14,223 research outputs found

    Radiation Risks and Mitigation in Electronic Systems

    Full text link
    Electrical and electronic systems can be disturbed by radiation-induced effects. In some cases, radiation-induced effects are of a low probability and can be ignored; however, radiation effects must be considered when designing systems that have a high mean time to failure requirement, an impact on protection, and/or higher exposure to radiation. High-energy physics power systems suffer from a combination of these effects: a high mean time to failure is required, failure can impact on protection, and the proximity of systems to accelerators increases the likelihood of radiation-induced events. This paper presents the principal radiation-induced effects, and radiation environments typical to high-energy physics. It outlines a procedure for designing and validating radiation-tolerant systems using commercial off-the-shelf components. The paper ends with a worked example of radiation-tolerant power converter controls that are being developed for the Large Hadron Collider and High Luminosity-Large Hadron Collider at CERN.Comment: 19 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    Mixed-signal CNN array chips for image processing

    Get PDF
    Due to their local connectivity and wide functional capabilities, cellular nonlinear networks (CNN) are excellent candidates for the implementation of image processing algorithms using VLSI analog parallel arrays. However, the design of general purpose, programmable CNN chips with dimensions required for practical applications raises many challenging problems to analog designers. This is basically due to the fact that large silicon area means large development cost, large spatial deviations of design parameters and low production yield. CNN designers must face different issues to keep reasonable enough accuracy level and production yield together with reasonably low development cost in their design of large CNN chips. This paper outlines some of these major issues and their solutions

    A programmable microsystem using system-on-chip for real-time biotelemetry

    Get PDF
    A telemetry microsystem, including multiple sensors, integrated instrumentation and a wireless interface has been implemented. We have employed a methodology akin to that for System-on-Chip microelectronics to design an integrated circuit instrument containing several "intellectual property" blocks that will enable convenient reuse of modules in future projects. The present system was optimized for low-power and included mixed-signal sensor circuits, a programmable digital system, a feedback clock control loop and RF circuits integrated on a 5 mm × 5 mm silicon chip using a 0.6 μm, 3.3 V CMOS process. Undesirable signal coupling between circuit components has been investigated and current injection into sensitive instrumentation nodes was minimized by careful floor-planning. The chip, the sensors, a magnetic induction-based transmitter and two silver oxide cells were packaged into a 36 mm × 12 mm capsule format. A base station was built in order to retrieve the data from the microsystem in real-time. The base station was designed to be adaptive and timing tolerant since the microsystem design was simplified to reduce power consumption and size. The telemetry system was found to have a packet error rate of 10<sup>-</sup><sup>3</sup> using an asynchronous simplex link. Trials in animal carcasses were carried out to show that the transmitter was as effective as a conventional RF device whilst consuming less power

    Mask Programmable CMOS Transistor Arrays for Wideband RF Integrated Circuits

    Get PDF
    A mask programmable technology to implement RF and microwave integrated circuits using an array of standard 90-nm CMOS transistors is presented. Using this technology, three wideband amplifiers with more than 15-dB forward transmission gain operating in different frequency bands inside a 4-22-GHz range are implemented. The amplifiers achieve high gain-bandwidth products (79-96 GHz) despite their standard multistage designs. These amplifiers are based on an identical transistor array interconnected with application specific coplanar waveguide (CPW) transmission lines and on-chip capacitors and resistors. CPW lines are implemented using a one-metal-layer post-processing technology over a thick Parylene-N (15 mum ) dielectric layer that enables very low loss lines (~0.6 dB/mm at 20 GHz) and high-performance CMOS amplifiers. The proposed integration approach has the potential for implementing cost-efficient and high-performance RF and microwave circuits with a short turnaround time

    Architectures for RF Frequency synthesizers

    Get PDF
    Frequency synthesizers are an essential building block of RF communication products. They can be found in traditional consumer products, in personal communication systems, and in optical communication equipment. Since frequency synthesizers are used in many different applications, different performance aspects may need to be considered in each case. The main body of the text describes a conceptual framework for analyzing the performance of PLL frequency synthesizers, and presents optimization procedures for the different performance aspects. The analysis of the PLL properties is performed with the use of the open-loop bandwidth and phase margin concepts, to enable the influence of higher-order poles to be taken into account from the beginning of the design process. The theoretical system analysis is complemented by descriptions of innovative system and building block architectures, by circuit implementations in bipolar and CMOS technologies, and by measurement results. Architectures for RF Frequency Synthesizers contains basic information for the beginner as well as in-depth knowledge for the experienced designer. It is widely illustrated with practical design examples used in industrial products.\ud Written for:\ud Electrical and electronic engineer

    A direct-sequence spread-spectrum communication system for integrated sensor microsystems

    Get PDF
    Some of the most important challenges in health-care technologies have been identified to be development of noninvasive systems and miniaturization. In developing the core technologies, progress is required in pushing the limits of miniaturization, minimizing the costs and power consumption of microsystems components, developing mobile/wireless communication infrastructures and computing technologies that are reliable. The implementation of such miniaturized systems has become feasible by the advent of system-on-chip technology, which enables us to integrate most of the components of a system on to a single chip. One of the most important tasks in such a system is to convey information reliably on a multiple-access-based environment. When considering the design of telecommunication system for such a network, the receiver is the key performance critical block. The paper describes the application environment, the choice of the communication protocol, the implementation of the transmitter and receiver circuitry, and research work carried out on studying the impact of input data characteristics and internal data path complexity on area and power performance of the receiver. We provide results using a test data recorded from a pH sensor. The results demonstrate satisfying functionality, area, and power constraints even when a degree of programmability is incorporated in the system

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog

    System-level optimization of baseband filters for communication applications

    Get PDF
    In this paper, a design approach for the high-level synthesis of programmable continuous-time baseband filters able to achieve optimum trade-off among dynamic range, distortion behavior, mismatch tolerance and power area consumptions is presented. The proposed approach relies on building programming circuit elements as arrays of switchable unit cells and defines the synthesis as a constrained optimization problem with both continuous and discrete variables, this last representing the number of enabled cells of the arrays at each configuration. The cost function under optimization is, then, defined as a weighted combination of performance indices which are estimated from macromodels of the circuit elements. The methodology has been implemented in MATLABℱ and C++, and covers all the classical approximation techniques for filters, most common circuit topologies (namely, ladder simulation and cascaded biquad realizations) and both transconductance-C (Gm-C) and active-RC implementation approaches. The proposed synthesis strategy is illustrated with a programmable equal-ripple ladder Gm-C filter for a multi-band power-line communication modem.P.R.O.F.I.T. FIT-070000-2001-84
    • 

    corecore