′
1, x

′
2, y

′
2}) ≥ 3|Wi|. And for any u, v ∈ Ui, Γ(u, v, U3−i) ≥ 6|Wi|, and for any

u, v, w ∈ Ui, Γ(u, v, w, U3−i) ≥ 7|Wi|. By Lemma 3.4.2, we can find ladder Li spanning on

Wi and another 7|Wi| − 2 vertices from Ui − {x′
1, x

′
2, y

′
1, y

′
2} if Wi 6= ∅. Denote a1ia2i and

b1ib2i the first and last rungs of Li (if Li exists), respectively, where a1i, b1i ∈ U1. Let

U ′
i = Ui − V (Li), m′ = |U ′

1| = |U ′
2|, and G′′ = G′′(U ′

1 ∪ U ′
2, EG(U

′
1, U

′
2)).

Since |W | ≤ α2n, m ≥ (n− 9)/2, and n is sufficiently large, we have 1/n+ 7|W | ≤ 15α2m.

As δ(G′ −W ) ≥ (1− α1 − 2α2)m and α ≤ (1/17)3, we obtain the following:

δ(G′′) ≥ 7m′/8 + 1.

Let a′2i ∈ Γ(a1i, U
′
2), a′1i ∈ Γ(a2i, U

′
1) such that a′1ia

′
2i ∈ E(G); and b′2i ∈ Γ(b1i, U

′
2),

b′1i ∈ Γ(b2i, U
′
1) such that b′1ib

′
2i ∈ E(G). We have the claim below.

Claim 3.3.5. The balanced bipartite graph G′′ contains three vertex-disjoint ladders Q1, Q2,

and Q3 spanning on V (G′′) such that the first rung of Q1 is x′
1x

′
2 and the last rung of Q1 is
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a′11a
′
21, the first rung of Q2 is b′11b

′
21 and the last rung of Q2 is a′12a

′
22, the first rung of Q3 is

b′12b
′
22 and the last rung of Q3 is y′1y

′
2.

Proof. Since δ(G′′) ≥ 7m′/8+5, G′′ has a perfect matchingM containing the following

edges: x′
1x

′
2, a

′
11a

′
21, b

′
11b

′
21, a

′
12a

′
22, b

′
12b

′
22, y

′
1y

′
2. We identify a′11 and b′11, a

′
21 and b′21, a

′
12 and b′12,

and a′22 and b′22 as vertices called c′11, c
′
21, c

′
12, and c′22, respectively. Denote G∗ = G∗(U∗

1 , U
∗
2 )

as the resulting graph and let c′11c
′
21, c

′
12c

′
22 ∈ E(G∗) if they do not exist in E(G∗). Denote

M ′ := M − {a′11a′21, b′11b′21, a′12a′22, b′12b′22} ∪ {c′11c′21, c′12c′22}. Define an auxiliary graph H ′ on

M ′ as follows. If xy, uv ∈ M ′ with x, u ∈ U ′
1 then xy ∼H′ uv if and only if x ∼G′ v and

y ∼G′ u. Particularly, for any pq ∈ M ′ − {c′11c′21, c′12c′22} with p ∈ U ′
2, pq ∼H′ c′11c

′
21 (resp.

pq ∼H′ c′12c
′
22) if and only if p ∼G′ a′11, b

′
11 and q ∼G′ a′21, b

′
21 (resp. p ∼G′ a′12, b

′
12 and

q ∼G′ a′22, b
′
22). Notice that there is a natural one-to-one correspondence between ladders

with rungs in M ′ and paths in H ′. Since δG∗(U∗
1 , U

∗
2 ), δG∗(U∗

2 , U
∗
1 ) ≥ 3m′/4 + 1, we get

δ(H ′) ≥ m′/2 + 1. Hence H ′ has a hamiltonian path starting with x′
1x

′
2, ending with y′1y

′
2,

and having c′11c
′
21 and c′12c

′
22 as two internal vertices. The path with the vertex c′11c

′
21 replaced

by a′11a
′
21 and b′11b

′
21, and with the vertex c′12c

′
22 replaced by a′12a

′
22 and b′12b

′
22 is corresponding

to the required ladders in G′′.

If T ∈ {T1, T2}, then
H = x1x2Q1L1Q2L2Q3y1y2 ∪ T.

is a spanning Halin subgraph of G. Suppose now that T ∈ {T3, T4, T5} and z is the pendent

vertex. Then z ∈ V ′
1 ∪ V ′

2 − W by Claim 3.3.4. By (3.1) and the definition of U ′
1 and U ′

2,

we get degG(z, U
′
1), degG(z, U

′
2) ≥ (1 − α1 − 9α2)m > m′/2. So z has a neighbor on each

side of the ladder Q1L1Q2L2Q3. Let H ′ be obtained from x1x2Q1L1Q2L2Q3y1y2 ∪ T by

suppressing the degree 2 vertex z. Then H ′ is a Halin graph such that each vertex on one

side of Q1L1Q2L2Q3 is a degree 3 vertex on its underlying tree. Let z′ be a neighbor of z

such that z′ has degree 3 in the underlying tree of H ′. Then

H = x1x2Q1L1Q2L2Q3y1y2 ∪ T ∪ {zz′},
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is a spanning Halin subgraph of G.

3.3.3.3 Proof of Theorem 3.4.3 We first show that G contains a subgraph T

isomorphic to T1 if n is even and to T2 if n is odd. Then by showing that G−V (T ) contains

a spanning ladder L with its first rung adjacent to the head link of T and its last rung

adjacent to the tail link of T , we get a spanning Halin subgraph H of G formed by L ∪ T .

Finding a subgraph T

Claim 3.3.6. Let n be a sufficient large integer and G an n-vertex graph with δ(G) ≥
(n + 1)/2. If G is not in Extremal Case 2, then G contains a subgraph T isomorphic to T1

if n is even and to T2 if n is odd.

Proof. Suppose first that n is even. Let xy ∈ E(G) be an edge. We show that

G[N(x)−{y}] contains an edge x1x2 and G[N(y)−{x}] contains an edge y1y2 such that the

two edges are independent. Since G is not in Extremal Case 2, it has no independent set of

size at least (1/2−7β)n. Hence, we can find the two desired edges, and G[{x, y, x1, x2, y1, y2}]
contains a subgraph T isomorphic to T1. Then assume that n is odd. We show in the first step

that G contains a subgraph isomorphic to K−
4 (K4 with one edge removed). Let yz ∈ E(G).

As δ(G) ≥ (n+1)/2, there exists y1 ∈ Γ(y, z). If there exists y2 ∈ Γ(y, z)−{y1}, we are done.
Otherwise, (Γ(y)− {y1, z}) ∩ (Γ(z)− {y1, y}) = ∅. As δ(G) ≥ (n + 1)/2, y1 is adjacent to a

vertex y2 ∈ Γ(y)∪Γ(z)−{y1, y, z}. Assume y2 ∈ Γ(z)−{y1, y}. Then G[{y, y1, z, y2}] contains
a copy ofK−

4 . Choose x ∈ Γ(y)−{z, y1, y2} and choose an edge x1x2 ∈ G[Γ(x)−{y, y1, y2, z}].
Then G[{y, y1, z, y2, x, x1, x2}] contains a subgraph T isomorphic to T2.

Let T be a subgraph of G as given by Claim 3.3.6. Suppose the head link of T is x1x2

and the tail link of T is y1y2. Let G
′ = G− V (T ). We show in next section that G′ contains

a spanning ladder with first rung adjacent to x1x2 and its last rung adjacent to y1y2. Let

n′ = |V (G′)|. Then we have δ(G′) ≥ (n + 1)/2− 7 ≥ n′/2− 4 ≥ (1/2− β)n′.

Finding a spanning ladder of G′ with prescribed end rungs
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Theorem 3.3.5. Let n′ be a sufficiently large even integer and G′ the subgraph of G obtained

by removing vertices in T . Suppose that δ(G′) ≥ (1/2−β)n′ and G = G[V (G′)∪V (T )] is in

Non-extremal case, then G′ contains a spanning ladder with first rung adjacent to x1x2 and

its last rung adjacent to y1y2.

Proof. We fix the following sequence of parameters

0 < ε ≪ d ≪ β ≪ 1

and specify their dependence as the proof proceeds.

Let β be the parameter defined in the two extremal cases. Then we choose d ≪ β and

choose

ε =
1

4
ǫ(d/2, 3, 2, d/4)

following the definition of ǫ in the Blow-up Lemma.

Applying the Regularity Lemma to G′ with parameters ε and d, we obtain a partition of

V (G′) into ℓ+1 clusters V0, V1, · · · , Vℓ for some ℓ ≤ M ≤ M(ε), and a spanning subgraph G′′

of G′ with all described properties in the Regularity Lemma. In particular, for all v ∈ V (G′),

degG′′(v) > degG′(v)− (d+ ε)n′ ≥ (1/2− β − ε− d)n′ ≥ (1/2− 2β)n′ (3.3)

provided that ε+ d ≤ β. On the other hand,

e(G′′) ≥ e(G′)− (d+ ε)

2
(n′)2 > e(G′)− d(n′)2

by ε < d.

We further assume that ℓ = 2k is even; otherwise, we eliminate the last cluster Vℓ by

removing all the vertices in this cluster to V0. As a result, |V0| ≤ 2εn′, and

(1− 2ε)n′ ≤ ℓN = 2kN ≤ n′, (3.4)



40

where N = |Vi| for 1 ≤ i ≤ ℓ.

For each pair i and j with 1 ≤ i 6= j ≤ ℓ, we write Vi ∼ Vj if d(Vi, Vj) ≥ d. As

in other applications of the Regularity Lemma, we consider the reduced graph Gr, whose

vertex set is {1, 2, · · · , r} and two vertices i and j are adjacent if and only if Vi ∼ Vj. From

δ(G′′) > (1/2− 2β)n′, we claim that δ(Gr) ≥ (1/2− 2β)ℓ. Suppose not, and let i0 ∈ V (Gr)

be a vertex with degGr(i0) < (1/2 − 2β)ℓ. Let Vi0 be the cluster in G corresponding to i0.

Then we have

(1/2− β)n′|Vi0 | ≤ |EG′(Vi0 , V − Vi0)| < (1/2− 2β)ℓN |Vi0|+ 2εn′|Vi0 | < (1/2− β)n′|Vi0|.

This gives a contradiction by ℓN ≤ n′ from inequality (3.4).

Let x ∈ V (G′) be a vertex and A a cluster. We say x is typical to A if deg(x,A) ≥
(d− ε)|A|, and in this case, we write x ∼ A.

Claim 3.3.7. Each vertex in {x1, x2, y1, y2} is typical to at least (1/2 − 2β)l clusters in

{V1, · · · , Vl}.

Proof. Suppose on the contrary that there exists x ∈ {x1, x2, y2, y2} such that x is

typical to less than (1/2 − 2β)l clusters in {V1, · · · , Vl}. Then we have degG′(x) < (1/2 −
2β)lN + (d+ ε)n′ ≤ (1/2− β)n′ by lN ≤ n′ and d+ ε ≤ β.

Let x ∈ V (G′) be a vertex. Denote by Vx the set of clusters to which x typical.

Claim 3.3.8. There exist Vx1 ∈ Vx1 and Vx2 ∈ Vx2 such that d(Vx1, Vx2) ≥ d.

Proof. We show the claim by considering two cases based on the size of |Vx1 ∩ Vx2|.
Case 1. |Vx1 ∩ Vx2| ≤ 2βl.

Then we have |Vx1 −Vx2| ≥ (1/2−4β)l and |Vx2 ∩Vx1| ≥ (1/2−4β)l. We conclude that

there is an edge between Vx1 − Vx2 and Vx2 − Vx1 in Gr. For otherwise, let U be the union

of clusters in Vx1 ∩ Vx2 . Then |V0 ∪ U ∪ V (T )| ≤ 5βn is a vertex-cut of G, implying that G

is in Extremal Case 1.

Case 2. |Vx1 ∩ Vx2| > 2βl.
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We may assume that Vx1 ∩Vx2 is an independent set in Gr. For otherwise, we are done

by finding an edge within Vx1 ∩Vx2 . Also we may assume that EGr(Vx1 ∩Vx2 ,Vx1 −Vx2) = ∅
and EGr(Vx1∩Vx2 ,Vx2−Vx1) = ∅. Since δ(Gr) ≥ (1/2−2β)l and δGr(Vx1∩Vx2 ,Vx1∪Vx2) = 0,

we know that l− |Vx1 ∪Vx2 | ≥ (1/2− 2β)l. Hence, |Vx1 ∪Vx2 | = |Vx1|+ |Vx2| − |Vx1 ∩Vx2| ≤
(1/2 + 2β)l. This gives that |Vx1 ∩ Vx2 | ≥ |Vx1| + |Vx2| − (1/2 + 2β)l ≥ (1/2 − 2β)l +

(1/2− 2β)l − (1/2 + 2β)l ≥ (1/2− 6β)l. Let U be the union of clusters in Vx1 ∩ Vx2 . Then

|U| ≥ (1/2 − 7β)n and ∆(G[U ]) ≤ (d + ε)n′ ≤ βn. This shows that G is in Extremal Case

2.

Similarly, we have the following claim.

Claim 3.3.9. There exist Vy1 ∈ Vy1 − {Vx1, Vx2} and Vy2 ∈ Vy2 − {Vx1, Vx2} such that

d(Vy1, Vy2) ≥ d.

Claim 3.3.10. The reduced graph Gr has a hamiltonian path X1Y1 · · ·XkYk such that

{X1, Y1} = {Vx1, Vx2} and {Xk, Yk} = {Vy1, Vy2}.

Proof. We contract the edges Vx1Vx2 and Vy1Vy2 in Gr. Denote the two new vertices

as V ′
x and V ′

y respectively, and denote the resulting graph as G′
r. Then we show that G′

r

contains a hamiltonian (V ′
x, V

′
y)-path. This path is corresponding to a required hamiltonian

path in Gr.

To show G′
r has a hamiltonian (V ′

x, V
′
y)-path, we need the following generalized version

of a result due to Nash-Williams [44] : Let Q be a 2-connected graph of order m. If

δ(Q) ≥ max{(m+ 2)/3 + 1, α(Q) + 1}, then Q is hamiltonian connected, where α(Q) is the

size of a largest independent set of Q.

We claim that G′
r is 2βl-connected. For otherwise, let S be a vertex-cut of G′

r with |S| <
2βl and S the vertex set corresponding to S in G . Then |S∪V0∪V (T )| ≤ 2βn′+2εn′ < 5βn,

showing that G is in Extremal Case 1. Since n′ = Nl+|V0| ≤ (l+2)εn′, we have l ≥ 1/ε−2 ≥
1/β. Hence, G′

r is 2-connected. As G is not in Extremal Case 2, α(G′
r) ≤ (1/2 − 7β)l. By

δ(Gr) ≥ (1/2− 2β)l, we have δ(G′
r) ≥ (1/2− 2β)l− 2 ≥ max{(l+2)/3+1, (1/2− 7β)l+1}.

Thus, by the result on hamiltonian connectedness given above, we know that G′
r contains a

hamiltonian (V ′
x, V

′
y)-path.
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Following the order of the clusters on the hamiltonian path given in Claim 3.3.10, for

i = 1, 2, · · · , k, we call Xi, Yi partners of each other and write P (Xi) = Yi and P (Yi) = Xi.

Claim 3.3.11. For each 1 ≤ i ≤ k, there exist X ′
i ⊆ Xi and Y ′

i ⊆ Yi such that (X ′
i, Y

′
i ) is

(2ε, d− 3ε)-super-regular, |Y ′
1 | = |X ′

1|+1, |Y ′
k| = |X ′

k|+1, and |X ′
i| = |Y ′

i | for 2 ≤ i ≤ k− 1.

Additionally, each pair (Y ′
i , X

′
i+1) is 2ε-regular with density at least d− ε for i = 1, 2, · · · , k,

where X ′
k+1 = X ′

1.

Proof. For each 1 ≤ i ≤ k, let

X ′′
i = {x ∈ Xi | deg(x, Yi) ≥ (d− ε)N}, and

Y ′′
i = {y ∈ Yi | deg(y,Xi) ≥ (d− ε)N}.

If necessary, we either take a subset X ′
i of X

′′
i or take a subset Y ′

i of Y ′′
i such that |Y ′

1 | =
|X ′

1|+1, |Y ′
k| = |X ′

k|+1, and |X ′
i| = |Y ′

i | for 2 ≤ i ≤ k−1. Since (Xi, Yi) is ε-regular, we have

|X ′′
i |, |Y ′′

i | ≥ (1− ε)N . This gives that |X1|′, |X ′
k| ≥ (1− ε)N − 1 and |X ′

i| = |Y ′
i | ≥ (1− ε)N

for 2 ≤ i ≤ k − 1. As a result, we have deg(x, Y ′
i ) ≥ (d − 2ε)N for each x ∈ X ′

i and

deg(y,X ′
i) ≥ (d− 2ε)N − 1 ≥ (d− 3ε)N for each y ∈ Y ′

i . By Slicing lemma (Lemma 3.2.5),

(X ′
i, Y

′
i ) is 2ε-regular. Hence (X ′

i, Y
′
i ) is (2ε, d − 3ε)-super-regular for each 1 ≤ i ≤ k. By

Slicing lemma again, we know that (X ′
i, Y

′
i+1) is 2ε-regular with density at least d− ε.

For 1 ≤ i ≤ k, we call (X ′
i, Y

′
i ) a super-regularized cluster (sr-cluster). Denote R =

V0 ∪ (
k
⋃

i=1

((Xi ∪ Yi)− (X ′
i ∪ Y ′

i ))). Since |(Xi ∪ Yi)− (X ′
i ∪ Y ′

i )| ≤ 2εN for 2 ≤ i ≤ k − 1 and

|(X1∪Y1)−(X ′
1∪Y ′

1)|, |(Xk∪Yk)−(X ′
k∪Y ′

k)| ≤ 2εN+1, we have |R| ≤ 2εn+2kεN+2 ≤ 3εn′.

As n′ is even and |X ′
1|+|Y ′

1 |+· · ·+|X ′
k|+|Y ′

k| is even, we know |R| is even. We arbitrarily group

vertices in R into |R|/2 pairs. Given two vertices u, v ∈ R, we define a (u, v)-chain of length

2t as distinct clusters A1, B1, · · · , At, Bt such that u ∼ A1 ∼ B1 ∼ · · · ∼ At ∼ Bt ∼ v and

each Aj and Bj are partners, in other words, {Aj, Bj} = {Xij , Yij} for some ij ∈ {1, · · · , k}.
We call such a chain of length 2t a 2t-chain.

Claim 3.3.12. For each pair (u, v) in R, we can find a (u, v)-chain of length at most 4 such

that every sr-cluster is used in at most d2N/5 chains.
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Proof. Suppose we have found chains for the first m < 2εn′ pairs of vertices in R such

that no sr-cluster is contained in more than d2N/5 chains. Let Ω be the set of all sr-clusters

that are used exactly by d2N/5 chains. Then

d2N

5
|Ω| ≤ 4m < 8εn′ ≤ 8ε

2kN

1− 2ε
,

where the last inequality follows from (3.4). Therefore,

|Ω| ≤ 80kε

d2(1− 2ε)
≤ 80lε

d2
≤ βl/2,

provided that 1− 2ε ≥ 1/2 and 80ε ≤ d2β/2.

Consider now a pair (w, z) of vertices in R which does not have a chain found so far,

we want to find a (w, z)-chain using sr-clusters not in Ω. Let U be the set of all sr-clusters

adjacent to w but not in Ω, and let V be the set of all sr-clusters adjacent to z but not in

Ω. We claim that |U|, |V| ≥ (1/2− 2β)l. To see this, we first observe that any vertex x ∈ R

is adjacent to at least (1/2− 3β/2)l sr-clusters. For instead,

(1/2− β)n′ ≤ degG′(x) < (1/2− 3β/2)lN + (d− 2ε)lN + 3εn′,

≤ (1/2− 3β/2 + d+ 2ε)n′

< (1/2− β)n′ (provided that d+ 2ε < β/2 ),

showing a contradiction. Since |Ω| ≤ βl/2, we have |U|, |V| ≥ (1/2 − 2β)l. Let P (U) and

P (V) be the set of the partners of clusters in U and V, respectively. By the definition of the

chains, a cluster A ∈ Ω if and only its partner P (A) ∈ Ω. Hence, (P (U) ∪ P (V)) ∩ Ω = ∅.
Notice also that each cluster has a unique partner, and so we have |P (U)| = |U| ≥ (1/2−2β)l

and |P (V)| = |V| ≥ (1/2− 2β)l.

If EGr(P (U), P (V)) 6= ∅, then there exist two adjacent clusters B1 ∈ P (U), A2 ∈ P (V).
If B1 and A2 are partners of each other, then w ∼ A2 ∼ B1 ∼ z gives a (w, z)-chain of length

2. Otherwise, assume A1 = P (B1) and B2 = P (A2), then w ∼ A1 ∼ B1 ∼ A2 ∼ B2 ∼ z
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gives a (w, z)-chain of length 4. Hence we assume that EGr(P (U), P (V)) = ∅. We may

assume that P (U) ∩ P (V) 6= ∅. Otherwise, let S be the union of clusters contained in

V (Gr)− (P (U) ∪ P (V)). Then S ∪R ∪ V (T ) with |S ∪R ∪ V (T )| ≤ 4βn′ + 3εn′ + 7 ≤ 5βn

(provided that 3ε+7/n′ < β) is a vertex-cut of G, implying that G is in Extremal Case 1. As

EGr(P (U), P (V)) = ∅, any cluster in P (U)∩P (V) is adjacent to at least (1/2−2β)l clusters in

V (Gr)−(P (U)∪P (V)) by δ(Gr) ≥ (1/2−2β)l. This implies that |P (U)∪P (V)| ≤ (1/2+2β)l,

and thus |P (U)∩P (V)| ≥ |P (U)|+ |P (V)|−|P (U)∪P (V)| ≥ (1/2−6β)l. Then P (U)∩P (V)
is corresponding to a subset V1 of V (G) such that |V1| ≥ (1/2 − 6β)lN ≥ (1/2 − 7β)n

and ∆(G[V1]) ≤ (d + ε)n′ ≤ βn. This implies that G is in Extremal Case 2, showing a

contradiction.

For each cluster Z ∈ {X ′
1, Y

′
1 , · · · , X ′

k, Y
′
k}, let R2(Z) denote the set of vertices in R

using Z in the 2-chains and R4(Z) denote the set of vertices in R using Z in the 4-chains

given by Claim 3.3.12. By the definition of 2-chains and 4-chains, we have the following

holds.

Claim 3.3.13. For each i = 1, 2, · · · , k, if R2(X
′
i) 6= ∅, then |R2(X

′
i)| = |R2(Y

′
i )|; and if

R4(X
′
i) 6= ∅, then |R4(X

′
i)| = |R4(Y

′
i+1)|.

Claim 3.3.14. For each i = 1, 2, · · · , k, if R2(X
′
i) 6= ∅, then there exist vertex-disjoint lad-

ders Li
2x and Li

2y covering all vertices in R2(X
′
i) ∪ R2(Y

′
i ) such that |X ′

i ∩ V (Li
2x ∪ Li

2y)| =
|Y ′

i ∩ V (Li
2x ∪ Li

2y)|; and if R4(X
′
i) 6= ∅, then there exist three vertex disjoint ladders

Li
4x, L

i
4xy, L

i+1
4y covering all vertices in R4(X

′
i) ∪ R4(Y

′
i+1) such that V (Li

4x) ⊆ X ′
i ∪ Y ′

i ,

V (Li
4xy) ⊆ Y ′

i ∪ X ′
i+1, and V (Li+1

4y ) ⊆ X ′
i+1 ∪ Y ′

i+1, and that |X ′
i ∩ V (Li

4x ∪ Li
4xy)| =

|Y ′
i ∩ V (Li

4x ∪ Li
4xy ∪ Li+1

4y )| = |X ′
i+1 ∩ V (Li

4x ∪ Li
4xy ∪ Li+1

4y )| = |Y ′
i+1 ∩ V (Li

4xy ∪ Li+1
4y )|.

Proof. Notice that by Claim 3.3.11, (X ′
i, Y

′
i ) is (2ε, d−3ε)-super-regular and (Yi, Xi+1)

is 2ε-regular. Assume R2(X
′
i) 6= ∅. By Claim 3.3.12 and Claim 3.3.13, we have

|R2(X
′
i)| = |R2(Y

′
i )| ≤ d2N/5. Let R2(X

′
i) = {x1, · · · , xr}. For each j = 1, · · · , r,

since |Γ(xj, X
′
i)| ≥ (d − 2ε)|X ′

i| > 2ε|X ′
i|, by Lemma 3.2.4, there exists a vertex set

Bj ⊆ Y ′
i with |Bj| ≥ (1 − 2ε)|Y ′

i | such that Bj is typical to Γ(xj , X
′
i). If r ≥ 2, for
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j = 1, · · · , r − 1, there also exists a vertex set Bj,j+1 ⊆ Y ′
i with |Bj,j+1| ≥ (1 − 4ε)|Y ′

i |
such that Bj,j+1 is typical to both Γ(xj , X

′
i) and Γ(xj+1, X

′
i). That is, for each vertex

b1 ∈ Bj , we have deg(b1,Γ(xj , X
′
i)) ≥ (d − 5ε)|Γ(xj, X

′
i)| > 4|R|, and for each vertex

b2 ∈ Bj,j+1, we have deg(b2,Γ(xj , X
′
i)), deg(b2,Γ(xj+1, X

′
i)) ≥ (d − 5ε)|Γ(xj, X

′
i)| > 4|R|.

When r ≥ 2, since |Bj|, |Bj,j+1|, |Bj+1| ≥ (d − 4ε)|Y ′
i | > 2ε|Y ′

i |, there is a set A ⊆ X ′
i with

|A| ≥ (1 − 6ε)|X ′
i| ≥ |R| such that A is typical to each of Bj, Bj+1 and Bj+1. Notice that

(d−5ε)|Bj|, (d−5ε)|Bj,j+1|, (d−5ε)|Bj+1| ≥ (d−5ε)(1−4ε)|Y ′
i | > 3|R|. Hence we can choose

distinct vertices u1, u2, · · · , ur−1 ∈ A such that deg(uj, Bj), deg(uj, Bj,j+1), deg(uj, Bj+1) ≥
3|R|. Then we can choose distinct vertices yj23 ∈ Γ(uj, Bj), zj ∈ Γ(uj, Bj,j+1) and

yj+1
12 ∈ Γ(uj, Bj+1) for each j, and choose distinct and unchosen vertices y112 ∈ B1 and

yr23 ∈ Br. Finally, as for each vertex b1 ∈ Bj, we have deg(b1,Γ(xj, X
′
i)) > 4|R| and for each

vertex b2 ∈ Bj,j+1, we have deg(b2,Γ(xj , X
′
i)), deg(b2,Γ(xj+1, X

′
i)) > 4|R|, we can choose

xj1, xj2, xj3 ∈ Γ(xj , X
′
i)−{u1, · · · , ur−1} such that yj12 ∈ Γ(xj1, xj2, Y

′
i ), y

j
23 ∈ Γ(xj2, xj3, Y

′
i ),

and zj ∈ Γ(xi3, xi+1,1, Y
′
i ). Let L

i
2x be the graph with

V (Li
2x) = R2(X

′
i) ∪ {xi1, xi2, xi3, y

i
12, y

i
23, zi, ui, xr1, xr2, xr3, y

r
12, y

r
23 | 1 ≤ i ≤ r − 1} and

E(Li
2x) consisting of the edges xrxr1, xrxr2, xrxr3, y

r
12xr1, y

r
12xr2, y

r
23xr2, y

r
23xr3 and the edges

indicated below for each 1 ≤ i ≤ r − 1:

xi ∼ xi1, xi2, xi3; y
i
12 ∼ xi1, xi2; y

i
23 ∼ xi2, xi3; zi ∼ xi3, xi+1,1; ui ∼ xi3, xi+1,1, zi.

It is easy to check that Li
2x is a ladder spanning on R2(X

′
i), 4|R2(X

′
i)| − 1 vertices from

X ′
i and 3|R2(X

′
i)| − 1 vertices from Y ′

i . Similarly, we can find a ladder Li
2y spanning on

R2(Y
′
i ), 4|R2(Y

′
i )| − 1 vertices from X ′

i and 3|R2(X
′
i)| − 1 vertices from X ′

i. Clearly, we have

|X ′
i ∩ V (Li

2x ∪ Li
2y)| = |Y ′

i ∩ V (Li
2x ∪ Li

2y)|.
Assume now that R4(X

′
i) 6= ∅. Then by Claim 3.3.12, we have |R4(X

′
i)| = |R4(Y

′
i+1)|.

By the similar argument as above, we can find ladder Li
4x, L

i+1
4y such that R4(X

′
i) ⊆
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V (Li
4x), R4(Y

′
i+1) ⊆ V (Li+1

4y ). Furthermore, we have

|X ′
i ∩ V (Li

4x)| = 4|R4(X
′
i)| − 1, |Y ′

i ∩ V (Li
4x)| = 3|R4(X

′
i)| − 1;

|Y ′
i+1 ∩ V (Li+1

4y )| = 4|R4(Y
′
i+1)| − 1, |X ′

i+1 ∩ V (Li+1
4y )| = 3|R4(Y

′
i+1)| − 1.

Finally, we claim that we can find a ladder Li
4xy between (Y ′

i , X
′
i+1) such that |Y ′

i ∩V (Li
4xy)| =

|X ′
i+1 ∩ V (Li

4xy)| = |R4(Y
′
i+1)| and is vertex-disjoint from Li

4x ∪ Li+1
4y . Since 3|R4(Y

′
i+1)| ≤

3d2N/5 and (Y ′
i , X

′
i+1) is 2ε-regular with density at least d − ε by Claim 3.3.11, a similar

argument as in the proof of Lemma 3.3.11, we can find Y ′′
i ⊆ Y ′

i − V (Li
4x) and X ′′

i+1 ⊆
X ′

i+1 − V (Li+1
4y ) such that (Y ′′

i , X
′′
i+1) is (4ε, d − 5ε)-super-regular and |Y ′′

i | = |X ′′
i+1|, and

thus is (4ε, d/2)-super-regular (provided that ε ≤ d/10). Notice that there are at least

(d − 9ε)|Y ′′
i | ≥ d|Y ′′

i |/4 vertices typical to X ′′
i+1, and there are at least (d − 9ε)|X ′′

i+1| ≥
d2|X ′′

i+1|/4 vertices typical to Y ′′
i . Applying the Below-up Lemma (Lemma 3.2.2), we can find

a ladder Li
4xy within (Y ′′

i , X
′′
i+1) such that |Y ′

i ∩ V (Li
4xy)| = |X ′

i+1 ∩ V (Li
4xy)| = |R4(Y

′
i+1)|. It

is routine to check that Li
4x, L

i+1
4y , Li

4xy are the desired ladders.

For each i = 1, 2, · · · , k, let X∗∗
i = X ′

i − V (Li
2x ∪ Li

2y ∪ Li
4x ∪ Li

4xy ∪ Li
4y) and Y ∗∗

i =

Y ′
i −V (Li

2x∪Li
2y∪Li

4x∪Li
4xy∪Li

4y). Using Lemma 3.2.4, for i ∈ {1, · · · , k−1}, choose y∗i ∈ Y ∗∗
i

such that |Ai+1| ≥ dN/4, where Ai+1 := X∗∗
i+1 ∩ Γ(y∗i ). This is possible, as (Y ∗∗

i , X∗∗
i+1) is

4ε-regular (applying Slicing lemma based on (Y ′
i , X

′
i+1)). Similarly, choose x∗

i+1 ∈ Ai+1 such

that |Bi| ≥ dN/4, where Bi := Y ∗∗
i ∩ Γ(x∗

i+1). Let S = {y∗i , x∗
i+1 | 1 ≤ i ≤ k − 1}, and let

X∗
i = X∗∗

i − S and Y ∗
i = Y ∗∗

i − S. We have the following holds.

Claim 3.3.15. For each i = 1, 2, · · · , k, (X∗
i , Y

∗
i ) is (4ε, d/2)-super-regular such that |Y ∗

1 | =
|X∗

1 |+ 1, |Y ∗
k | = |X∗

k |+ 1, and |X∗
i | = |Y ∗

i | for 2 ≤ i ≤ k − 1.

Proof. Since |R2(X
′
i)|, |R4(Y

′
i+1)| ≤ d2N/5 for each i, we have |X∗

i |, |Y ∗
i | ≥ (1 − ε −

d2)N − 1. As ε, d ≪ 1, we can assume that 1− ε− d2− 1/N < 1/2. Thus, by Slicing lemma

based on the 2ε-regular pair (X ′
i, Y

′
i ), we know that (X∗

i , Y
∗
i ) is 4ε-regular. Recall from

Claim 3.3.11 that (X ′
i, Y

′
i ) is (2ε, d − 3ε)-super-regular, as 4|R2(X

′
i)|, 4|R4(Y

′
i+1)| < d2|Y ∗

i |,
we know that for each x ∈ X∗

i , deg(x, Y
∗
i ) ≥ (d − 3ε − d2)|Y ∗

i | > d|Y ∗
i |/2. Similarly, we
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have for each y ∈ Y ∗
i , deg(y,X∗

i ) ≥ d|X∗
i |/2. Thus (X∗

i , Y
∗
i ) is (4ε, d/2)-super-regular.

Finally, Combining Claims 3.3.11 and 3.3.14, we have |Y ∗
1 | = |X∗

1 |+ 1, |Y ∗
k | = |X∗

k |+ 1, and

|X∗
i | = |Y ∗

i | for 2 ≤ i ≤ k − 1.

For each i = 1, 2, · · · , k − 1, now set Bi+1 := Y ∗
i ∩ Γ(x∗

i+1) and Ci := X∗
i ∩ Γ(y∗i ). Since

(X∗
i , Y

∗
i ) is (4ε, d/2)-super-regular, we have |Bi+1|, |Ci| ≥ d|X∗

i |/2 > d|X∗
i |/4. Recall from

Claim 3.3.10 that {X1, Y1} = {Vx1 , Vx2} and {Xk, Yk} = {Vy1, Vy2}. We assume, w.l.o.g.,

that X1 = Vx1 and Xk = Vy1 . Let A1 = X∗
1 ∩ Γ(x1), B1 = Y ∗

1 ∩ Γ(x2), Ck = X∗
k ∩ Γ(y1),

and Dk = Y ∗
k ∩ Γ(y2). Since deg(x1, X1) ≥ (d − ε)N , we have deg(x1, X

∗
1 ) ≥ (d − ε − 2ε −

d2)N ≥ d|X∗
1 |/4, and thus |A1| ≥ d|X∗

1 |/4. Similarly, we have |B1|, |Ck|, |Dk| ≥ d|X∗
1 |/4.

For each 1 ≤ i ≤ k, we assume that Li
2x = ai1b

i
1 − Li

2x − ci1d
i
1, L

i
2y = ai2b

i
2 − Li

2y − ci2d
i
2,

Li
4x = ai3b

i
3 − Li

4x − ci3d
i
3, L

i
4xy = ai4b

i
4 − Li

4xy − ci4d
i
4, and Li

4y = ai5b
i
5 − Li

4y − ci5d
i
5, where

aij , c
i
j ∈ Y ′

i ⊆ Yi for j = 1, 2, · · · , 5. For j = 1, 2, · · · , 5, let Ai
j = X∗

i ∩Γ(aij), C
i
j = X∗

i ∩Γ(cij),

Bi
j = Y ∗

i ∩ Γ(bij), and Di
j = Y ∗

i ∩ Γ(dij). Since (X ′
i, Y

′
i ) is (2ε, d − 3ε)-super-regular, for

j = 1, 2, 3, 5, we have |Γ(aij , X ′
i)|, |Γ(cij, X ′

i)| ≥ (d − 3ε)|X ′
i| and |Γ(bij, Y ′

i )|, |Γ(dij, Y ′
i )| ≥

(d−3ε)|Y ′
i |. From the proof of Claim 3.3.14, the pair (Y

′′

i , X
′′

i+1) is (4ε, d−5ε)-super-regular.

Hence, |Γ(ai4, X ′
i+1)|, |Γ(ci4, X ′

i+1)| ≥ (d− 4ε)|X ′
i+1| and |Γ(bi4, Y ′

i )|, |Γ(di4, Y ′
i )| ≥ (d− 4ε)|Y ′

i |.
Thus, we have |Ai

j|, |Bi
j|, |C i

j|, |Di
j| ≥ (d− 4ε)|X ′

i| − d2N ≥ d|X∗
i |/4 = d|Y ∗

i |/4.
We now apply the Blow-up lemma on (X∗

i , Y
∗
i ) to find a spanning ladder Li with its first

and last rungs being contained in Ai ×Bi and Ci ×Di, respectively, and for j = 1, 2, · · · , 5,
its (2j)-th and (2j+1)-th rungs being contained in Ai

j×Bi
j and C i

j×Di
j , respectively. We can

then insert Li
2x between the 2nd and 3rd rungs of Li, Li

2y between the 4th and 5th rungs of

Li, Li
4x between the 6th and 7th rungs of Li, Li

4xy between the 8th and 9th rungs of Li, and

Li
4y between the 10th and 11th rungs of Li to obtained a ladder Li spanning on Xi ∪ Yi −S.

Finally, L1y∗1x
∗
2L2 · · · y∗k−1x

∗
kLk is a spanning ladder of G′ with its first rung adjacent to x1x2

and its last rung adjacent to y1y2.

The proof is then complete.
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3.4 Minimum degree condition for spanning generalized Halin graphs

3.4.1 Introduction

A tree with no vertex of degree 2 is called a homeomorphically irreducible tree (HIT),

and a spanning tree with no vertex of degree 2 is a homeomorphically irreducible spanning

tree (HIST). A Halin graph, constructed by Halin in 1971 [27], is a graph formed from a plane

embedding of a HIT T of at least 4 vertices by connecting its leaves into a cycle following the

cyclic order determined by the embedding. Relaxing the planarity requirement, a generalized

Halin graph is obtained from a HIT T of at least 4 vertices by connecting its leaves into a

cycle. We call the HIT T the underlying tree or underlying HIST of the resulting (generalized)

Halin graph.

Halin graphs possess many hamiltonicity properties. For examples, Halin graphs are

hamiltonian [5], hamiltonian-connected [2] (there is a hamiltonian path between any two

distinct vertices), and almost pancyclic [6] (contains all possible cycle lengths with one pos-

sible exception of a single even length). Compared to Halin graphs, generalized Halin graphs

are less studied. Kaiser et al. in [34] showed that a generalized Halin graph is prism hamil-

tonian; that is, the Cartesian product of a generalized Halin graph and K2 is hamiltonian.

Since a tree with no degree 2 vertices has more leaves than the non-leaves, a generalized

Halin graph contains a cycle of length at least half of its order. Also, one can notice that by

contracting the non-leaves of the underlying tree of a generalized Halin graph into a singe

vertex, a wheel graph is resulted with the contracted vertex as the hub, where a minor of a

graph is obtained from the graph by deleting edges/contracting edges, or deleting vertices.

Therefore, a generalized Halin graph contains a wheel-minor of order at least half of its order.

Although a generalized Halin graph may not be hamiltonian, we conjecture that the lengths

of a longest cycle in a generalized Halin graph is large.

Conjecture 3.1. Let G be an n-vertex generalized Halin graph. Then the length of a longest

cycle of G is at least 4n/5.

It was shown by Horton, Parker, and Borie [30] that it is NP-complete to determine
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whether a graph contains a (spanning) Halin graph. For generalized Halin graphs we obtain

the following.

Theorem 3.4.1. It is NP-hard to determine whether a graph contains a spanning generalized

Halin graph.

A classic theorem of Dirac [19] from 1952 asserts that every graph on n vertices with

minimum degree at least n/2 is hamiltonian if n ≥ 3. As a continuous “generalization” of

Dirac’s Theorem as well as an approach of showing many hamiltonicity properties simulta-

neously in a graph, the existence of a spanning Halin graph in graphs with large minimum

degree was investigated in the previous section, and it was shown that any sufficiently large

n-vertex graph with minimum degree at least (n+1)/2 contains a spanning Halin graph. We

here determine the minimum degree threshold for a graph to contain a spanning generalized

Halin graph.

Theorem 3.4.2. There exists a positive integer n0 such that every 3-connected graph with

n ≥ n0 vertices and minimum degree at least (2n + 3)/5 contains a spanning generalized

Halin graph. The result is best possible in the sense of the connectivity and minimum degree

constraints.

Since a generalized Halin graph of order n contains a wheel-minor of order at least n/2,

we get the following corollary.

Corollary 3.4.1. There exists a positive integer n0 such that every 3-connected graph with

n ≥ n0 vertices and minimum degree at least (2n + 3)/5 contains a wheel-minor of order at

least n/2.

For notational convenience, for a graph T , we denote by L(T ) the set of degree 1

vertices of T and S(T ) = V (T )−L(T ). Also we abbreviate spanning generalized Halin graph

as SGHG in what follows, and denote a generalized Halin graph as H = T ∪ C, where T is

the underlying HIST of H and C is the cycle spanning on L(T ).
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3.4.2 Proof of Theorem 3.4.1 and the sharpness of Theorem 3.4.2

Proof of Theorem 3.4.1. To show the problem is NP-hard we assume the existence of a

polynomial algorithm to test for an SGHG and use it to create a polynomial algorithm to

test for a hamiltonian path between two vertices in an arbitrary graph. The decision problem

for such hamiltonian paths is a classic NP-complete problem [24].

Let G be a graph and x, y ∈ V (G). We want to determine whether there exists a

hamiltonian path connecting x and y. We first construct a new graph G′ and show that G

contains a hamiltonian path between x and y if and only if G′ contains a HIST (the proof of

this part is the same as the proof of Albertson et al. in [1]). Then based on G′, we construct

a graph G′′ and show that G′ contains a HIST if and only if G′′ contains an SGHG.

Let {z1, z2, · · · , zt} = V (G) − {x, y}. Then G′ is formed by adding new vertices

{z′1, z′2, · · · , z′t} and new edges {ziz′i : 1 ≤ i ≤ t}. It is clear that if P is a hamiltonian

path between x and y, then P ∪ {ziz′i : 1 ≤ i ≤ t} is a HIST of G′. Conversely, let T

be a HIST of G′. Since 1 ≤ dT (z
′
i) ≤ dG′(z′i) = 1, we get dT (z

′
i) = 1 for each i. Since

NG′(z′i) = {zi} and T is a HIST, we have dT (zi) ≥ 3. Hence T − {z′1, z′2, · · · , z′t} is a tree

with leaves possibly in {x, y}. Since each tree has at least 2 leaves and a tree with exactly

two leaves is a path, we conclude that T − {z′1, z′2, · · · , z′t} is a path between x and y.

Then based on G′, we construct a graph G′′. First, for each i with 1 ≤ i ≤ t, we

add new vertices z′i1, z
′
i2, z

′
i3 and new edges z′iz

′
i1, z

′
iz

′
i2, z

′
iz

′
i3, z

′
i1z

′
i2, z

′
i2z

′
i3. Then we connect all

vertices in {x, y} ∪ {z′i1, z′i2, z′i3 : 1 ≤ i ≤ t} into a cycle C ′′ such that {z′i1z′i2, z′i2z′i3 : 1 ≤
i ≤ t} ⊆ E(C ′′). If T ′ is a HIST of G′, then T ′′ := T ′ ∪ {z′iz′i1, z′iz′i2, z′iz′i3 : 1 ≤ i ≤ t}
is a HIST of G′′ and T ′′ ∪ C ′′ is an SGHG of G′′. Conversely, suppose H = T ∪ C is an

SGHG of G′′. We claim that C = C ′′. This in turn gives that T = T ′′ and therefore

T ′′ − {z′i1, z′i2, z′i3 : 1 ≤ i ≤ t} is a HIST of G′. To show that C = C ′′, we first show that

z′i2 ∈ L(T ) for each i. Suppose on the contrary and assume, without loss of generality, that

z′12 ∈ S(T ). Then as NG′′(z′12) = {z′1, z′11, z′13}, we get {z′12z′1, z′12z′11, z′12z′13} ⊆ E(T ). Since

T is acyclic, z′11z
′
1, z

′
13z

′
1 6∈ E(T ). This in turn shows that {z′1, z′11, z′13} ⊆ L(T ). However,

{z′12z′1, z′12z′11, z′12z′13} forms a component of T , showing a contradiction. Then we show that
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z′i1, z
′
i3 ∈ L(T ) for each i. Suppose on the contrary and assume, without loss of generality,

that z′11 ∈ S(T ). By the previous argument, we have z′12 ∈ L(T ). Then z′1, z
′
13 ∈ L(T )

as z′12 is on C and z′1 and z′13 are the only two neighbors of z′12 which can be on the cycle

C. As dG′′(z′11) = 3 and {z′12, z′1} ⊆ NG′′(z′11), z
′
11z

′
12, z

′
11z

′
1 ∈ E(T ). Since z′12 ∈ L(T ) and

z′1, z
′
13 ∈ L(T ), we get z′12z

′
13, z

′
12z

′
1, z

′
1z

′
13 6∈ E(T ). Since dG′′(z′12) = dG′′(z′13) = 3, we have

z′12z
′
13, z

′
12z

′
1, z

′
1z

′
13 ∈ E(C). However, z′12z

′
13, z

′
12z

′
1, z

′
1z

′
13 forms a triangle but |V (C)| ≥ 4,

showing a contradiction. So we have shown that {z′i1, z′i2, z′i3 : 1 ≤ i ≤ t} ⊆ L(T ). This

indicates that in the tree T − {z′i1, z′i2, z′i3 : 1 ≤ i ≤ t}, each vertex z′i has degree 1 and no

vertices of degree 2. Hence T − {z′i1, z′i2, z′i3 : 1 ≤ i ≤ t} is a HIST of G′.

Combining the arguments in the two paragraphs above, we see that G has a hamiltonian

path between x and y if and only if G′′ has an SGHG. Hence a polynomial SGHG-tester

becomes a polynomial path-tester. �

Since a generalized Halin graph is 3-connected, the connectivity requirement in Theo-

rem 3.4.2 is necessary. To show that the minimum degree requirement is best possible, we

show the following proposition.

Proposition 3.4.1. Let G(A,B) = Ka,b be a complete bipartite graph with |A| = a and

|B| = b. Then G(A,B) has no HIST T with |L(T ) ∩A| = |L(T ) ∩ B| if b > 3(a−1)
2

.

If a bipartite graph G(A,B) contains an SGHGH = T∪C, then |L(T )∩A| = |L(T )∩B|.
Thus, by Proposition 3.4.1, it is easy to see that the complete bipartite graphs Ka,b with

b = 3a−1
2

when a is odd and b = 3a−2
2

when a is even does not have an SGHG. Let n = a+ b.

By direct computation, we get δ(Ka,b) = 2n+1
5

when b = 3a−1
2

and δ(Ka,b) = 2n+2
5

when

b = 3a−2
2

. We now prove Proposition 3.4.1.

Proof of Proposition 3.4.1. Suppose on the contrary that G(A,B) contains a HIST T such

that |L(T ) ∩ A| = |L(T ) ∩ B|. Then

|S(T ) ∩B| − |S(T ) ∩A| = |B| − |L(T ) ∩ B| − (|A| − |L(T ) ∩ A)|

= |B| − |A| > 3(a− 1)

2
− a =

a− 3

2
.
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SinceG(A,B) is bipartite and T is a HIST ofG(A,B), we have |S(T )∩A| ≥ 1. Thus, from the

inequalities above, we obtain |S(T )∩B| > (a− 1)/2. Since T is a HIST, we have dT (y) ≥ 3

for each y ∈ S(T ) ∩ B. Let EB = {e ∈ E(T ) : e is incident to a vertex in S(T ) ∩ B}.
Denote by T ′ the subgraph of T induced on EB. Notice that T ′ is a forest of at least

3|S(T ) ∩ B| edges. Hence T ′ has at least 3|S(T ) ∩ B| + 1 vertices. As T ′ is a bipartite

graph with one partite set as S(T ) ∩ B, and another as a subset of A, we conclude that

|V (T )∩A| = |V (T )| − |S(T )∩B| ≥ 2|S(T )∩B|+1. Since |S(T )∩B| > (a− 1)/2, we then

have |V (T ) ∩A| > a. This gives a contradiction to the assumption |A| = a. �

3.4.3 Proof of Theorem 3.4.2

Given 0 ≤ β ≪ α ≪ 1, we define the two extremal cases with parameters α and β as

follows.

Extremal Case 1. There exists a partition of V (G) into V1 and V2 such that |Vi| ≥
(2/5− 4β)n and d(V1, V2) < α. Furthermore, deg(v1, V2) ≤ 2βn for each v1 ∈ V1.

Extremal Case 2. There exists a partition of V (G) into V1 and V2 such that |V1| >

(3/5 − α)n and d(V1, V2) ≥ 1 − 3α. Furthermore, deg(v1, V2) ≥ (2n + 3)/5 − 2βn for each

v1 ∈ V1.

Then Theorem 3.4.2 is shown through the following three theorems.

Theorem 3.4.3 (Non-extremal Case). For every α > 0, there exists β > 0 and a positive

integer n0 such that if G is a 3-connected graph with n ≥ n0 vertices and δ(G) ≥ (2n +

3)/5− βn, then G contains an SGHG or G is in one of the two extremal cases.

Theorem 3.4.4 (Extremal Case 1). Suppose that 0 < β ≪ α ≪ 1 and n is a sufficiently

large integer. Let G be a 3-connected graph on n vertices with δ(G) ≥ (2n+ 3)/5. If G is in

Extremal Case 1, then G contains an SGHG.

Theorem 3.4.5 (Extremal Case 2). Suppose that 0 < β ≪ α ≪ 1 and n is a sufficiently

large integer. Let G be a 3-connected graph on n vertices with δ(G) ≥ (2n+ 3)/5. If G is in

Extremal Case 2, then G contains an SGHG.
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We show Theorems 3.4.3-3.4.5 separately in the following three subsections.

3.4.3.1 Proof of Theorem 3.4.3 We fix the following sequence of parameters,

0 < ε ≪ d ≪ β ≪ α < 1, (3.5)

and specify their dependence as the proof proceeds. We let β ≪ α be the same α and β as

defined in the two extremal cases. Then we choose d ≪ β. Finally we choose

ε = min

{

1

4
ε

(

d

2
,

⌈

2

d3

⌉

, 2,
d

2

)

,
1

9
ε

(

d

2
,

⌈

3

d3

⌉

, 3

)

,
1

4
ε

(

d

2
, 2, 2,

d

2

)}

, (3.6)

where ε
(

d
2
,
⌈

3
d3

⌉

, 3
)

follows from the definition of the ε in the weak version of the Blow-

up lemma and ε
(

d
2
,
⌈

2
d3

⌉

, 2, d
2

)

and ε
(

d
2
, 2, 2, d

2

)

follow from the definition of the ε in the

strengthened version of the Blow-up lemma. Choose n to be sufficiently large. In the proof,

we omit non-necessary ceiling and floor functions.

Let G be a graph of order n such that δ(G) ≥ (2n+3)/5−βn and suppose that G is not

in any of the two extremal cases. Applying the regularity lemma to G with parameters ε and

d, we obtain a partition of V (G) into l+1 clusters V0, V1, · · · , Vl for some l ≤ M = M(ε), and

a spanning subgraph G′ of G with all described properties in Lemma 3.2.1 (the Regularity

lemma). In particular, for all v ∈ V ,

degG′(v) > degG(v)− (d+ ε)n ≥ (2/5− β − d− ε)n

≥ (2/5− 2β)n (provided that ε+ d ≤ β), (3.7)

and

e(G′) ≥ e(G)− (d+ ε)

2
n2 ≥ e(G)− dn2,

by using ε < d.

We further assume that l = 2k is even; otherwise, we eliminate the last cluster Vl by
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removing all the vertices in this cluster to V0. As a result, |V0| ≤ 2εn and

(1− 2ε)n ≤ lN = 2kN ≤ n, (3.8)

here we assume that |Vi| = N for i ≥ 1.

For each pair i and j with 1 ≤ i < j ≤ l, we write Vi ∼ Vj if d(Vi, Vj) ≥ d. We now

consider the reduced graph Gr, whose vertex set is {1, 2, · · · , l}, and two vertices i and j are

adjacent if and only if Vi ∼ Vj . We claim that δ(Gr) ≥ (2/5 − 2β)l. Suppose not, and let

i0 ∈ V (Gr) such that deg(i0, V (Gr)) < (2/5− 2β)l. Then, for the corresponding cluster Vi0

we have eG′(Vi0, V (G′)−Vi0) < |Vi0 |(2/5−2β)lN . On the other hand, by using (3.7), we have

eG′(Vi0, V (G′) − Vi0) ≥ |Vi0|(2/5 − 2β)n. As lN ≤ n from (3.8), we obtain a contradiction.

The rest of the proof consists of the following steps.

Step 1. Show that Gr contains a dominating cycle C and there is a ∧-matching in Gr with

all vertices in V (Gr)− V (C) as its center. We distinguish two cases in Step 1, and each of

the other steps will be separated into two cases correspondingly.

Case A. C = X1Y1X2Y2 · · ·XtYt is an even cycle for some t ≤ k.

Case B. C = X0X1Y1X2Y2 · · ·XtYt is an odd cycle for some t < k.

Notice that in Case B there is at least one vertex in V (Gr)− V (C) by the assumption

that |V (Gr)| = l is even. In what follows, if we denote a vertex of Gr by a capital letter, it

means either a vertex of Gr or the corresponding cluster in G, but the exact meaning will

be clear from the context. For 1 ≤ i ≤ t, we call Xi and Yi the partners of each other, and

write as P (Xi) = Yi and P (Yi) = Xi.

Since C is not necessarily hamiltonian in Gr, we need to take care of the clusters of

G which are not represented on C. For each vertex F ∈ V (Gr) − V (C), we partition the

corresponding cluster F into two small clusters F1 and F2 such that −1 ≤ |F1|−|F2| ≤ 1. We

call each F1 and F2 a half-cluster. Then we group all the original clusters and the partitioned

clusters into pairs (A,B) and triples (C,D, F ) with F as a half-cluster such that each pair

(A,B) and (C,D) is still ε-regular with density d and the pair (D,F ) is 2.1ε-regular with
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density d − ε. Having the cluster groups like this, in the end, we will find “small” HITs

within each pair (A,B) or among each triple (C,D, F ).

Step 2. For each 1 ≤ i ≤ t− 1, initiate two independent edges connecting Yi and Xi+1. In

Case A, also initiate two independent edges connecting X1 and Yt; and in Case B, initiate

two independent edges connecting the clusters in each pair of X0 and X1, and X0 and Yt.

Step 3. Make each regular pair in the new grouped pairs and triples given in Step 1 super-

regular.

Step 4. Construct HITs covering all vertices in V0 using vertices from the super-regular

pairs obtained from Step 3, and obtain new super-regular pairs.

Step 5. Apply the Blow-up lemma to find a HIT between a super-regular pair resulted from

Step 4 or among a triple (A,B, F ), where both (A, F ) and (A,B) are super-regular pairs

resulted from Step 4, and F is a half cluster. In addition, in the construction, for each triple

(A,B, F ), we require the HIT to use as many vertices as possible from F as non-leaves.

Step 6. Apply the Blow-up Lemma again on the regular-pairs induced on the leaves of each

HIT obtained in Step 5 to find two disjoint paths covering all the leaves. Then connect all

the HITs into a HIST of G using edges guaranteed by the regularity and connect the disjoint

paths into a cycle using the edges initiated in Step 2. The union of the HIST and the cycle

gives an SGHG of G.

We now give details of each step. The assumption that G is not in any of the two

extremal cases leads to the following claim, which will be used in Step 1.

Claim 3.4.1. Each of the following holds for Gr.

(a) Gr contains no cut-vertex set of size at most βl;

(b) Gr contains no independent set of size more than (3/5− α/2)l .

Proof. (a) Suppose instead that Gr contains a vertex-cut W of size at most βl. As

δ(Gr) ≥ (2/5− 2β)l, then each component of Gr −W has at least (2/5− 3β)l vertices. Let

U be the vertex set of one of the components of Gr −W , A =
⋃

i∈U Vi, and B = V (G)−A.
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We see that |A|, |B| ≥ (2/5− 3β)lN ≥ (2/5− 4β)n, and since e(G) ≤ e(G′) + dn2, we have

eG(A,B) ≤ eG′(A,B) + dn2 ≤ |W ||A|+ dn2

≤ βlN(3/5 + 3β)lN + dn2 ≤ (3β/5 + 3β2 + d)n2 (as |A| ≤ (3/5 + 3β)lN and ln ≤ n)

≤ 25

3
(3β/5 + 3β2 + d)|A||B| (since |A||B| ≥ 3n2/25)

< α|A||B| (provided that
25

3
(3β/5 + 3β2 + d) < α).

This shows that d(A,B) < α. Since degGr(u, V (Gr)−U) = degGr(u,W ) ≤ βl for each u ∈ U ,

we see that degG(a, B) ≤ βlN + (d + ε)n ≤ 2βn for each a ∈ A provided that d + ε ≤ β.

However, the above argument shows that G is in Extremal Case 1, showing a contradiction.

(b) Suppose instead that Gr contains an independent set U of size larger than (3/5 −
α/2)l. Let U ′ = V (Gr)−U , A =

⋃

i∈U Vi, and B = V (G)−A. Then |A| ≥ (3/5−α/2)lN ≥
(3/5−α)n. For each vertex v ∈ A, since degG(v, A) ≤ degG′(v, A) + (d+ ε)n ≤ βn, we have

degG(v, B) ≥ (2n+ 3)/5− βn− βn ≥ (2n+ 3)/5− 2βn. This gives that

d(A,B) ≥ (2/5− 2β)n

|B| ≥ (2/5− 2β)n

(2/5 + α)n
≥ 1− 3α,

provided that β ≤ α/10 + 3α2/2. We see that G is in Extremal Case 2.

Step 1. Show that Gr contains a dominating cycle C, and there is a ∧-matching in Gr with

all vertices in V (Gr)− V (C) as its center.

We need some results on longest cycles and paths as follows.

Lemma 3.4.1 ([44]). Let G be a 2-connected graph on n vertices with δ(G) ≥ (n + 2)/3.

Then every longest cycle in G is a dominating cycle.

Lemma 3.4.2 ([3]). Let G be a 2-connected graph on n vertices with δ(G) ≥ (n + 2)/3.

Then G contains a cycle of length at least min{n, n+ δ(G)− α(G)}, where α(G) is the size

of a largest independent set in G.

Lemma 3.4.3 ([38]). If G is a 3-connected graph of order n such that the degree sum of any
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four independent vertices is at least 3n/2+1, then the number of vertices on a longest path

and that on a longest cycle differs at most by 1.

By (a) of Claim 3.4.1, Gr is βl-connected. Since n = Nl + |V0| ≤ (l + 2)εn, we get

l ≥ 1/ε − 2. Since 1/ε − 2 ≥ 3/β (provided that β ≥ 3ε/(1 − 2ε)), we then have βl ≥ 3.

So Gr is 3-connected. By Claim 3.4.1 (b), Gr has no independent set of size more than

(3/5 − α/2)l. Notice that δ(Gr) ≥ (2/5 − 2β)l > (l + 2)/3. Applying Lemma 3.4.1 and

Lemma 3.4.2 on Gr, we see that there is a cycle C in Gr which is longest, dominating, and

has length at least (4/5 + α/2 − 2β)l. Let W = V (Gr) − V (C). In Case B, we order and

label the vertices of C such that X0 is adjacent to a vertex, say Y0 ∈ W (recall that W 6= ∅
in this case). We fix (X0, Y0) as a pair at the first place (X0Y0 ∈ E(Gr), as cluster in G,

(X0, Y0) is an ε-regular pair with density d). Let

W ′ =







W, if in Case A;

W − {Y0}, if in Case B.

We have |W ′| ≤ (1/5 − α/2 + 2β)l if in Case A and |W ′| ≤ (1/5 − α/2 + 2β)l − 1 if in

Case B. So 2|W ′| ≤ (2/5−α+ 4β)l < (2/5− 2β)l (provided that β < α/6) if in Case A and

2|W ′| ≤ (2/5 − α + 4β)l − 2 < (2/5 − 2β)l − 1 (provided that β < α/6) if in Case B. Thus

there is a ∧-matching centered in all vertices in W ′; furthermore, if in Case B, we can choose

the matching such that X0 is not covered by it. Let M∧ be such a matching. For a vertex

X ∈ W ′, denote by M∧(X) the two vertices from V (C) to which X is adjacent in M∧. Then

we have two facts about vertices in M∧(X).

Fact 3.4.1. Let X ∈ W ′. Then the two vertices in M∧(X) are non-consecutive on C. (By

the assumption that C is longest.)

Fact 3.4.2. Let X 6= Y ∈ W ′. Then no two vertices from M∧(X) ∪M∧(Y ) are adjacent on

C. (By applying Lemma 3.4.3.)

For a complete bipartite graph, if it contains an SGHG, then the ratio of the cardinalities

of the two partite sets should be greater than 2/3 as shown in Proposition 3.4.1. Since a
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longest dominating cycle in Gr is not necessarily hamiltonian, we need to take care of the

clusters of G which are not represented by the vertices on C. One possible consideration is

that for each F ∈ V (Gr) − V (C), suppose F is adjacent to A ∈ V (C), recall P (A) is the

partner of A. Then as clusters, we consider the bipartite graph of G with partite sets A and

P (A) ∪ F . However, |A|/|P (A) ∪ F | is about 1/2, which is less than 2/3. For this reason,

we partition F ∈ V (Gr)−V (C) into two parts to attain the right ratio in the corresponding

bipartite graphs. Suppose M∧(F ) = {D1, D2} ⊆ V (C). As a cluster of G, we partition F

into F1 and F2 arbitrarily such that

|F1| =
⌊ |F |

2

⌋

=

⌊

N

2

⌋

and |F2| =
⌈ |F |

2

⌉

=

⌈

N

2

⌉

.

We call each Fi a half-cluster of G. Then we create two pairs (Di, Fi), and call Di the

dominator of Fi, and Fi the follower of Di, and (Di, Fi) a DF-pair, for i = 1, 2. We have the

following fact about a DF-pair.

Fact 3.4.3. Each DF-pair (D,F ) is 2.1ε-regular with density at least d − ε. (By Slicing

lemma.)

Also, by Fact 3.4.1 and Fact 3.4.2, if D ∈ V (C) is a dominator, then P (D), the partner

of D, is not a dominator for any followers. As X0 6∈ V (W ′), we know that X0 is not a

dominator for any half-clusters. We group the clusters and half-clusters of G into H-pairs

and H-triples in a way below. For each pair (Xi, Yi) on C, if {Xi, Yi} ∩ V (M∧) = ∅, we take

(Xi, Yi) as an H-pair. Otherwise, |{Xi, Yi}∩V (M∧)| = 1 by Fact 3.4.1 and Fact 3.4.2. Since

there is no difference for the proof for the case that Xi ∈ V (M∧) or the case that Yi ∈ V (M∧),

throughout the remaining proof, we always assume that Yi ∈ V (M∧) if {Xi, Yi}∩V (M∧) 6= ∅.
In this case, there is a unique half-cluster F with Yi as its dominator. Then we take (Xi, Yi, F )

as an H-triple. We assign (X0, Y0) as an H-pair.

Step 2. Initiating connecting edges.

Given an ε-regular pair (A,B) of density d and a subset B′ ⊆ B, we say a vertex a ∈ A

typical to B′ if deg(a, B′) ≥ (d − ε)|B′|. Then by the regularity of (A,B), the fact below
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holds.

Fact 3.4.4. If (A,B) is an ε-regular pair, then at most ε|A| vertices of A are not typical to

B′ ⊆ B whenever |B′| > ε|B|.

For each 1 ≤ i ≤ t− 1, choose y∗i ∈ Yi typical to both Xi and Xi+1, and y∗∗i ∈ Yi typical

to each of Xi, Xi+1, and Γ(y∗i , Xi). Correspondingly, choose x∗
i+1 ∈ Γ(y∗i , Xi+1) typical to

Yi+1, and x∗∗
i+1 ∈ Γ(y∗∗i , Xi+1) typical to both Yi+1 and Γ(x∗

i+1, Yi+1). For i = t, we choose y∗t

and y∗∗t the same way as for i < t, but if in Case A, choose x∗
1 ∈ Γ(y∗∗t , X1) typical to Y1, and

x∗∗
1 ∈ Γ(y∗t , X1) typical to both Y1 and Γ(x∗

1, Y1); and if in Case B, choose x∗
0 ∈ Γ(y∗∗t , X0)

typical to X1, and x∗∗
0 ∈ Γ(y∗t , X0) typical to both X1 and Γ(x∗

0, X1). Furthermore, in Case

B, we choose y∗t+1 ∈ X0 typical to both Y0 and X1, and y∗∗t+1 ∈ X0 typical to each of Y0, X1,

and Γ(y∗t+1, Y0). Correspondingly, choose x
∗
1 ∈ Γ(y∗t+1, X1) typical to Y1 and x∗∗

1 ∈ Γ(y∗∗t+1, X1)

typical to both Y1 and Γ(x∗
1, Y1). Additionally, we choose y∗0 ∈ Γ(y∗t+1, Y0) such that y∗0 is

typical to X0, and choose y∗∗0 ∈ Γ(y∗∗t+1, Y0) such that y∗∗0 is typical to X0. Notice that by the

choice of these vertices above, we have the following.



















y∗i x
∗
i+1, y

∗∗
i x∗∗

i+1 ∈ E(G), for 1 ≤ i ≤ t− 1;

x∗
1y

∗∗
t , x∗∗

1 y∗t ∈ E(G), in Case A;

x∗
0y

∗∗
t , x∗∗

0 y∗t , x
∗
1y

∗
t+1, x

∗∗
1 y∗∗t+1, y

∗
0y

∗
t+1, y

∗∗
0 y∗∗t+1 ∈ E(G), in Case B.

By Fact 3.4.4, for each 0 ≤ i ≤ t, we have |Γ(x∗
i , Yi)∩Γ(x∗∗

i , Yi)|, |Γ(y∗i , Xi)∩Γ(y∗∗i , Xi)| ≥
(d− ε)2N , and |Γ(y∗t+1, Y0) ∩ Γ(y∗∗t+1, Y0)| ≥ (d− ε)2N .

Step 3. Super-regularizing the regular pairs in each H-pair and H-triple given in Step 1.

For each 0 ≤ i ≤ t, if (Xi, Yi) is an H-pair, let

X ′
i = {x ∈ Xi : deg(x, Yi) ≥ (d− ε)N} and Y ′

i = {y ∈ Yi : deg(y,Xi) ≥ (d− ε)N}.

By Fact 3.4.4, we have |X ′
i|, |Y ′

i | ≥ (1 − ε)N . Recall that x∗
i , x

∗∗
i ∈ Xi and y∗i , y

∗∗
i ∈ Yi are

the initiated vertices in Step 2. For 1 ≤ i ≤ t, if |X ′
i − {x∗

i , x
∗∗
i }| 6= |Y ′

i − {y∗i , y∗∗i }|, say
|X ′

i −{x∗
i , x

∗∗
i }| > |Y ′

i −{y∗i , y∗∗i }|, we then remove |X ′
i −{x∗

i , x
∗∗
i }|− |Y ′

i −{y∗i , y∗∗i }| vertices
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out from X ′
i −{x∗

i , x
∗∗
i }, and denote the remaining set still as X ′

i. Denote Y ′
i −{y∗i , y∗∗i } still

as Y ′
i . We see that |X ′

i| = |Y ′
i |. As |Y ′

i | ≥ (1 − ε)N (to be precise, the lower bound should

be (1 − ε)N − 2, however, the constant 2 can be made vanished by adjusting the ε factor,

we ignore the slight different of the ε-factor here), we have that |Xi ∪Yi− (X ′
i ∪Y ′

i )| ≤ 2εN .

For i = 0, if |X ′
i − {x∗

i , x
∗∗
i , y∗t+1, y

∗∗
t+1}| 6= |Y ′

i − {y∗i , y∗∗i }|, say |X ′
i − {x∗

i , x
∗∗
i , y∗t+1, y

∗∗
t+1}| >

|Y ′
i −{y∗i , y∗∗i }|, then we remove |X ′

i −{x∗
i , x

∗∗
i , y∗t+1, y

∗∗
t+1}|− |Y ′

i −{y∗i , y∗∗i }| vertices out from
X ′

i −{x∗
i , x

∗∗
i , y∗t+1, y

∗∗
t+1} and denote the remaining set still as X ′

i. Denote Y ′
i −{y∗i , y∗∗i } still

as Y ′
i . We see that |X ′

i| = |Y ′
i |. We call the resulting H-pairs supper-regularized H-pairs. By

Slicing lemma (Lemma 3.2.5) and the definitions of X ′
i, Y

′
i , we see that

Fact 3.4.5. Each supper-regularized H-pair (X ′
i, Y

′
i ) is a (2ε, d− 2ε)-super-regular pair.

For each H-triple (Xi, Yi, F ), by Fact 3.4.3, (Yi, F ) is 2.1ε-regular with density at least

d− ε. Let

X ′
i = {x ∈ Xi : deg(x, Yi) ≥ (d− ε)N},

Y ′
i = {y ∈ Yi : deg(y,Xi) ≥ (d− ε)N, deg(y, F ) ≥ (d− 3.1ε)|F |}, and

F ′ = {f ∈ F : deg(f, Yi) ≥ (d− 3.1ε)N}.

Recall that x∗
i , x

∗∗
i ∈ Xi and y∗i , y

∗∗
i ∈ Yi are the initiated vertices in Step 2. We remove

x∗
i , x

∗∗
i out from X ′

i, and remove y∗i , y
∗∗
i out from Y ′

i . Still denote the resulted clusters as X ′
i

and Y ′
i , respectively. Remove ⌈d3N⌉ vertices out from F , which consists of all vertices in

F −F ′ and any ⌈d3N⌉−|F −F ′| vertices from F ′ (we need to increase the ratio |Y ′
i |/|X ′

i∪F ′|
a little as later on we may use vertices in Y ′

i in constructing HITs covering vertices in V0).

Denote the resulting set still by F ′. Then we see that |X ′
i| ≥ (1 − ε)N , |Y ′

i | ≥ (1− 3.1ε)N ,

and |F ′| ≥ (1− 2.1ε)|F | − d3N ≥ (1− 2.1ε− 2d3)|F |. We call the resulted H-triples supper-

regularized H-triples. By the Slicing Lemma and the definitions above, the following is true.

Fact 3.4.6. For each super-regularized H-triple (X ′
i, Y

′
i , F

′), (X ′
i, Y

′
i ) is (2ε, d−3.1ε)- super-

regular, and (Y ′
i , F

′) is (4.2ε, d− 3.1ε− 2d3)-super-regular.
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Let V 1
0 be the union of the set of vertices from each (Xi ∪ Yi − (X ′

i ∪ Y ′
i )) −

{x∗
i , x

∗∗
i , y∗i , y

∗∗
i } − {y∗t+1, y

∗∗
t+1} ({y∗t+1, y

∗∗
t+1} exists only if in Case B), where (Xi, Yi) is an

H-pair, and let V 2
0 be the union of the set of vertices from each (Xi ∪ Yi ∪ F − (X ′

i ∪
Y ′
i ∪ F ′)) − {x∗

i , x
∗∗
i , y∗i , y

∗∗
i }, where (Xi, Yi, F ) is an H-triple. Notice that for each H-pair

(Xi, Yi), we have |Xi ∪ Yi − (X ′
i ∪ Y ′

i )| ≤ 2εN ; and for each H-triple (Xi, Yi, F ), we have

|Xi−X ′
i| ≤ εN , |Yi−Y ′

i | ≤ (ε+2.1ε)N , and |F −F ′| ≤ d3N . Hence by using the facts that

|W ′| ≤ (1/5− α/2 + 2β)l, t = l/2, and Nl ≤ n from inequality (3.8), we get

|V 1
0 |+ |V 2

0 | ≤ 2εNl/2 + 2(1/5− α+ 2β)l(d3N + 2.1εN) ≤ 2d3Nl/5 + 2εNl ≤ 2d3n/5 + 2εn.

Let V ′
0 = V0 ∪ V 1

0 ∪ V 2
0 . Then

|V ′
0 | ≤ 2εn+ 2d3n/5 + 2εn ≤ d3n/2 (provided that ε ≤ d3/40). (3.9)

Step 4. Construct small HITs covering all vertices in V ′
0 .

Consider a vertex x ∈ V ′
0 and a cluster or a half-cluster A, we say that x is adjacent to

A, denoted by x ∼ A, if deg(x,A) ≥ (d− ε)|A|. We call A the partner of x.

Claim 3.4.2. For each vertex x ∈ V ′
0, there is a cluster or a half-cluster A such that x ∼ A,

where A is not a dominator, and we can assign all vertices in V ′
0 to their partners which are

not dominators such that each of the cluster or half-cluster is used by at most d2N
20

vertices

from V ′
0 .

Proof. Suppose we have found partners for the first m < d3n/2 (recall that |V ′
0 | ≤

d3n/2) vertices of V ′
0 such that no cluster or half-cluster is used by at most d2N

20
vertices. Let

Ω be the set of all clusters and half-clusters that are used exactly by d2N
20

vertices. Then

d2N

20
|Ω| ≤ m < d3n/2 ≤ d3(2kN + 2εn)/2

≤ d3kN + d3
2kN

1− 2ε
,
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by inequality (3.8). Therefore,

|Ω| ≤ 20d3k

d2
+

20d3l

d2(1− 2ε)

≤ 10dl + 40dl (provided that 1− 2ε ≥ 1/2 )

≤ βl (provided that 50d ≤ β ).

Consider now a vertex v ∈ V ′
0 not having a partner found so far. Let U be the set of all

non-dominator clusters and half-clusters adjacent to v not contained in Ω. We claim that

|U| ≥ (α − 7β)l. To see this, we first observe that any vertex v ∈ V ′
0 is adjacent to at least

(α− 6β)l non-dominator clusters and half-clusters. For instead, as v may adjacent to 2|W ′|
dominators, vertices in V ′

0 , or clusters A with deg(v, A) < (d− ε)|A|, we have

(2/5− β)n ≤ degG(v) < (α− 6β)lN + (2/5 + 4β − α)lN + d3n/2 + (d− ε)lN

≤ (2/5− 2β + d3/2 + d− ε)n

< (2/5− 3β/2)n (provided that d− ε+ d3/2 < β/2 ),

showing a contradiction. Since |Ω| ≤ βl, we have |U| ≥ (2α− 7β)l.

Now for each non-dominator cluster A (A is either a cluster X ′
i, Y

′
i , or a half cluster

F ′), let I(A) be the set of vertices from V ′
0 such that each of them has A as its partner. By

Claim 3.4.2, we have |I(A)| ≤ d2N
20

.

We need three operations below for constructing small HITs covering vertices in V ′
0 .

Operation I Let (A,B) be an (ε′, δ)-super-regular pair, and I a set of vertices disjoint

from A ∪ B. Suppose that (i) deg(x,B) ≥ d′|B| > ε′|B| and deg(x,B) ≥ d′|B| ≥ 3|I| for
any x ∈ I; (ii) (δ − ε′)d′|B| ≥ 3|I|; (iii) (δ − ε′)|A| > |I|; and (iv) δ|A| > 4|I|. Then we can

do the following operations on (A,B) and I.

Let I = {x1, x2, · · · , x|I|}. We first assume that |I| ≥ 2.

Since (A,B) is (ε′, δ)-super-regular, for each v ∈ Γ(xi, B), |Γ(v, A)| ≥ δ|A|. By condition
(i), we have |Γ(xi, B)| > ε′|B| for each i. Applying Fact 3.4.4, we then know that there are
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at least (δ − ε′)|A| > |I| vertices from Γ(v, A) typical to Γ(xi+1, B) for each 1 ≤ i ≤ |I| − 1.

That is, there exists A1 ⊆ Γ(v, A) with |A1| ≥ (δ − ε′)|A| > |I| such that for each a1 ∈ A1,

|Γ(a1,Γ(xi+1, B))| ≥ (δ − ε′)d′|B| ≥ 3|I|. As deg(x,B) ≥ d′|B| ≥ 3|I| for any x ∈ I and

(δ − ε′)d′|B| ≥ 3|I|, combining the above argument, we know there is a claw-matching MI

from I to B centered in I such that one vertex from Γ(xi, V (MI)) and one vertex from

Γ(xi+1, V (MI)) have at least (δ−ε′)|A| > |I| common neighbors in A. Let xi1, xi2, xi3 be the

three neighbors of xi in MI (in fact in B) and suppose that |Γ(xi3, A) ∩ Γ(xi+1,1, A)| ≥ |I|.
For 1 ≤ i ≤ |I| − 1, we then choose distinct vertices yi ∈ Γ(xi3, A) ∩ Γ(xi+1,1, A). By

condition (iv), there is a ∧-matching M2 between the vertex set {xi3 : 1 ≤ i ≤ |I| − 1} and

the vertex set A − {yi : 1 ≤ i ≤ |I| − 1} centered in the first set, a matching M3 between

{xi+1,1 : 1 ≤ i ≤ |I| − 1} and A − {yi : 1 ≤ i ≤ |I| − 1} − V (M2) covering the first set,

and a matching M4 between the vertex set {yi : 1 ≤ i ≤ |I| − 1} and B − V (MI) covering

the first set. Finally, by using (iv) again, we can find three distinct vertices y31, y32, y33 ∈
Γ(x13, A)− {yi : 1 ≤ i ≤ |I| − 1} − V (M2)− V (M3). Let TB be the graph with

V (TB) = V (MI) ∪ {yi : 1 ≤ i ≤ |I| − 1} ∪ V (M2) ∩ V (M3) ∪ V (M4) ∪ {y31, y32, y33}

and

E(TB) = MI ∪ {yixi3, yixi+1,1 : 1 ≤ i ≤ |I| − 1} ∪M2 ∪M3 ∪M4 ∪ {x13y31, x13y32, x13y33}.

If |I| = 1, we choose x11, x12, x13 ∈ Γ(x1, B) and y31, y32, y33 ∈ Γ(x13, A). Then let TB be the

graph with

V (TB) = {x1, x11, x12, x13, y31, y32, y33}

and

E(TB) = {x1x11, x1x12, x1x13, x13y31, x13y32, x13y33}.
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In any case, we see that TB is a HIT satisfying

|V (TB) ∩ B| = |V (TB) ∩A| = 4|I| − 1,

|L(TB) ∩ B| = min{2|I|+ 1, 3|I| − 1}, |L(TB) ∩ A| = 3|I|. (3.10)

We call TB the insertion HIT associated with B. Figure 3.4 gives a depiction of TB for

|I| = 1, 3, respectively.

B B

A A

|I| = 3|I| = 1

Figure (3.4) The HIT TB

Operation II Let (A,B) be an (ε′, δ)-super-regular pair, and I a set of vertices disjoint

from A∪B. Suppose that (i) deg(x,A) ≥ d′|A| > ε′|A| and deg(x,A) ≥ d′|A| ≥ 3|I| for any
x ∈ I; (ii) (δ − ε′)d′|A| ≥ 3|I|; (iii) (δ − 2ε′)|B| > |I|; and (iv) δ|B| > 3|I|. Then we can do

the following operations on (A,B) and I.

Let I = {x1, x2, · · · , x|I|}. We first assume that |I| ≥ 3.

Since (A,B) is (ε′, δ)-super-regular, for each v ∈ Γ(xi, A), |Γ(v, B)| ≥ δ|B|. By condition
(i), we have |Γ(xi, A)| > ε′|A| for each i. Applying Fact 3.4.4, we then know that there are at

least (δ−2ε′)|B| > |I| vertices from Γ(v, B) typical to both Γ(xi+1, A) and Γ(xi+2, A) for each

1 ≤ i ≤ |I| − 2. That is, there exists B1 ⊆ Γ(v, B) with |B1| ≥ (δ − 2ε′)|B| > |I| such that

for each b1 ∈ B1, |Γ(b1,Γ(xi+1, A))|, |Γ(b1,Γ(xi+2, A))| ≥ (δ− ε′)d′|A| ≥ 3|I|. As deg(x,A) ≥
d′|A| ≥ 3|I| for any x ∈ I and (δ − ε′)d′|A| ≥ 3|I|, combining the above argument, we

know there is a claw-matching MI from I to A centered in I such that any one vertex from

Γ(xi, V (MI)), any one vertex from Γ(xi+1, V (MI)), and any one vertex from Γ(xi+2, V (MI))

have at least |I| common neighbors in B. Let xi1, xi2, xi3 be the three neighbors of xi inMI (in
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fact in A). For i = 1, choose y0 ∈ Γ(x13, A)∩Γ(x23, A)∩Γ(x33, A). Let h = ⌈(|I|−3)/2⌉. For
1 ≤ k ≤ h, we then choose distinct vertices yk ∈ Γ(x1+2k,2, A) ∩ Γ(x2+2k,3, A) ∩ Γ(x3+2k,3, A)

(if |I| = 2+2k, let Γ(x3+2k,3, A) = A). By condition (iv), there is a matching M between the

vertex set {xi3, x1+2k,2 : 1 ≤ i ≤ |I|, 1 ≤ k ≤ h} and the vertex set B−{y0, yk : 1 ≤ k ≤ h}
covering the first set. If |I| is even, choose y31, y32 ∈ Γ(x13, B) such that they have not been

chosen before; if |I| is odd, choose y31, y32, y33 ∈ Γ(x13, B) such that they have not been

chosen before. Let TA be the graph with

V (TA) =







V (MI) ∪ V (M) ∪ {y0, yk : 1 ≤ k ≤ h} ∪ {y31, y32}, if |I| is even;
V (MI) ∪ V (M) ∪ {y0, yk : 1 ≤ k ≤ h} ∪ {y31, y32, y33}, if |I| is odd;

and E(TA) containing all edges in MI ∪M ∪ {y0x13, y0x23, y0x33} and all edges in







{x1+2k,2yk, x2+2k,2yk, x3+2k,2yk, x1+2h,2yh, x2+2h,2yh : 1 ≤ k ≤ h− 1} ∪ {y31, y32}, if |I| is even;
{x1+2k,2yk, x2+2k,2yk, x3+2k,2yk : 1 ≤ k ≤ h} ∪ {y31, y32, y33}, if |I| is odd.

If |I| = 1, we choose x11, x12, x13 ∈ Γ(x1, A) and y31, y32 ∈ Γ(x13, B), and then let TA be the

graph with

V (TB) = {x1, x11, x12, x13, y31, y32} and E(TB) = {x1x11, x1x12, x1x13, x13y31, x13y32}.

If |I| = 2, we choose x11, x12, x13 ∈ Γ(x1, A), x11, x12, x13 ∈ Γ(x2, A), y ∈ Γ(x13, B)∩Γ(x21, B),

y11, y12 ∈ Γ(x13, B), and y21, y22 ∈ Γ(x21, B) such that they are all distinct, then let TA be

the graph with

V (TB) = {xi, xi1, xi2, xi3, y, yi1, yi2 : i = 1, 2} and

E(TB) = {xixi1, xixi2, xixi3, x13y, x21y, x13y11, x13y12, x21y21, x21y22}.

We see that TA is a tree which has a degree 2 vertex y only if |I| = 2 and a degree 2 vertex
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yh only if |I| > 2 and |I| is even. In addition, TA satisfies the following.

|V (TA) ∩ A| = 3|I| and |L(TA) ∩A| =







2|I|, if |I| = 1, 2;

2|I| −
⌈

|I|−3
2

⌉

, if |I| ≥ 3; and

|V (TA) ∩ B| =







2, if |I| = 1;

2|I|+ 1, if |I| ≥ 2; and

|L(TA) ∩ B| =







2|I|, if |I| = 1, 2;

2|I| −
⌈

|I|−3
2

⌉

, if |I| ≥ 3.
(3.11)

In this case, we call TA the insertion tree associated with A. Notice that |L(TA) ∩ A| =
|L(TA) ∩ B| always holds. Figure 3.4 gives a depiction of TA for |I| = 1, 2, 5, 6, respectively.

B

BBB

A

AAA

|I| = 5

|I| = 6

|I| = 1 |I| = 2

Figure (3.5) The tree TA

Operation III Let (B,F ) be an (ε′, δ)-super-regular pair, and I a set of vertices disjoint

from B ∪ F . Suppose that deg(x, F ) ≥ d′|F | ≥ 3|I| for any x ∈ I and δ|B| ≥ 6|I|. Then we

can do the following operations on (A,B) and I.

Let I = {x1, x2, · · · , x|I|}. Since deg(x,B) ≥ d′|B| ≥ 3|I| for any x ∈ I, there is a

claw-matching MI from I to F centered in I. Then as δ|B| ≥ 6|I|, there is a ∧-matching
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M∧ from V (MI) ∩ F to B centered in V (MI) ∩ F . Let TF be the graph with

V (TB) = V (MI) ∪ V (M∧) and E(TB) = MI ∪M∧.

We see that TF is a forest with no vertex of degree 2 satisfying

|V (TF ) ∩ F | = |S(TF ) ∩ F | = 3|I| and |V (TF ) ∩B| = |L(TF ) ∩ B| = 6|I|. (3.12)

We call TF the insertion forest associated with F .

Now for each H-pair (X ′
i, Y

′
i ), we may assume that I(X ′

i) 6= ∅ and I(Y ′
i ) 6= ∅ for a

uniform discussion, as the consequent argument is independent of the assumptions. Recall

that (X ′
i, Y

′
i ) is (2ε, d− 2ε)-super-regular by Fact 3.4.5. Notice that deg(x,X ′

i) ≥ (d− ε)|X ′
i|

for each x ∈ I(X ′
i), |I(X ′

i)| ≤ d2N
20

, and |X ′
i|, |Y ′

i | ≥ (1 − ε)N . By simple calculations,

we see that (i) deg(x,X ′
i) ≥ (d − ε)|X ′

i| > 2ε|X ′
i| and (d − ε)|X ′

i| ≥ 3d2N/20 for each

x ∈ I(X ′
i); (ii) (d − 2ε − 2ε)(d − ε)|X ′

i| > 3d2N/20; (iii) (d − 4ε)|Y ′
i | > d2N/20; and (iv)

(d − 2ε)|Y ′
i | > d2N/5 ≥ 4I(X ′

i). Thus all the conditions in Operation I are satisfied. So we

can find a HIT TX′
i
associated withX ′

i. As |V (TX′
i
)∩X ′

i| = |V (TX′
i
)∩Y ′

i | ≤ 4|I(X ′
i)| ≤ d2N

5
, we

know that (X ′
i−V (TX′

i
), Y ′

i −V (TX′
i
)) is (4ε, d−2ε−d2N/5)-super regular. Since deg(y, Y ′

i ) ≥
(d − ε)|Y ′

i | for each y ∈ I(Y ′
i ), we get deg(y, Y ′

i − V (TX′
i
)) ≥ (d − ε − d2/5)|Y ′

i | for each

y ∈ I(Y ′
i ). By direct checking, conditions (i) ∼ (iv) of Operation I are satisfied by the pair

(X ′
i−V (TX′

i
), Y ′

i −V (TX′
i
)) and I(Y ′

i ). Then we use Operation I on (X ′
i−V (TX′

i
), Y ′

i −V (TX′
i
))

and I(Y ′
i ) to get a HIT TY ′

i
associated with Y ′

i − V (TX′
i
). Denote

X∗
i = X ′

i − V (TX′
i
)− V (TY ′

i
) and Y ∗

i = Y ′
i − V (TX′

i
)− V (TY ′

i
).

By using (3.10) in Operation I, we have |X∗
i | = |Y ∗

i | ≥ (1− 2d2/5− ε)N ≥ N/2. By Slicing

lemma (Lemma 3.2.5) and Fact 3.4.5, we have the following.

Fact 3.4.7. For each H-pair (Xi, Yi), (X∗
i , Y

∗
i ) is (4ε, d − 2ε − 2d2/5)-super-regular with

|X∗
i | = |Y ∗

i |. We call (X∗
i , Y

∗
i ) a ready H-pair.
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Then for each H-triple (X ′
i, Y

′
i , F

′), we may assume that I(X ′
i) 6= ∅ and I(F ′) 6= ∅ (recall

that Yi is assumed to be the dominator of F, so I(Y ′
i ) = ∅ by the distribution principle of

vertices in V ′
0 from Claim 3.4.2). By Fact 3.4.6, we know that (X ′

i, Y
′
i ) is (2ε, d − 3.1ε)-

super-regular and (Y ′
i , F

′) is (4.2ε, d − 3.1ε − 2d3)-super-regular. Notice also that |X ′
i| ≥

(1− ε)N , |Y ′
i | ≥ (1− 3.1ε)N , |F ′| ≥ (1− 2.1ε− 2d3)N/2, and deg(x,X ′

i) ≥ (d− ε)|X ′
i| and

deg(y, F ′) ≥ (d− ε)|F ′| for each x ∈ I(X ′
i) and each y ∈ I(F ′). Since |I(X ′

i)|, |I(F ′)| ≤ d2N
20

and ε ≪ d ≪ 1, the conditions of Operation III are satisfied by (Y ′
i , F

′) and I(F ′) by direct

calculations. Let TF ′ be the insertion forest associated with F ′. Then we use Operation II

on (X ′
i, Y

′
i − V (TF ′)) and I(X ′

i) to get a tree TX′
i
associated with X ′

i. Denote

X∗
i = X ′

i − V (TX′
i
), Y ∗

i = Y ′
i − V (TF ′)− V (TX′

i
), and F ∗ = F ′ − V (TF ′).

By using (3.11) and (3.12) in Operation II and Operation III, respectively, we have

|X∗
i |, |Y ∗

i | ≥ (1 − 3.1ε − 9d2/20)N ≥ N/2 and |F ∗| ≥ (1 − 2.1ε − 2d3)N/2 − 3d2N/20 ≥
(1− 2.1ε− 2d3 − 3d2/10)N/2. By Slicing lemma and Fact 3.4.6, we have the following.

Fact 3.4.8. For each H-triple (Xi, Yi, F ), (X∗
i , Y

∗
i ) is (4ε, d − 3.1ε − 9d2/20)-super-regular

and (Y ∗
i , F

∗) is (8.4ε, d − 2.1ε − 3d2/10 − 2d3)-super-regular. We call (X∗
i , Y

∗
i , F

∗) a ready

H-triple.

Step 5. Apply the Blow-up lemma to find a HIT within each ready H-pair and among each

ready H-triple.

In order to apply the Blow-up Lemma, we first give two lemmas which assure the

existence of a given subgraph in a complete bipartite graph.

Lemma 3.4.4. Suppose 0 < ε ≪ d ≪ 1 and N is a large integer. If G(A,B) is a balanced

complete bipartite graph with (1 − ε − d2/2)N ≤ |A| = |B| ≤ N , then G(A,B) contains a

HIST Tpair with ∆(Tpair) ≤ ⌈2/d3⌉ and ||L(Tpair) ∩ A| − |L(Tpair) ∩ B|| = ℓ for any given

non-negative integer ℓ with ℓ ≤ d2N .

Proof. By the symmetry, we only show that we can construct a HIST T such that
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|L(T ) ∩ A| − |L(T ) ∩ B| = ℓ. Let ∆′ = ⌈d3N⌉. We choose distinct a1, a2, · · · , a∆′ ∈ A and

distinct b1, b2, · · · , b∆′−1 ∈ B. Then we decompose all vertices in B into B1, B2, · · · , B∆′ such

that 3 ≤ |Bi| ≤ 1/d3, Bi ∩ Bi+1 = {bi} for 1 ≤ i ≤ ∆′ − 1, and Bi ∩ Bj = ∅ for |i− j| > 1.

Now we choose ℓ + 1 distinct vertices b∆′, b∆′+1, · · · , b∆′+ℓ from B − {bi : 1 ≤ i ≤ ∆′ − 1}.
As ∆′ = ⌈d3N⌉, ℓ+∆′ ≤ (d2 + d3)N + 1, and thus

2(ℓ+∆′) ≤ (2d2 + 2d3)N + 2 ≤ (1− d2/2− ε)N − ⌈d3N⌉ ≤ |A| − ⌈d3N⌉.

Thus we can use all of the vertices in {bi : 1 ≤ i ≤ ∆′ + ℓ} to cover all vertices in

A−{ai | 1 ≤ i ≤ ∆′−1} such that each bi can be adjacent to at least two distinct vertices. We

partitionA−{ai | 1 ≤ i ≤ ∆′−1} arbitrarily into A1, A2, · · · , Aℓ+∆′ such that 2 ≤ |Ai| ≤ 1/d3.

Now let T be a spanning subgraph of G(A,B) such that

E(T ) = {aib | b ∈ Bi, 1 ≤ i ≤ ∆′} ∪ {bja | a ∈ Aj , 1 ≤ j ≤ ∆′ + ℓ}.

Clearly, ∆(T ) ≤ ⌈2/d3⌉. As |A| = |B|, |S(T ) ∩ A| = ∆′, and |S(T ) ∩ B| = ∆′ + ℓ, we then

have that |L(T ) ∩ A| − |L(T ) ∩ B| = ℓ. We denote T as Tpair. �

Lemma 3.4.5. Suppose 0 < ε ≪ d ≪ 1 and N is a large integer. Let G = G(A,B, F )

be a tripartite graph with V (G) partitioned into A ∪ B ∪ F such that both G[A ∪ B] and

G[B ∪ F ] are complete bipartite graphs. If (i) (1 − 4ε − d2/2)N ≤ |A|, |B| ≤ N , (ii)

(1/2 − 2.1ε − 3d2/20 − d3)N ≤ |F | ≤ (1/2 − d3)N , and (iii) for any given non-negative

integer l ≤ 3d2N/10, we have |B| − 2(|A∪ F | − |B| − l) ≥ 3d3N/2 holds, then G contains a

HIST Ttriple and a path Ptriple spanning on a subset of L(Ttriple) such that

(a) Ttriple is a HIST of G with ∆(Ttriple) ≤ ⌈3/d3⌉;

(b) |L(Ttriple) ∩B| = |L(Ttriple) ∩ (A ∪ F )| − l.

(c) Ptriple is a (b, f)-path on L(Ttriple)∩F and any |L(Ttriple)∩F | vertices from L(Ttriple)∩B,

and |V (Ptriple) ∩ F | ≤ 5d2N/6.



70

Proof. Let ∆′ = ⌈d3N/2⌉. We choose distinct b1, b2, · · · , b∆′ ∈ B and partition all

vertices in F into F1, F2, · · · , F∆′ such that 3 ≤ |Fi| ≤ 1/d3. Then we choose distinct

a1, a2, · · · , a∆′−1 ∈ A and decompose all vertices in A into A1, A2, · · · , A∆′ such that 3 ≤
|Ai| ≤ 2/d3, Ai ∩Ai+1 = {ai} for 1 ≤ i ≤ ∆′−1, and Ai∩Aj = ∅ for |i− j| > 1. Choose one

more vertex, say a∆′ ∈ A−{ai | 1 ≤ i ≤ ∆′−1}. Let l′ = |A∪F |−|B|− l. Notice that l′ > 0.

Now we choose l′ distinct vertices f1, f2, · · · , fl′ from A − {ai : 1 ≤ i ≤ ∆′} ∪ F (choose as

many as possible from F first) and partition any 2l′ vertices of B − {bi : 1 ≤ i ≤ ∆′} into

B1, B2, · · · , Bl′ such that |Bi| = 2. By (iii), we see that there are at least ⌊d3N⌋ vertices left
in B′ = B−{bi : 1 ≤ i ≤ ∆′}−⋃l′

i=1{Bi}. Hence we can partition B′ = B′
1 ∪B′

2 ∪ · · · ∪B′
∆′

such that |B′
∆′| ≥ 2 and |B′

j| ≥ 1 for j 6= ∆′. We let T be a subgraph of G on A ∪ B ∪ F

with

E(T ) = {bif, bia, aib′ : f ∈ Fi, a ∈ Ai, b
′ ∈ B′

i, 1 ≤ i ≤ ∆′} ∪ {fib : b ∈ Bi, 1 ≤ i ≤ l′}.

By the construction, T is a HIST of G, which clearly satisfies (a). Since |S(T ) ∩ B| = ∆′

and |S(T ) ∩ (A ∪ F )| = ∆′ + l′ = ∆′ + |A ∪ F | − |B| − l, we then see that T satisfies

(b). If L(T ) ∩ F 6= ∅, let f ∈ L(T ) ∩ F and b ∈ L(T ) ∩ B, we can then take a (b, f)-path

P with V (P ) ∩ F = L(T ) ∪ F and |V (P )| = 2|L(T ) ∩ F |. By (i) and (ii), we see that

l′ = |A∪F | − |B| − l ≥ (1/2− 6.1ε− 4d2/5− d3)N . Hence |V (P )∩F | = |F | − l′ ≤ 5d2N/6.

Denote T as Ttriple and P as Ptriple. �

Now for 1 ≤ i ≤ t and for each ready H-pair (X∗
i , Y

∗
i ), suppose, without of loss generality,

that |(L(TX′
i
) ∩ Y ′

i ) ∪ ((L(TY ′
i
) ∩ Y ′

i )| − |((L(TX′
i
) ∩ X ′

i) ∪ ((L(TY ′
i
) ∩ X ′

i)| = l′, where TX′
i

is the insertion HIT associated with X ′
i and TY ′

i
is the insertion HIT associated with Y ′

i .

Notice that l′ ≤ d2N from (3.10) and (3.11). Let xa ∈ S(TX′
i
) ∩X ′

i be a non-leaf of TX′
i
and

yb ∈ S(TY ′
i
) ∩ Y ′

i a non-leaf of TY ′
i
. Since (X ′

i, Y
′
i ) is (2ε, d− 2ε)-super-regular by Fact 3.4.5

and |Y ′
i − Y ∗

i | ≤ 2d2N/5, we have deg(xa, Y
∗
i ) ≥ (d − 2ε − d2/2)N ≥ dN/2. Similarly,

deg(yb, X
∗
i ) ≥ (d − 2ε − d2/2)N ≥ dN/2. Also, from Step 2, we have Γ(x∗

i , Yi),Γ(x
∗∗
i , Yi) ≥

(d − 3ε)N . So, Γ(x∗
i , Y

∗
i ),Γ(x

∗∗
i , Y ∗

i ) ≥ (d − 3ε − d2/2)N ≥ dN/2. Similarly, we have
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Γ(y∗i , X
∗
i ),Γ(y

∗∗
i , X∗

i ) ≥ (d−3ε−d2/2)N ≥ dN/2. Recall that (X∗
i , Y

∗
i ) is (4ε, d−2ε−8d2/20)-

super-regular by Fact 3.4.7, and therefore (X∗
i , Y

∗
i ) is (4ε, d/2)-super-regular. By the the

strengthened version of the Blow-up lemma and Lemma 3.4.4 (the conditions are certainly

satisfied by X∗
i and Y ∗

i ), we can find a HIST T i
1
∼= Tpair on X∗

i ∪ Y ∗
i such that there exist

ya ∈ S(T i
1)∩Γ(xa, Y

∗
i ), xb ∈ S(T i

1)∩Γ(yb, X
∗
i ), y

′
i ∈ S(T i

1)∩Γ(x∗
i , Yi), y

′′
i ∈ S(T i

1)∩Γ(x∗∗
i , Yi),

and x′
i ∈ S(T i

1)∩Γ(y∗i , Xi), x
′′
i ∈ S(T i

1)∩Γ(y∗∗i , Xi) such that |L(T i
1)∩X∗

i |−|L(T i
1)∩Y ∗

i | = l′.

Hence |L(T i
1)∩X∗

i |+|L(TX′
i
)∩X ′

i|+|L(TY ′
i
)∩X ′

i| = |L(T i
1)∩Y ∗

i |+|L(TX′
i
)∩Y ′

i |+|L(TY ′
i
)∩Y ′

i |.
Let T i = T i

1∪TX′
i
∪TY ′

i
∪{xaya, ybxb}∪{x∗

i y
′
i, x

∗∗
i y′′i , y

∗
i x

′
i, y

∗∗
i x′′

i }. It is clear that T i is a HIST

on X ′
i ∪ Y ′

i ∪ I(X ′
i) ∪ I(Y ′

i ) such that

{x∗
i , x

∗∗
i , y∗i , y

∗∗
i } ⊆ L(T i) and |L(T i) ∩X ′

i| = |L(T i) ∩ Y ′
i |.

For the ready H-pair (X∗
0 , Y

∗
0 ), let xa ∈ S(TX′

0
)∩X ′

0 be a non-leaf of TX′
0
and yb ∈ S(TY ′

0
)∩Y ′

0 a

non-leaf of TY ′
0
. By the the strengthened version of the Blow-up lemma and Lemma 3.4.4 (the

conditions are certainly satisfied by X∗
0 and Y ∗

0 ), we can find a HIST T 0
1
∼= Tpair on X∗

0 ∪ Y ∗
0

such that there exist y′0 ∈ S(T 0
1 )∩Γ(x∗

0, Y0), y
′′
0 ∈ S(T 0

1 )∩Γ(x∗∗
0 , Y0), x

′
t+1 ∈ S(T 0

1 )∩Γ(y∗t+1, Y0),

x′′
t+1 ∈ S(T 0

1 ) ∩ Γ(y∗∗t+1, Y0), and x′
0 ∈ S(T 0

1 ) ∩ Γ(y∗0, X0), x
′′
0 ∈ S(T i

1) ∩ Γ(y∗∗0 , X0) such that

|L(T 0
1 )∩X∗

0 |+ |L(TX′
0
)∩X ′

0|+ |L(TY ′
0
)∩X ′

0| = |L(T 0
1 )∩Y ∗

0 |+ |L(TX′
0
)∩Y ′

0 |+ |L(TY ′
0
)∩Y ′

0 |+2.

Let T 0 = T 0
1 ∪ TX′

0
∪ TY ′

0
∪ {xaya, ybxb} ∪ {x∗

0y
′
0, x

∗∗
0 y′′0 , y

∗
0x

′
0, y

∗∗
0 x′′

0, y
∗
t+1x

′
t+1, y

∗∗
t+1x

′′
t+1}. It is

clear that T 0 is a HIST on X ′
0 ∪ Y ′

0 ∪ I(X ′
0) ∪ I(Y ′

0) such that

{x∗
0, x

∗∗
0 , y∗0, y

∗∗
0 , y∗t+1, y

∗∗
t+1} ⊆ L(T 0) and |L(T 0) ∩X ′

0| = |L(T i) ∩ Y ′
0 |+ 2.

For each ready triple (X∗
i , Y

∗
i , F

∗), we know that (X∗
i , Y

∗
i ) is (4ε, d − 3.1ε − 9d2/20)-

super-regular and (Y ∗
i , F

∗) is (8.4ε, d − 2.1ε − 3d2/10 − 2d3)-super-regular by Fact 3.4.8.

Notice that (1− 4ε− 9d2/20)N ≤ |X∗
i |, |Y ∗

i | ≤ N and (1/2− 2.1ε− 3d2/30− d3)N ≤ |F ∗| ≤
(1/2− d3)N . Let |I(X ′

i)| = l′ and |I(F ′)| = l/6 for some integer l. By Operation II we have

|V (TX′
i
)∩X ′

i| ≤ 3l′ and |V (TX′
i
)∩Y ′

i | ≤ 2l′+1. By Operation III we have |V (TF ′)∩F ′
i | = l/2
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and |V (TF ′) ∩ Y ′
i | = l. Notice that |L(TX′

i
) ∩X ′

i| = |l(TX′
i
) ∩ Y ′

i |. Hence,

|Y ∗
i | − 2(|X∗

i ∪ F ∗| − |Y ∗
i | − l) ≥ 3(|Y ′

i | − 2l′ − l − 1)− 2(|X ′
i| − 3l′)− 2(|F ′| − l/2) + 2l

= 3|Y ′
i | − 2|X ′

i| − 2|F ′| − 3

≥ 3(1− 3.1ε)N − 2N −N + 2d3N − 3 > 3d3N/2.

By the weak version of the Blow-up lemma (Lemma 3.2.2) and Lemma 3.4.5, we then can

find a HIT T i
1
∼= Ttriple on X∗

i ∪ Y ∗
i ∪F ∗ and a path Pi

∼= Ptriple spanning on L(T i
1)∩ F ∗ and

other |L(T i
1) ∩ F ∗| vertices from Y ∗

i . Let ya ∈ S(TX′
i
) ∩ Y ′

i be a non-leaf of TX′
i
(take ya as

the degree 2 vertex if TX′
i
has one) and y′a ∈ S(TF ′) ∩ Y ′

i a non-leaf of TF ′. Then as (Y ′
i , F

′)

is (4.1ε, d− 2.1ε− 2d3)-super-regular, we have |Γ(ya, F ′)|, |Γ(y′a, F ′)| ≥ (d− 2.1ε− 2d3)N/2.

Since |F ′−F ∗| ≤ 3d2N/20, we then know that |Γ(ya, F ∗)|, |Γ(y′a, F ∗)| ≥ (d−2.1ε−3d2/10−
2d3)N/2. Since |F ∗ ∩ L(T i

1)| = |V (Pi) ∩ F ∗| ≤ 5d2N/6 < (d − 2.1ε − 3d2/10 − 2d3)N/2,

there exist fa ∈ (S(T i
1) ∩ F ∗) ∩ Γ(ya, F

∗) and f ′
a ∈ (S(T i

1) ∩ F ∗) ∩ Γ(y′a, F
∗). For each

x ∈ I(F ′), since deg(x, F ′) ≥ (d − ε)|F ′| ≥ (d− ε)(1− 2.1ε− d3)N/2, we know there exists

f ′ ∈ (S(T i
1) ∩ F ∗) ∩ Γ(x, F ∗). From Step 2, we have |Γ(x∗

i , Yi) ∩ Γ(x∗∗
i , Yi)| ≥ (d− ε)2N and

|Γ(y∗i , Xi) ∩ Γ(y∗∗i , Xi)| ≥ (d − ε)2N . Hence |Γ(x∗
i , Y

′
i ) ∩ Γ(x∗∗

i , Y ′
i )| ≥ ((d − ε)2 − 3.1ε)N .

Since |S(T i
1 ∪ TX′

i
∪ TF ′) ∩X ′

i| < d2N/2, we see that there exists y′ ∈ Γ(x∗
i , Yi) ∩ Γ(x∗∗

i , Yi) ∩
L(T i

1 ∪ TX′
i
∪ TF ′). Similarly, there exists x′ ∈ Γ(y∗i , Xi) ∩ Γ(y∗∗i , Xi) ∩ L(T i

1 ∪ TX′
i
∪ TF ′).

Let T i = T i
1 ∪ TX′

i
∪ TF ′ ∪ {xf ′ : x ∈ I(F ′), f ′ ∈ (S(T i

1) ∩ F ∗) ∩ Γ(x, F ∗)} ∪ {yafa, y′af ′
a} ∪

{y′x∗
i , y

′x∗∗
i , x′y∗i , x

′y∗∗i }. It is clear that T i is a HIST on X ′
i ∪ Y ′

i ∪ F ′ ∪ I(X ′
i) ∪ I(F ′) such

that

{x∗
i , x

∗∗
i , y∗i , y

∗∗
i } ⊆ L(T i) and |L(T i) ∩X ′

i| = |L(T i) ∩ Y ′
i |.

Let H i = T i ∪ Pi. We call Pi the accompany path of T i.

Step 6. Apply the Blow-up Lemma again on the regular-pairs induced on the leaves of

each HIT obtained in Step 5 to find two vertex-disjoint paths covering all the leaves. Then

connect all the HITs into a HIST of G and connect the disjoint paths into a cycle using the

edges initiated in Step 2.
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Suppose 1 ≤ i ≤ t. For each H-pair (Xi, Yi), let X
L
i = X ′

i ∩L(T i)−{x∗
i , x

∗∗
i } and Y L

i =

Y ′
i ∩L(T i)−{y∗i , y∗∗i }, and for each H-triple (Xi, Yi, F ), letXL

i = X ′
i∩L(T i∪Pi)−{x∗

i , x
∗∗
i } and

Y L
i = Y ′

i ∩L(T i∪Pi)−{y∗i , y∗∗i }, where T i is the HIST found in Step 5, and Pi is the accompany

path of T i. By Operations I, II and III, and the proofs of the Lemmas 3.4.4 and 3.4.5, we have

I(X ′
i)∪I(Y ′

i ) ⊆ S(Ti) and F ′∪I(F ′) ⊆ S(Ti∪Pi). Thus, X
L
i ∪Y L

i = L(T i)−{x∗
i , x

∗∗
i , y∗i , y

∗∗
i }

for each H-pair and XL
i ∪Y L

i = L(T i∪Pi)−{x∗
i , x

∗∗
i , y∗i , y

∗∗
i } for each H-triple. Furthermore,

we have |XL
i | = |Y L

i |. For the H-pair (X0, Y0), let XL
0 = X ′

0 ∩ L(T 0) − {x∗
0, x

∗∗
0 , y∗t+1, y

∗∗
t+1}

and Y L
0 = Y ′

0 ∩ L(T 0) − {y∗0, y∗∗0 }. We have XL
0 ∪ Y L

0 = L(T 0) − {x∗
0, x

∗∗
0 , y∗t+1, y

∗∗
t+1} and

|XL
0 | = |Y L

0 | since from Step 5 we have |L(T 0)∩X ′
0| = |L(T 0)∩Y ′

0 |+2. By the construction

of Tpair and Htriple, we see that |S(Ti)∩X ′
i|, |S(Ti)∩Y ′

i | ≤ d2N . Since each H-pair (X ′
i, Y

′
i ) is

(2ε, d−2ε)-super-regular, and each pair (X ′
i, Y

′
i ) from an H-triple (X ′

i, Y
′
i , F

′) is (2ε, d−3.1ε)-

super-regular, by Slicing Lemma, we then know that (XL
i , Y

L
i ) is (4ε, d − 3.1ε − d2)-super-

regular and hence is (4ε, d/2)-super-regular.

For each 1 ≤ i ≤ t, by the choice of x∗
i , x

∗∗
i , y∗i , y

∗∗
i , we have |Γ(x∗

i , Yi)|, |Γ(x∗∗
i , Yi)| ≥

(d− ε)N and |Γ(y∗i , Xi)|, |Γ(y∗∗i , Xi)| ≥ (d− ε)N . Hence, |Γ(x∗
i , Y

L
i )|, |Γ(x∗∗

i , Y L
i )| ≥ (d− ε−

3.1ε − d2)N > dN/2 and |Γ(y∗i , XL
i )|, |Γ(y∗∗i , XL

i )| ≥ (d − ε − 3.1ε− d2)N > dN/2. Similar

results hold for the vertices x∗
0, x

∗∗
0 , y∗t+1, y

∗∗
t+1. For each 0 ≤ i ≤ t, we choose distinct vertices

y′i ∈ Γ(x∗
i , Y

L
i ), y′′i ∈ Γ(x∗∗

i , Y L
i ) and x′

i ∈ Γ(y∗i , X
L
i ), x

′′
i ∈ Γ(y∗∗i , XL

i ). If T i does not have

the accompany path, then by the strengthened version of the Blow-up lemma, we can find

an (x′
i, y

′
i)-path P i

1 and an (x′′
i , y

′′
i )-path P i

2 such that P i
1 ∪ P i

2 is spanning on XL
i ∪ Y L

i . If T i

has the accompany (b, f)-path Pi, we see that deg(b,XL
i ), deg(f, Y

L
i ) ≥ dN/2 as (X ′

i, Y
′
i ) is

(2ε, d−3.1ε)- super-regular, and (Y ′
i , F

′) is (4.2ε, d−3.1ε−2d3)-super-regular. Applying the

strengthened version of the Blow-up lemma, we can find an (x′
i, y

′
i)-path P i

11 and an (x′′
i , y

′′
i )-

path P i
2 such that P i

11 ∪ P i
2 is spanning on XL

i ∪ Y L
i , and two consecutive internal vertices

a′, b′ ∈ V (P i
11) with b′ ∈ Γ(f, Y L

i ), and a′ ∈ Γ(b,XL
i ). Let P

i
1 = P i

11 ∪ Pi ∪ {fb′, ba′} − {a′b′}.
Notice that for the H-pair (X0, Y0), the two vertices y∗t+1, y

∗∗
t+1 are not used in this step, but

we will connect them to y∗0 and y∗∗0 , respectively, in next step.

We now connect the small HITs and paths together to find an SGHG of G. In Case A,
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for 1 ≤ i ≤ t− 1, we have |S(T i) ∩ Yi| ≥ d3N/2 > εN and |S(T i+1) ∩Xi+1| ≥ d3N/2 > εN .

Since (Yi, Xi+1) is an ε-regular pair with density d, we see that there is an edge ei connecting

S(T i+1) ∩Xi+1 and S(T i+1) ∩Xi+1. Let

T =

t
⋃

i=1

T i ∪ {ei | 1 ≤ i ≤ t− 1}.

Then T is a HIST of G. Let C be the cycle formed by all the paths in
⋃t

i=1(P
i
1 ∪P i

2) and all

edges in the following set

{x∗
i y

′
i, x

∗∗
i y

′′

i , y
∗
i x

′
i, y

∗∗
i x

′′

i : 1 ≤ i ≤ t} ∪ {y∗i x∗
i+1, y

∗∗
i x∗∗

i+1 : 1 ≤ i ≤ t− 1} ∪ {y∗t x∗∗
1 , y∗∗t x∗

1},

notices that the edges in {y∗i x∗
i+1, y

∗∗
i x∗∗

i+1 : 1 ≤ i ≤ t−1}∪{y∗t x∗∗
1 , y∗∗t x∗

1} above are guaranteed
in Step 2. It is easy to see that C is a cycle on L(T ). Hence H = T ∪ C is an SGHG of G.

In Case B, for 1 ≤ i ≤ t−1, we have |S(T i)∩Yi| ≥ d3N/2 > εN and |S(T i+1)∩Xi+1| ≥
d3N/2 > εN . Since (Yi, Xi+1) is an ε-regular pair with density d, we see that there is an edge

ei connecting S(T i+1) ∩Xi+1 and S(T i+1) ∩Xi+1. Similarly, there is an edge e0 connecting

S(T0) ∩X0 and S(T 1) ∩X1. Let

T =

t
⋃

i=1

T i ∪ {ei | 0 ≤ i ≤ t− 1}.

Then T is a HIST of G. Let C be the cycle formed by all paths in
⋃t

i=1(P
i
1 ∪ P i

2) and all

edges in the set {y∗0y∗t+1, y
∗∗
0 y∗∗t+1, y

∗
t+1x

∗
1, y

∗∗
t+1x

∗∗
1 , x∗

0y
∗∗
t , x∗∗

0 y∗t } and in the following set

{x∗
i y

′
i, x

∗∗
i y

′′

i , y
∗
i x

′
i, y

∗∗
i x

′′

i : 0 ≤ i ≤ t} ∪ {y∗i x∗
i+1, y

∗∗
i x∗∗

i+1 : 1 ≤ i ≤ t− 1}.

It is easy to see that C is a cycle on L(T ). Hence H = T ∪ C is an SGHG of G.

The proof of Theorem 3.4.3 is now finished. �
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3.4.3.2 Proof of Theorem 3.4.4 By the assumption that deg(v1, V2) ≤ 2βn for

each v1 ∈ V1 and the assumption that δ(G) ≥ (2n+ 3)/5 in Extremal Case 1, we see that

δ(G[V1]) ≥ (2n+ 3)/5− 2βn. (3.13)

Then (3.13) implies that

|V1| ≥ (2n+ 3)/5− 2βn and |V2| ≤ 3n/5 + 2βn. (3.14)

Also, by |V2| ≥ (2/5− 4β)n in the assumption,

|V1| ≤ (3/5 + 4β)n. (3.15)

We will construct an SGHG of G following several steps below.

Step 1. Repartitioning

Set α1 = α1/3 and α2 = α2/3. Let

V ′
1 = V1 and V ′

2 = {v ∈ V2 | deg(v, V1) ≤ α1|V1|}.

Then by d(V1, V2) ≤ α, we have

α1|V1||V2 − V ′
2 | ≤ e(V1, V

′
2) + e(V1, V2 − V ′

2) = e(V1, V2) ≤ α|V1||V2|.

This gives that

|V2 − V ′
2 | ≤ α2|V2|. (3.16)

Denote V 0
12 = V2 − V ′

2 . Then by the definition of V ′
2 , we have

δ(V 0
12, V

′
1) > α1|V ′

1 | and δ(G[V ′
2 ]) ≥ (2n+3)/5−α1|V ′

1 | ≥ (2/5− α1(3/5+ 4β))n, (3.17)
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where the last inequality follows from (3.15).

Let ni = |V ′
i | for i = 1, 2. Then by (3.13) and (3.15),

δ(G[V ′
1 ]) ≥ (2n+ 3)/5− 2βn ≥ 2/5− 2β

3/5 + 4β
n1 ≥ (2/3− 8β)n1, (3.18)

and by (3.14) and the second inequality in (3.17),

δ(G[V ′
2 ]) ≥ (2/5− α1(3/5 + 4β))n ≥ (2/5− α1(3/5 + 4β))

3/5 + 2β
n2 ≥ (2/3− 1.1α1)n2,

provided that β ≤ 0.3α1

9α1+20/3
.

Step 2. Finding three connecting edges

AS G is 3-connected, there are 3 independent edges x1
Ly

1
L, x

2
Ly

2
L and xNyN connecting

V ′
1 ∪ V 0

12 and V ′
2 such that x1

L, x
2
L, xN ∈ V ′

1 ∪ V 0
12 and y1L, y

2
L, yN ∈ V ′

2 . In the remaining steps,

we will find a HIST T1 in G[V ′
1 ∪V 0

12] with xN as a non-leaf and x1
L, x

2
L as leaves, and a HIST

T2 of G[V ′
2 ] with yN as a non-leaf and y1L, y

2
L as leaves. Then T = T1∪T2∪{xNyN} is a HIST

of G. By finding a hamiltonian (x1
L, x

2
L)-path P1 on L(T1), and a hamiltonian (y1L, y

2
L)-path

on L(T2), we see that

C := P1 ∪ P2 ∪ {x1
Ly

1
L, x

2
Ly

2
L}

forms a cycle on L(T ). Hence H := T ∪ C is an SGHG of G.

Step 3. Initiating two HITs

In this step, we first initiate a HIT in G[V ′
1 ∪ V 0

12] containing XN as a non-leaf and x1
L

and x2
L as leaves. Then, we initiate a HIT in G[V ′

2 ] containing yN as a non-leaf and y1L and

y2L as leaves.

For x1
L, x

2
L, xN ∈ V ′

1 ∪ V 0
12, by (3.13) and (3.17), each of them has at least α1|V ′

1 | ≥ 9

neighbors in V ′
1 . Thus, we choose distinct z1L, z

1, z2L, z
2, z1N , z

2
N , z

3
N ∈ V ′

1 such that

x1
L ∼ z1L, z

1, x2
L ∼ z2L, z

2, xN ∼ z1N , z
2
N , z

3
N .

(Note that x1
L and x2

L may be from V 0
12, and therefore they may not have too many neighbors
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in V ′
1 , we then choose z1L and z2L from V ′

1 as their neighbors, respectively.)

By (3.18), we see that any two vertices in G[V ′
1 ] have at least (1/3 − 16β)n1 ≥ 14

neighbors in common. Thus, we can choose distinct vertices z11, z22, z12, vR1 ∈ V ′
1 −

{x1
L, x

2
L, xN , z

1
L, z

1, z2L, z
1
N , z

2
N , z

3
N} such that

z11 ∼ z1L, z
1, z22 ∼ z2L, z

2, z12 ∼ z11, z22, vR1 ∼ z12, z1N .

Furthermore, by (3.18) again, we have δ(G[V ′
1 ]) ≥ (2/3−8β)n1 ≥ 17. Choose z11 , z

2
2 , z

11
N ∈ V ′

1

not chosen above such that

z11 ∼ z1, z22 ∼ z2, z11N ∼ z1N .

Let T11 be the graph with

V (T11) = {x1
L, x

2
L, xN , z

1
N , z

1
L, z

1, z2L, z
11, z12, z22, z2, z2N , z

3
N , v

R
1 , z

1
1 , z

2
2 , z

11
N }

and with edges indicated above except the edges x1
Lz

1
L and x2

Lz
2
L. We see that T11 is a tree

with vR1 as the only degree 2 vertex, and |V (T11)| = 17 and |L(T11)| = 9. Notice that in T11,

z1L, x
1
L and z2L, x

2
L are leaves, and xN is a non-leaf. Figure 3.6 gives a depiction of T11.

z11

x1
L z1L

z1

z11

z22

x2
L z2L

z2

z22

z12

vR1

xN

z1N

z2N z3N

z11N

Figure (3.6) The tree T11

Notice that the edges x1
Lz

1
L and x2

Lz
2
L are not used in T11. We will first construct a HIST

T1 in G[V 1
1 ∪ V 0

12] containing T11 as a subgraph, then find a hamiltonian (z1L, z
2
L)-path on

L(T1) − {x1
L, x

2
L} by Lemma 3.2.6, finally by adding x1

Lz
1
L and x2

Lz
2
L to the path, we get a
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hamiltonian (x1
L, x

2
L)-path on L(T1). The reason that we avoid using x1

L and x2
L is that when

x1
L, x

2
L ∈ V 0

12, we may not be able to have the condition of Lemma 3.2.6 on G[L(T1)] in our

final construction.

Then we initiate a HIT in G[V ′
2 ] containing y1L, y

2
L as leaves, and yN as a non-leaf.

As y1L, y
2
L, yN ∈ V ′

2 , by (3.19) and the fact that each two vertices from V ′
2 have at least

(1/3− 2.2α1)n2 ≥ 7 common neighbors implied from (3.19), we can choose distinct vertices

y12, y1N , y
2
N , y

3
N , v

R
2 ∈ V ′

2 − {y1L, y2L, yN}

such that

y12 ∼ y1L, y
2
L, yN ∼ y1N , y

2
N , y

3
N , vR2 ∼ y12, yN . (3.19)

Let T21 be the graph with V (T21) = {y1L, y2L, yN , y12, y1N , y2N , y3N , vR2 } and with E(T21) de-

scribed as in (3.19).

We see that T21 is a tree with vR2 the only degree 2 vertex and y1L, y
2
L ∈ L(T21), yN ∈

S(T21) and

|V (T21) ∩ V ′
2 | = 8, |L(T21) ∩ V ′

2 | = 5. (3.20)

Denote

U1 = V ′
1 − V (T11), U2 = V ′

2 − V (T21), and V12 = V 0
12 − V (T11).

Step 4. Absorbing vertices in V 0
12

We may assume that V 0
12 6= ∅. For otherwise, we skip this step. Let |V12| = n12 and

V 0
12 = {x1, x2, · · · , xn12}.

Since |V (T11)| = 17, by (3.17), we get

δ(V 0
12, U1) > α1|V ′

1 | − 17 ≥ 3α2|V2| ≥ 3|V2 − V ′
2 | ≥ 3|V 0

12|.

Thus, there is a claw-matching Mc from V 0
12 to U1 centered in V 0

12. For i = 1, 2, · · · , n12, let

xi1, xi2 and xi3 be the three neighbors of xi in Mc. If n12 = 1, let Ta = Mc, and we finish
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this step. Thus we assume n12 ≥ 2.

By (3.18), each two vertices in in V ′
1 have at least

(1/3− 16β)n1 ≥ 6α2|V 0
12|+ 17 (3.21)

neighbors in common. The above inequality holds as n1 ≥ 2n/5 − 2βn, |V2| ≤ 3n/5 + 2βn

by (3.14), and we can assume that 18α2/5 + 106β/15 + 12α2β + 18/n− 32β2 ≤ 2/15.

Thus, for each i = 1, 2, · · · , n12 − 1, we can find distinct vertices xi
13, x

i
23, x

3
i3, x

3
i+1,1 in

U1 − V (Mc) such that

xi
13 ∼ xi3, xi+1,1, xi

23 ∼ xi
13, x3

i3 ∼ xi3, x3
i+1,1 ∼ xi+1,1. (3.22)

Let Ta be the graph with V (Ta) = V (Mc) ∪ {xi
13, x

i
23, x

3
i3, x

3
i+1,1 : 1 ≤ i ≤ n12 − 1}, and

E(Ta) including all edges indicated in (3.22) for all i and all edges in Mc. It is easy to see,

by the construction, that Ta is a HIT with

|V (Ta) ∩ U1| = 7n12 − 4 and |L(Ta) ∩ U1| = 4n12 − 1.

Using (3.21) again, we can find x11
N ∈ U1 − V (Ta) such that x11

N ∼ vR1 , x11, where

vR1 ∈ V (T11) and x11 ∈ V (Ta). By (3.18),

δ[G[V ′
1 ]] ≥ (2n+ 3)/5− 2βn ≥ 6α2|V 0

12|+ 20,

since |V2| ≤ 2n/5 + 2βn, and we can assume that 2β − 12α2β − 18α2/5 − 21/n ≤ 2/5. So

we can find distinct vertices x12
N , x1

11 ∈ U1 − V (Ta)− {x11
N } such that x12

N ∼ x11
N , x1

11 ∼ x11.

Let T 1
1 be the graph with

V (T 1
1 ) = V (T11)∪V (Ta)∪{x11

N , x12
N , x1

11} and E(T 1
1 ) = E(T11)∪E(Ta)∪{x11

N v1R, x
11
N x11, x

12
N x11

N , x1
11x11}.
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Then T 1
1 is a HIT such that

|V (T 1
1 ) ∩ U1| = 7n12 + 16 and |S(T 1

1 ) ∩ U1| = 3n12 + 7. (3.23)

Denote U ′
1 = U1 − V (T 2

1 ) and U ′
2 = U2 − V (T 2

1 ).

Step 5. Completion of HITs T1 and T2

In this step, we construct a HIST Ti in G[V ′
i ] (i = 1, 2) containing T i

1 as an induced

subgraph.

The following lemma guarantees the existence of a specified HIST in a graph with n

vertices and minimum degree at least (2/3− α′)n for some 0 < α′ ≪ 1.

Lemma 3.4.6. Let H be an n-vertex graph with δ(H) ≥ (2/3 − α′)n for some constant

0 < α′ ≪ 1. Then H has a HIST TH satisfying

(i) TH has a vertex vR of degree at least (2/3− α′)n− 1, and vR can be chosen arbitrarily

from V (H);

(ii) |S(TH)| ≤ (1/6 + α′/2)n+ 2.

Proof. Let vR ∈ V (H) be an arbitrary vertex. If n(mod 2) ≡ deg(vR) + 1(mod 2),

then we let NR = NH(vR). For otherwise, let NR be a subset of N(vR) with |NH(vR)| − 1

elements. Let TvR be the star with V (TvR) = {vR} ∪ NR and E(TR) = E({vR}, NR). Let

V0 = V (H)−V (TvR). By δ(H) ≥ (2/3−α′)n, we have |V0| ≤ (1/3+α′)n+1. By the choice

of NR, we have |V0| ≡ 0(mod 2). If V0 = ∅, then let TH = TvR . For otherwise, we claim as

follows.

Claim 3.4.3. Let V1 ⊆ V (H) be a subset with |V1| ≥ (2/3 − α′)n − 1 and |V1|(mod 2) ≡
n(mod 2). Then there exist two vertices from V0 = V (H)−V1 such that they have a common

neighbor in V1.

Proof of Claim 3.4.3. We assume that |V1| ≤ (2/3+2α′)n. For otherwise, |V0| < (1/3−2α′)n.

Since δ(H) ≥ (2/3 − α′)n, any two vertices of H have at least (1/3 − 2α′)n neighbors in

common. By |V0| < (1/3 − 2α′)n, any two vertices from V0 have a common neighbor from
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V1. We are done. Thus |V1| ≤ (2/3 + 2α′)n, and hence |V0| ≥ (1/3 − 2α′)n ≥ 3. By the

assumption that |V1| ≥ (2/3 − α′)n − 1, we have |V0| ≤ (1/3 + α′)n + 1. This implies that

deg(v0, V1) ≥ (1/3 − 2α′)n − 2 for each v0 ∈ V0. As |V0| ≥ 3 and 3((1/3 − 2α′)n − 2) >

(2/3+2α′)n >≥ |V1| (provided that 8α′+6/n < 1/3), we see that there must be two vertices

from V0 such that they have a neighbor in common in V1.

By Claim 3.4.3, there exist two vertices v110 , v120 ∈ V0 such that they have a common

neighbor in TvR . Adding v110 and v120 to TvR and two edges connecting them to one of their

common neighbor in V (TvR). Let T 1
vR

be the resulting graph. Then we see that T 1
vR

is

a HIT with |V (T 1
vR
)| = |V (TvR)| + 2, and hence (|V (TvR)| + 2)(mod 2) ≡ n(mod 2). Also

|V (T 1
vR
)| ≥ |V (TvR)| ≥ (2/3 − α′)n − 1. So we can use Claim 3.4.3 again to find another

pair of vertices from V0 − {v110 , v120 } such that they have a common neighbor in V (T 1
vR
).

Adding the new pair of vertices and two edges connecting them to one of their common

neighbor in V (T 1
vR
) into T 1

vR
, we get a new HIT T 2

vR
. By repeating the above process another

l0 = (|V0|−4)/2 times, we get a HIT T l0
vR
. Let TH = T l0

vR
. We claim that TH has the required

properties in Lemma 3.4.6. Notice first that dTH
(vR) ≥ (2/3− α′)n− 1. Then since TH has

vR and at most |V0|/2 distinct vertices as non-leaves and |V0| ≤ (1/3+ α′)n+ 1, we see that

|S(TH)| ≤ (1/6 + α′/2)n+ 2.

Let H1 = G[U ′
1 ∪ {v1R}]. Recall that v1R is a non-leaf in T 1

1 . By (3.18) and (3.23), and

by noticing that n12 ≤ |V2 − V ′
2 | ≤ α2|V2| ≤ 3α2n1/2 (by (3.14)), we see that

δ(H1) ≥ (2/3− 8β)n1 − (7n12 + 19)

≥ (2/3− 8β)n1 − 21α2n1/2− 19

≥ (2/3− 11α2)|V (H1)|. (3.24)

Let α′ = 11α2 ≪ 1 (by assuming α ≪ 1). By Lemma 3.4.6, we can find a HIT T ′
1 in

H1 with v1R as the prescribed vertex in condition(i). It is easy to see that T1 := T 1
1 ∪ T ′

1 is a
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HIST of G[V ′
1 ∪ V 0

12] and

s1 = |S(T1) ∩ V ′
1 | = |S(T 1

1 ) ∩ V ′
1 |+ |S(T ′

1) ∩ V ′
1 |

≤ 3n12 + 7 + (1/6 + 5.5α2)|V (H1)|+ 2 (by (3.23) and Lemma 3.4.6)

≤ 3n12 + 9 + (1/6 + 5.5α2)n1

≤ (1/6 + 10.5α2)n1 (byn12 ≤ 3α2n1/2). (3.25)

Let H2 = G[U ′
2 ∪ {v2R}]. By(3.19) and (3.20), we see that

δ(H2) ≥ (2/3− 1.1α1)n2 − 8 ≥ (2/3− 1.2α1)|V (H2)|.

By letting α′ = 1.2α1, we can find a HIT T ′
2 in H2 with v2R as the prescribed vertex in

condition (i) of Lemma 3.4.6. Then T2 := T 2
1 ∪ T ′

2 is a HIST of G[V ′
2 ]. Also, notice that

s2 = |S(T2) ∩ V ′
2 | = |S(T 2

1 ) ∩ V ′
2 |+ |S(T ′

2) ∩ V ′
2 |

≤ 3 + (1/6 + 0.6α1)|V (H2)|+ 2

≤ (1/6 + 0.7α2)n2, (3.26)

where the last inequality holds by assuming 5/n2 ≤ 0.1α2.

Step 6. Finding two long paths

In this step, we first find a hamiltonian (z1L, z
2
2)-path P 1

1 in G[L(T1) − {x1
L, x

2
L}]; then

find a hamiltonian (y1L, y
2
L)-path P2 in G[L(T2)]. Let G11 = G[L(T1) − {x1

L, x
2
L}] and n11 =

|V (G11)|. We will show that δ(G11) > 1
2
n11. We may assume s1 ≥ (1/6 − 8β)n1 − 2. For

otherwise, if s1 < (1/6− 8β)n1 − 2, then by (3.18), we get

δ(G11) ≥ δ(G[V ′
1 ])− s1 − 2

≥ (2/3− 8β)n1 − ((1/6− 8β)n1 − 1− 2)− 2

≥ 1

2
n1 + 1 ≥ 1

2
n11 + 1.
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Hence, s1 ≥ (1/6− 8β)n1 − 2, implying that

n11 ≤ (5/6 + 8β)n1 + 2 and thus n1 ≥
n11 − 2

5/6 + 8β
. (3.27)

Hence, by (3.25)

δ(G11) ≥ δ(G[V ′
1 ])− s1 − 2 ≥ (2/3− 8β)n1 − (1/6 + 10.5α2)n1 − 2

≥ (1/2− 8β − 11α2)n1 ≥
1/2− 2β − 11α2

5/6 + 2β
(n11 − 2) > n11/2,

the last inequality holds by assuming 3β + 11α2 + 2/n11 < 1/12. By applying Lemma 3.4.6

on G11, we find a hamiltonian (z1L, z
2
L)-path P 1

1 in G11. Let P1 = P 1
1 ∪ {z1Lx1

L, z
2
Lx

2
L}. We see

that P1 is a a hamiltonian (x1
L, x

2
L)-path on L(T1).

Let G22 = G[L(T2)] and n22 = |V (G22)|. We will show that δ(G22) > n22/2. We may

assume that s2 ≥ (1/6 − 1.1α1)n2 − 2. For otherwise, if s2 < (1/6 − 1.1α1)n2 − 2, then by

(3.19), we see that

δ(G22) ≥ δ(G[V ′
2 ])− s2 − 2

> (2/3− 1.1α1)n2 − ((1/6− 1.1α1)n2 − 2)− 2

> n2/2 ≥ n22/2.

Thus, s2 ≥ (1/6− 1.1α1)n2 − 2, implying that

n22 ≤ n1 − s2 ≤ (5/6 + 1.1α1)n2 + 2 gives that n2 ≥
n22 − 2

5/6 + 1.1α1

.
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By (3.19) and (3.26),

δ(G22) ≥ δ(G[V ′
2 ])− s2 − 2

≥ (2/3− 1.1α1)n2 − (1/6 + 0.7α1)n2 − 2

≥ (1/2− 1.9α1)n2 ≥
1/2− 1.9α2

5/6 + 1.1α2
(n22 − 2)

> n22/2.

The last inequality follows by assuming that 2.45α1+2/n11 < 1/12. Hence, by Lemma 3.4.6,

there is a hamiltonian (y1L, y
2
L)-path P2 in G22.

Step 7. Forming an SGHG

Let T = T1 ∪ T2 ∪ {xNyN} and C = P1 ∪ P2 ∪ {x1
Ly

1
L, x

2
Ly

2
L}. We see that T is a HIST

of G with L(T ) = V (P1) ∪ V (P2) and C is a cycle spanning on L(T ). Hence H = T ∪ C is

an SGHG of G.

3.4.3.3 Proof of Theorem 3.4.5 Notice that the assumption of Extremal Case 2

implies that

|V1| > (3/5− α)n and |V2| ≥ (2/5− 2β)n.

We may assume that the graph G is minimal with respective to the number of edges.

This implies that no two adjacent vertices both have degree larger than (2n + 3)/5. (For

otherwise, we could delete any edges incident to two vertices both with degree larger than

(2n+ 3)/5.) We construct an SGHG in G step by step.

Step 1. Repartitioning

Set α1 = α1/3 and α2 = α2/3. Let

V ′
2 = {v ∈ V2 | deg(v, V1) ≥ (1− 3α1)|V1|},

V ′
0 = {v ∈ V2 − V ′

2 | deg(v, V1) ≤ α1|V2|/6},

V ′
1 = V1 ∪ V ′

0 , V 0
12 = V2 − V ′

2 − V ′
0 .
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As d(V1, V2) ≥ 1− 3α, the following holds,

(1− 3α)|V1||V2| ≤ eG(V1, V2) = eG(V1, V
′
2) + eG(V1, V2 − V ′

2)

≤ |V1||V ′
2 |+ (1− 3α1)|V1||V2 − V ′

2 |.

The inequality implies that

|V2 − V ′
2 | ≤ α2|V2|. (3.28)

As a consequence of moving vertices in V2 − V ′
2 out from V2, by (3.28) we get

δ(V1, V
′
2) ≥ (2n+ 3)/5− 2βn− α2|V2|

≥ (2n+ 3)/5− 6β|V2| − α2|V2|

≥ (2n+ 3)/5− 2α2|V2|, (3.29)

provided that 6β ≤ α2. And as a consequence of moving vertices in V ′
0 to V1,

δ(V ′
0 , V

′
2) ≥ δ(G)−∆(V ′

0 , V1)−∆(V ′
0 , V2 − V ′

2)

≥ (2n+ 3)/5− α1|V2|/6− α2|V2|

≥ (2n+ 3)/5− α1|V2|/3 (provided that α2 ≤ α1/6), (3.30)

and

α1|V2|/6 < δ(V 0
12, V

′
1) < (1− 3α1)|V1|. (3.31)

From (3.29) and (3.30), we have

δ(V ′
1 , V

′
2) ≥ (2n+ 3)/5− α1|V2|/3. (3.32)

As

δ(V ′
2 , V

′
1) ≥ (1− 3α1)|V1| ≥ (1− 3α1)(3/5− α)n > ⌈(2n+ 3)/5⌉ , (3.33)
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we get that

deg(v′1) = ⌈(2n+ 3)/5⌉ (3.34)

for each v′1 ∈ V ′
1 , by the minimality assumption of e(G). Hence (3.32) and (3.34) give that

∆(G[V ′
1 ]) ≤ α1|V2|/3. (3.35)

Step 2. Finding a vertex v∗2 from V ′
2 with large degree in V ′

1

Let

ein = e(G[V ′
1 ]) (3.36)

be the number of edges within V ′
1 , notice that ein maybe 0. Then

eG(V
′
1 , V

′
2 ∪ V 0

12) = |V ′
1 |⌈(2n+ 3)/5⌉ − 2ein. (3.37)

Let

din = ein/|V ′
1 | and |n0| = | |V ′

2 ∪ V 0
12| − ⌈(2n + 3)/5⌉|. (3.38)

By (3.35) and the definition of din in (3.38), we have

⌊din⌋ ≤ α1|V2|/6.

In fact, since ∆(V1, V
′
1) ≤ ∆(V1, V1)+∆(V1, V

′
0) ≤ 2βn+|V ′

0 | ≤ 2βn+α2|V2|, and ∆(V ′
0 , V

′
1) ≤

α1|V2|/6 + α2|V2|, more precisely, we have

2din = 2ein/|V ′
1 | ≤ (2βn+ α2|V2|)|V1|/|V ′

1 |+ (α1|V2|/6 + α2|V2|)|V ′
0 |/|V ′

1 |

≤ (2βn+ α2|V2|) + α2(α1|V2|/6 + α2|V2|) (as |V ′
0 | ≤ α2|V2| and |V1|, |V2| ≤ |V ′

1 |)

≤ (6β + α2 + α/6 + α2
2)|V2| (as βn ≤ 3β|V2|)

≤ 2α2|V2| (provided that 6β + α/6 + α2
2 ≤ α2). (3.39)

Set



87

Case A. ⌈(2n+ 3)/5⌉ − |V ′
2 ∪ V 0

12| = n0 ≥ 0;

Case B. |V ′
2 ∪ V 0

12| − ⌈(2n+ 3)/5⌉ = n0 ≥ 1.

We have

n0 =



















⌈(2n+ 3)/5⌉ − |V ′
2 ∪ V 0

12| ≤ 2βn+ α2|V2| ≤ (6β + α2)|V2| ≤ 2α2|V2|, Case A,

(3.40)

|V ′
2 ∪ V 0

12| − ⌈(2n+ 3)/5⌉ ≤ (2/5 + α)n− ⌈(2n+ 3)/5⌉ ≤ αn, Case B.

Then in case A,

eG(V
′
1 , V

′
2 ∪ V 0

12) = |V ′
1 |⌈(2n+ 3)/5⌉ − 2ein (by (3.34))

= |V ′
1 |(|V ′

2 ∪ V 0
12|+ n0 − 2din)

≥ |V ′
2 ∪ V 0

12|(|V ′
1 |+ 1.4n0 − 3.2din),

as 1.4|V ′
2∪V 0

12| ≤ 1.4((2n+3)/5+αn) ≤ (3/5−α)n < |V ′
1 | and 1.6|V ′

2∪V 0
12| ≥ 1.6((2n+3)/5−

2β − α2)n ≥ (3/5 + 2β + α2)n) > |V ′
1 | provided that 2.4α < 1/25 and 5.2β + 2.6α2 ≤ 1/25

respectively. Since eG(V
′
1 , V

′
2 ∪V 0

12) ≤ |V ′
2 ∪V 0

12||V ′
1 |, we have |V ′

1 |+1.4n0−3.2din ≤ |V ′
1 |, and

thus 1.4n0 ≤ 3.2din.

In Case B,

eG(V
′
1 , V

′
2 ∪ V 0

12) = |V ′
1 |⌈(2n+ 3)/5⌉ − 2ein (by (3.34))

= |V ′
1 |(|V ′

2 ∪ V 0
12| − n0 − 2din)

≥ |V ′
2 ∪ V 0

12|(|V ′
1 | − 1.6n0 − 3.2din),

as 1.6|V ′
2 ∪ V 0

12| ≥ 1.6((2n + 3)/5 − 2β − α2n) ≥ (3/5 + 2β + α2)n > |V ′
1 | provided that

5.2β + 2.6α2 ≤ 1/25.

Let

dl =

{ ⌊3.2din − 1.4n0⌋, if Case A,

⌊1.6n0 + 3.2din⌋, if Case B. (3.41)
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By (3.39) and (3.40), we see that

dl ≤
{

3.2α2|V2|, if Case A,

6.4α2|V2|, if Case B. (3.42)

Then there is a vertex v∗2 in V ′
2 ∪ V 0

12 of degree at least |V ′
1 | − dl. We will fix this vertex

in what follows. In fact, such a vertex v∗2 is in V ′
2 by the facts that

δ(V 0
12, V

′
1) < (1− 3α1)|V1| and |V ′

1 | − dl ≥ (1− 3α1)|V1|, (3.43)

where |V ′
1 | − dl ≥ (1− 3α1)|V1| holds because of (3.42).

Step 3. Finding a matching M within G[Γ(v∗2 , V
′
1)]

In this step, if ein ≥ 1, we first find a matching within G[V ′
1 ] of size at least ein/(2△

(G[V ′
1 ])). We assume this by giving the following lemma.

Lemma 3.4.7. If G is a graph with maximum degree ∆, then G contains a matching of size

at least |E(G)|
2∆

.

Proof. We use induction on |V (G)|. We may assume that the graph is connected.

For otherwise, we are done by the induction hypothesis. Let e = xy ∈ E(G) be an edge and

G′ = G− {x, y}. Since |NG(x) ∪NG(y)| − |{x, y}| ≤ 2(∆− 1), we have

e(G′) ≥ e(G)− 2(∆− 1)− 1 ≥ e(G)− 2∆.

Hence, by the induction hypothesis, G′ has a matching of size at least e(G)−2∆
2∆

= e(G)
2∆

− 1.

Adding e to the matching obtained in G′gives a matching of size at least e(G)
2∆

in G.

In case A, we take a matching in G[V ′
1 ] of size at least max{⌊11din⌋, 11n0}. This is

possible because

ein
2△ (G[V ′

1 ])
≥ ein

2α1|V ′
1 |/3

=
3din
2α1

≥ 11din
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provided that α ≤ ( 3
22
)3, and

2ein ≥ |V ′
1 |⌈(2n+ 3)/5⌉ − |V ′

1 ||V ′
2 | − (1− 3α1)|V1||V 0

12|

≥ |V ′
1 |⌈(2n+ 3)/5⌉ − |V ′

1 |(⌈(2n+ 3)/5⌉ − n0 − |V 0
12|)− |V1||V 0

12|+ 3α1|V1||V 0
12|

≥ |V ′
1 |n0 + 3α1|V1||V 0

12| (3.44)

implying that

ein
2△ (G[V ′

1 ])
≥ ein

2α1|V ′
1 |/3

≥ |V ′
1 |n0/2

2α1|V ′
1 |/3

≥ 3n0

4α1

≥ 11n0

provided that α ≤ ( 3
44
)3.

By (3.41), |V ′
1 | − Γ(v∗2, V

′
1) ≤ dl ≤ ⌊3.2din⌋, we can then choose a matching M from

Γ(v∗2, V
′
1) such that

|M | = max{⌊7din⌋, 7n0}. (3.45)

In case B, we take a matching in G[V ′
1 ] of size at least ⌊8din⌋. This is possible as

ein
△(G[V ′

1 ])
≥ ein

2α1|V ′
1 |/3

=
3din
2α1

≥ ⌊8din⌋

provided that α ≤ ( 3
16
)3.

By the second equality of (3.41), |V ′
1 | − Γ(v∗2 , V

′
1) ≤ ⌊3.2din + 1.6n0⌋. If n0 < 2din, then

⌊3.2din + 1.6n0⌋ ≤ ⌊7din⌋. Thus, there is a matching M within Γ(v∗2, V
′
1) such that

|M | =
{ ⌊din, ⌋ if n0 < 2din,

0, if n0 ≥ 2din. (3.46)

We fix M for denoting the matching we defined in this step hereafter.

Step 4. Insertion

In this step, we insert vertices in V 0
12 into V ′

1 − V (M). Let I = V 0
12 = {x1, x2, · · · , xI},
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U1 = Γ(v∗2, V
′
1)− V (M), and U2 = V ′

2 . Then (i)

δ(I, U1) ≥ δ(I, V ′
1)− |V (M)| − |V ′

1 − Γ(v∗2, V
′
1)|

≥ α1|V2|/6−max{⌊7din⌋, 7n0} − ⌊1.6n0 + 3.2din⌋,

≥ α1|V2|/6− 20.4α2|V2| (by (3.39) and (3.40))

≥ 3α2|V2| ≥ 3|I| (provided that 23.4α2 ≤ α1/6),

and from (3.32), we have (ii)

δ(U1, U2 − {v∗2}) ≥ ⌈(2n + 3)/5⌉ − α1|V2|/3− 1 > α2|V2| ≥ |I|.

By condition (i), there is a claw-matching M1 between I and U1 centered in I. Suppose

that Γ(xi,M1) = {xi0, xi1, xi2}. We denote by Pxi
the path xi1xixi2. By (ii), there is a

matching M2 between {xi0 | 1 ≤ i ≤ |I|} and U2 − {v∗2} covering {xi0 | 1 ≤ i ≤ |I|}. So far,

we get two matchings M1 and M2.

Next we delete three types of edges not contained in

(

|I|
⋃

i=1

E(Pxi
)) ∪ {xixi0 : 1 ≤ i ≤ |I|}.

Those edges include edges incident to a vertex in I, edges incident to a vertex in

|I|
⋃

i=1

((Γ(xi1)− Γ(xi2)) ∪ (Γ(xi2)− Γ(xi1))) ,

and one edge from the two edges connecting a vertex in Γ(xi1) ∩ Γ(xi2) to both xi1 and xi2,

for each i = 1, 2, · · · , |I|.
For the resulting graph after the deletion of edges above, we contract each path Pxi

(1 ≤
i ≤ |I|) into a single vertex vxi

. We call each vxi
a wrapped vertex and call Pxi

the preimage

of vxi
. Denote by G∗ the graph obtained by deleting and contracting the same edges as

above, and let U∗
2 = V ′

2 and U∗
1 = V (G∗)−U∗

2 . (We will need the following degree condition
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in the end of this proof.) Since |U∗
2 | = |V ′

2 | ≤ (2/5 + α)n, combining with (3.32), we have

deg(vxi
, U∗

2 ) ≥ |Γ(xi1, U
∗
2 ) ∩ Γ(xi2, U

∗
2 )| − 1 ≥ 2n/5− α1|V2|.

By the above inequality and (3.32), we get the first inequality below in (3.47). Since one

edge from the two edges connecting a vertex in Γ(xi1)∩ Γ(xi2) to both xi1 and xi2 is deleted

in G∗ for each i = 1, 2, · · · , |I|, combining with (3.33), we have the second inequality as

follows.

δ(U∗
1 , U

∗
2 ) ≥ 2n/5− α1|V2|,

δ(U∗
2 , U

∗
1 ) ≥ δ(V ′

2 , V
′
1)− 1 ≥ (1− 3α1)|V1| − 1. (3.47)

Let U ′
1 and U ′

2 be the corresponding sets of U1 and U2, respectively, after the contraction.

Let TW be the graph with

V (TW ) = {xi0, vxi
: 1 ≤ i ≤ |I|}∪(V (M2)∩U2) and E(TW ) = {xi0vxi

: 1 ≤ i ≤ |I|}∪E(M2).

By the construction,

|V (TW )∩U ′
1| = |{xi0, vxi

: 1 ≤ i ≤ |I|}| = 2|I|, |L(TW )∩U ′
1| = |{vxi

: 1 ≤ i ≤ |I|}| = |I|, and

|V (TW ) ∩ U ′
2| = |L(TI) ∩ U ′

2| = |V (M2) ∩ U ′
2| = |I|.

Notice that TW is a forest with |I| components and each vertex xi0 (1 ≤ i ≤ |I|) has

degree 2 in TW . (We will make TW connected in the end by connecting each xi0 to v∗2.) See

a depiction of this operation with |I| = 1 in Figure 3.7 below.

Let U1
I = (V ′

1 − U1) ∪ U ′
1 − V (TW ), U2

I = U ′
2 − V (TW ), and GI the resulting graph with
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Wrap x10x10

x11

x12

x1 vx1

Figure (3.7) TW with |I| = 1

V (GI) = U1
I ∪ U2

I . We have that

|U1
I | = |V ′

1 | − 3|I| = |V ′
1 | − 3n0

12, |U2
I | = |V ′

2 | − |I| = |V ′
2 | − n0

12,

δ(U1
I , U

2
I ) ≥ δ(V ′

1 , V
′
2)− n0

12 ≥ ⌈(2n+ 3)/5⌉ − α1|V2|/3− n0
12,

δ(U2
I , U

1
I ) ≥ δ(V ′

2 , V
′
1)− 3n0

12 ≥ (1− 3α1)|V1| − 3n0
12. (3.48)

Step 5. Matching Extension

In this step, in the graph GI , we do some operation on the matching M found in Step

3. Notice that the vertices in M are unused in Step 4. Recall that |M | ≤ max{7n0, ⌊7din⌋}.
By ⌊din⌋ ≤ α2|V2| from (3.39) and n0 ≤ 2α2|V2| from (3.40), we get

|M | ≤ 14α2|V2|. (3.49)

Hence, δ(U1
I , U

2
I − {v∗2}) ≥ ⌈(2n + 3)/5⌉ − α1|V2|/3 − n0

12 − 1 ≥ |M |. Let VM be the

set of vertices containing exactly one end of each edge in M . Then there is a matching M ′

between VM and U2 − {v∗2} covering VM . Let FM be a forest with

V (FM) = V (M) ∪ (V (M ′) ∩ U2) and E(FM ) = E(M) ∪ E(M ′).

Notice that

|V (FM) ∩ U1| = 2|M |, |L(FM) ∩ U1| = |V (M)− VM | = |M |,

|V (FM) ∩ U2| = |L(FM ) ∩ U2| = |M |.
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Notice that FM has |M | components, and all vertices in VM has degree 2. (We will make

FM a HIT later on by connecting each vertex in VM to the vertex v∗2 ∈ U2) See Figure 3.8

for a depiction of FM with |M | = 3.

U1

U2

Figure (3.8) FM with |M | = 3

Let

U1
M = U1

I − V (FM) and U2
M = U2

I − V (FM ).

Notice that

|U1
M | = |U1

I | − 2|M | = |V ′
1 | − 3n0

12 − 2|M |,

|U2
M | = |U2

I | − |M | = |V ′
2 | − n0

12 − |M |, (3.50)

and

δ(U1
M , U2

M) = ⌈(2n+ 3)/5⌉ − α1|V2|/3− n0
12 − |M |,

δ(U2
M , U1

M) ≥ (1− 3α1)|V1| − 3n0
12 − 2|M |. (3.51)

Step 6. Distribute Remaining vertices in U1
M − Γ(v∗2, V

′
1)

Let

We may assume nl ≥ 1. For otherwise, we skip this step. By (3.42), we have

nl ≤
{

3.2α2|V2|, Case A,

6.4α2|V2|, Case B. (3.52)
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By n0
12 ≤ α2|V2| from (3.28) and |M | ≤ 14α2|V2| from (3.49), we have (i)

δ(U1
M , U2

M) ≥ ⌈(2n+ 3)/5⌉ − α1|V2|/3− n0
12 − |M | ≥ ⌈(2n + 3)/5⌉ − α1|V2|/3− 15α2|V2|

≥ (1− 3α)|V2| − α1|V2|/3− 15α2|V2| (as ⌈(2n + 3)/5⌉ ≥ (1− 3α)(2/5 + α)n)

≥ (1− 3α− α1/3− 15α2)|V2|) ≥ (1− α1)|V2| (provided 3α+ 15α2 ≤ 2α1/3)

≥ (1− α1)|U2
M |. (3.53)

By (3.50) and (3.52), we have (ii)

|U2
M | − 10α1|V2| − ⌈nl/10⌉ − 1 ≥ |V ′

2 | − n0
12 − |M | − 16α1|V2| − 0.64α2|V2| − 2

≥ (1− α2 − 14α2 − 10α1 − 0.64α2 − |V2|/2)|V2|

≥ (1− 11α1)|V2| (provided 15.64α2 + |V2|/2 ≤ α1)

> 0 (provided 11α1 < 1).

Let UR = U1
M − Γ(v∗2, V

′
1) and denote

⌈

|UR|
10

⌉

= l. Suppose first that |UR| ≥ 2. We partition

UR = UR1 ∪ UR2 ∪ · · · ∪ URl
arbitrary such that each set contains at least 2 and at most

|UR|/10 vertices. Then by the conditions (i) and (ii), for each 1 ≤ i ≤ l, there is a vertex

yi ∈ U2−{v∗2} which is common to all vertices in URi
, and is not used by any other URj

with

j 6= i. Let TR be the graph with

V (TR) = UR ∪ {yi : 1 ≤ i ≤ l} and E(TR) = {xyi : x ∈ URi
, 1 ≤ i ≤ l}.

Suppose now |UR| = 1, let UR = {xR}. Choose x′
R ∈ U1

M − UR and yR ∈ U2
M − {v∗2} be a

vertex common to xR and x′
R. Let TR be a tree with

V (TR) = {xR, x
′
R, yR} and E(TR) = {xRyR, x

′
RyR}.
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By the construction,

|V (TR)∩U1
M | = |L(TR ∩U1

M | = max{|UR|, 2}, |V (TR)∩U2
M | = l, and |L(TR ∩U2

M | = 0.

Notice that TR is not connected when |UR| ≥ 17 and that TR may have degree 2 vertices in

V (TR)∩U2
M . Later on, by joining each vertex in TR ∩U2

M to a vertex of a tree, we will make

the resulting graph connected, and thereby eliminating the possible degree 2 vertices in TR.

Let

U1
R = U1

M − V (TR) and U2
R = U2

M − V (TR).

Then we have

|U1
R| = |U1

M | − nl = |V ′
1 | − 3n0

12 − 2|M | −max{2, nl},

|U2
R| = |U2

M | − ⌈nl/10⌉ = |V ′
2 | − n0

12 − |M | − ⌈nl/10⌉, (3.54)

and

δ(U1
R, U

2
R) ≥ ⌈(2n + 3)/5⌉ − α1|V2|/3− n0

12 − |M | − ⌈nl/10⌉,

δ(U2
R, U

1
R) = (1− 3α1)|V1| − 3n0

12 − 2|M | −max{2, nl}. (3.55)

Let GR be the subgraph of G induced on U1
R ∪ U2

R.

Step 7. Completion of a HIST in GR

In this step, we find a HIST Tmain in GR such that

|L(Tmain) ∩ U1
R| = |L(TW )|/2 + |L(FM) ∩ U1

I |+ |L(TR) ∩ U1
M | =

|L(Tmain ∩ U2
R)| = |L(TW )|/2 + |L(FM) ∩ U2

I |+ |L(TR) ∩ U1
M |.

By the construction of FM and TR, we have |L(FM) ∩ U1
I | = |L(FM) ∩ U2

I | and |L(TR) ∩
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U1
M | − |L(TR) ∩ U2

M | = max{2, nl}, respectively. So

|L(Tmain) ∩ U2
R| − |L(Tmain) ∩ U1

R| = max{2, nl}. (3.56)

Notice that v∗2 ∈ U2
R, v

∗
2 is adjacent to each vertex in U1

R, and V ′
1 − Γ(v∗2, V

′
1) ⊆ V (U1

R).

We now construct Tmain step by step.

Step 7.1

Let T 1
main be the graph with

V (T 1
main) = {v∗2} ∪ U1

R and E(T 1
main) = {v∗2x | x ∈ U1

R}.

To make the requirement of (3.56) possible, we need to make at least

d3 = |U1
R| − |U2

R|+max{2, nl},

= |V ′
1 | − |V ′

2 | − 2n0
12 − |M |+ ⌈nl/10⌉ (3.57)

vertices in U1
R with degree at least 3 in Tmain, where the last inequality above follows from

(3.54). Hereinafter, we assume that max{2, nl} = nl. Since the proof for max{2, nl} = 2

follows the same idea, we skip the details.

Since all vertices in U1
R are included in T 1

main and T 1
main is connected, each vertex in

T 1
main needs to join to at least two distinct vertices from U2

R − {v∗2} to have degree no less

than 3. Hence, to make a desired HIST Tmain, it is necessary that

df∗ = |U2
R| − 1− 2d3

= |V ′
2 | − n0

12 − eM − ⌈nl/10⌉ − 1− 2d3

= 3|V ′
2 | − 2|V ′

1 |+ 3n0
12 + |M | − 3⌈nl/10⌉ − 1

≥ 0. (3.58)
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We show (3.58) is true, separately, for each of Case A and Case B. For Case A, notice that

|V ′
1 | = n− ⌈(2n + 3)/5⌉+ n0 and |V ′

2 | = ⌈(2n+ 3)/5⌉ − n0 − n0
12.

Hence,

3|V ′
2 | = 3⌈(2n+ 3)/5⌉ − 3n0 − 3n0

12 and 2|V ′
1 | = 2n− 2⌈(2n+ 3)/5⌉+ 2n0.

Thus,

df∗ = 5⌈(2n+ 3)/5⌉ − 2n− 5n0 − 3n0
12 + 3n0

12 + |M | − 3⌈nl/10⌉ − 1

≥ 2− 5n0 + |M | − 3⌈⌊3.2din⌋/10⌉ (by nl ≤ dl⌊3.2din − 1.4n0⌋ from (3.41))

= 2− 5n0 +max{7n0, ⌊7din⌋} − 3⌈⌊3.2din⌋/10⌉

≥ 0.

Now we show (3.58) is true for case B. Notice that

|V ′
1 | = n− ⌈(2n + 3)/5⌉+ n0 and |V ′

2 | = ⌈(2n+ 3)/5⌉+ n0 − n0
12.

So

3|V ′
2 | = 3⌈(2n+ 3)/5⌉+ 3n0 − 3n0

12 and 2|V ′
1 | = 2n− 2⌈(2n+ 3)/5⌉+ 2n0.

Recall that n0 ≥ 1 in this case. We have

df∗ = 5⌈(2n+ 3)/5⌉ − 2n+ n0 − 3n0
12 + 3n0

12 + |M | − 3⌈nl/10⌉ − 1

≥ 2 + n0 + |M | − 3⌈nl/10⌉

= 2 + n0 + |M | − 3⌈⌊3.2din + 1.6n0⌋/10⌉ (by nl ≤ ⌊3.2din + 1.6n0⌋ from (3.41))

≥







2 + n0 + ⌊din⌋ − ⌊9.2din/10⌋ − ⌊4.8n0/10⌋ − 1 ≥ 0, if n0 < 2din;

2 + n0 − ⌊9.2din/10⌋ − ⌊4.8n0/10⌋ − 1 ≥ 0, if n0 ≥ 2din.
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We now in Step 2 below show that there is a way to make exactly df∗ vertices in T 1
main

with degree 3 by joining each to two distinct vertices from U2
R − {v∗2}.

Step 7.2

We first take 2d3 vertices from U2
R − {v∗2}. For those 2d3 vertices, pair them up into d3

pairs. We show that for each pair of vertices, they have at least d3 common neighbors in U1
R.

Using (3.55), |M | ≤ 14α2|V2| from (3.49), nl ≤ dl ≤ 6.4α2|V2| from (3.42), we have

δ(U2
R, U

1
R) ≥ (1− 3α1)|V1| − 3n0

12 − 2|M | −max{2, nl}

≥ |V1| − 3α1|V1| − 3α2|V2| − 28α2|V2| − 6.4α2|V2|

≥ |V ′
1 | − |V1 − V1| − 37.4α2|V2| − 3α1|V1|. (3.59)

Since |U1
R| ≤ |V ′

1 |, we know that any two vertices in U2
R have at least

nc = |V1| − 2|V ′
1 − V1| − 74.8α2|V2| − 6α1|V1|

≥ (3/5− α)n− 76.8α2|V2| − 6α1|V1| (by |V ′
1 − V1| = |V ′

0 | ≤ |V2 − V ′
2 | ≤ α2|V2|)

≥ 3n/5− 10α1|V1| (provided that 76.8α2 + 3α ≤ 4α1)

common neighbors in U1
R. On the other hand,

d3 = |V ′
1 | − |V ′

2 | − 2n0
12 − |M | − ⌈nl/10⌉

≤ (3/5− α)n− (2n/5− 2βn− |V2 − V ′
2 |) + (1.6n0 + 3.2⌊din⌋)/10 + 1

= n/5− αn+ 2βn+ |V2 − V ′
2 |+ (3.2α2|V2|+ 3.2α2|V2|)/10 (by (3.39) and (3.40))

≤ n/5− αn+ 2βn+ α2|V2|+ 0.64α2|V2|

≤ n/5 + 2α1|V2| < nc (provided 12α1 < 2/5).

Denote by {u1
1, u

2
1}, {u1

2, u
2
2}, · · · , {u1

d3
, u2

d3
} the d3 pairs of vertices from U2

R −{v∗2}. Then by

the above argument, we can choose d3 distinct vertices say v1, v2, · · · , vd3 from L(T 1
main) such

that vi ∼ u1
i , u

2
i for all 1 ≤ i ≤ d3.
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Let T 2
main be the graph with

V (T 2
main) = V (T 1

main)∪{u1
i , u

2
i : 1 ≤ i ≤ d3} and E(T 2

main) = E(T 1
main)∪{viu1

i , viu
2
i : 1 ≤ i ≤ d3}.

If V (GR) − V (T 2
main) = ∅, we let Tmain = T 2

main. For otherwise, we need one more step to

finish constructing Tmain.

Step 7.3

For the remaining vertices in U2
R −V (T 2

main), we show that each of them has a neighbor

in S(T 2
main) ∩ U1

R; that is, a neighbor in U1
R of degree 3 in V (T 2

main). This is clear, as by

(3.59), we have

δ(U2
R, U

1
R) ≥ |V ′

1 | − |V ′
1 − V1| − 37.4α2|V2| − 3α1|V1|

≥ |U1
R| − 38.4α2|V2| − 3α1|V1| (by |V ′

1 − V1| ≤ |V2 − V ′
2 | ≤ α2|V2|).

Since |S(T 2
main) ∩ U1

R| = d3, and

d3 = |V1| − |V ′
2 | − 2n0

12 − 2|M |+ ⌈nl/10⌉

≥ (3/5− α)n− (2/5 + α)n− 2α2|V2| − 28α2|V2|+ 0.64α2|V2|

≥ n/5− 2αn− 29.36α2|V2|

> 38.4α2|V2|+ 3α1|V1| (provided 2α + 67.76α2 + 3α1 < 1/5).

Now, we join an edge between each vertex in U2
R − V (T 2

main) and a neighbor of the vertex in

S(T 2
main) ∩ U1

R. Let Tmain be the resulting tree. By the construction procedure, it is easy to

verify that Tmain is a HIST of GR.

Step 8. Connecting TW , FM , TR, and V (Tmain) into a connected graph

In this step, we connect TW , FM , TR, and V (Tmain) into a connected graph. Recall that

each degree 2 vertex in TW and FM is a neighbor of v∗2. We join an edge connecting v∗2 in

V (Tmain) and each degree 2 vertex in TW and FM . By the argument in step 7.3 above, we

know each vertex in V (TR) ∩ U2
M has a neighbor in S(Tmain) ∩ U1

R. Thus, we join an edge
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between each vertex in V (TR) ∩ U2
M to exactly one of its neighbor in S(Tmain) ∩ U1

R. Let T
∗

be the final resulting graph. Notice that I = V 0
12 = {x1, x2, · · · , xI} ⊆ L(T ∗) is the set of

the wrapped vertices from Step 4. Recall that G∗ is the graph obtained from G be deleting

and contracting edges from Step 4. Then by the constructions of TW , FM , TR, and Tmain,

we see that T ∗ is a HIST of G∗ with |L(T ∗) ∩ U∗
1 | = |L(T ∗) ∩ U∗

2 |.
Step 9. Finding a cycle on L(T ∗)

Denote

U1
L = L(T ∗) ∩ U∗

1 , U2
L = L(T ∗) ∩ U∗

2 and GL = G[EG(U
1
L, U

2
L)].

Notice that GL is a balanced bipartite graph. And

|S(T ∗) ∩ U∗
1 | = d3 ≤ n/5 + 2α1|V2| (by (3.60))

|S(T ∗) ∩ U∗
2 | = 1 + ⌈nl/10⌉ ≤ 2 + 0.64α2|V2| (by nl ≤ dl ≤ 6.4α2|V2| from (3.42)).

Thus by (3.47),

δG∗(U1
L, U

2
L) ≥ 2n/5− α1|V2| − (2 + 0.64α2|V2|) > 3n/10 > |U2

L|/2 + 1,

δG∗(U2
L, U

1
L) ≥ (1− 3α1)|V1| − 1− (n/5 + 2α1|V2|) > n/3 > |U1

L|/2 + 1.

By Lemma 3.2.7, GL contains a hamiltonian cycle C ′.

Step 10. Unwrap vertices in V (C ′) ∩ {vx1 , vx2, · · · , vx|I|
}

On C ′, replace each vertex vxi
with its preimage Pxi

= xi1xixi2 for each i = 1, 2, · · · , |I|.
Denote the resulting cycle by C. Recall that xi1, xi2 ∈ Γ(v∗2) by the choice of xi1 and xi2.

Let T be the graph on V (G) with

E(T ) = E(T ∗) ∪ {v∗2xi1, v
∗
2xi2 : i = 1, 2, · · · , |I|}.

Then T is a HIST of G. Let H = T ∪ C. Then H is an SGHG of G.
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The proof of Extremal Case 2 is finished. �
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PART 4

A LOWER BOUND ON CIRCUMFERENCES OF 3-CONNECTED GRAPHS

WITH BOUNDED MAXIMUM DEGREES

4.1 Introduction

In 1980, Bondy and Simonovits [8] showed that the best general lower bound on the

length of a longest cycle in an n-vertex 3-connected cubic graph is between exp(c1
√
log n)

and nc2 for some positive constants c1 and c2, and they also obtained similar bounds for

3-connected graphs with bounded degrees. The lower bound exp(c1
√
log n) for cubic graphs

was improved to n0.69 by Jackson [32] and was further improved to n0.8 by Liu, Yu and

Zhang [39]. In 1993, Jackson and Wormald [33] proved that every 3-connected n-vertex

graph with maximum degree at most d has a cycle of length at least 1
2
nlogb 2+1 with b = 6d2.

They also conjectured that for d ≥ 4 the correct value for b should be d − 1, and they gave

an infinite class of graphs showing that b = d − 1 is the best possible value that one can

hope for.

Recently there has been considerable interest in approximating longest cycles in 3-

connected graphs with bounded degrees. Karger, Motwani, and Ramkumar [35] showed that

unless P = NP, it is impossible to find, in polynomial time, a path of length n − nǫ (for

any ǫ < 1) in an n-vertex Hamiltonian graph. They conjectured that it is hard even for

graphs with bounded degrees. On the positive side, Feder, Motwani, and Subi [23] showed

that there is a polynomial time algorithm for finding a cycle of length at least n(log3 2)/2 in

any 3-connected cubic n-vertex graph, and they asked the same question for 3-connected

graphs with bounded degrees. Chen, Xu, and Yu [14] provided a cubic-time algorithm that,

given a 3-connected n-vertex graph with maximum degree at most d, finds a cycle of length



103

at least nlogb 2 + 3 with b = 2(d− 1)2 + 1. This result was improved to b = 4d+ 1 by Chen,

Gao, Yu, and Zang [12].

Before stating the main result, we introduce some notation. For any graph G, we denote

by |G| the number of vertices of G, G− z the graph obtained from G by deleting the vertex

z ∈ V (G), and NG(z) the set of neighbors of z in G. If G is a path or cycle, then ℓ(G)

denotes the length of G. Let S1, S2 ⊆ V (G) be two disjoint sets. An (S1, S2)-path is a path

P connecting one vertex in S1 and one vertex in S2 such that |V (P )∩S1| = |V (P )∩S2| = 1.

When S1 = {x} is a singleton, we simply write as (x, S2)-path. The main result of this paper

is the following:

Theorem (4.1.1). Let d ≥ 425 be an integer, and r = logd−1 2. Let G be either a cycle or

a 3-connected graph and e = xy ∈ E(G) be an edge.

(a) If G is 3-connected, then for any z ∈ V (G)−{x, y} such that ∆(G− z) ≤ d and z has

at most t neighbors distinct from x and y, there is a cycle C in G− z through xy such

that ℓ(C) ≥ 1

4

(

d− 2.1

d− 1

|G|
t

)r

+ 2.

(b) If ∆(G) ≤ d, then for any f ∈ E(G) − {e}, there is a cycle C in G through e and f

such that ℓ(C) ≥ 1

4

(

d− 2.1

(d− 1)2
|G|
)r

+ 2.

(c) If ∆(G) ≤ d, then there is a cycle C through e in G such that ℓ(C) ≥ 1
4
|G|r + 2.

We first note that Theorem (4.1.1) holds trivially when |G| ≤ d; hence, throughout the

rest of this part, we assume |G| ≥ d+1 ≥ 426. Also note that Theorem (4.1.1) holds trivially

when G is a cycle. However, we include cycles in the statement of Theorem (4.1.1) for the

following reason: cycles occur in our inductive arguments, and their inclusion makes many

arguments less cumbersome.

The rest of this part is organized as follows. In Section 2, we recall Tutte decomposi-

tion [52] for decomposing a 2-connected graph into 3-connected components and some results
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from [12] concerning paths in 2-connected graphs. In Section 3, we prove a useful inequality

about the function f(x) = xlogb 2. In Section 4, we state lemmas concerning paths in a chain

of 3-connected components, and in Section 5, we inductively prove Theorem (1.1) (a) and

(b). Section 6 is the most significant part of the paper, where we prove Theorem (4.1.1)(c)

inductively.

4.2 Paths in block-chains

We recall Tutte decomposition for decomposing a 2-connected graph into 3-connected

components. A detailed description can be found in [14] and [29]. Let D denote the set

of all 3-connected (simple) graphs, C denote the set of cycles (with at least three vertices),

and B denote the set of bonds (a bond is a multigraph with two vertices and at least three

edges between them). Tutte [52] proved that every 2-connected graph G can be uniquely

decomposed into 3-connected components, which belong to B ∪ C ∪ D. We call such a de-

composition as the Tutte decomposition. Those 3-connected components are linked together

by virtual edges to form a tree-like structure. More precisely, if we define a graph whose

vertices are the 3-connected components of G obtained from the Tutte decomposition and

two vertices are adjacent if the corresponding two 3-connected components share a common

virtual edge, then such a graph is a tree, which we call the block-bond tree of G. Hopcroft

and Tarjan [29] gave a linear time algorithm for decomposing any 2-connected graph into

3-connected components.

Recall that in the block-cut tree of a connected graph there is a cut-vertex between

two consecutive blocks. However, in a block-bond tree, it is not necessarily true that there

is a bond between any two 3-connected components. For example, let G1 and G2 be two

3-connected graphs such that each Gi contains two nonadjacent vertices ui and vi for each

i = 1, 2. Let G be obtained from G1 and G2 by identifying u1 with v1 and u2 with v2,

respectively. According to Tutte’s decomposing algorithm, G1 + u1v1 and G2 + u2v2 are the
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only two 3-connected components of G. Clearly, in the block-bond tree, they are adjacent

but there is no bond between them.

For convenience, 3-connected components that are not bonds are called 3-blocks, consist-

ing of cycles and simple 3-connected graphs. An extreme 3-block is a 3-block that contains

at most one virtual edge. That is, either it is the only 3-connected component (in which case

G is either a cycle or a 3-connected simple graph), or it corresponds to a degree one vertex

in the block-bond tree.

A block-chain in G is a sequence H1H2 . . .Hh of 3-blocks of G for which there ex-

ist B1, B2, . . . , Bh−1 such that for each 1 ≤ j ≤ h − 1, Bj = ∅ or Bj is a bond, and

H1B1H2B2 . . . Bh−1Hh is a path in the block-bond tree of G. A detailed description with

examples can be found in [14]. For convenience, we sometimes write H := H1H2 . . .Hh

for this situation. In the rest of the paper, unless stated otherwise, we will always assume

that each virtual edge in E(Hi ∩ Hi+1) is deleted from H if at least one of Hi and Hi+1 is

3-connected and there are exactly two components in G − V (Hi ∩ Hi+1). Because in this

case it is not possible to replace the virtual edge by a path in G outside of H. However, if

both Hi and Hi+1 are cycles, then the virtual edge shared by Hi and Hi+1 can always be

replaced by a path outside of H. Throughout this section, we adopt the convention that an

object is empty if it is not defined. For example, if H = H1H2 . . .Hh is a block-chain under

consideration, then H0 and Hh+1 are both empty graphs.

The following result is proved in the proof of Lemma (3.6) in [14], which will be used

to link together long paths from different block-chains. We note that the path stated in the

lemma can be found in linear time by using a result from [43].

Lemma (4.2.1). Let H = H1H2 . . .Hh be a block-chain in a 2-connected graph G, x ∈
V (H1)−V (H2), and f ∈ E(Hh)−E(Hh−1) such that f is not incident with x, and let pq, vw

be two distinct edges in E(H)−{f}. Then there is a path P in H through f from x to some

z ∈ {p, q} ∪ {v, w} such that if z ∈ {p, q} then pq /∈ E(P ) and vw ∈ E(P ) and if z ∈ {v, w}
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then vw /∈ E(P ) and pq ∈ E(P ).

Lemma (4.2.2). Let H = H1H2 . . .Hh be a block-chain in a 2-connected graph G, x ∈
V (H1) − V (H2), and pq, f ∈ E(Hh) − E(Hh−1) be distinct such that neither pq nor f is

incident with x. If Hh is 3-connected and q is not incident with f , then in H − q, there is

an (x, p)-path through f .

Proof. We use induction on h. If h = 1, then H1 is 3-connected and H1 − q is 2-connected,

so H1 − q contains an (x, p)-path through f . Suppose h ≥ 2 and let {a, b} = V (Hh−1 ∩Hh).

Since pq /∈ E(Hh−1), we may assume a /∈ {p, q}. Let Ph be an (a, p)-path through f in

Hh − q.

If ab /∈ Ph, let P1 be an (x, a)-path in H1H2 . . .Hh−1−b; then Ph := P1∪Ph is the desired

path. If ab ∈ Ph, let P1 be an (x, b)-path in H1H2 . . .Hh−1 − a; then P := P1 ∪ (Ph − ab) is

the desired path.

Lemma (4.2.3). Let H = H1H2 . . .Hh be a block-chain. Let xy, pq, uv be three edges such

that xy ∈ E(H1) − E(H2) and pq, uv ∈ E(Hh) − E(Hh−1), where pq 6= xy 6= uv but it is

possible that pq = uv. Then there is a path P in H from some z ∈ {x, y} to w ∈ {p, q}∪{u, v}
such that {x, y} 6⊆ V (P ), uv ∈ E(P ) if w ∈ {p, q}, and pq ∈ E(P ) if w ∈ {u, v}.

Proof. We first consider h = 1, that is H = H1. The result is trivial if H1 is a cycle. Suppose

that H1 is 3-connected. Then H1 − y is 2-connected, and thus contains an (x, {p, q})- path
P through uv.

We now assume h ≥ 2. Let {a, b} = V (Hh) ∩ V (Hh−1). By the same argument as for

the case where h = 1, there is a path PH from z∗ ∈ {a, b} to w ∈ {p, q} ∪ {u, v} such that

{a, b} 6⊆ V (PH), uv ∈ E(PH) if w ∈ {p, q} and pq ∈ E(PH) if w ∈ {u, v}. Clearly, there is

a path Q in H1 . . .Hh−1 − ab from some z ∈ {x, y} to z∗ such that {x, y} 6⊆ V (Q). Then

Q ∪ PH is the desired path.
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Lemma (4.2.4). Let H = H1H2 . . .Hh be a block-chain, u, v ∈ V (Hh) be distinct, and

x ∈ V (H− v). Then there is a path from x to u avoiding v.

Proof. We use induction on h. The result is clearly true when h = 1. Assume the claim

holds for block-chains with fewer than h blocks. Let {a, b} = V (Hh−1 ∩Hh). If x ∈ V (Hh),

let Ph be a path in Hh from x to u avoiding v. If ab /∈ E(Ph), let P := Ph; if ab ∈ E(Ph), let

P be obtained from Ph by replacing ab by a path in H1 . . .Hh−1 from a to b.

Suppose x /∈ V (Hh). Assume, without loss of generality, that a 6= v, and let Ph be a path

in Hh from a to u avoiding v. By induction, let P1 be an (x, a)-path avoiding b in H1 . . .Hh−1

if ab 6∈ E(Ph), and let P1 be an (x, b)-path avoiding a in H1 . . .Hh−1 if ab ∈ E(Ph). Then

P := P1 ∪ (Ph − ab) is the desired path.

Lemma (4.2.5). Let H = H1H2 . . .Hh be a block-chain, and let xx′ ∈ E(H1)−E(H2) and

uv ∈ E(Hh) be two edges in H. Then there is an (x′, {u, v})-path in H− x.

Proof. We use induction on h. The statement is clearly true when h = 1 as H1 − x is

connected. So we assume h ≥ 2, and let V (H1) ∩ V (H2) = {a, b}. Suppose first that

x /∈ {a, b}. By induction, we let P1 be an (x′, {a, b})-path, say (x′, a)-path, in H1 − x, and

let P2 be an (a, {u, v})-path in H2H2 · · ·Hh − b. Then P1 ∪ P2 is the desired path. Then,

suppose, without loss of generality, that x = a. Let P1 be an (x′, b)-path in H1 − x, and

by induction, let P2 be a (b, {u, v})-path in H2H2 · · ·Hh − a. Then P1 ∪ P2 is the desired

path.

We conclude this section by recalling two graph operations from [14]. Let G be a

graph and let e, f be distinct edges of G. An H-transform of G at {e, f} is an operation

that subdivides e and f by vertices x and y, respectively, and then adds the edge xy. Let

x ∈ V (G) such that x is not incident with e. A T -transform of G at {x, e} is an operation

that subdivides e with a vertex y and then adds the edge xy. Let G′ be a graph obtained
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from a 3-connected graph G by an H-transform or a T -transform. It is easy to see that G′

is also 3-connected (see, e.g., Lemma (3.3) in [14] for a proof).

4.3 Lower bounds of mlogb 2 + nlogb 2

Fix b = d−1 hereinafter, where d ≥ 4 is an integer and let r = logb 2. Clearly, 0 < r < 1,

which in turn gives that mr+nr ≥ (m+n)r. In this section we improve this inequality under

different situations. The new inequalities will be used to show that the union of some long

paths has the desired length. The first one is a strengthening of Lemmas (3.1) and (3.2) in

[12].

Lemma (4.3.1). Let m and n be two positive real numbers such that m ≥ bβn > 0 for some

real number β. Then,

mr + nr ≥
(

m+ bβ
(

blog2(1+2−β) − 1
)

n
)r

≥
(

bβblog2(1+2−β) n
)r

. (4.1)

Proof. Define f(t) = 1
t

(

(1 + tr)1/r − 1
)

. It is easy to verify that

mr + nr = (m+ f(n/m)n)r and f ′(t) =
1

t2
(

1− (1 + tr)(1−r)/r
)

.

Since b ≥ 3, we have 0 < r < 1, and hence f ′(t) < 0 when t > 0. Therefore f(t) is a

decreasing function on the interval (0,∞). For m ≥ bβn > 0, we have n/m ≤ b−β, and so

(since br = 2)

f(n/m) ≥ f(b−β) = bβ
(

(

1 + 2−β
)1/r − 1

)

= bβ
(

blog2(1+2−β) − 1
)

.

Here, the first inequality in (4.1) follows from mr + nr ≥ (m + f(n/m)n)r, and the 2nd

inequality in (4.1) follows from m ≥ bβn.

Taking β = 0, logb 1.1, 1, 2,−1,−2, we get the following inequalities from (4.1). It is
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straightforward to verify (4.1a) - (4.1f)

mr + nr ≥































































(m+ (b− 1)n)r, if m ≥ n; (4.1a)

(m+ 1.1(blog2(1+2− logb 1.1) − 1)n)r, if m ≥ 1.1n; (4.1b)

(m+ b(blog2 3/2 − 1)n)r, if m ≥ bn; (4.1c)

(m+ b2(blog2 5/4 − 1)n)r, if m ≥ b2n; (4.1d)

(blog2 3/2n)r, if m ≥ n/b; (4.1e)

(blog2 5/4n)r, if m ≥ n/b2. (4.1f)

In the proofs, the following elementary inequality will be used frequently for any two

positive real numbers x and y,

xr + yr ≥ 2
√
xryr =

(

(d− 1)2xy
)r/2

. (4.2)

Lemma (4.3.2). The following inequalities hold:

xr + 1 ≥ (x+ d− 1)r provided x ≥ 1.

Lemma (4.3.3). Let b ≥ 23 be an integer. If m and n are two positive real numbers such

that m ≥ 1.1n, then mr + nr ≥ (m+ bn)r.

Proof. Applying Lemma (4.3.1) for β = logb 1.1 ≤ log23 1.1, we have mr + nr ≥ (m +

1.1(blog2(1+2− logb 1.1) − 1)n)r. So, we only need to show that 1.1(blog2(1+2− logb 1.1) − 1) ≥ b

provided b ≥ 23. For any x ≥ 1.1, let τ := τ(x) = logx 1.1, φ := φ(τ) = log2(1 + 2−τ ) and

f(x) = xφ(τ(x)). It is clearly that limx→∞(1.1f(x) − x) = ∞. It is sufficient to show that

1.1f(x)− x is an increasing function for x ≥ 23, which is equivalent to d
dx
f(x) ≥ 10/11 for

x ≥ 23.
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Simple calculations show that d
dx
τ(x) = − ln 1.1

x ln2 x
= − τ(x)

x lnx
and d

dτ
φ(τ) = − 1

1+2τ
. So,

d

dx
f(x) = f(x)

(

(ln x)
dφ

dτ

dτ

dx
+ φ

d lnx

dx

)

=
f(x)

x

(

τ

1 + 2τ
+ φ(τ)

)

.

Since limx→∞ τ(x) = 0 and limτ→0 φ(τ) = 1, limx→∞
d
dx
f(x) = 1. It is sufficient to show

that d
dx
f(x) is decreasing as x increasing. Writing d

dx
f(x) in terms of τ , we have

d

dx
f(x) = xφ(τ)−1(

τ

1 + 2τ
+ φ(τ)) = e

(φ(τ)−1) ln 1.1
τ (

τ

1 + 2τ
+ φ(τ)).

We only need to show d
dx
f(x) is increasing as τ increasing when τ ≤ τ(23), which is equivalent

to d
dτ

df
dx

> 0. Taking derivative, we obtain

d

dτ

df

dx
= e

(φ(τ)−1) ln 1.1
τ

(

ln 1.1(1− φ− τ
1+2τ

)(φ+ τ
1+2τ

)

τ 2
− τ2τ ln 2

(1 + 2τ )2

)

.

So, we only need to show that

g(τ) =
ln 1.1(1− φ− τ

1+2τ
)(φ+ τ

1+2τ
)

τ 2
− τ2τ ln 2

(1 + 2τ)2
> 0 if τ ≤ τ(23).

We define the value of g(τ) at τ = 0 as

g(0) = lim
τ→0

g(τ) =
ln 1.1 ln 2

8
.

Then g(τ) is a continuous function on the closed interval [0, τ(23)]. To show g(τ) > 0

within [0, τ(23)], as g(0) > 0, by the intermediate zero theorem, instead, we show that

g(τ) has no zero in [0, τ(23)]. To do so, using the bisection method, with tolerance as

1×10−10, a numerical search within [0, 1] interval gives 0.04765221 as the root of g(τ). Since

τ(23) < 0.0304 < 0.04765221, we conclude that g(τ) > 0 when 0 ≤ τ ≤ τ(23). The proof is

completed.
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4.4 Long paths in block-chains

In this section, we will give a few lower bounds of long paths connecting special vertices

in a block-chain. Throughout this section, we assume that n ≥ 4, Theorem (4.1.1) holds

for graphs with at most n − 1 vertices, and H := H1H2 . . .Hh is a block-chain such that

|H| ≤ n− 1 such that

• ∆(Hi) ≤ d for each 1 ≤ i ≤ h.

• As of a subgraph of G, H contains at most 2d− 1 vertices of degree 2.

Recall, for convention, we also denote by H the graph with vertex set
⋃

V (Hi) and edge set
⋃

E(Hi) with the deletion of virtual edges.

Lemma (4.4.1). For any edge uv ∈ E(H1)−E(H2), there is a (u, v)-path P in H such that

ℓ(P ) ≥ 1

4

(

d− 2.1

d− 1
(|H|+ 1)

)r

+ 1,

provided that d ≥ 23.

Proof. Since |H| ≤ n − 1, it follows from our assumption that Theorem (4.1.1) holds for

each Hi. We proceed with induction on h. Suppose h = 1. Then H is either a cycle or a

3-connected graph. Since the case |H| ≤ d is trivial, we may assume |H| ≥ d+ 1, and hence

|H| > d− 2.1

d− 1
(|H|+ 1).

By Theorem (4.1.1)(c), H = H1 contains a cycle C through uv such that

ℓ(C) ≥ 1

4
|H|r + 2 ≥ 1

4

(

d− 2.1

d− 1
(|H|+ 1)

)r

+ 2.

Hence P := C − {uv} gives the desired path.
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Therefore, assume h ≥ 2. Let H′ := H2 · · ·Hh and {a1, b1} := V (H1∩H2). We consider

two cases.

First, assume |H1| ≥ d−2.1
d−1

(|H| + 1). By Theorem (4.1.1)(c), we can find a cycle C1 in

H1 through uv such that

ℓ(C1) ≥
1

4
|H1|r + 2 ≥ 1

4

(

d− 2.1

d− 1
(|H|+ 1)

)r

+ 2.

If C1 does not contain a1b1, then P := C1 − {uv} is the desired path. If C1 contains a1b1,

then let C2 be a cycle in H′ through a1b1. It is clear that P := (C1 ∪C2)− {a1b1, uv} is the

desired path.

Now assume |H1| < d−2.1
d−1

(|H|+ 1). Then

|H′|+ 1 = |H| − |H1|+ 3 >
d− 1

d− 2.1
|H1| − |H1|+ 2 >

1.1|H1|
d− 2.1

>
1.1|H1|
d− 1

.

Applying Theorem (4.1.1)(b), we find a cycle C1 in H1 through uv and a1b1 such that

|C1| ≥
1

4

(

(d− 2.1)|H1|
(d− 1)2

)r

+ 2.

By induction, we find a path P ′ in H′ between a1 and b1 such that

ℓ(P ′) ≥ 1

4

(

d− 2.1

d− 1
(|H′|+ 1)

)r

+ 1.

Hence P := (C1 ∪ P ′)− {uv, a1b1} is a path between u and v in H such that

ℓ(P ) ≥ 1

4

(

(d− 2.1)|H1|
(d− 1)2

)r

+
1

4

(

d− 2.1

d− 1
(|H′|+ 1)

)r

+ 1

>
1

4

(

d− 2.1

d− 1

(

(|H′|+ 1) + (d− 1)
|H1|
d− 1

))r

+ 1 (by Lemma (4.3.3))

>
1

4

(

d− 2.1

d− 1
(|H|+ 1)

)r

+ 1,
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where in the 2nd inequality above, the inequality |H′|+ 1 ≥ 1.1|H1|
d−1

is used.

Lemma (4.4.2). Let x ∈ V (Hh) − V (Hh−1) such that dH(x) = dHh
(x) ≤ d − 1 and uv ∈

E(H1)−E(H2) such that x /∈ {u, v} when h = 1. Then there exists a path P in H− v from

u to x such that

ℓ(P ) ≥ 1

4

h
∑

i=1

(

d− 2.1

(d− 1)2
|Hi|

)r

+
1

2
≥ 1

4

(

d− 2.1

(d− 1)2
|H|
)r

+
1

2
.

Moreover, if H1 is 3-connected, we can improve the constant 1/2 to 1:

ℓ(P ) ≥ 1

4

h
∑

i=1

(

d− 2.1

(d− 1)2
|Hi|

)r

+ 1 ≥ 1

4

(

d− 2.1

(d− 1)2
|H|
)r

+ 1.

Proof. Note that the second inequality in each of the lower bounds above for ℓ(P ) is a simple

application of Lemma (4.3.1). So we only show the first part of the lower bounds.

We apply induction on h. Suppose h = 1. If H1 is a cycle, then |H1| ≤ 2d − 1, which

in turn gives 1
4
( d−2.1
(d−1)2

|H1|)r < 1/2 and 1
4
( d−2.1
(d−1)2

|H1|)r + 1
2
< 1. On the other hand, since

x /∈ {u, v}, there is an (x, u)-path P in H1 − v with ℓ(P ) ≥ 1. Hence, the assertion holds.

Now assume H1 = H is 3-connected. Note that ∆(H1+xu− v) ≤ d and v has at most d− 1

neighbors in H1 − v. By applying Theorem (4.1.1)(a) to H1 + xu we find a cycle C through

xu in (H1 + xu)− v such that ℓ(C) ≥ 1
4
((d− 2.1)|H1|/(d− 1)2)

r
+2. Hence P := C −{xu}

gives the desired path.

Now we assume h ≥ 2. Let {a1, b1} := V (H1∩H2) and I := H2H3 · · ·Hh. By induction,

in H1 − v, there exists a path P1 from u to some vertices in {a1, b1}, say to a1 (notice

that a1b1 may be on P1) such that ℓ(P1) ≥ 1
4
((d− 2.1)|H1|/(d− 1)2)

r
+ 1

2
unless H1 is a

cycle and u /∈ {a1, b1} (in this case, P1 may only contain one vertex). Moreover, ℓ(P1) ≥
1
4
((d− 2.1)|H1|/(d− 1)2)

r
+1 when H1 is 3-connected. We will consider the case that H1 is

a cycle and u ∈ {a1, b1} at the end.
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Applying induction again we find a path P2 in I − b1 from x to a1 such that

ℓ(P2) ≥
1

4

h
∑

i=2

(

(d− 2.1)|Hi|
(d− 1)2

)r

+
1

2
.

Moreover, when H2 is 3-connected,

ℓ(P2) ≥
1

4

h
∑

i=2

(

(d− 2.1)|Hi|
(d− 1)2

)r

+ 1.

If a1b1 ∈ E(H) or a1b1 /∈ E(P1), P := P1∪P2 is the desired path. Thus, we may assume

that a1b1 is a virtual edge in H1, a1b1 ∈ E(P1) and a1b1 /∈ E(H).

If H1 is a cycle, then H2 must be 3-connected since a1b1 /∈ E(H). Let P2 in I − a1 from

x to b1 such that

ℓ(P2) ≥
1

4

h
∑

i=2

(

(d− 2.1)|Hi|
(d− 1)2

)r

+ 1.

Then, P := (P1 − a1) ∪ P2 satisfying

ℓ(P ) ≥ ℓ(P2) ≥
1

4

h
∑

i=2

(

(d− 2.1)|Hi|
(d− 1)2

)r

+ 1 ≥ 1

4

h
∑

i=1

(

(d− 2.1)|Hi|
(d− 1)2

)r

+
1

2
,

so P is the desired path.

We may assume that H1 is 3-connected. In this case, we have ℓ(P1) ≥ 1
4
( (d−2.1)|H1|

(d−1)2
)r+1.

Let P2 be an (x, b1)-path in I − a1 such that ℓ(P2) ≥ 1
4

∑h
i=2

(

(d−2.1)|Hi|
(d−1)2

)r

+ 1
2
. Moreover, in

this case, we can find the desired path if H2 is 3-connected. So, we may additionally assume

that H2 is a cycle. Since P1 is a (u, a1)-path, a1b1 ∈ E(P1), and ℓ(P1) > 1, u /∈ {a1, b1}.

We now, under the assumption that H1 is 3-connected, H2 is a cycle, u /∈ {a1, b1}, and
a1b1 ∈ E(P1), construct a path P according to the following two cases.

Suppose first that h = 2. If H2 is a triangle, that is, V (H2) = {a1, b1, x}. Applying
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Theorem (4.1.1)(a) to (H+ux)−v, we obtain the desired (x, u)-path P in H−v. So we may

assume that |V (H2)| ≥ 4, which in turn shows that H2 contains a path P2 with ℓ(P2) ≥ 2,

which is either an (x, a1)-path or an (x, b1)-path. Assume, without not loss of generality, P2

is an (x, a1)-path and Q2 is the (x, b1)-path in H2 − a1b1. Let Q1 be a (u, b1)-path in H1 − v

such that ℓ(Q1) ≥ 1
4
( (d−2.1)|H1|

(d−1)2
)r+1. If a1b1 /∈ E(Q1), then P := Q2∪Q1 is the desired path.

If a1b1 ∈ E(Q1), then P2 ∪ (Q1 − a1) is the desired path since |H2| ≤ 2d− 1.

We now assume that h ≥ 3 and let {a2, b2} := V (H2 ∩ H3) and H′′ := H3H4 · · ·Hh.

Applying induction, there is a (u, a2)-path P1 in H1H2 avoiding v such that

ℓ(P1) ≥
1

4

2
∑

i=1

(

(d− 2.1)|Hi|
(d− 1)2

)r

+ 1.

If a2b2 /∈ E(P1), by the induction hypothesis, we find an (a2, x)-path P ′ in H′′ − b2 such

that

ℓ(P ′) ≥ 1

4

h
∑

i=3

(

d− 2.1

(d− 1)2
|Hi|

)r

+
1

2
.

Then P := P1 ∪ P ′ gives the desired path. Thus, we assume a2b2 ∈ E(P1). If H3 is 3-

connected, then by induction there is a (b2, x)-path P ′ avoiding a2 in H′′ such that ℓ(P ′) ≥
1
4

∑h
i=3

(

(d−2.1)|Hi|
(d−1)2

)r

+ 1 in H′′. Hence, P := (P1 − a2) ∪ P ′ gives the desired path. Thus,

we have a2b2 ∈ E(P1) and H3 is a cycle. Since both H2 and H3 are cycles, a2b2 ∈ E(H).

We find an (a2, x)-path P ′ in H′′ − b2 such that ℓ(P ′) ≥ 1
4

∑h
i=3

(

(d−2.1)|Hi|
(d−1)2

)r

+ 1
2
. Then,

P := P1 ∪ P ′ is the desired path.

Let U and W be two vertex sets. By definition, an (U,W )-path P is a (u, w)-path for

some u ∈ U and w ∈ W , and |V (P )∩U | = 1 and |V (P )∩W | = 1. We call P a path from U

to W if P is a (u, v)-path from some u ∈ U and w ∈ W while V (P ) ∩ U or V (P ) ∩W may

not be singleton.

Lemma (4.4.3). Suppose that |H| ≤ n− 2 and Theorem (4.1.1) holds for graphs with less

than n vertices. Let x ∈ V (Hh) − V (Hh−1) such that dH(x) ≤ d − 1, f ∈ E(H1) − E(H2)
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and pq ∈ E
(

∪h
i=1Hi

)

− {f}. Then there exists a path P in H from x to z ∈ {p, q} through

f such that pq /∈ E(P ) and ℓ(P ) ≥ 1
4

(

d−2.1
(d−1)2

|H|
)r

.

Proof. We use induction on h and consider the base case h = 1 first. In this case, if H1

is a cycle, then there exists a path P from x to {p, q} through f . Since |H1| < 2d − 1,

ℓ(P ) ≥ 1 ≥ 1
4

(

d−2.1
(d−1)2

|H|
)r

. We may assume that H1 is 3-connected and consider two cases

according to whether x ∈ {p, q}.

If x /∈ {p, q}, let H ′
1 be the graph obtained from H1 by a T -transform at {x, pq}, and

let x′ be the new vertex. Since |V (H ′
1)| ≤ |V (H)| + 1 ≤ n− 1, we use Theorem (1.1)(b) to

find a cycle C in H ′
1 through xx′ and f such that ℓ(C) ≥ 1

4
((d − 2.1)|H ′

1|/(d− 1)2)r + 2. It

is clear that C − x′ gives a desired path. If x ∈ {p, q}, we use Theorem (4.1.1)(b) to find a

cycle in H1 through pq and f . Then C1 − {pq} is the desired path.

Assume h ≥ 2. Let H′ = H2H3 · · ·Hh and {a1, b1} := V (H1) ∩ V (H2). We consider the

following three cases.

Case 1. pq /∈ E(H1). We use Theorem (4.1.1)(b) to find a cycle C in H1 through f and

a1b1 such that

ℓ(C) ≥ 1

4

(

(d− 2.1)|H1|
(d− 1)2

)r

+ 2.

We apply induction to find a path P ′ in H′ from x to {p, q} such that a1b1 ∈ E(P ′),

pq /∈ E(P ′), and

ℓ(P ′) ≥ 1

4

(

(d− 2.1)|H′|
(d− 1)2

)r

.

Then (C − {a1b1}) ∪ P ′ is also the desired path.

Case 2. {p, q} = {a1, b1}. We use Lemma (4.4.2) to find a path P ′ in H′ − q from x to p

avoiding q such that ℓ(P ′) ≥ 1
4

(

d−2.1
(d−1)2

|H′|
)r

+ 1
2
and let C be the cycle in H1 as in Case 1.

Then P := P ′ ∪ (C − {pq}) is the desired path.
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Case 3. pq ∈ E(H1)− {a1b1}. We assume, without loss of generality, that a1 /∈ V (∪i≥3Hi).

By induction, there is a path P1 in H1 from a1 to {p, q} such that f ∈ E(P1), pq /∈ E(P1),

and ℓ(P1) ≥
(

d−2.1
(d−1)2

|H1|
)r

. Since x ∈ V (Hh)− V (Hh−1) and {a1, b1} = V (H1) ∩ V (H2), we

have x /∈ {a1, b1}. By Lemma (4.4.2), there is a path P ′ in H′ − b1 from x to a1 such that

ℓ(P ′) ≥ 1

4

(

d− 2.1

(d− 1)2
|H′|

)r

+
1

2
.

Moreover, if H2 is 3-connected then

ℓ(P ′) ≥ 1

4

(

d− 2.1

(d− 1)2
|H′|

)r

+ 1.

Hence P := P1 ∪ P ′ is the desired path in H if a1b1 /∈ E(P1), a1b1 ∈ E(H), or H2 is 3-

connected. So, we assume a1b1 ∈ E(P1), a1b1 is a virtual edge in H1, a1b1 /∈ E(H), and H2

is a cycle.

If h = 2 and |V (H2)| ≥ 4, then in H2, we can find an (x, {a1, b1})-path P ′ such that

ℓ(P ′) ≥ 2. If P ′ is an (x, b1)-path, then P := (P1−a1)∪P ′ is the desired path by noting that

|H2| ≤ 2d−1. So assume that P ′ is an (x, a1)-path. In H1, let P1 be a path from b1 to {p, q}
such that f ∈ E(P1), pq /∈ E(P1) and ℓ(P1) ≥ 1

4
((d− 2.1)|H1|/(d− 1)2)

r
. We may assume

that a1b1 ∈ E(P1) (otherwise, let P ′ be an (x, b1)-path in H2 − a1, then P := P1 ∪ P ′ is the

desired path, as x ∈ V (H2) − V (H1), ℓ(P
′) ≥ 1). Then P := (P1 − b1) ∪ P ′ is the desired

path. So we assume |V (H2)| = 3 or V (H2)− V (H1) = {x}. Let H∗ be the graph obtained

from H1H2 by a T -transform at {x, pq}, and let x′ be the new vertex. Since |V (H∗)| ≤ n−1,

we can then apply Theorem (1.1)(b) to find a cycle C in H∗ through xx′ and f such that

ℓ(C) ≥ 1
4
((d− 2.1)|H ′

1|/(d− 1)2)r + 2. It is clear that C − x′ gives the desired path.

If h ≥ 3, let {a2, b2} := V (H2) ∩ V (H3) and H′′ := H3H4 · · ·Hh. Assume, without loss

of generality, that a2 ∈ V (H2) − V (H1). Applying induction, there is a path P1 in H1H2
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from a2 to {p, q} such that f ∈ E(P1) and pq /∈ E(P1), and

ℓ(P1) ≥
1

4

2
∑

i=1

(

(d− 2.1)|Hi|
(d− 1)2

)r

.

If a2b2 /∈ E(P1), by Lemma (4.4.2), we find an (a2, x)-path P ′ in H′′ − b2 such that

ℓ(P ′) ≥ 1
4

∑h
i=3

(

(d−2.1)|Hi|
(d−1)2

)r

+ 1
2
. Then P := P1 ∪ P ′ gives the desired path. Thus, we

assume a2b2 ∈ E(P1). If H3 is 3-connected, then there is a (b2, x)-path P ′ in H′′ such that

a2 /∈ V (P ′) and ℓ(P ′) ≥ 1
4

∑h
i=3

(

(d−2.1)|Hi|
(d−1)2

)r

+1 by Lemma (4.4.2). Hence, P := (P1−a2)∪P ′

gives the desired path. Thus, we have a2b2 ∈ E(P1) and H3 is a cycle. Recall that H2 is a

cycle by our earlier assumption. We use Lemma (4.4.2) to find an (a2, x)-path P ′ of desired

length in H′′ − b2. Let P := P1 ∪ P ′ (since a2b2 ∈ E(H) in this case). Then P is the desired

path.

Lemma (4.4.4). Assume that Theorem (4.1.1) holds for graphs with less than n vertices.

Let H = H1H2 . . .Hh be a block-chain in G − y such that |H| < n, x ∈ V (H1) − V (H2)

with dH(x) ≤ d − 1, w ∈ V (Hk) − V (Hk−1) − {x} for some k with dH(w) ≤ d − 1, and let

1 ≤ m ≤ h be fixed. Then there is a (w, x)-path P in H such that

ℓ(P ) ≥ 1

4
|Hm|r +

1

4

max{k,m}
∑

i=1, 6=m

(

d− 2.1

(d− 1)2
|Hi|

)r

; (4.3)

particularly, when k = h,

ℓ(P ) ≥ 1

4
|Hm|r +

1

4

∑

i 6=m

(

d− 2.1

(d− 1)2
|Hi|

)r

. (4.4)

Proof. Let V (Hi ∩Hi+1) = {ai, bi} for i = 1, 2, . . . , h− 1 such that each Hi − aibi − ai−1bi−1

contains two vertex-disjoint paths connecting ai−1 to ai and bi−1 to bi, respectively. We

consider the following cases.

Case 1. m = k = 1
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If Hm is 3-connected, then by Theorem (4.1.1) (c), Hm + wx contains a cycle Cm through

wx such that |Cm| ≥ 1
4
|Hm|r + 2. So, Cm − {wx} is the desired path. If Hm is a cycle, the

(x, w)-path in Hm − ambm with length at least 1 is the desired path (as x 6= w).

Case 2. m = 1 and k > 1

If Hm is 3-connected, we perform a T -transform on (x, ambm) and let z be the resulting new

vertex. Then, by Theorem (4.1.1) (c), there is a cycle Cm in the T -transformation through xz

such that |Cm| ≥ 1
4
|Hm|r+2. Let Pm = Cm−z. Clearly, ambm 6∈ E(Pm) and ℓ(Pm) ≥ 1

4
|Hm|r.

Assume Pm is from x to am. If Hm is a cycle, let Pm be a path from x to {am, bm}, say to

am, which has length at least 1. Let Q be a (w, am)-path in Hm+1Hm+2 . . .Hk − bm given by

Lemma (4.4.2). Then P := Pm ∪Q is the desired path.

Case 3. m > 1 and k = m

Then w ∈ Hm and w /∈ {am−1, bm−1}. If Hm is 3-connected, we do a T -transformation

on (w, am−1bm−1) and, use Thorem (4.1.1) (c) to obtain a path Pm from {am−1, bm−1}, say
am−1, to w with ℓ(Pm) ≥ 1

4
|Hm|r; if Hm is a cycle, let Pm be a path from w to {am−1, bm−1},

say am−1 of length at least 1. Let P1 be an (x, am−1)-path in H1 . . . Hm−1 − bm−1 with

ℓ(P1) ≥ 1
4

∑

i<m

(

d−2.1
(d−1)2

|Hi|
)r

given by Lemma (4.4.2). Then, P := P1 ∪ Pm is the desired

path.

Case 4. m > 1 and k < m

Applying Theorem (4.1.1)(c), we find an (am−1, bm−1)-path Pm in Hm with ℓ(Pm) ≥ 1
4
|Hm|r+

1. In case that ambm ∈ E(Pm) and ambm /∈ E(G), the edge ambm on Pm is replaced by an

(am, bm)-path in Hm+1Hm+2 · · ·Hh.

For each i with k < i < m, we use Theorem (4.1.1) (b) to find a cycle Ci in Hi through

ai−1bi−1, and aibi such that ℓ(Ci) ≥ 1
4
( (d−2.1)|Hi|

(d−1)2
)r +2. Let Pi and Qi be the two components

of Ci − {ai−1bi−1, aibi}.
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If w ∈ {ak, bk}, say w = ak, applying Lemma (4.4.2), we find an (x, bk)-path P1 in

H1 . . .Hk − ak with ℓ(P1) ≥ 1
4

∑

i≤k

(

d−2.1
(d−1)2

|Hi|
)r

. Clearly, P1 ∪ (∪m−1
i=k (Pi ∪Qi)) ∪ Pm gives

the desired path. So assume w /∈ {ak, bk}. If Hk is 3-connected, we do a T -transformation

on (w, ak−1bk−1) and let w′ denote the new vertex. Applying Theorem (4.1.1) (b), we find

a cycle Ck in Hk through w′w and akbk such that ℓ(Ck) ≥ 1
4
( (d−2.1)|Hk|

(d−1)2
)r + 2. Let Pk and

Qk be the two components of Ck − {w′, akbk}. Without loss of generality, we may assume

that Pk is a (w, ak−1)-path. Note that, ℓ(Pk) + ℓ(Qk) ≥ 1
4
( d−2.1
(d−1)2

|Hk|)r − 1. If Hk is a cycle,

let P ′ be the path from w to {ak−1, bk−1}, say ak−1, in Hk − ak−1bk−1 through akbk. Let

Pk and Qk be the two components of P ′ − {akbk}. Then ℓ(Pk) + ℓ(Qk) ≥ 1
4
( d−2.1
(d−1)2

|Hk|)r as

w /∈ {ak−1, bk−1, ak, bk} and |Hk| ≤ 2d− 1.

Applying Lemma (4.4.2), we find an (x, ak−1)-path P1 in H1 . . .Hk−1−bk−1 with ℓ(P1) ≥
1
4

∑

i<k

(

d−2.1
(d−1)2

|Hi|
)r

. Clearly, P1 ∪ (∪m−1
i=k (Pi ∪Qi)) ∪ Pm gives the desired path.

Case 5. k > m > 1

We start by finding a desired path in Hm and first consider the case that Hm is 3-connected.

Let H ′
m be obtained by an H-transform of Hm over (am−1bm−1, ambm) and let cm−1 and cm be

new vertices. By Theorem (4.1.1) (c), we find a cycle Cm in H ′
m through cm−1cm such that

|Cm| ≥ 1
4
|Hm|r + 2. Then Cm − {cm, cm−1} gives a path Pm from {am−1, bm−1} to {am, bm},

say from am−1 to bm, such that ℓ(Pm) ≥ 1
4
|Hm|r − 1. If Hm is a cycle, let Pm be a nontrivial

path from {am−1, bm−1} to {am, bm}, say from am−1 to bm, not containing the edges am−1bm−1

and ambm.

Applying Lemma (4.4.2), we find an (x, am−1)-path P1 in H1H2 . . .Hm−1 − bm−1 with

ℓ(P1) ≥ 1
4

∑

i<m(
d−2.1
(d−1)2

|Hi|)r + 1
2
; and find a (bm, w)-path in Hm+1Hm+2 . . . Hk − am with

ℓ(P2) ≥ 1
4

∑

m<i<k(
d−2.1
(d−1)2

|Hi|)r + 1
2
. Clearly, P1 ∪ Pm ∪Q is the desired path.

Let H be a 3-connected graph and ab ∈ E(H). Then H − ab is a block-chain, and by

a simple argument, each of a and b belongs to exactly one block in H − ab. In the following
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lemma, we will say H − ab is a block-chain even in the case that H is a cycle. We include

this trivial case just for notational convenience.

Lemma (4.4.5). Let H = H1H2 . . .Hh be a block-chain in G − y such that |H| ≤ n − 1,

and xx′ ∈ E(H1)− E(H2) and y′ ∈ V (Hh) − V (Hh−1)− {x, x′}. Suppose Hk = max{|Hi| :
Hi ∈ H}. Let {a, b} = V (Hk) ∩ V (Hk−1), where a = x′ and b = x if k = 1. Let H0 :=

Hk1Hk2 · · ·Hkk0 · · ·Hkk1 be the block-chain Hk − ab (when Hk is a cycle, Hki is a copy of K2

for each 1 ≤ i ≤ k1) such that a ∈ Hk1, b ∈ Hkk1, and |Hkk0| = max{|Hki| : 1 ≤ i ≤ k1}.
Then there is a path P in H− x from x′ to y′ with

ℓ(P ) ≥ 1

4
|Hkk0|r +

1

4

k0−1
∑

i=1

(

d− 2.1

(d− 1)2
|Hki|

)r

+
1

4

h
∑

i=k+1

(

d− 2.1

(d− 1)2
|Hi|

)r

− 1

2
, (4.5)

and a path Q in H from x to x′ with

ℓ(Q) ≥ 1

4
|Hkk0|r +

1

4

∑

i 6=k0

(

d− 2.1

(d− 1)2
|Hki|

)r

+
1

4

∑

i<k

(

d− 2.1

(d− 1)2
|Hi|

)r

; (4.6)

moreover, if H1 is a cycle,

ℓ(Q) ≥ 1

4
|Hkk0|r +

1

4

∑

i 6=k0

(

d− 2.1

(d− 1)2
|Hki|

)r

+
1

4

∑

i<k

(

d− 2.1

(d− 1)2
|Hi|

)r

+
1

2
. (4.7)

Proof. We prove the first statement first.

Case 1. h = k = 1

If H1 is a cycle, then since y′ /∈ {x, x′}, we can find an (x′, y′)-path P in H1 − x such that

ℓ(P ) ≥ 1 ≥ 1
4
|Hkk0|r + 1

4

∑k0−1
i=1

(

d−2.1
(d−1)2

|Hki|
)r

(using |H1| ≤ 2d − 1). So assume H1 is

3-connected, then apply Lemma (4.4.4) on H0 = Hk − ab, there is a path P from x′ to y′

such that ℓ(P ) ≥ 1
4
|Hkk0|r + 1

4

∑k0−1
i=1

(

d−2.1
(d−1)2

|Hki|
)r

.

Case 2. h > 1 and k < h
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Let {ak, bk} = V (Hk ∩ Hk+1). Suppose k = 1. If H1 is a cycle, then let P1 be a path in

H1 − x from x′ to {ak, bk}, say to ak, such that ℓ(P1) ≥ 1 (notice that akbk may be on P1).

If akbk /∈ E(P1), then let P2 be an (ak, y
′)-path in H2H3 · · ·Hh − bk given by Lemma (4.4.2)

such that ℓ(P2) ≥ 1
4

∑

i≥2(
d−2.1
(d−1)2

|Hi|)r + 1
2
. Then P := P1 ∪ P2 gives the desired path.

Hence we assume that akbk ∈ E(P1). If H2 is also a cycle, then akbk ∈ E(G). We let

P := P1 ∪P2 as in the previous case. So assume H2 is 3-connected. Let P2 be a (bk, y
′)-path

in H2H3 · · ·Hh − ak given by Lemma (4.4.2) such that ℓ(P2) ≥ 1
4

∑

i≥2(
d−2.1
(d−1)2

|Hi|)r + 1.

Then (P1 − {akbk}) ∪ P2 gives the desired path. Suppose H1 is 3-connected. Since {a, b} =

V (Hk) ∩ V (Hk−1) and {ak, bk} = V (Hk) ∩ V (Hk+1), we have {a, b} 6= {ak, bk}. Assume that

a 6= ak. By applying Lemma (4.4.4) on H0 = H1 − ab, there is a path P1 from a to ak such

that ℓ(P2) ≥ 1
4
|Hkk0|r + 1

4

∑k0−1
i=1

(

d−2.1
(d−1)2

|Hki|
)r

. If akbk /∈ E(P1), let P2 be an (ak, y
′)-path in

H2H3 · · ·Hh − bk given by Lemma (4.4.2) such that ℓ(P2) ≥ 1
4

∑

i≥2(
d−2.1
(d−1)2

|Hi|)r + 1
2
. Then

P := P1∪P2 gives the desired path. Hence we assume that akbk ∈ E(P1). Let P2 be a (bk, y
′)-

path in H2H3 · · ·Hh−ak given by Lemma (4.4.2) such that ℓ(P2) ≥ 1
4

∑

i≥2(
d−2.1
(d−1)2

|Hi|)r+ 1
2
.

Then (P1 − {akbk}) ∪ P2 gives the desired path.

If k ≥ 2, let P1 be an (x′, {a, b})-path, say (x′, a)-path, in H1H2 · · ·Hk−1 − x given by

Lemma (4.2.5). Again assume that a 6= ak. By applying Lemma (4.4.4) on H0 = Hk − ab,

there is a path P2 from a to ak such that ℓ(P2) ≥ 1
4
|Hkk0|r + 1

4

∑k0−1
i=1

(

d−2.1
(d−1)2

|Hki|
)r

. If

akbk /∈ E(P2), then by Lemma (4.4.2) we find a path P3 in Hk+1Hk+2 · · ·Hh − bk from ak

to y′ such that ℓ(P3) ≥ 1
4

∑

i≥k+1

(

d−2.1
(d−1)2

|Hi|
)r

+ 1
2
. Then P := P1 ∪ P2 ∪ P3 is the desired

path. Hence assume akbk ∈ E(P2). By Lemma (4.4.2), let P3 in Hk+1Hk+2 · · ·Hh − ak from

bk to y′ such that ℓ(P3) ≥ 1
4

∑

i≥k+1

(

d−2.1
(d−1)2

|Hi|
)r

+ 1
2
. Then P := P1 ∪ (P2 − akbk) ∪ P3 is

the desired path.

Case 3. h = k > 1

Since y′ ∈ V (Hh)− V (Hh−1) and {a, b} = V (Hk) ∩ V (Hk−1), we have y′ 6∈ {a, b}. Applying
Lemma (4.4.4) on H0 = Hk − ab, we obtain an (a, y′)-path P2 such that ℓ(P2) ≥ 1

4
|Hkk0|r +



123

1
4

∑k0−1
i=1

(

d−2.1
(d−1)2

|Hki|
)r

. Then P := P1 ∪ P2 is the desired path.

For the second statement, we first apply Lemma (4.4.4) toH0 = Hk−ab to find an (a, b)-

path Pk of length at least 1
4
|Hkk0|r + 1

4

∑

i 6=k0

(

d−2.1
(d−1)2

|Hki|
)r

(the virtual edge may contained

in E(Hk ∩Hk+1) will be replaced by a path in Hk+1Hk+2 · · ·Hh). Denote {a0, b0} := {x, x′}.
Then for each 1 ≤ i ≤ k − 1 we use Theorem (4.1.1) (b) to find a cycle Ci in Hi through

ai−1bi−1, and aibi such that ℓ(Ci) ≥ 1
4
( (d−2.1)|Hi|

(d−1)2
)r +2. Let Pi and Qi be the two components

of Ci − {ai−1bi−1, aibi}. Then Q :=
⋃k−1

i=1 (Pi ∪Qi) ∪ Pk gives the desired path.

Particularly, suppose H1 is a cycle. If k = 1, we can find an (x, x′)-path Q in H1

such that ℓ(Q) ≥ 2 (the virtual edge may contained in E(H1 ∩ H2) will be replaced by a

path in H2H2 · · ·Hh). Then ℓ(Q) ≥ 2 ≥ 1
4
|Hkk0|r + 1

4

∑

i 6=k0

(

d−2.1
(d−1)2

|Hki|
)r

+ 1/2. If k > 1,

then we apply Lemma (4.4.4) to H0 = Hk − ab to find an (a, b)-path Pk of length at

least 1
4
|Hkk0|r + 1

4

∑

i 6=k0

(

d−2.1
(d−1)2

|Hki|
)r

(the virtual edge may contained in E(Hk ∩ Hk+1)

will be replaced by a path in Hk+1Hk+2 · · ·Hh). Denote {a0, b0} := {x, x′}. Then for each

1 ≤ i ≤ k − 1 we use Theorem (4.1.1) (b) to find a cycle Ci in Hi through ai−1bi−1,

and aibi such that ℓ(Ci) ≥ 1
4
( (d−2.1)|Hi|

(d−1)2
)r + 2. Let Pi and Qi be the two components of

Ci−{ai−1bi−1, aibi}. As H1 is a cycle, in particular, ℓ(P1)+ℓ(Q1) ≥ 1 ≥ 1
4

(

d−2.1
(d−1)2

|H1|
)r

+1/2.

Then Q :=
⋃k−1

i=1 (Pi ∪Qi) ∪ Pk gives the desired path.

Lemma (4.4.6). Assume that Theorem (4.1.1) holds for graphs with less than n vertices.

Let G be a 3-connected graph with ∆(G) ≤ d , |G| < n and xy ∈ E(G). Suppose H =

H1H2 . . .Hh and L = L1L2 . . . Lℓ are two block-chains in G− y such that (a) x ∈ (V (H1)−
V (H2)) ∩ (V (L1) − V (L2)); (b) xw ∈ E(H1) − E(H2) and xw′ ∈ E(L1) − E(L2); and

(c) {x} = V (H) ∩ V (L) when w 6= w′, and {x, w} = V (H) ∩ V (L) otherwise. Let y′ ∈
V (Hh)−V (Hh−1)−{x, w} and y′′ ∈ V (Ll)−V (Ll−1)−{x, w′}. Then, provided that d ≥ 25,

either there is a path PH from w to y′ in H − x, and a path PL from w′ to x in L or

there is a path PH from w to x in H, and a path PL from w′ to y′ in L − x such that

ℓ(PH) + ℓ(PL) ≥ 1
4
|H|r + 1

4
|L|r − 1/2; moreover, if H1 is a cycle and L1 is a cycle, we can
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have ℓ(PH) + ℓ(PL) ≥ 1
4
|H|r + 1

4
|L|r.

Proof. Let 1 ≤ k ≤ h and 1 ≤ p ≤ ℓ such that |Hk| = max{|Hi| : 1 ≤ i ≤ h} and

|Lp| = max{|Li| : 1 ≤ i ≤ ℓ}. Let {a, b} = V (Hk) ∩ V (Hk−1), where {a, b} = {x, w}
when k = 1; and {c, d} = V (Lp) ∩ V (Lp−1), where {c, d} = {x, w′} when p = 1. Let

H0 := Hk1Hk2 · · ·Hkk0 · · ·Hkk1 be the block-chain Hk − ab and L0 := Lp1Lp2 · · ·Lpp0 · · ·Ppp1

be the block-chain Lp − cd, such that (i) |Hkk0| = max{|Hki| : Hki ∈ H0} and |Lpp0| =
max{|Lpi| : Lpi ∈ L0}, and (ii) a ∈ Hk1, b ∈ Hkk1 and c ∈ Lp1, d ∈ Lpp1 be distinct. Denote

• h+ =
∑

i>k

(

d−2.1
(d−1)2

|Hi|
)r

, h− =
∑

i<k

(

d−2.1
(d−1)2

|Hi|
)r

;

• h+
0 =

∑

i>k0

(

d−2.1
(d−1)2

|Hki|
)r

, h−
0 =

∑

i<k0

(

d−2.1
(d−1)2

|Hki|
)r

;

• l+ =
∑

i>p

(

d−2.1
(d−1)2

|Li|
)r

, l− =
∑

i<p

(

d−2.1
(d−1)2

|Li|
)r

;

• l+0 =
∑

i>p0

(

d−2.1
(d−1)2

|Lpi|
)r

, l−0 =
∑

i<p0

(

d−2.1
(d−1)2

|Lpi|
)r

.

By symmetry between H and L (both H1 and L1 are cycles for the statement in the

“moreover” part), we may assume

h+ + l− + l+0 ≥ l+ + h− + h+
0 .

Let PH be a path in H− x from w to y′ given by Lemma (4.4.5) (see (4.5)) such that

ℓ(PH) ≥
1

4
|Hkk0|r +

1

4
h+ +

1

4
h−
0 − 1/2,

and PL be a path in L from w′ to x given by Lemma (4.4.5) (see (4.6)) such that

ℓ(PL) ≥
1

4
|Lpp0|r +

1

4
l+0 +

1

4
l−0 +

1

4
l−.
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In particular, if L1 is a cycle, then

ℓ(PL) ≥
1

4
|Lpp0|r +

1

4
l+0 +

1

4
l−0 +

1

4
l− + 1/2.

Since h+ + ℓ− + ℓ+0 ≥ ℓ+ + h− + h+
0 ,

h+ + l− + l+0 ≥ 1/2(h+ + l− + l+0 ) + 1/2(l+ + h− + h+
0 ).

Using (d−1)log2 5/4−1 ≥ d−1
d−2.1

when d ≥ 25 and xr + yr ≥ (x+(d−1)2((d−1)log2 5/4−1)y)r

if x ≥ (d− 1)2y (equality (1d)), we have

1

4
|Hkk0|r +

1

4
(

1

d− 1
)rh+ +

1

4
h−
0 +

1

4
(

1

d− 1
)rh− +

1

4
(

1

d− 1
)rh+

0 ≥ 1

4
|H|r,

and,

1

4
|Lpp0|r +

1

4
(

1

d− 1
)rl+ +

1

4
l−0 +

1

4
(

1

d− 1
)rl− +

1

4
(

1

d− 1
)rl+0 ≥ 1

4
|L|r.

Hence,

ℓ(PH) + ℓ(PL)

≥ 1

4
|Hkk0|r +

1

4
h+ +

1

4
h−
0 +

1

4
|Lpp0|r +

1

4
l+0 +

1

4
l−0 +

1

4
l− − 1

2

=
1

4
|Hkk0|r +

1

4
h−
0 +

1

4
|Lpp0|r +

1

4
l−0 + (

1

4
h+ +

1

4
l− +

1

4
l+0 )−

1

2

≥ 1

4
|Hkk0|r +

1

4
h−
0 +

1

4
|Lpp0|r +

1

4
l−0 +

1

4
(h+ + ℓ− + ℓ+0 + ℓ+ + h− + h+

0 )−
1

2

≥ 1

4
|Hkk0|r +

1

4
h−
0 +

1

4
|Lpp0|r +

1

4
ℓ−0 +

1

4
(

1

d− 1
)rh+ +

1

4
(

1

d− 1
)rh−

0 +

+
1

4
(

1

d− 1
)rl+0 +

1

4
(

1

d− 1
)rh+

0 +
1

4
(

1

d− 1
)rl+ +

1

4
(

1

d− 1
)rl−)− 1

2

(

since ( 1
d−1

)r = 1
2
)
)

=
1

4
|Hkk0|r +

1

4
(

1

d− 1
)rh+ +

1

4
h−
0 +

1

4
(

1

d− 1
)rh− +

1

4
(

1

d− 1
)rh+

0 +

1

4
|Lpp0|r +

1

4
(

1

d− 1
)rl+ +

1

4
l−0 +

1

4
(

1

d− 1
)rl− +

1

4
(

1

d− 1
)rl+0 − 1

2

≥ 1

4
|H|r + 1

4
|L|r − 1

2
;
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and when both H1 and L1 are cycles, ℓ(PH) + ℓ(PL) ≥ 1
4
|H|r + 1

4
|L|r.

4.5 Proofs of Theorem (4.1.1) (a) and (b)

The following two lemmas state that parts (a) and (b) of Theorem (4.1.1) can be reduced

to Theorem (4.1.1) for smaller graphs. The proof of (a) is essentially the same as that in

[12], but the proof of (b) needs more work.

Lemma (4.5.1). Let n ≥ 4 be an integer. If Theorem (4.1.1) holds for graphs with at most

n− 1 vertices, then Theorem (4.1.1)(a) holds for graphs with n vertices.

Proof. Let G be an arbitrary 3-connected graph with n vertices, let xy ∈ E(G) and z ∈
V (G)− {x, y}, and assume that ∆(G − z) ≤ d. Let t denote the number of neighbors of z

in G− {x, y}. Since G is 3-connected, t ≥ 1.

Let H = H1 . . .Hh be a block-chain in G−z such that xy ∈ E(H1)−E(H2) and, subject

to this, |H| is maximum. Therefore, Hh is an extreme 3-block of G− z. Since each extreme

3-block of G− z must contain a neighbor of z, there are at most t − 1 extreme 3-blocks of

G− z different from Hh, and hence V (G− z) is covered by at most t block-chains starting

from H1 and ending with an extreme 3-block of G− z. It then follows that |H| ≥ (n− 1)/t.

Note that ∆(G − z) ≤ d implies that ∆(Hi) ≤ d for 1 ≤ i ≤ h. By Lemma (4.4.1),

there is a path P in H from x to y such that

ℓ(P ) ≥ 1

4

(

d− 2.1

d− 1
(|H|+ 1)

)r

+ 1 ≥ 1

4

(

d− 2.1

d− 1
· n
t

)r

+ 1.

Then C := P + xy is a cycle through xy in G− z with ℓ(C) = ℓ(P ) + 1, giving the desired

cycle.

Lemma (4.5.2). Let n ≥ 4 be an integer. Suppose Theorem (4.1.1) holds for graphs with
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at most n− 1 vertices. Then Theorem (4.1.1)(b) holds for graphs with n vertices.

Proof. We note that by Lemma (4.5.1), Theorem (4.1.1)(a) holds for graphs with n vertices.

Also note that Theorem (4.1.1)(b) holds trivially for cycles. So it suffices to show that

Theorem (4.1.1)(b) holds for 3-connected graphs. Let G be a 3-connected graph with n

vertices, let e = xy, f be two distinct edges of G, and assume ∆(G) ≤ d.

Suppose e and f share a common vertex. Let f = yz. We note that G′ := G + xz is

3-connected, ∆(G′ − y) ≤ d, and that y has at most d− 2 neighbors distinct from x and z.

By employing Theorem (4.1.1)(a) to G′, which has n vertices, there is a cycle C ′ through xz

in G′ − y such that

ℓ(C ′) ≥ 1

4

(

(d− 2.1)n

(d− 1)(d− 2)

)r

+ 2 ≥ 1

4

(

(d− 2.1)n

(d− 1)2

)r

+ 2.

Then C := (C ′ − {xz}) ∪ {e, f} gives a cycle through e and f such that

ℓ(C) ≥ 1

4

(

(d− 2.1)n

(d− 1)2

)r

+ 3.

Therefore, we may assume that e and f are not adjacent. Let H := H1 . . .Hh be a

block-chain in G − y such that x ∈ V (H1) − V (H2) and f ∈ E(Hh) − E(Hh−1). Note

that the degree of x is at most d − 1 in H and ∆(Hi) ≤ d for all 1 ≤ i ≤ h. Suppose

V (H) = V (G − y). If H is a cycle, then every vertex of H is adjacent to y. Let x′ be a

neighbor of x in H and P be the path in H from x to x′ through f . Then P ∪ {yx, yx′} is

the desired cycle for Theorem (4.1.1)(b).

Now assume that H is not a cycle. If Hh is a cycle, we choose x′ to be an endvertex

of f which has degree 2 in H; otherwise, let x′ ∈ (V (Hh)− V (Hh−1)) ∩ NG(y) such that x′

is incident with f whenever possible (for the choice of f ′ in the following). Let H ′ be the

graph obtained from H by joining x to x′, and then suppressing all the remaining degree
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2 vertices. It is clear that H ′ is 3-connected, |H ′| ≥ n − 1 − (d − 1), and ∆(H ′) ≤ d.

Let f ′ = f if f ∈ E(H ′), otherwise let f ′ denote the new edge incident with x′ in H ′.

We use Theorem (4.1.1)(b) to find a cycle C ′ in H ′ through xx′ and f ′ such that ℓ(C ′) ≥
1
4
( d−2.1
(d−1)2

|H ′|)r + 2. Then (C ′ − {xx′}) ∪ {yx, yx′} (adding back the suppressed vertices if

necessary) gives a cycle C in G through xy and f such that

ℓ(C) ≥ 1

4

(

d− 2.1

(d− 1)2
|H ′|

)r

+ 3 ≥ 1

4

(

d− 2.1

(d− 1)2
n

)r

+ 2 (by Lemma (4.3.2)).

So we may assume that V (H) 6= V (G − y). Then there is a 3-block B of G − y such

that |V (B) ∩ V (H)| = 2. Let {p, q} := V (B) ∩ V (H) and G1 be the graph obtained from G

by deleting those components of G−{y, p, q} containing a vertex of H. We choose {p, q} so

that |G1| is maximum. Then,

(d− 1)|G1|+ |H| ≥ n. (4.8)

If V (G) = V (G1∪H), we let G2 = ∅. Otherwise, there is a 3-block B′ of G−y such that

V (B′) ∩ V (H ∪ G1) = {v, w} for some {v, w} 6= {p, q}. (Note that {v, w} ⊆ V (H).) Define

G2 as the graph obtained from G by deleting those components of G− {y, v, w} containing

a vertex of G1 ∪ H. We choose G2 such that |G2| is maximum. Then

(d− 2)|G2|+ |G1|+ |H| ≥ n. (4.9)

Clearly, |G1| ≥ |G2|. Let G′
1 be the graph obtained from G1 by adding the edges yp, yq,

and pq if they are not already in G1. Define G′
2 similarly from G2. We note that G′

1 and G′
2

(if nonempty) are both 3-connected. We shall find the desired cycle for Theorem (4.1.1)(b)

by combining long paths in the two largest graphs among H, G1, and G2. Let ti := |N(y) ∩
V (Gi)− ({p, q} ∪ {v, w})| for i = 1, 2, respectively. We divide the remaining proof into two

cases.
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4.5.1 Case 1: t1 ≥ 2 or t2 ≥ 2.

In this case, inequalities (4.8) and (4.9) can be improved (by exactly the same reasons)

to

(d− 2)|G1|+ |H| ≥ n and (4.10)

(d− 3)|G2|+ |G1|+ |H| ≥ n. (4.11)

Suppose |H| ≥ |G2|. Then from (4.11), we have

|G1|+ (d− 2)|H| ≥ n. (4.12)

If pq 6= f , we use Lemma (4.4.3) to find a path P in H from x to z ∈ {p, q}, say z = p,

through f such that pq /∈ E(P ), and

ℓ(P ) ≥ 1

4

(

(d− 2.1)|H|
(d− 1)2

)r

.

Since e = xy is not adjacent to f , x 6∈ {p, q}. Hence if pq = f , we can apply Lemma (4.4.2)

to find a path P ′ in H− p from x to q such that

ℓ(P ′) ≥ 1

4

(

(d− 2.1)|H|
(d− 1)2

)r

+
1

2
,

and set P := P ′ ∪ {pq} in this case. Since ∆(G′
1 − q) ≤ d, we may use Theorem (4.1.1)(a)
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to find a cycle C1 through py in G′
1 − q such that

ℓ(C1) ≥
1

4

(

d− 2.1

(d− 1)2
|G1|

)r

+ 2.

Then P ∪ (C1 − {py}) ∪ {xy} gives a cycle C in G through xy and f such that

ℓ(C) ≥ 1

4

(

(d− 2.1)|G1|
(d− 1)2

)r

+
1

4

(

(d− 2.1)|H|
(d− 1)2

)r

+ 2

≥











1
4

(

d−2.1
(d−1)2

((d− 2)|G1|+ |H|)
)r

+ 2, if |H| ≥ |G1|;
1
4

(

d−2.1
(d−1)2

(|G1|+ (d− 2)|H|)
)r

+ 2, if |H| < |G1|;
(by (1a))

≥ 1

4

(

(d− 2.1)n

(d− 1)2

)r

+ 2 (by (4.10) and (4.12)).

Now assume |H| < |G2|, and hence G2 6= ∅. Let P1 be a path in H from x to z ∈
{p, q} ∪ {v, w} through f as given by Lemma (4.2.1) such that (i) exactly one of pq and vw

is in E(P1); (ii) if pq ∈ E(P1) then z ∈ {v, w}; and (iii) if vw ∈ E(P1) then z ∈ {p, q}.
Assume, without loss of generality, that pq ∈ E(P1) and z = v. Let P2 be a (p, q)-path

in G′
1 − y given by Theorem (4.1.1)(a), and let P3 be a (v, y)-path in G′

2 − w given by

Theorem (4.1.1)(a). Then ℓ(P2) ≥ 1
4

(

(d−2.1)
(d−1)2

|G′
1|
)r

+ 1 and ℓ(P3) ≥ 1
4

(

(d−2.1)
(d−1)2

|G2|
)r

+ 1.

Now C := (P1 − {pq}) ∪ P2 ∪ P3 ∪ {xy} is a cycle through xy and f in G such that

ℓ(C) ≥ 1

4

(

(d− 2.1)|G1|
(d− 1)2

)r

+
1

4

(

(d− 2.1)|G2|
(d− 1)2

)r

+ 2

≥ 1

4

(

d− 2.1

(d− 1)2
(|G1|+ (d− 2)|G2|)

)r

+ 2 (by (1a) and |G1| ≥ |G2|)

≥ 1

4

(

d− 2.1

(d− 1)2
(|G1|+ (d− 3)|G2|+ |H|)

)r

+ 2 (since |G2| > |H|)

≥ 1

4

(

(d− 2.1)n

(d− 1)2

)r

+ 2 (by (10)) .
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4.5.2 Case 2. t1 = t2 = 1.

Let P be a path in H from x to z ∈ {p, q}∪{v, w} through f as given by Lemma (4.2.1)

such that if pq ∈ E(P ) then z ∈ {v, w} and if vw ∈ E(P ) then z ∈ {p, q}.

Suppose |H| ≤ (d − 3)|G2|. If vw ∈ E(P ) and z ∈ {p, q}, say z = p, then let P1 be a

longest path in G′
1−q from p to y and P2 a longest (v, w)-path in G′

2−y. By Theorem (4.1.1)

(a) for P1 and Lemma (4.4.1) for P2 (using t2 = 1, in this case G′
2 − y is a block-chain), we

have the following lower bounds for ℓ(P1) and ℓ(P2).

ℓ(P1) ≥ 1

4

(

(d− 2.1)|G1|
(d− 1)2

)r

+ 2, (4.13)

ℓ(P2) ≥ 1

4

(

(d− 2.1)|G2|
d− 1

)r

+ 1. (4.14)

Let C := (P − {vw}) ∪ P1 ∪ P2 ∪ {xy}. Then C is a cycle in G though xy and f such

that

ℓ(C) ≥















1

4

(

(d− 2.1)

(d− 1)2
((d− 2)|G1|+ (d− 1)|G2|)

)r

+ 3 ≥ 1

4

(

(d− 2.1)

(d− 1)2
n

)r

+ 3, if (d− 1)|G2| ≥ |G1|

1

4

(

(d− 2.1)

(d− 1)2
(|G1|+ (d− 2)(d− 1)|G2|)

)r

+ 3 ≥ 1

4

(

(d− 2.1)

(d− 1)2
n

)r

+ 3, if (d− 1)|G2| < |G1|;

If pq ∈ E(P ), z ∈ {v, w}, say z = w, let P2 be a longest path in G′
2 − v from w to y, and

P1 be a longest (p, q)-path in G′
1 − y. Using Theorem (4.1.1) (a) for P2 and Lemmas (4.4.1)

for P1 (using t1 = 1, then in this case G′
1 − y is a block-chain), we have the following lower

bounds for ℓ(P1) and ℓ(P2).

ℓ(P1) ≥ 1

4

(

(d− 2.1)|G1|
d− 1

)r

+ 1 (4.16)

ℓ(P2) ≥ 1

4

(

(d− 2.1)|G2|
(d− 1)2

)r

+ 2. (4.17)
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Let C := (P − {pq}) ∪ P1 ∪ P2 ∪ {xy}. Since (d − 2)|G2| ≥ |H|, by (7), (d − 1)|G1| +
(d− 2)|G2| ≥ n. Then as (d− 1)|G1| ≥ |G2| always holds, by (1a) we have

ℓ(C) ≥ 1

4

(

(d− 2.1)

(d− 1)2
((d− 1)|G1|+ (d− 2)|G2|)

)r

+ 3 ≥ 1

4

(

(d− 2.1)

(d− 1)2
n

)r

+ 3.

So we may assume |H| > (d − 3)|G2|. If pq 6= f , we use Lemma (4.4.3) to find a path

P in H from x to z ∈ {p, q}, say z = p, through f such that pq /∈ E(P ) and

ℓ(P ) ≥ 1

4

(

(d− 2.1)|H|
(d− 1)2

)r

.

Again x 6∈ {p, q}. Hence if pq = f , we can apply Lemma (4.4.2) to find a path P ′ in H− p

from x to q such that

ℓ(P ′) ≥ 1

4

(

(d− 2.1)|H|
(d− 1)2

)r

,

and set P := P ′∪{pq}. Since ∆(G′
1− q) ≤ d, we may use Theorem (4.1.1)(a) to find a cycle

C1 through py in G′
1 − q such that

ℓ(C1) ≥
1

4

(

d− 2.1

(d− 1)2
|G1|

)r

+ 2.

Then P ∪ (C1 − {py}) ∪ {xy} gives a cycle C in G through xy and f . If |H| ≥ (d− 4)|G1|,
then by inequality (1c),

|C| ≥ 1

4

(

d− 2.1

(d− 1)2
(|H|+ (d− 4)((d− 1)log2 3/2 − 1)|G1|)

)r

+ 2

≥ 1

4

(

(d− 2.1)

(d− 1)2
(|H|+ (d− 1)|G1|)

)r

+ 2
(

when d ≥ 8, (d− 1)log2(3/2) ≥ 3 and 2(d− 4) ≥ (d− 1)
)

≥ 1

4

(

(d− 2.1)

(d− 1)2
n

)r

+ 2 (by (4.8)) .

So (d− 3)|G2| < |H| < (d− 4)|G1|. Then from (4.8) and (4.9), we have

|G1|+ (d− 2)|H| ≥ n and (d− 2)|G1|+ |H| ≥ |G1|+ (d− 2)|G2|+ |H| ≥ n,
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where the second inequality follows from (d−3)|G1| > (d−2)|G2| as (d−4)|G1| > (d−3)|G2|.
By using the inequalities,

|G1|r + |H|r ≥ min{(|G1|+ (d− 2)|H|)r, ((d− 2)|G1|+ |H|)r},

we obtain that ℓ(C) ≥ 1
4
((d− 2.1)n/(d− 1)2)r + 2.

4.6 Reduction of Theorem (4.1.1)(c)

In this section, we prove the following result which reduces Theorem (4.1.1)(c) to The-

orem (4.1.1) for smaller graphs. The part of proof is long and tedious, but contains a few

crucial new ideas in estimating the lower bound of special paths.

Lemma (4.6.1). Let n ≥ 4 be an integer. If Theorem (4.1.1) holds for graphs with at most

n− 1 vertices, then Theorem (4.1.1)(c) holds for graphs with n vertices.

To prove Lemma (4.6.1), let G be a 3-connected graph with n vertices and ∆(G) ≤ d,

and let xy ∈ E(G). It is easy to see that when n ≥ 5, G contains a cycle through xy of length

at least 5 = 1
2

(

(d− 1)log2 6
)r
+2. Hence, Theorem (4.1.1)(c) holds when n ≤ (d− 1)log2 6. So

we assume n > (d− 1)log2 6 hereafter.

Let H := H1H2 · · ·Hh be a block-chain in G − y such that x ∈ V (H1) − V (H2) and

subject to this, |H| is maximum. We note that H may contain only one block H1. In

this case, all 3-blocks attached to H1 contain x and H1 may not be an extreme block.

However, when h ≥ 2, Hh must be an extreme 3-block in G − y and there is a vertex

x′ ∈ (V (Hh)− V (Hh−1)) ∩NG(y).

Claim (4.6.0.1). We may assume V (G− y) 6= V (H).

Proof. Suppose V (G − y) = V (H). Since G is 3-connected, there exists a vertex x′ ∈
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(V (Hh)−V (Hh−1))∩ (NG(y)− x). Let H ′ be obtained from H by joining x′ and x and then

suppressing all remaining degree 2 vertices. Clearly, H ′ is 3-connected with ∆(H ′) ≤ d and

n > |H ′| ≥ (n− 1)− (d− 2) = n− d+ 1. Let C ′ be a longest cycle in H ′ through xx′. By

Theorem (4.1.1) (c), we have |C ′| ≥ 1
4
|H ′|r + 2. Let C = (C ′ − {xx′}) ∪ {xy, x′y}. Then by

Lemma (4.3.2), we have |C| ≥ |C ′| + 1 ≥ 1
4
(n − d + 1)r + 3 ≥ 1

4
nr + 2, so C is the desired

cycle.

A block-chain L := L1L2 . . . Lℓ different from H is called an H-leg if H ∩ L ⊆ L1 − L2

and Lℓ is an extreme block. Note that, for each extreme block L not in H, there is a unique

H-leg containing L.

SinceH 6= G−y andG is 3-connected, there areH-legs. Let L := L1L2 . . . Lℓ be anH-leg

with |L| maximum. Suppose further that V (H)∩V (L) = V (Ht)−V (Ht−1)∩V (L1) = {p, q}
for some 1 ≤ t ≤ h. Since each H-leg contains an extreme block and each extreme block

contains a neighbor of y, there are at most d−1 H-legs. Hence, (d−1)(|L|−2)+ |H| ≥ n−1,

that is,

(d− 1)|L|+ |H| ≥ n+ 2d− 3. (4.18)

We will use the following parameters (which approach 0 as d → ∞):

ǫ1 :=
d− 1

(d− 2.1)((d− 1)log2(3/2) − 1)
, ǫ2 :=

1

(d− 1)log2(5/4) − 1
.

Claim (4.6.0.2). We may assume |H| ≤ (ǫ1 + ǫ2)n.

Proof. Suppose |H| > (ǫ1 + ǫ2)n. Let Hm ∈ H such that |Hm| is maximum, H′ :=

H1H2 . . .Hm−1 and H′′ := Hm+1Hm+2 . . .Hh. For each 2 ≤ i ≤ h, let {ai, bi} =

V (Hi) ∩ V (Hi−1).

If the vertex x′ ∈ (V (Hh) − V (Hh−1)) ∩ (NG(y) − x) is well defined, we let P be a

longest (x, x′)-path in H and C := P ∪ {xy, x′y}. Clearly, C is a cycle containing edge xy.
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We will show that C is the desired cycle by estimating lower bounds of |C| in different cases

accordingly.

Suppose |H′| + |H′′| ≥ ǫ1n > 0. Then, h ≥ 2 and Hh is an extreme block of G − y, so

the vertex x′ ∈ (V (Hh)− V (Hh−1)) ∩ (NG(y)− x) is well defined. Applying Lemma (4.4.4)

(see (4)), we obtain a lower bound of |C| below.

|C| ≥ 1

4
|Hm|r +

1

4

∑

i 6=m

(

d− 2.1

(d− 1)2
|Hi|

)r

+ 2

≥ 1

4

(

|Hm|+
(

(d− 1)log2(3/2) − 1
) d− 2.1

d− 1
(|H′|+ |H′′|)

)r

+ 2 (by |Hm| ≥ |Hi| and (4.1c))

≥ 1

4

(

d− 2.1

d− 1

(

(d− 1)log2(3/2) − 1
)

(|H′|+ |H′′|)
)r

+ 2

≥ 1

4
nr + 2.

Thus, we assume |H′|+ |H′′| < ǫ1n. Then, |Hm| > ǫ2n as |H| > (ǫ1 + ǫ2)n.

We distinguish two cases by considering which one is bigger between |L| and |H′′|.
Suppose first that |L| ≤ |H′′|. Then, using |Hm| ≥ |Hi| = (d−1)2

d−2.1
d−2.1
(d−1)2

|Hi| for each 1 ≤ i ≤
m− 1 and (4.1d), we have a lower bound of |C| below.

|C| ≥ 1

4

(

|Hm|+
(

(d− 1)log2(5/4) − 1
)

|H′|
)r

+
1

4

(

(d− 2.1)|H′′|
(d− 1)2

)r

+ 2.

If (d−2.1)|H′′|
(d−1)2

≥ |Hm|+((d−1)log2(5/4)−1)|H′|
(d−1)2

, then using inequality (4.1f) of Lemma (4.3.1) and the

inequality (d− 1)log2(5/4) ≥ 1
ǫ2
,

|C| ≥ 1

4

(

(d− 1)log2(5/4)(|Hm|+ ((d− 1)log2(5/4) − 1)|H′|)
)r

+ 2 ≥ 1

4
nr + 2.

Thus we may assume (d−2.1)|H′′|
(d−1)2

<
|Hm|+((d−1)log2(5/4)−1)|H′|

(d−1)2
. Using inequality (4.1d) in
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Lemma (4.3.1), by noting that (d− 1)log2(5/4) > 2 if d > 10, we have

|C| ≥ 1

4

(

|Hm|+
(

(d− 1)log2(5/4) − 1
)

|H′|+
(

(d− 1)log2(5/4) − 1
) (d− 1)2(d− 2.1)|H′′|

(d− 1)2

)r

+ 2,

≥ 1

4

(

|Hm|+ |H′|+ |H′′|+ (d− 4)((d− 1)log2(5/4) − 1)|H′′|
)r

+ 2

≥ 1

4
(|H|+ (d− 1)|L|)r + 2

(

since |H′′| ≥ |L| and (d− 4)((d− 1)log2(5/4) − 1) ≥ d− 1
)

≥ 1

4
nr + 2 (by (4.18)).

We now consider the case |L| > |H′′|. Since |H| is maximum subject to x ∈ V (H1) −
V (H2), we have either m ≥ 2 and 1 ≤ t ≤ m− 1 or m = t = 1 and x ∈ {p, q}.

Ifm ≥ 2, let Pm be a path inHm between am−1 and bm−1 as given by Theorem (4.1.1)(c).

If {am−1, bm−1} 6= {p, q}, let P ′ be a path in H′ through am−1bm−1 from x to {p, q} as given

by Lemma (4.4.3), and let the notation be chosen so that P ′ is from x to p; otherwise,

{am−1, bm−1} = {p, q}, let P ′′
be a path in H′ − p from x to q given by Lemma (4.4.2), and

let P ′ := P
′′ ∪ {pq}. Let PL be a path in L − q from p to y′ ∈ (V (Ll) − V (Ll−1)) ∩ NG(y)

as given by Lemma (4.4.2). Then C := PL ∪ P ′ ∪ Pm ∪ {yx, yy′} − {am−1bm−1} is a cycle

through xy in G such that

|C| ≥ 1

4
|Hm|r +

1

4

((d− 2.1)|H′|
(d− 1)2

)r

+
1

4

((d− 2.1)|L|
(d− 1)2

)r

+ 2.

By the same argument as above and using (4.1d) and (4.1f) depending on whether (d−2.1)|H′|
(d−1)2

≥
|Hm|
(d−1)2

, we have

|C| ≥ 1

4

(

(d− 1)log2(5/4)|Hm|
)r

+
1

4

((d− 2.1)|L|
(d− 1)2

)r

+ 2 ≥ 1

4
nr + 2 or
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|C| ≥ 1

4

(

|Hm|+ (d− 1)2
(

(d− 1)log2(5/4) − 1
)(d− 2.1)|H′|

(d− 1)2

)r

+
1

4

((d− 2.1)|L|
(d− 1)2

)r

+ 2

≥ 1

4

(

|Hm|+ |H′|
)r

+
1

4

((d− 2.1)|L|
(d− 1)2

)r

+ 2.

If |Hm|+ |H′| ≥ (d− 1)2 (d−2.1)|L|
(d−1)2

, then

1

4

(

|Hm|+ |H′|
)r

+
1

4

((d− 2.1)|L|
(d− 1)2

)r

+ 2

≥ 1

4

(

|Hm|+ |H′|+ (d− 1)2((d− 1)log2(5/4) − 1)
(d− 2.1)|L|
(d− 1)2

)r

+ 2

≥ 1

4

(

|Hm|+ |H′|+ |H′′|+ (d− 1)|L|)r + 2 (since |L| > |H′′|)

≥ 1

4
nr + 2.

Otherwise, |Hm|+ |H′| < (d− 1)2 (d−2.1)|L|
(d−1)2

, then we get

1

4

(

|Hm|+ |H′|
)r

+
1

4

((d− 2.1)|L|
(d− 1)2

)r

+ 2

≥ 1

4

(

(d− 1)log2(5/4) − 1)(|Hm|+ |H′|)
)r

+ 2

≥ 1

4
nr + 2 (since |Hm| > ǫ2n).

We now assume m = t = 1 and, without loss of generality, x = p. Let Pm be a longest

path from x to q in H given by Lemma (4.4.4) and PL a longest path in L − p from q to

y′ ∈ (V (Ll) − V (Ll−1)) ∩ NG(y) given by Lemma (4.4.2). Then C := Pm ∪ PL ∪ {xy, y′y}
is a cycle of length ℓ(C) ≥ 1

4
|Hm|r + 1

2

(

(d−2.1)|L|
(d−1)2

)r

+ 2 ≥ 1
4
nr + 2, where the last inequality

follows from a similar argument as above for m ≥ 2 and |L| > |H′′|.

An H-leg M is called a minor-leg of H if V (M∩H)















6= {p, q} if x /∈ {p, q}

6∋ x if x ∈ {p, q}
; or there

is another H-leg L∗ such that both M and L∗ intersect H on {p, q}, V (L∗) ∩ (M) 6= {p, q},
and |L∗ −M| ≤ ǫ2n/(d− 2.1). We call the minor-leg M defined in the first case an A-type
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minor-leg; and in the later case a B-type minor-leg.

Note that if H has an A-type minor-leg, then h ≥ 2. For an A-type minor-leg M of H,

we have the following claim.

Claim (4.6.0.3). If M := M1 · · ·Mm is an A-type minor-leg of H, then |M| ≤ ǫ2n

d− 2.1
.

Proof. Suppose |M| > ǫ2n
d−2.1

. By our choice of Ht, t is the smallest positive integer such that

{p, q} ⊆ Ht. Similarly, let s be the smallest integer such that V (M)∩V (H) = V (M)∩V (Hs).

Let {u, v} = V (Hs) ∩ V (M) and g := max{s, t}. Moreover, let H′ = H1H2 · · ·Hg and

H′′ = Hg+1Hg+2 · · ·Hh. By the maximality of |H| and |L| and the existence of M, we

have g < h, |H′′| ≥ |M|, and |L| ≥ |M|. Recall V (Hg) ∩ V (Hg+1) = {ag, bg}. Since

x ∈ V (H1)−V (H2) and ag, bg ∈ V (Hg)∩V (Hg+1), we know x is not incident to agbg. Hence,

we can apply Lemma (4.2.1) to find a path P ′ inH′ through agbg from x to z ∈ {p, q}∪{u, v}.
Let P ′′ be a path in H′′ between ag and bg as given by Lemma (4.4.1) such that ℓ(P ′′) ≥
1
4
(d−2.1

d−1
(|H′′| + 1))r + 1. If z ∈ {u, v} (say, z = u), let PM be a path in M − v from u to

y′ ∈ NG(y) ∩ (V (Mm)− V (Mm−1)− {u, v}) (the vertex y′ exists by the 3-connectivity of G)

as given by Lemma (4.4.2) with ℓ(PM) ≥ 1
4
( d−2.1
(d−1)2

|M|)r + 1
2
, and PL be a path in L between

p and q as given by Lemma (4.4.1) with ℓ(PL) ≥ 1
4
(d−2.1

d−1
(|L|+ 1))r + 1. The case z ∈ {p, q}

is treated similarly. Since |M| ≤ |L| and |M| ≤ |H′′|, the paths P ′, P ′′, PL, PM, and edges

yx, yy′ give rise to a cycle C in G through xy such that

|C| ≥ 1

4

(

d− 2.1

d− 1
|M|

)r

+
1

4

(

d− 2.1

d− 1
|M|

)r

+
1

4

(

d− 2.1

(d− 1)2
|M|

)r

+ 2 (4.19)

=
1

4
((d− 2.1)|M|)r + 1

4

(

d− 2.1

(d− 1)2
|M|

)r

+ 2 (4.20)

≥ 1

4

(

(d− 1)log2(5/4)(d− 2.1)|M|
)r

((1f) in Lemma (4.3.1))

≥ 1

4
nr + 2.
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Recall that t is the minimum positive integer such that {p, q} ⊆ V (Ht). Let I :=

H1H2 · · ·Ht and J := Ht+1Ht+2 · · ·Hh. We have a similar claim for a B-type H-minor-leg.

Claim (4.6.0.4). Let L∗ and L∗∗ be two H-legs with attachments {p, q}. If L∗∩L∗∗ 6= {p, q},
then we may assume that one of L∗ and L∗∗ is a B-type H-minor-leg.

Proof. Assume, without loss of generality, that |L∗| ≤ |L∗∗|. Let L0 = L∗ ∩ L∗∗. Let

{u∗, v∗} = V (L0) ∩ V (L∗
1) and {u∗∗, v∗∗} = V (L0) ∩ V (L∗∗

1 ).

By Lemma (4.2.3), we may assume that there is a (p, u∗)-path P0 through edge u∗∗v∗∗

in L0, but not the edge u∗v∗. Let ω∗ = |L∗ − L0|+ 2. Let PI be a path in I − p from x to

q such that ℓ(PI) ≥ 1
4
( (d−2.1)|I|

(d−1)2
)r given by Lemma (4.4.2), PJ a (q, p)-path in J such that

ℓ(PJ) ≥ 1
4
( (d−2.1)|J |

d−1
)r ≥ 1

4
( (d−2.1)ω∗

d−1
)r given by Lemma (4.4.1) (note that |J | ≥ |L| ≥ ω∗),

P ∗∗ be a path in L∗∗ − (L0 − {u∗∗, v∗∗}) from u∗∗ to v∗∗ given by Lemma (4.4.1) with

ℓ(P ∗∗) ≥ 1
4
( (d−2.1)|L∗∗|

(d−1)
)r +1, and P ∗ a path in G[L∗ − (L0 −{u∗, v∗})] from x′ to u∗ avoiding

v∗ given by Lemma (4.4.2), where x′ is a neighbor of y in the last block of L∗. Then we

obtain a cycle C := P ∗ ∪ (P0 − {u∗∗v∗∗}) ∪ P ∗∗ ∪ PJ ∪ PI ∪ {yx′, xy} through xy such that

ℓ(C) ≥ 1

4

(

2(
(d− 2.1)ω∗

d− 1
)r + (

(d− 2.1)ω∗

(d− 1)2
)r
)

+ 2 ≥ 1

4
((d− 2.1)(d− 1)log2 5/4ω∗)r + 2,

where the last inequality follows from (4.1f). Noticing ǫ2 = 1
(d−1)log2(5/4)−1

, we have (d −
2.1)(d− 1)log2 5/4ω∗ ≥ n if ω∗ ≥ ǫ2n/(d− 2.1). So, we may assume ω∗ < ǫ2n/(d− 2.1).

Let G0 be the subgraph of G obtained by deleting the components of G−{y, p, q} that

contain a vertex in H. By adding a few special edges to G0, we define G′
0 as follows:

G′
0 :=















G0 ∪ {py, qy} if Ht is a cycle and {p, q} 6= {at, bt};

G0 ∪ {y}] ∪ {py, qy, pq} if pq /∈ E(G) and the above case false.

Note that the difference is whether the edge pq is forced to be added.
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Suppose that there are exactly ς H-minor-legs. Then 0 ≤ ς ≤ d− 3 (as y is adjacent to

at least two vertices in H and at least one vertex in L, there are at most d− 3 neighbors of

y contained in H-minor-legs ). Let M be one of the largest minor-legs if there is one. Then,

the following inequalities hold.

|G0| ≥ n− |H| − ς|M| ≥ n− |H| − ςǫ2n

d− 2.1
≥ (1− ǫ1 − 2ǫ2)n,

|H| ≥ n− ς|M|
d− 1− ς

, and

|J | ≥ |L| ≥ |M|.

Since |H| < (ǫ1 + ǫ2)n, we have |L| ≥ n−|H|
d−1

> (1−ǫ1−ǫ2)n
d−1

. To complete our proof of

Lemma (4.6.1), we consider two cases according to whether x ∈ {p, q} or not.

4.6.1 Case 1 x /∈ {p, q}.

In this case, by the maximality of |H|, we have |H| ≥ |J | ≥ |L| and 1 ≤ t ≤ h − 1.

Consequently, we have h ≥ 2 and the vertex x′ ∈ (V (Hh)− V (Hh−1)) ∩ (NG(y)− x) is well

defined.

Claim (4.6.1.1). ∆(G′
0) ≤ d and G′

0 is 3-connected.

Proof. Since dG′
0
(v) = dG(v) for every v ∈ V (G0) − {y, p, q}, we only need to verify that

degrees dG′
0
(p), dG′

0
(q), and dG′

0
(y) are not bigger than d. Since |J | ≥ |L| > 0, Ht+1 exists.

Then both p and q have at least two neighbors in G − V (G0), and thus dG′
0
(p) ≤ d and

dG′
0
(q) ≤ d. Furthermore, dG′

0
(y) ≤ dG(y) + |{p, q}| − |{x, x′}| ≤ d.

For the connectivity, it is clear that if there exist at least three internally vertex-disjoint

(p, q)-path, then G′
0 is 3-connected. As G0 is connected, there is a (p, q)-path using only

vertices ofG0; pyq is another (p, q)-path which intersects V (G0) only on {p, q}. If pq ∈ E(G′
0),

the edge pq gives the third (p, q)-path. Hence G′
0 is 3-connected if pq ∈ E(G′

0). So, we only
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need to show that G′
0 is 3-connected when G′

0 = G0 ∪ {yp, yq} and pq /∈ E(G′
0). We suppose

on the contrary that G′
0 has exactly two internally vertex-disjoint (p, q)-paths (as G′

0 + pq

is 3-connected). As y connecting p and q, G0 contains exactly one (p, q)-path. Denote by

P [p, q] a shortest (p,q)-path in G0. Then in G − y, (Ht − pq) ∪ P [p, q] is an induced cycle.

According to Tutte’s decomposition algorithm, (Ht−pq)∪P [p, q] forms a 3-block. This gives

a contradiction to that Ht is a 3-block.

Claim (4.6.1.2). There is a path P0 in G′
0 with two endvertices in {y, p, q} such that ℓ(P0) ≥

1
4
(|G0|+1)r and ({py, qy, pq}−E(G))∩E(P0) = ∅ (when pq ∈ E(G), we allow pq ∈ E(P0)).

Moreover, if Ht is a cycle, given z ∈ {p, q}, we can choose P0 such that one of the endvertices

of P0 is z.

Proof. Since ∆(G′
0) ≤ d and G′

0 is 3-connected, G′
0 contains a (p, y)-path P ′

0 such that

ℓ(P ′
0) ≥ 1

4
(|G0|+ 1)r + 1 by Theorem (4.1.1)(c). If qy ∈ P ′

0, then P0 := P ′
0 − y is the desired

(p, q)-path. Since |G0| ≥ (1 − ǫ1 − 2ǫ2)n ≥ (1 − ǫ1 − 2ǫ2)(d − 1)log2 6 > (d − 1)2, we have

ℓ(P ′
0) ≥ 3. Hence if pq ∈ P ′

0, then qy /∈ E(P ′
0). So P0 := P ′

0 − p is the desired path.

When Ht is a cycle, we use Theorem (4.1.1) (c) to find a (z, y)-path P0 in G′
0 such that

ℓ(P0) ≥ 1
4
(|G0| + 1)r + 1. If V (P0) ∩ ({p, q} − z) = ∅, then P0 itself is the desired path.

So assume {p, q} − z ⊆ V (P0). If pq /∈ E(P0) , then P0 − y is the desired path. Hence,

assume that pq ∈ E(P0), and so pq ∈ E(G′
0). We may assume pq /∈ E(G); otherwise P0 is

the desired path. By the definition of G′
0, we have {p, q} = {at, bt} in this case. Let PJ be

an (at, bt)-path in J given by Lemma (4.4.1). Then P0 := (P0 − {pq}) ∪ PJ is the desired

path with ℓ(P0) ≥ 1
4
(|G0|+ 1)r + 1

4
( (d−2.1)|J |

d−1
)r + 1.

4.6.1.1 Subcase1.1. {p, q} 6= {at, bt} = V (Ht ∩ Ht+1). Using the inequalities

max{|I|, |J |} ≥ |J | ≥ |L|n−|H|
d−1

≥ (1−ǫ1−ǫ2)n
d−1

, we will consider a few cases to show that
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there exists a cycle C through xy such that

|C| ≥ 1

4

(

(|G0|+ 1)r + (
(d− 2.1) ·max{|I|, |J |}

(d− 1)2
)r
)

+ 2

≥ 1

4

(

(1− ǫ1 − 2ǫ2)
r +

(

(1− ǫ1 − ǫ2)(d− 2.1)

(d− 1)3

)r)

nr + 2

≥ 1

4

(

(1− ǫ1 − 2ǫ2) + (1− ǫ1 − 2ǫ2)((d− 1)log2(1+2−β) − 1)
)r

nr + 2

≥ 1

4
nr + 2,

where we let β = logd−1

(

(d−1)3(1−ǫ1−2ǫ2)
(d−2.1)(1−ǫ1−ǫ2)

)

for Lemma (4.3.1), which is greater than 1 but

less than 2 when d ≥ 42. We also use the inequalities 1 − ǫ1 − 2ǫ2 > 0 when d ≥ 43, and

(1− ǫ1 − 2ǫ2) + (1− ǫ1 − 2ǫ2)((d− 1)log2(1+2−β) − 1) > 1 when d ≥ 68.

We first consider the case that there is a (p, q)-path P0 in G0 − y such that ℓ(P0) ≥
1
4
(|G0| + 1)r. Let PI be an ({at, bt}, x), say (at, x)- path in I through pq given by

Lemma (4.4.3) such that ℓ(PI) ≥ 1
4

(

(d−2.1)|I|
(d−1)2

)r

(as {p, q} 6= {at, bt}), and PJ be an

(at, x
′) path in J − bt given by Lemma (4.4.2) such that ℓ(PJ) ≥ 1

4

(

(d−2.1)|J |
(d−1)2

)r

, where

x′ ∈ (V (Hh)− V (Hh−1)) ∩NG(y) (as Ht+1 exists and G is 3-connected, x′ 6∈ {at, bt}). Then,
C := (PI − {pq}) ∪ PJ ∪ P0 ∪ {xy} is the desired path.

Suppose that Ht is 3-connected. By Claim (4.6.1.2) and the discussion above, we may

assume that there is a path P0 in G0 from p to y avoiding q such that ℓ(P0) ≥ 1
4
(|G0|+ 1)r.

If |I| ≥ |J |, by Lemma (4.4.2), let PH be a path in I − q from x to p such that ℓ(PH) ≥
1
4
( (d−2.1)|I|

(d−1)2
)r + 1. If atbt ∈ E(PH), then we replace atbt by a path in J from at to bt. Then,

C := PH ∪ P0 ∪ {xy} is the desired cycle. If |I| ≤ |J |, let PI be a path in I − q from x

to p through atbt given by Lemma (4.4.3) and PJ be a path in J from at to bt such that

ℓ(PJ) ≥ 1
4
( (d−2.1)|J |

(d−1)
)r +1 given by Lemma (4.4.1). Then C := (PI −{atbt})∪PJ ∪P0 ∪{xy}

is the desired cycle.

Finally, we assume that Ht is a cycle and P0 given by Claim (4.6.1.2) is a (p, y)-path.

Since |J | ≥ |L| in this case, the edge atbt exists. As {at, bt} 6= {p, q}, we can assume,
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without loss of generality, that at−1 . . . atbt . . . p . . . bt−1 lie in this order along Ht − at−1bt−1.

Let I∗ := H1H2 . . .Ht−1. Applying Lemma (4.4.2), we find a path P ∗
H in I∗ − bt−1 from x to

at−1 such that ℓ(P ∗
H) ≥ 1

4
( (d−2.1)|I∗|

(d−1)2
)r + 1

2
. Extending this path along Ht and J , we obtain

a path PH in H from x to p avoiding q such that ℓ(PH) ≥ ℓ(P ∗
H) + 2. Since the number of

degree 2 vertices in H is no more than 2d− 1, we have ℓ(PH) ≥ 1
4
( (d−2.1)|I|

(d−1)2
)r + 1. Let PJ be

a path in J from at to bt such that ℓ(PJ) ≥ 1
4
( (d−2.1)|J |

(d−1)
)r + 1 given by Lemma (4.4.1). Note

that in this case, we can choose P0 to be a (p, y)-path such that ℓ(P0) ≥ 1
4
(|G0|+1)r. Then,

C := (PH − {atbt}) ∪ PJ ∪ P0 ∪ {xy} is the desired cycle.

4.6.1.2 Case {p, q} = {at, bt} = V (Ht ∩Ht+1) In this case, G′
0 := G0 ∪ {py, qy, pq}.

Assume, without loss of generality, that dG0(p) ≤ dG0(q). Let tp = |NG′
0
(p)−{q, y}|. Clearly,

tp ≤ dG(p)−2 ≤ d−2. Let PI be an (x, p)-path in I−q given by Lemma (4.4.2), PJ a (p, q)-

path in J given by Lemma (4.4.1), and P0 a (q, y)-path in G′
0 − p given by Theorem (4.1.1)

(a). Let C := PI ∪ PJ ∪ P0 ∪ {xy}. Then we have

ℓ(C) ≥ 1

4

(

(
(d− 2.1)|G0|
(d− 1)tp

)r + (
(d− 2.1)|J |

d− 1
)r + (

(d− 2.1)|I|
(d− 1)2

)r
)

+ 2. (4.21)

Claim (4.6.1.3). |J |r + ( |I|
d−1

)r ≥ (|J |+ |I|)r ≥ |H|r provided d ≥ 61.

Proof. By Lemma (4.3.3), we only need to show that |J | ≥ 1.1|I|
d−1

. Otherwise, using |L| ≥
(1−ǫ1−ǫ2)n

d−1
, we have

(ǫ1 + ǫ2)n > |H| ≥ |I| > (d− 1)|J |
1.1

≥ (d− 1)|L|
1.1

≥ (1− ǫ1 − ǫ2)n

1.1
.

However, when d ≥ 61, ǫ1 + ǫ2 ≤ 0.47 and (1−ǫ1−ǫ2)
1.1

> 0.47, showing a contradiction.
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Consequently, by Lemma ?? we have

ℓ(C) ≥ 1

4

(

(
(d− 2.1)|G0|
(d− 1)tp

)r + (
(d− 2.1)|H|

d− 1
)r
)

+ 2 (4.22)

≥ 1

4

(

(
(d− 2.1)2

tp
(1− |H|/n− ςǫ2/(d− 2.1))(|H|/n)

)r/2

nr + 2.

Clearly, C is the desired cycle if

(d− 2.1)2(1− |H|/n− ςǫ2/(d− 2.1))(|H|/n)
tp

≥ 1. (4.23)

Assuming this is not the case, we will show that there are very few minor-legs of H, which

reveals some properties of H.

Claim (4.6.1.4). We may assume ς ≤ 3 (provided d ≥ 195).

Proof. By plugging |H|/n ≥ 1−ςǫ2/(d−2.1)
d−1−ς

and tp ≤ d− 2 in (4.23), we get

(d− 2.1)2(1− |H|/n− ςǫ2/(d− 2.1)) · (|H|/n)/t

≥ (d− 2.1)2
(

1− 1− ςǫ2/(d− 2.1)

d− 1− ς
− ςǫ2

d− 2.1

)(

1− ςǫ2/(d− 2.1)

d− 1− ς

)

/(d− 2)

=
(d− 2.1)2(d− 2.1− ςǫ2)

2(d− 2− ς)

(d− 2.1)2(d− 1− ς)2(d− 2)
≥ 1,

provided d ≥ 195 and ς ≥ 4.

We now refine the legs of H contained in G′
0. Let L1, L2, . . . , Lℓ attach H at {p, q}

such that V (Li) ∩ V (Lj) = {p, q} for any i 6= j and, subject to this constraint,
∑

i |V (Li)|
is maximum. We name them major-legs of H. Clearly, all other H-legs remained in G′

0 are

B-type minor-legs.

Claim (4.6.1.5). We may assume ℓ ≥ d− 5 provided that d ≥ 195.
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Proof. Since L1, L2, . . . , Lℓ are all possible non-minor-legs, |H| ≥ (1 − ςǫ2
d−2.1

)n/(ℓ + 1).

Plugging this inequality in (4.23) and assuming ℓ ≤ d− 6, we get the following

ℓ(C) ≥ 1

4

(

(
(d− 2.1)2

t
(1−

1− ςǫ2
d−2.1

ℓ+ 1
− ςǫ2/(d− 2.1))(

1− ςǫ2
d−2.1

ℓ+ 1
)

)r/2

nr + 2

≥ 1

4

(

ℓ(d− 2.1− ςǫ2)
2

(ℓ+ 1)2t

)r/2

nr + 2

≥ 1

4
nr + 2,

for each ς = 0, 1, 2, 3 when d ≥ 195; where we used t ≤ d− 2 and ℓ ≤ d− 6 .

For each Li, let Gi be induced by the component of G−{p, q, y} containing Li−{p, q},
and including two vertices p and q, that is, the union of Li and all B-type minor-legs sharing

a vertex with Li − {p, q}. Let G′
i = G[V (Gi) ∪ {y}] ∪ {pq, py, qy}. Clearly, each G′

i is 3-

connected with ∆(G′
i) ≤ d. Let ti(p) = dG′

i
(p)−2, ti(q) = dG′

i
(q)−2, and ti =

1
2
(ti(p)+ti(q)).

By counting the neighbors of p and q, respectively, we have

t1(p) + t2(p) + · · ·+ tℓ(p) ≤ dG(p)− |NH(p)− {q}| ≤ d− 2,

t1(q) + t2(q) + · · ·+ tℓ(q) ≤ dG(q)− |NH(q)− {p}| ≤ d− 2,

t1 + t2 + · · ·+ tℓ =
∑

1≤i≤ℓ

(ti(p) + ti(q)) ≤ d− 2.

We note that, for each i, ti(p) ≥ 1, ti(q) ≥ 1, and ti ≥ 1. Assume, without loss of

generality, |G1|
t1

= max1≤i≤ℓ
|Gi|
ti
.

Claim (4.6.1.6). We may assume t1 = 1 provided that d ≥ 194.

Proof. Otherwise, we have t1 ≥ 3/2 since both t1(p) and t1(q) are positive integers. Then

either p or q has degree at least 2 in G1; and consequently, ℓ ≤ d− 2− 1 − ς (each Li has a

neighbor of p and a neighbor of q). By Claim (4.6.1.5) that ℓ ≥ d− 5, we may assume that

ς ≤ 2 in this case.
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Let T1 := {i : ti = ti(p) = ti(q) = 1} and T2 := {i : ti > 1} and let ℓ1 := |T1| and
ℓ2 := |T2|. By Claim (4.6.1.5), we have ℓ1 + ℓ2 = ℓ ≥ d − 5. On the other hand, we have

ℓ1 + 3/2ℓ2 ≤ ∑1≤i≤ℓ ti ≤ d − 2, which in turn gives ℓ2 ≤ 12. So, ℓ1 ≥ d − 17. As d ≥ 180,

2ℓ1/3 ≥ ℓ2.

For each i = 1, 2, . . . , ℓ, let ωi = |V (Gi)−V (Li)|. Clearly,
∑ℓ

i=1 ωi <
∑

M is an H-minor-leg

|M| ≤
ςǫ2n/(d− 1).

For each i ∈ T1, by the maximality of |G1|/t1, we have

|Gi| = |Gi|/ti ≤ |G1|/t1 ≤ (2/3)|G1| ≤ (2/3)(|H|+ ω1) (since |L1| ≤ |H| when x /∈ {p, q}).

For each i ∈ T2, we have

|Gi| = |Li|+ ωi ≤ |H|+ ωi.

A simple calculation gives the following inequalities.

∑

1≤i≤ℓ

|Gi| ≤ (
2ℓ1
3

+ ℓ2)|H|+ 2ℓ1
3
ω1 +

∑

i∈T2

ωi

≤ (
2ℓ

3
+

ℓ2
3
)|H|+ 2ℓ1

3
(ω1 +max

i∈T2

{ωi}) (since ℓ2 ≤ 2ℓ1/3)

≤ (
2ℓ

3
+

ℓ2
3
)|H|+ 2ℓ1

3

ςǫ2n

d− 2.1
(since

∑

i ωi ≤ ςǫ2n
d−2.1

)

≤ 2(d+ 3)

3
|H|+ 2ς(d− 3)ǫ2n

3(d− 2.1)
(since ℓ ≤ d− 3, ℓ2 ≤ 12 )

Since |H|+∑1≤i≤ℓ |Gi| ≥ n− ςǫ2n
d−2.1

, we get the following inequality

|H| ≥
3− 2(d−1.5)ςǫ2

d−2.1

2(d+ 4.5)
n.

When d ≥ 194, for each ς = 0, 1, 2,
3−

2(d−1.5)ςǫ2
d−2.1

2(d+4.5)
n >

n−
ςǫ2n
d−2.1

d−5
. Recall that

n−
ςǫ2n
d−2.1

d−5
is the lower

bound on |H| used in the proofs of both Claim (4.6.1.4) and Claim (4.6.1.5), and so we are

done by the previous conclusions.
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Let Hk be a block of J with maximum number of vertices, that is, |Hk| = max{|Hi| :

t + 1 ≤ i ≤ h}. Let L1 := L1L2 . . . Ls and let Lm be a block of L1 with maximum number

of vertices. Since t1 = 1, L1 is a cycle.

Claim (4.6.1.7). Let z′ ∈ (V (Ls) − V (Ls−1)) ∩ NG(y). We may assume that there is a

(p, z′)-path P1 in L1 − q such that

ℓ(P ) ≥ 1

4

(

|Lm|r +
∑

i 6=m

(
d− 2.1

(d− 1)2
|Li|)r

)

− 1 ≥ 1

4
|L1|r − 1.

Proof. Assume V (L1 ∩ L2) = {a, b}. In L1, we replace L1 by a triangle zabz and apply the

particular part of Lemma (4.4.4) to get a (z, z′)-path. Replacing either the edge za or zb

by a path from p to {a, b} (we can fix p as L1 is a cycle), and denote the resulted path by

P . We obtain the desired path; in case that p ∈ {a, b}, we may have the lower bound ℓ(P )

above 1 unit less than the bound given in Lemma (4.4.4).

Claim (4.6.1.8). dH(p)− 1 ≤ 2, so both Ht and Ht+1 are cycles.

Proof. Otherwise, we have ℓ ≤ d− 3, which in turn shows that

|H| ≥ n− ςǫ2n/(d− 2.1)

ℓ+ 1
.

Let PI be an (x, q)-path in I − p given by Lemma (4.4.2), PJ be a (p, q)-path in J given by

Lemma (4.4.1), and P1 be a (z′, p)-path given by Claim (4.6.1.7). Let C := PI ∪ PJ ∪ P1 ∪
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{yz′, xy}. Then C is a cycle through xy and

ℓ(C) ≥ 1

4
|L1|r − 1 +

1

4
(
(d− 2.1)|I|
(d− 1)2

)r +
1

4
(
(d− 2.1)|J |

d− 1
)r + 1 + 2

≥ 1

4

(

|L1|r + (
(d− 2.1)|H|

d− 1
)r
)

+ 2 (by Claim (4.6.1.3))

≥ 1

4

(

(
n− |H| − ςǫ2n

d−2.1

ℓ
)r + (

(d− 2.1)|H|
d− 1

)r
)

+ 2

≥ 1

4





(d− 1)2(n− n−
ςǫ2n
ℓ+1

d−2.1
− ςǫ2n

d−2.1
)(d− 2.1)(n− ςǫ2n

d−2.1
)

ℓ(d− 1)(ℓ+ 1)





r/2

+ 2

=
1

4

(

(d− 1)(d− 2.1− ςǫ2)
2

(d− 2.1)(ℓ+ 1)2

)r/2

nr + 2

≥ 1

4

(

(d− 1)(d− 2.1− ςǫ2)
2

(d− 2.1)(d− ς − 1)2

)r/2

nr + 2 (by ℓ+ ς ≤ d− 2)

≥ 1

4
nr + 2,

when d ≥ 41 and ς ≥ 1. Thus, we assume ς = 0. Then by ℓ ≤ d− 3, we get

ℓ(C) ≥ 1

4

(

(d− 1)(d− 2.1− ςǫ2)
2

(d− 2.1)(ℓ+ 1)2

)r/2

nr + 2

≥ 1

4

(

(d− 1)(d− 2.1)2

(d− 2.1)(d− 2)2

)r/2

nr + 2

≥ 1

4
nr + 2.

Let PI be an (x, p)-path in I−q given by Lemma (4.4.2) such that ℓ(PI) ≥ 1
4
(d−2.1)|I|
(d−1)2

)r+

1
2
. Applying Lemma (4.4.6) on J and L, with J taking the role of H, p taking the role of

x and q taking the role of both w and w′ in the lemma, respectively. Let y′ ∈ (V (Hh) −
V (Hh−1)) ∩ NG(y). Then we can find a (q, y′)-path PJ in J − p and a (p, q)-path PL in L
such that ℓ(PJ)+ ℓ(PL) ≥ 1

4
|J |r + 1

4
|L|r−1/2. Then C := PI ∪PJ ∪PL ∪{xy, yy′} is a cycle
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through xy such that

ℓ(C) ≥ 1

4

(d− 2.1)|I|
(d− 1)2

)r +
1

2
+

1

4
|J |r + 1

4
|L|r − 1

2
+ 2

≥ 1

4
|H|r + 1

4
|L|r + 2 (By Claim (4.6.1.3))

≥ 1

4

(

(d− 1)2 · n

d− 1
· n− n/(d− 1)

d− 2

)r/2

+ 2

=
1

4
nr + 2,

since in this case, |L| ≥ n−|H|
d−2

, and as |H| > |J | ≥ |L| gives that |H| ≥ n
d−1

.

4.6.2 Case 2 x ∈ {p, q}.

Let the notation be chosen so that x = p. In this case, the notation L = L1L2 · · ·Lm is

used to indicate an arbitrary H-leg. We note that |H| ≥ |L| may no longer hold because it

is possible that x ∈ V (L2). An H-leg L is proper if x ∈ V (L1)− V (L2). For a proper H-leg

L, |L| ≤ |H| still holds.

If {x, v} is a 2-cut of G − y for some v ∈ V (H1), let Gv be obtained from G − y by

deleting all components of G − {y, x, v} containing a vertex of H and adding the edge xv

when xv /∈ E(G). Let v0 ∈ V (H1) such that
|Gv0 |

dGv0
(x)−1

is maximum. Let G′
v = Gv ∪ {xy, vy}.

Claim (4.6.2.1).
|Gv0 |

dGv0
(x)−1

> ǫ2n
d−2.1

provided d ≥ 93.

Proof. Notice that all H-legs not containing x are A-type minor-legs, and there are at most

three H-minor-legs by Claim (4.6.1.4). Hence |Gv0 | +
∑

v 6=v0

|Gv| + |H| + 3ǫ2n
d−2.1

≥ n. Thus we
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have

|Gv0|
dGv0

(x)− 1
≥

∑

v

|Gv|
∑

v

(dGv(x)− 1)
≥

n− |H| − 3ǫ2n
d−2.1

d− 2

≥
n− (ǫ1 + ǫ2)n− 3ǫ2n

d−2.1

d− 2
>

ǫ2n

d− 2.1
.

Let T denote the block-bond tree resulted in fromG−y+xv0 by the Tutte decomposition.

We treat T as a rooted tree with the root at the bond B0 containing the edge xv0 (notice

that as xv0 ∈ E(G− y + xv0), and G− y + xv0 − {x, v0} has at least two components, the

bond B0 exists). Except B0, we assume that all bonds are removed from T and two 3-blocks

are adjacent if either one is the parent of the other one in the original tree or there is a bond

B between them such that one is the parent of B and the other one is a child of B. We will

follow the partial order ≺ of T generalized naturally by the parent-child relationship of the

tree, that is B1 ≺ B2 if B1 is a descendent of B2.

A block of T is called an x-block if it contains x. Let X be the union of all x-blocks.

A block-chain Y1Y2 . . . Ym such that Y1 ∩ X is a virtual edge not incident with x is called a

y-chain. The following definition will play a key role in our proof.

Claim (4.6.2.2). If Y1 and Y2 are two distinct y-chains attached to the same x-block B /∈ H
with |Y1| ≥ |Y2|, then |Y2| < ǫ2n

d−2.1
.

Proof. Suppose to the contrary that |Y2| ≥ ǫ2n
d−2.1

. Suppose there are x-blocks B1, B2, · · · , Bt

such that BB1B2 · · ·Bt is a block-chain and Bt ∩ H1 = {x, v}, xiyi = E(Yi ∩ B) for each

i = 1, 2, and B ∩ B1 = {x, u}.

By Lemma (4.2.1), we may assume that there is a path (u, x1)-path PB in B containing

edge x2y2. Let P1 be a longest (x1, z
′)- path in Y1− y1 given by Lemma (4.4.2), where z′ is a
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vertex in the extreme block in Y1 which is adjacent to y. Let P2 be a longest (x2, y2)-path in

Y2 given by Lemma (4.4.1), and PH be a longest (x, v)-path in H given by Lemma (4.4.1).

Since BB1B2 · · ·Bt is 2-connected, BB1B2 · · ·Bt − x is connected. Let P3 be a (u, v)-path

in BB1B2 · · ·Bt − x. Let C = PH ∪P3 ∪ (PB − x2y2)∪P2 ∪P1 ∪ {xy, yz′}. Since x /∈ Y1 and

x /∈ Y2, |H| ≥ |Y1| ≥ |Y2|. Then

ℓ(C) ≥ 1

4

(

d− 2.1

d− 1
|H|
)r

+
1

4

(

d− 2.1

d− 1
|Y2|
)r

+
1

4

(

d− 2.1

(d− 1)2
|Y1|
)r

+ 2

≥ 1

4
· 2.5

(

d− 2.1

d− 1
|Y2|
)r

+ 2 ≥ 1

4
nr + 2,

since 2.5 = ((d− 1)log2 5/2)r.

We call a y-chain Y a small chain if |Y | < ǫ2n
d−2.1

.

Definition (4.6.2). A block B ∈ X is called a giant block (GB) if

• |B|
dB(x)−1

≥ ǫ2n
d−2.1

, or if there is a y-chain Y attached to B such that

• |Y | ≥ ǫ2n
d−2.1

, or

• |BY |
dBY (x)−1

≥ 2ǫ2n
d−2.1

.

If B is not a GB, we call B a small block (SB).

Let B be an x-block. If there exist y-chains attached to B, let Y be one of the y-chains

with largest cardinality. Then BY is called a y-extension of B. Notice that BY is a proper

H-leg, and so |BY | ≤ |H|.

Following the notation in the above definition, we have the following observation.

Claim (4.6.2.3). Let B be an x-block and BY a y-extension of B. Suppose that xb and xb′

are the virtual edges of B corresponding to its parent and one of its children, respectively.
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Then, there is a (b, b′)-path P in BY − x of length ℓ(P ) ≥ 1
4
(d−2.1

d−1
|Y |)r + 1 and there is a

(b, y)-path Q in G[V (BY ) ∪ {y}]− x of length ℓ(Q) ≥ 1
4
(d−2.1

d−1
|Y |)r + 1.

Proof. Let {u, v} = V (B) ∩ V (Y ). If B is a cycle, let P1 be the unique path from b

to b′ through uv. If B is 3-connected, then B − x is 2-connected. There is a path P1

from b to b′ through uv. By Lemma (4.4.1),there is a (u, v)-path path P2 in Y such that

ℓ(P2) ≥ 1
4
(d−2.1

d−1
|Y |)r + 1. Then P := (P1 − {uv}) ∪ P2 gives the desired (b, b′)-path.

To prove the second statement, if B is a cycle, let P1 be the unique path in B− x from

b to z ∈ {u, v}, say u, avoiding v; if B is 3-connected, B − x − v is connected, there is a

path P1 from b to u. We may assume that dY (v) ≥ 3. For otherwise, let Y ∗ be the graph

obtained from G[(V (Y ) ∪ {y}] ∪ {yu, yv, uv} by suppressing all degree 2 vertices. Then,

applying Theorem (4.1.1) (a) to Y ∗ − v, we can find a (u, y)-path P2 not containing uv

such that ℓ(P2) ≥ 1
4
(d−2.1

d−1
|Y |)r + 1. Thus, P2 ∪ P1 is the desired path. Hence, dY (v) ≥ 3.

This implies that the first block of Y is 3-connected. Let Y ∗ be the graph obtained from

G[(V (Y ) ∪ {y}] ∪ {yu, uv} by suppressing all degree 2 vertices. If dY ∗(y) ≥ 3, then Y ∗

is 3-connected. Applying Theorem (4.1.1) (c) on Y ∗, we find a (u, y)-path P2 of ℓ(P2) ≥
1
4
(d−2.1

d−1
|Y |)r + 2. (We may assume that uv 6∈ E(P2). As otherwise we can choose P1 to

be a (b, v)-path avoiding u and P := P1 ∪ (P2 − {uv}) gives the desired path.) Otherwise,

dY ∗(y) = 2; and thus Y ∗ is a block-chain with edge uy in one end-block and v at the other

end. Applying Lemma (4.4.1) on Y ∗, we find a (u, y)-path P2 of ℓ(P2) ≥ 1
4
(d−2.1

d−1
|Y |)r + 1.

In any case, P2 ∪ P1 is the desired path.

We need to distinguish three different types of degrees of x in B for each x-block: dB(x)

is the degree of x in B, d(G,B)(x) is the number of edges of G incident with x in B, and

d(V,B)(x) is the number of virtual edges in B, that is, the degree of B, as a vertex in the

subtree of T induced by all x-blocks. We have dB(x) ≤ d(G,B)(x) + d(V,B)(x) and the strick

inequality may hold (for example, an edge may be counted in both d(G,B)(x) and d(V,B)(x)).
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For each x-block, we now associate it with a number t(B):

t(B) = dB(x)− 2.

This number is in correspondence of the parameter t in Theorem (4.1.1) (a), and it is

used when applying Theorem (4.1.1) (a) on B. We will consider the ration |B|/t(B). For

convention, we define |B|/t(B) = 0 when t(B) = 0. (In this case B is a cycle.)

Claim (4.6.2.4). All GBs form an anti-chain (a set of vertices in the block-bond tree forms

an anti-chain if, pairwise, they don’t have the parent-child relationship) in T.

Proof. Suppose there is anH-leg B = B1 · · ·Bk−1BkL, where each Bj , 1 ≤ j ≤ k, is a 3-block

containing x, and L is the largest block-chain attached to Bk (so BkL contains an extreme

block, and so has a neighbor of y). Let {x, b0} := V (H1) ∩ V (B1), and V (Bi) ∩ V (Bi+1) =

{x, bi} for 1 ≤ i ≤ k − 1. Suppose there are indices i and m with i < m such that both Bi

and Bm are GBs, and m = k if Bm is an external GB.

For each 1 ≤ j 6= m ≤ k− 1, if Bj is a cycle then let Pj be the path in Bj − x from bj−1

to bj ; otherwise let Pj be a path in Bj − x from bj−1 to bj as given by Theorem (4.1.1)(a).

Let Yi and Ym be the largest y-chains (if exist) attached to Bi and Bm, respectively.

In the case k 6= m, let Pm be a longest (bm−1, bm)-path in Bm−x if |Bm|
dBm (x)−2

≥ ǫ2n
d−2.1

, and

let Pm be a longest (bm−1, bm)-path as guaranteed by Claim (4.6.2.3) if |Ym| ≥ ǫ2n
d−2.1

; let Pk be

a longest path inG[V (BkL)∪{y}]+bk−1y−x from bk−1 to y as given by Theorem (4.1.1)(a) (as

BkL has an extreme block which contains a neighbor of y, G[V (BkL) ∪ {y}] + bk−1y is 3-

connected).

If k = m, we pick Pk as in the previous case if |BYk|
t(Bk)

≥ 2ǫ2n
d−2

, or |B|
dB(x)−2

≥ ǫ2n
d−2.1

; if

|Yk| ≥ ǫ2n
d−2.1

, let Pk be the (bk−1, y)-path as guaranteed by Claim (4.6.2.3). Let P0 be

a path in H from x to b0 as given by Lemma (4.4.1). So, we have in either case that
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ℓ(Pk) ≥ 1
4
(d−2.1

d−1
ǫ2n

d−2.1
)r.

Then C := P0 ∪ (∪k−1
i=1Pi) ∪ Pk ∪ {xy} gives a cycle in G through xy. Noting |H| ≥ |Bj|

and |H| ≥ |BkY |, thus

ℓ(C) ≥ 1

4

(

d− 2.1

d− 1
|H|
)r

+
1

4

(

d− 2.1

d− 1

|Bi|
dBi

(x)− 2

)r

+
1

4

(

d− 2.1

d− 1

ǫ2n

d− 2

)r

+ 2

≥ 1

4

(

d− 2.1

d− 1
|Bi|

)r

+
1

4

(

d− 2.1

d− 1

|Bi|
dBi

(x)− 2

)r

+
1

4

(

d− 2.1

d− 1

ǫ2n

d− 2.1

)r

+ 2

=
1

4
nr + 2. (Provided |Bi|

dBi
(x)−2

≥ ǫ2n
d−2.1

.)

So, we may assume |Bi|
dBi

(x)−2
< ǫ2n

d−2
. Since Bi is a GB, by the definition, it has a y-chain

Yi such that |Yi| ≥ ǫ2n
d−2.1

. Let Pi be a path in Bi − x from bi−1 to bi as guaranteed by

Claim (4.6.2.3) such that ℓ(Pi) ≥ 1
4
(d−2.1

d−1
|Yi|)r + 1. All other paths are as defined in the

previous argument, we obtain a cycle C in G through xy such that

ℓ(C) ≥ 1

4

(

d− 2.1

d− 1
|H|
)r

+
1

4

(

d− 2.1

d− 1
|Yi|
)r

+
1

4

(

d− 2.1

d− 1

ǫ2n

d− 2

)r

+ 2

≥ 1

4

(

d− 2.1

d− 1
|Yi|
)r

+
1

4

(

d− 2.1

d− 1
|Yi|
)r

+
1

4

(

d− 2.1

d− 1

ǫ2n

d− 2

)r

+ 2

=
1

4
nr + 2. (Provided |Yi| ≥ ǫ2n

d−2.1
.)

Claim (4.6.2.5). We may assume |H| ≥ 2ǫ2n
d−2.1

provided that d ≥ 123.

Proof. Suppose that |H| < 2ǫ2n
d−2.1

. Then for each maximal proper H-leg L, we have |L| ≤
|H| < 2ǫ2

d−2.1
. As each maximal proper H-leg either contains an extreme block (and thus has

a neighbor of y), or it is an x-block (and thus has a neighbor of x), we then have at most

2(d− 1) maximal proper H-legs. All those H-legs, together with H, cover all the vertices of

V (G)− y. However, 4(d−1)ǫ2n
d−2.1

< n− 0.1 when d ≥ 123, showing a contradiction.
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Claim (4.6.2.6). For any virtual edge xv with v 6= v0, if L is an H-leg such that L∩H = xv,

then |L| ≤ ǫ2n
d−2.1

provided d ≥ 123.

Proof. We consider two cases according to whether |H1| > |H2H2 . . .Hh|. If |H1| ≥
|H2H3 . . .Hh|, then H1 ≥ ǫ2n

d−2.1
by Claim (4.6.2.5). Let PL be a longest (x, v)-path in L,

P0 be a longest (v0, y)-path in G′
V0
−x given by Theorem (4.1.1)(a), CH be a longest cycle in

H1 through two edges xv and xv0 given by Theorem (4.1.1)(b), and let PH = CH − {xv0}.
From them, we can obtain a cycle C through xy such that

ℓ(C) ≥ 1

4

(

d− 2.1

d− 1
|L|
)r

+
1

4

(

d− 2.1

d− 1

|G′
v0
|

dG′
v0
(x)− 2

)r

+
1

4

(

d− 2.1

(d− 1)2
|H1|

)r

+ 2 ≥ 1

4
nr + 2,

provided min{|L|, |G′
0|

dG′
0
(x)−2

, |H1|} ≥ ǫ2n
d−2.1

. Since the other two already do by Claims (4.6.2.1)

and (4.6.2.5), we may assume |L| does not.

If |H1| < |H2H3 . . . Hh|, then |H2H3 . . .Hh| > ǫ2n
d−2.1

. Define PL and P0 the same way

as above. Let H′ = H2H3 . . .Hh. Let C1 be a cycle in H1 through edges xv, xv0, and ab,

where ab = H1 ∩ H′, and P1 = C1 − {xv0}. Let P ′
H be a longest (a, b)-path in H′ given

by Lemma (4.4.1). Then we have ℓ(P ′
H) ≥ 1

4
(d−2.1

d−1
|H′|)r + 1. Similarly, we can show that

the cycle C := (P1 − {ab, xv}) ∪ P ′
H ∪ PL ∪ {xy} passes through xy, and ℓ(C) ≥ 1

4
nr + 2 if

|L| ≥ ǫ2n
d−2.1

.

Notice that there are at most d−2 (as Gv0 has an extreme block, and thus has a neighbor

of y) H-legs M with M∩H 6= xv0. By Claim (4.6.0.3) and Claim (4.6.2.6), |M| ≤ ǫ2n
d−2.1

for

each such H-leg, which gives
∑

M |M| ≤ d−2
d−2.1

ǫ2n. An immediate consequence is that

|G′
v0
|

dG′
v0
(x)

≥
n− |H| − d−2

d−2.1
ǫ2n

d− 2
. (4.24)

Claim (4.6.2.7). We may assume that |H| < (1+1.5ǫ2)n
d−1

provided d ≥ 125.
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Proof. Let P0 be a longest (v0, y)-path in G′
v0
− x given by Lemma (4.1.1) (a), and PH be a

longest (x, v0)-path in H given by Lemma (4.4.1). Then C := P0 ∪ PH ∪ {xy} gives a cycle

through xy such that

ℓ(C) ≥ 1

4

(

d− 2.1

d− 1
|H|
)r

+
1

4

(

d− 2.1

d− 1

|G′
v0 |

dG′
v0
(x)− 2

)r

+ 2

≥ 1

4

(

(d− 1)2 · (d− 2.1)2|H|
(d− 1)2(d− 2)

(1− |H|
n

− d− 2

d− 2.1
ǫ2n)

)r/2

nr + 2 ≥ 1

4
nr + 2,

provided |H| ≥ (1+1.5ǫ2)n
d−1

and d ≥ 125.

Since all GBs form an anti-chain of T and the root B0 is not a GB, there is a subtree

T0 of T containing the root such that it contains no GB and each branch of T−T0 contains

at most one GB. (The subtree containing B0 obtained from T by deleting all of the GBs has

the described property. ) We may assume T0 has this property with maximum cardinality.

Let T1, T2, · · · , Tm be the block-trees corresponding to branches of T− T0. For each Ti, we

call the block of Ti which is an immediate child of the x-block to which Ti attaching in T

the first block of Ti. By the maximality of T0 and the fact that all GBs form an anti-chain

in T, we have the following observations:

• Excluding B0, every x-block which is a leave of T0 is adjacent to a GB, which is the

first block of some Ti (as if not, we can make T0 larger by adding the first block of the

Ti to that leaf). Conversely, each GB is attached to an x-block which is a leaf of T0;

• Each virtual edge in B ∈ T0 which is adjacent to neither the parent of B nor the child

of B is corresponding to at least one some branch Ti.

For each x-block B, let B := BL be a maximal block-chain containing B as the first

block such that B has the largest cardinality among all of such block-chains. Then by the

maximality of B, it contains an extreme block.
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For each i, let Bi be the GB contained in Ti , we let Li := Bi. Then by Claim (4.6.0.3)

and Claim (4.6.0.4), we know each leg of Li is contained in an H-minor-leg, and hence has

cardinality less than ǫ2n
d−2.1

. By the construction of Li, it contains an extreme block. Note

that each Li and the branch Ti containing it, have exactly the same predecessors, that is

they are connected to B0 through exactly a same block-chain in T0. Also, notice that the

first block of each Li is an x-block. Let

L = {L1, L2, . . . ,Lm}.

Correspondingly, for each Li ∈ L, we let Mi ⊂ T0 be the chain of x-blocks which

connects Li to B0. Thus, MiLi is a block-chain. Notice that Mi may be empty in case that

the first block of Li is an immediate child of B0.

We use the partial order ≺ generalized by T naturally, i.e., if B1 is a child of B0, we

have B1 ≺ B0. For each Li, if Mi 6=∅, let η(Li) =
∑

B∈Mi

|B|
t(B)

, and

ω(Li) = |Li|+ η(Li).

Note that by introducing η(Li), (d(V,B)(x)−2)· |B|
t(B)

vertices in B are distributed into Li when

d(V,B)(x) ≥ 3 ( B is not a cycle). As each virtual edge incident to x in B which is not incident

to the parent or the child of B is contained also in some Ti, and there are (d(V,B)(x) − 2)

of such virtual edges. Let us see now which portion of vertices of G are not considered into
∑

i ω(Li).

(i) On a cycle-block B ∈ T0, degree 2 vertices which are neighbors of y;

(ii) Small y-chains and legs of Li contained in the branch Ti;

(iii) For each B ∈ T0, we have (d(V,B)(x)−2) · |B|
t(B)

vertices in |B| are distributed into ω(Li).

So, there are at most d(G,B)(x) · |B|
t(B)

vertices in B remained.
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We estimate the number of vertices in the above three cases.

• If (i), let δ2 be the number of such degree 2 vertices.

• If (ii), as each maximal block-chain has an extreme block, and each block-chain can

be extended to a maximal one, we suppose there are in total exactly s extreme blocks

which are contained in some branch Ti, but not in any one of Lj. Then,

∑

i

|Ti| ≤
∑

i

|Li|+
sǫ2n

d− 2.1
.

• For each B ∈ T0, which is not in case (i), |B| ≤ (d(V,B)(x)− 2) · |B|
t(B)

+ d(G,B)(x) · |B|
t(B)

.

As each B ∈ T0 is a SB, we have |B| ≤
(

(d(V,B)(x)− 2) · |B|
t(B)

+ d(G,B)(x)
)

ǫ2n
d−2.1

.

Let

s′ = δ2 +
∑

B∈T0

d(G,B)(x).

For each L ∈ L, let τx(L) = |NL(x)| − 1, τy(L) = |NG(y) ∩ L|, and τ(L) = 1
2
(τx(L) +

τy(L)). Note that the definition for τx(L) is different from that for τy(L), as when we remove

legs of Li in Ti, it may be possible that in Li, x is only incident to virtual edges. However,

each virtual edge incident to x correspondences to at least one real edge incident to x in

some legs of Li, so we let τx(L) = |NL(x)| − 1. The following inequalities hold.

∑

L∈L

τx(L) ≤ d(x)− 1 ≤ d− 1,

∑

L∈L

τy(L) ≤ d(y)− 1 ≤ d− 1, and

∑

L∈L

τ(L) ≤ 1

2
(d(x) + d(y)− 2) ≤ d− 1.

We note that for each L ∈ L, we have τx(L) ≥ 1, τy(L) ≥ 1, and τ(L) ≥ 1. By
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relabeling the branches L ∈ L−H, suppose we have

ω(L)
τ(L) ≥ ω(L′)

τ(L′)
≥ · · · ≥ ω(Lm)

τ(Lm)
.

As xy ∈ E(G), and also by noticing that |NH(y)− {x}| ≥ 1 and dH(x) − 1 ≥ 1, when

d ≥ 425,

ω(L)
τ(L) ≥

∑

i ω(Li)
∑

i τ(Li)
≥

n− |H| − (s+s′)ǫ2n
d−2.1

d− 1− 1
2
(τx(H) + τy(H))− (s+ s′)/2

≥ n− |H|
d− 2

, (4.25)

since under the assumption that |H| ≤ (1+1.5ǫ2)n
d−1

and s + s′ ≤ 2(d − 3) (xy ∈ E(G), and

both x and y have at least one neighbor in each of L and H),
n−|H|−

(s+s′)ǫ2n
d−2.1

d−2−(s+s′)/2
is an increasing

function of s+ s′. The notations L and L′ will be fixed for the above definition hereafter.

Claim (4.6.2.8). Let M := M1M2 . . .Mm be the block-chain connecting some L′′ ∈ L to

B0. Suppose V (M∩L) = V (Mm ∩ L) = {x, vm} and xv0 ∈ E(M1). Then in M, there is a

(v0, vm)-path PM with ℓ(PM) ≥ 1
4

∑

i

(

d−2.1
d−1

|Mi|
t(Mi)

)r

.

Proof. For each i = 1, 2, · · · , m − 1, let Mi ∩Mi+1 = {x, vi}. Let Pi be an (mi−1, mi)-path

in Mi − x given by Theorem (4.1.1) (a) (when Mi is a cycle, the assertion trivially holds)

such that ℓ(Pi) ≥ 1
4

(

d−2.1
d−1

|Mi|
t(Mi)

)r

. If Pi contains some virtual edges, which are supposed to

be replaced by a path connecting the two ends of the virtual edge in a y-chain of Mi with

the ends as attachments (notice that this y-chain is a small-chain; and thus is not contained

in any other block-chain in L− {L′′} by the construction of L′′). Let PM := ∪iPi, which is

the desired path.

Claim (4.6.2.9). We have L satisfies τ(L) = 1. In particular, if let L = L1L2 · · ·Ll, then

x ∈ V (L1)− V (L2) and L1 is a cycle provided that d ≥ 85.
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Proof. In the proof, we let α = τ(L). Suppose on the contrary that α > 1. Then α ≥ 1.5

from the definition. So, by (4.25) we have

ω(L) ≥ 1.5(n− |H|)
d− 2

.

Let M := M1M2 . . .Mm be the block chain connecting the root B0 of T and the block

L1 in L, and suppose L1 ∩ Mm = {x, vm}. Let G′ be a graph obtained from G[V (L) ∪
{y}] ∪ {yx, yvm} by suppressing all degree 2 vertices. Then it is 3-connected, and then by

Theorem (4.1.1) (a), there is an (vm, y
′)-path PL inG′−x such that ℓ(PL) ≥ 1

4

(

d−2.1
(d−1)2

|L|
)r

+2,

where y′ is a neighbor of y in the last block of L. Let PH be an (x, v0)-path in H given by

Lemma (4.4.1), and PM be a (v0, vm)-path in M− x such that ℓ(PM) ≥ 1
4

∑

i

(

d−2.1
d−1

|Mi|
t(Mi)

)r

given by Claim (4.6.2.8).

Set C := PH ∪ PM ∪ PL ∪ {yy′, xy}, which is a cycle through xy such that

ℓ(C) ≥ 1

4

(

d− 2.1

d− 1
|H|
)r

+
1

4

∑

i

(

d− 2.1

d− 1

|Mi|
t(Mi)

)r

+
1

4

(

d− 2.1

(d− 1)2
|L|
)r

+ 2.

As |H| ≥ n−
(d−2)ǫ2n
d−2.1

d−1
and |L| ≥ |Mi|

t(Mi)
for each Mi (as L contains a GB and each Mi is

not a GB), by using (4.1c),

ℓ(C) ≥ 1

4

(

d− 2.1

d− 1
|H|)

)r

+
1

4

(

d− 2.1

(d− 1)2
(|L|+ (d− 1)η(L))

)r

+ 2

≥ 1

4

(

d− 2.1

d− 1
|H|)

)r

+
1

4

(

d− 2.1

d− 1
ω(L)

)r

+ 2

≥ 1

4

(

(d− 1)2(d− 2.1)2|H|ω(L)
(d− 1)2

)r/2

nr + 2

=
1

4

(

1.5(d− 2.1− (d− 2)ǫ2)(d− 2.1 + ǫ2)

(d− 1)2

)r/2

nr + 2

≥ 1

4
nr + 2,
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when d ≥ 85.

Claim (4.6.2.10). We may assume that ω(L) < n
d−2.1

provided d ≥ 25.

Proof. Suppose not. Then we have also |H|+ η(L) ≥ n
d−2.1

. Let M := M1M2 . . .Mm be the

block chain connecting the rootB0 of T and the block L1 in L, and suppose L1∩Mm = {x, x′}.
Let G′ be a graph obtained fromG[V (L)∪{y}]+{yx, yx′} by suppressing all degree 2 vertices.

Then it is 3-connected, and by Theorem (4.1.1) (a), there is an (x′, y′)-path PL in G′ − x

such that ℓ(PL) ≥ 1
4

(

d−2.1
d−1

|L|
)r

+ 2, as |NG(x) ∩ L| = 2, where y′ is a neighbor of y in

the last block of L. Let PH be an (x, v0)-path in H given by Lemma (4.4.1), and PM be a

(v0, x
′)-path in M− x such that ℓ(PM) ≥ 1

4

∑

i

(

d−2.1
d−1

|Mi|
t(Mi)

)r

.

Set C := PH ∪ PM ∪ PL ∪ {yy′, xy}, which is a cycle through xy such that

ℓ(C) ≥ 1

4

(

d− 2.1

d− 1
|H|
)r

+
1

4

∑

i

(

d− 2.1

d− 1

|Mi|
t(Mi)

)r

+
1

4

(

d− 2.1

d− 1
|L|
)r

+ 2.

As 1
4

∑

i

(

d−2.1
d−1

|Mi|
t(Mi)

)r

= 1
4

∑

i

(

d−2.1
(d−1)2

|Mi|
t(Mi)

)r

+ 1
4

∑

i

(

d−2.1
(d−1)2

|Mi|
t(Mi)

)r

, and |H| ≥ |Mi|
t(Mi)

and

|L| ≥ |Mi|
t(Mi)

for each Mi, by using (4.1c), and the fact that (d−2.1)(d−1)log2(3/2)

(d−1)
≥ 1 when d ≥ 25,

we have

ℓ(C) ≥ 1

4

(

d− 2.1

d− 1
(|H|+ η(L))

)r

+
1

4

(

d− 2.1

d− 1
(|L|+ η(L))

)r

+ 2

≥ 1

4

(

(d− 1)2(d− 2.1)2

(d− 1)2(d− 2.1)2

)r/2

nr + 2

=
1

4
nr + 2.

We now show that there is a cycle C through xy in G such that ℓ(C) ≥ 1
4
nr + 2.
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Case 1. H1 ∈ H is a cycle.

Recall that |L|+ η(L) ≥ n−|H|
d−2

. This gives that |H|+ η(L) ≥ n
d−1

by |H| ≥ |L| ( as L is

a proper H-leg).

Let w := v0, and let M := M1M2 . . .Mm be the block-chain connecting the root B0 of

T and the block L1 in L. Suppose that V (M∩ L) = V (Mm ∩ L1) = {x, w′}. Let y′ be a

neighbor of y in H different from x (y′ exists by the 3-connectivity of G). Let PM be a path

in M− x from w to w′ such that ℓ(PM) ≥ 1
4

∑

i

(

d−2.1
d−1

|Mi|
t(Mi)

)r

given by Claim (4.6.2.8). As

both H1 and L1 are cycles, apply the particular part of Lemma (4.4.6) on H and L, without
loss of generality, assume that we find a (w, y′)-path PH in H − x, and an (x, w′)-path PL

in L such that ℓ(PH) + ℓ(PL) ≥ 1
4
(|H|r + |L|r). Let C := PH ∪ PM ∪ PL ∪ {yy′, xy}. Then

C is a cycle through xy such that ℓ(C) ≥ 1
4
|H|r + 1

4
|L|r + ℓ(PM) + 2. By splitting the value

ℓ(PM), we have

ℓ(C) ≥ 1

4
|H|r + 1

4
|L|r + ℓ(PM) + 2

≥ 1

4
(|H|+ η(L))r + 1

4
(|L|+ η(L))r + 2

≥ 1

4

(

(d− 1)2 · n

(d− 1)
· n− n/(d− 1)

d− 2

)r/2

+ 2

=
1

4
nr + 2.

Case 2. H1 ∈ H is 3-connected.

In this case, we have τx(H) ≥ 2. Hence by (4.25), we have

ω(L)
τ(L) ≥ n− |H|

d− 2.5
. (4.26)
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As τ(L) ≥ 1, a similar argument as in (4.25) gives that

ω(L′)

τ(L′)
≥ n− |H| − ω(L)

d− 3.5
. (4.27)

If η(H) ≥ η(L′), then we construct a cycle C1 through xy using H and L and a cycle

C2 through xy using L and L′, and show that ℓ(C1) + ℓ(C2) ≥ 2(1
4
nr + 2). If η(H) < η(L′),

then we construct a cycle C1 through xy using H and L′ and a cycle C2 through xy using

L and L′, and show that ℓ(C1) + ℓ(C2) ≥ 2(1
4
nr + 2). Assume, without loss of generality,

that η(H) ≥ η(L′). Suppose L = L1L2 · · ·Ll and L′ = L′
1L

′
2 · · ·L′

l′. Let M := M1M2 . . .Mm

be the block-chain connecting the root B0 of T and the first block L1 in L, and let M′ :=

M ′
1M

′
2 . . .M

′
m′ be the block-chain connecting the root B0 of T and the first block L′

1 in L′.

Furthermore, we suppose

• Mm ∩ L1 = {x, b} and M ′
m′ ∩ L′

1 = {x, b′};

• Lk = max{Li : Li ∈ L1} and L′
p = max{L′

i : L
′
i ∈ L2};

• Lk ∩Lk−1 = {a, b}, Lk ∩Lk+1 = {ak, bk}, L′
p ∩L′

p−1 = {c, d}, and L′
p ∩L′

p+1 = {ck, dk};

• L0 := Lk1Lk2 · · ·Lkk0 · · ·Lkk1 is the block-chain Lk − ab, and

• L′
0 := L′

p1L
′
p2 · · ·L′

pp0 · · ·L′
pp1 is the block-chain L′

p − cd such that

(i) Lkk0 = max{Lki : Lki ∈ L0} and L′
pp0

= max{L′
pi : L

′
pi ∈ L′

0},

(ii) a ∈ Lk1, b ∈ Lkk1, c ∈ L′
p1, and d ∈ L′

pp1
, and

(iii) given by Lemma (4.2.5), PL1 is a path in L1L2 · · ·Lk−1 − x from b to a, and PL′1

is a path in L′
1L

′
2 · · ·L′

k−1 − x from b′ to c.

We include the trivial case that Lk or L′
p is a cycle in the above notations. Denote

• l+ =
∑

i>k

(

d−2.1
(d−1)2

|Li|
)r

, l− =
∑

i<k

(

d−2.1
(d−1)2

|Li|
)r

;
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• l+0 =
∑

i>k0

(

d−2.1
(d−1)2

|Lki|
)r

, l−0 =
∑

i<k0

(

d−2.1
(d−1)2

|Lki|
)r

;

• w+ =
∑

i>p

(

d−2.1
(d−1)2

|L′
i|
)r

, w− =
∑

i<p

(

d−2.1
(d−1)2

|L′
i|
)r

;

• w+
0 =

∑

i>p0

(

d−2.1
(d−1)2

|L′
pi|
)r

, w−
0 =

∑

i<p0

(

d−2.1
(d−1)2

|L′
pi|
)r

.

Let y′ be a neighbor of y in the last block of L. We now construct a cycle C1 through

xy by using paths in H and L as follows:

• Let PH be a path in H from x to v0 given by Lemma (4.4.1) such that ℓ(PH) ≥
1
4
(d−2.1

d−1
|H|)r + 1,

• PM be a path from v0 to b in M − x such that ℓ(PM) ≥ 1
4

∑

i

(

d−2.1
d−1

|Mi|
t(Mi)

)r

given by

Claim (4.6.2.8), and

• PL be a path in L−x from b to y′ given by Lemma (4.4.5) such that ℓ(PL) ≥ 1
4
|Lkk0|r+

1
4
ℓ−0 + 1

4
ℓ+ − 1

2
.

Then C1 := PH ∪ PM ∪ PL ∪ {yy′, xy} is a cycle through xy. Now we construct a cycle

C2 in L and L′. Assume, without loss of generality, that the following inequality holds.

l+ + w− + w+
0 ≥ w+ + l− + l+0 .

Let PL be a path in L − x from b to y′ given by Lemma (4.4.5) such that

ℓ(PL) ≥
1

4
|Lkk0|r +

1

4
l+ +

1

4
l−0 − 1

2
,

and PL′ be a path in L′ − x from b′ to x given by (4.6) of Lemma (4.4.5) such that

ℓ(PL′) ≥ 1

4
|L′

pp0
|r + 1

4
w+

0 +
1

4
w−

0 +
1

4
w−.
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Let PM be a path in M − x from b to v0 such that ℓ(PM) ≥ 1
4

∑

i

(

d−2.1
d−1

|Mi|
t(Mi)

)r

given

by Claim (4.6.2.8), and let PM ′ be a path in M′ − x from b′ to v0 such that ℓ(PM ′) ≥
1
4

∑

i

(

d−2.1
d−1

|M ′
i |

t(M ′
i)

)r

given by Claim (4.6.2.8). Then C2 := PL ∪ PM ∪ PM ′ ∪ PL′ ∪ {xy, yy′}
contains a cycle through xy of length at least ℓ(PL)+ ℓ(P ′

L)+ 2− 1
2
(notice that PM and PM ′

may intersect). Then,

ℓ(PH) +
1

4
ℓ(PM) =

1

4

(

d− 2.1

d− 1
(|H|)

)

+
1

4

∑

i

(

d− 2.1

(d− 1)3
|Mi|
t(Mi)

)r

+ 1

≥ 1

4

(

d− 2.1

d− 1
(|H|+

∑

i

(d− 2.1)((d− 1)log2(5/4) − 1)

d− 1
· |Mi|
t(Mi)

)

)r

+ 1

≥ 1

4

(

d− 2.1

d− 1
(|H|+ η(L1))

)r

+ 1,

as when d ≥ 12, (d−2.1)((d−1)log2(5/4)−1)
d−1

> 1 and

ℓ(PL) +
1
4
· (l+0 + l− + ℓ(PM))

≥ 1
4
|Lpp0|r + 1

4

∑

j

(

d−2.1
(d−1)4

· |Lpj|
)r

+ 1
4

∑

i 6=p

(

d−2.1
(d−1)4

· |Li|
)r

+ 1
4

∑

i

(

d−2.1
(d−1)3

· |Mi|
t(Mi)

)r

− 1
2

≥ 1
4
(|Lpp0|+

∑

j
(d−2.1)((d−1)log2(9/8)−1)|Lpj |

d−1
+
∑

i 6=p
(d−2.1)((d−1)log2(9/8)−1)|Li|

d−1

+
∑

i
(d−2.1)((d−1)log2(5/4)−1)

d−1
· |Mi|
t(Mi)

)r − 1
2

≥ 1
4
ω(L)r − 1

2
,

as (d− 2.1)((d− 1)log2(9/8) − 1)/(d− 1) > 1 when d ≥ 64. Therefore,

ℓ(C1) +
1

4
· (l+0 + l−)− 1

2
ℓ(PM) ≥ 1

4

(

d− 2.1

d− 1
(|H|+ η(L))

)r

+
1

4
ω(L)r + 2 +

1

2

≥ 1

4

(

(d− 1)(d− 2− 1.5ǫ2)

(d− 1.5)(d− 2.5)

)r/2

nr + 2 +
1

2

≥ 1

4
nr + 2 +

1

2
,

where the last inequality is obtained by using inequality (4.2), ω(L) ≥ n−|H|
d−2.5

from (4.26),

|H| + η(L) ≥ n
d−1.5

following from |H| + η(L) ≥ ω(L), and |H| ≤ (1+1.5ǫ2)n
d−1

from Claim
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(4.6.2.7). Similarly,

ℓ(PL) +
1

4
ℓ(PM) + ℓ(PL′) +

1

4
ℓ(PM)− 1

4
(l+0 + l−)

≥ 1

4
(|L|+ η(L))r + 1

4
(|L′|+ η(L′))r − 1

2
.

Thus

ℓ(C2) +
1

4
· (ℓ(PM) + ℓ(PM))− 1

4
(l+0 + l−) ≥ 1

4
(|L1|+ η(L1))

r +
1

4
(|L2|+ η(L2))

r + 2− 1

2

≥ 1

4

(

(d− 2− 1.5ǫ2)(d− 2− 1.5ǫ2 − 1
d−2.1

)

(d− 2.5)(d− 3.5)

)r/2

+ 2− 1

2

≥ 1

4
nr + 2− 1

2
,

provided that d ≥ 125, where the conditions that ω(L) ≥ n−|H|
d−2.5

, ω(L′) ≥ n−|H|−ω(L)
d−3.5

from

(4.27), ω(L) ≤ n
d−2.1

from Claim (4.6.2.10), and |H| ≤ (1+1.5ǫ2)n
d−1

from Claim (4.6.2.7) are

used.

From above, we now can see ℓ(C1) + ℓ(C2) ≥ 2 · (1
4
nr +2), this implies that at least one

of ℓ(C1) and ℓ(C2) is at least
1
4
nr + 2. The proof is then completed.
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[9] Phong Châu. An Ore-type theorem on Hamiltonian square cycles. Graphs Combin.,

29(4):795–834, 2013.



168

[10] G. Chen, H. Enomoto, K. Ozeki, and S. Tsuchiya. Triangulations on the plane without

spanning Halin subgraphs. A manuscript.

[11] G. Chen, H. Ren, and S. Shan. Homeomorphically irreducible spanning trees in locally

connected graphs. Combin. Probab. Comput., 21(1-2):107–111, 2012.

[12] Guantao Chen, Zhicheng Gao, Xingxing Yu, and Wenan Zang. Approximating longest

cycles in graphs with bounded degrees. SIAM J. Comput., 36(3):635–656 (electronic),

2006.

[13] Guantao Chen and Songling Shan. Homeomorphically irreducible spanning trees. J.

Combin. Theory Ser. B, 103(4):409–414, 2013.

[14] Guantao Chen, Jun Xu, and Xingxing Yu. Circumference of graphs with bounded

degree. SIAM J. Comput., 33(5):1136–1170 (electronic), 2004.

[15] G. Cornuejols, D. Naddef, and W. R. Pulleyblank. Halin graphs and the travelling

salesman problem. Math. Programming, 26(3):287–294, 1983.

[16] A. Czygrinow and H. A. Kierstead. 2-factors in dense bipartite graphs. Discrete Math.,

257(2-3):357–369, 2002. Kleitman and combinatorics: a celebration (Cambridge, MA,

1999).

[17] Andrzej Czygrinow, Louis DeBiasio, and H. A. Kierstead. 2-factors of bipartite graphs

with asymmetric minimum degrees. SIAM J. Discrete Math., 24(2):486–504, 2010.

[18] Amy L. Davidow, Joan P. Hutchinson, and J. Philip Huneke. Planar and toroidal graphs

with homeomorphically irreducible spanning trees. In Graph theory, combinatorics, and

algorithms, Vol. 1, 2 (Kalamazoo, MI, 1992), Wiley-Intersci. Publ., pages 265–276.

Wiley, New York, 1995.

[19] G. A. Dirac. Some theorems on abstract graphs. Proc. London Math. Soc. (3), 2:69–81,

1952.



169

[20] M. N. Ellingham. Spanning paths, cycles, trees and walks for graphs on surfaces. Congr.

Numer., 115:55–90, 1996. Surveys in graph theory (San Francisco, CA, 1995).
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