428 research outputs found

    Analysis of Platform Noise Effect on Performance of Wireless Communication Devices

    Get PDF

    An Experimental Study of Conducted EMI Mitigation on the LED Driver using Spread Spectrum Technique

    Get PDF
    LED driver has the potential to interfere the system of electronic devices if the voltage and current change rapidly.  Several previous studies presented various solutions to overcome this problem such as particular converter design, component design, electromagnetic interference (EMI) filters, and spread-spectrum techniques. Compared to other solutions, the spread-spectrum technique is the most potential way to reduce the EMI in LED applications due to its limited cost-size-weight. In this paper, the effectiveness of conducted EMI suppression performance and the evaluation of its effect on LED luminance using spread-spectrum techniques are investigated. Spread-spectrum is applied to the system by modifying the switching frequency by providing disturbances at pin IADJ. The disorder is given in the form of four signals, namely square, filtered-square, triangular, and sine disturbance signals. The highest level of the EMI suppression of about 31.89% is achieved when the LED driver is given 800 mVpp filtered-square waveform. The highest reduction power level occurs at fundamental frequency reference, when it is given 700 mVpp square disruption signal, is about 81.77% reduction. The LED luminance level will reduce by 85.2% when it is given the four waveforms disruption signals.  These reductions occur as the switching frequency of the LED driver does not work on a fixed frequency, but it varies in certain bands. LED brightness level has a tendency to generate a constant value of 235 lux when it is given the disruption signals. This disturbance signal causes the dimming function on the system that does not work properly

    Recent advances in the hardware architecture of flat display devices

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2007Includes bibliographical References (leaves: 115-117)Text in English; Abstract: Turkish and Englishxiii, 133 leavesThesis will describe processing board hardware design for flat panel displays with integrated digital reception, the design challenges in flat panel displays with integrated digital reception explained with details. Thesis also includes brief explanation of flat panel technology and processing blocks. Explanations of building blocks of TV and flat panel displays are given before design stage for better understanding of design stage. Hardware design stage of processing board is investigated in two major steps, schematic design and layout design. First step of the schematic design is system level block diagram design. Schematic diagram is the detailed application level hardware design and layout is the implementation level of the design. System level, application level and implementation level hardware design of the TV processing board is described with details in thesis. Design challenges, considerations and solutions are defined in advance for flat panel displays

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    Developing Techniques For Reducing Emc Effects On Microcontroller Based Medical Equipment

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2007Biyomedikal EMC etkileriBiomedical EMC effectsYüksek LisansM.Sc

    ANALYSIS AND OPTIMIZATION OF ELECTRICAL SYSTEMS IN A SOLAR CAR WITH APPLICATIONS TO GATO DEL SOL III-IV

    Get PDF
    Gato del Sol III, was powered by a solar array of 480 Silicon mono-crystalline photovoltaic cells. Maximum Power Point trackers efficiently made use of these cells and tracked the optimal load. The cells were mounted on a fiber glass and foam core composite shell. The shell rides on a lightweight aluminum space frame chassis, which is powered by a 95% efficient brushless DC motor. Gato del Sol IV was the University of Kentucky Solar Car Team’s (UKSCT) entry into the American Solar Car Challenge (ASC) 2010 event. The car makes use of 310 high density lithium-polymer batteries to account for a 5 kWh pack, enough to travel over 75 miles at 40 mph without power generated by the array. An in-house battery protection system and charge balancing system ensure safe and efficient use of the batteries. Various electrical sub-systems on the car communicate among each other via Controller Area Network (CAN). This real time data is then transmitted to an external computer via RF communication for data collection

    Inductorless bi-directional piezoelectric transformerbased converters: Design and control considerations.

    Get PDF

    비디오 클럭 주파수 보상 구조를 이용한 디스플레이포트 수신단 설계

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 8. 정덕균.This thesis presents the design of DisplayPort receiver which is a high speed digital display interface replacing existing interfaces such as DVI, HDMI, LVDS and so on. The two prototype chips are fabricated, one is a 5.4/2.7/1.62-Gb/s multi-rate DisplayPort receiver and the other is a 2.7/1.62-Gb/s multi-rate Embedded DisplayPort (eDP) receiver for an intra-panel display interface. The first receiver which is designed to support the external box-to-box display connection provides up to 4K resolution (4096×2160) with the maximum data rate of 21.6 Gb/s when 4 lanes are all used. The second one aims to connect internal chip-to-chip connection such as graphic processors to display panels in notebooks or tablet PCs. It supports the maximum data rate of 10.8 Gb/s with 4-lane operation which is able to provide the resolution of WQXGA (2560×1600). Since there is no dedicated clock channel, it must contain clock and data recovery (CDR) circuit to extract the link clock from the data stream. All-Digital CDR (ADCDR) is adopted for area efficiency and better performances of the multi-rate operation. The link rate is fixed but the video clock frequency range is fairly wide for supporting all display resolutions and frame rates. Thus, the wide range video clock frequency synthesizer is essential for reconstructing the transmitted video data. A source device starts link training before transmitting video data to recover the clock and establish the link. When the loss of synchronization between the source device and the sink device happens, it usually restarts the link training and try to re-establish the link. Since link training spends several milliseconds for initializing, the video image is not displayed properly in the sink device during this interval. The proposed clock recovery scheme can significantly shorten the time to recover from the link failure with the ADCDR topology. Once the link is established after link training, the ADCDR memorizes the DCO codes of the synchronization state and when the loss of synchronization happens, it restores the previous DCO code so that the clock is quickly recovered from the failure state without the link re-training. The direct all-digital frequency synthesizer is proposed to generate the cycle-accurate video clock frequency. The video clock frequency has wide range to cover all display formats and is determined by the division ratio of large M and N values. The proposed frequency synthesizer using a programmable integer divider and a multi-phase switching fractional divider with the delta-sigma modulation exhibits better performances and reduces the design complexity operating with the existing clock from the ADCDR circuit. In asynchronous clock system, the transmitted M value which changes over time is measured by using a counter running with the long reference period (N cycles) and updated once per blank period. Thus, the transmitted M is not accurate due to its low update rate, transport latency and quantization error. The proposed frequency error compensation scheme resolves these problems by monitoring the status of FIFO between the clock domains. The first prototype chip is fabricated in a 65-nm CMOS process and the physical layer occupies 1.39 mm2 and the estimated area of the link layer is 2.26 mm2. The physical layer dissipates 86/101/116 mW at 1.62/2.7/5.4 Gb/s data rate with all 4-lane operation. The power consumption of the link layer is 107/145/167 mW at 1.62/2.7/5.4 Gb/s. The second prototype chip, fabricated in a 0.13μm CMOS process, presents the physical layer area of 1.59 mm2 and the link layer area of 3.01 mm2. The physical layer dissipates 21 mW at 1.62 Gb/s and 29 mW at 2.7 Gb/s with 2-lane operation. The power consumption of the link layer is 31 mW at 1.62 Gb/s and 41 mW at 2.7 Gb/s with 2-lane operation. The core area of the video clock synthesizer occupies 0.04 mm2 and the power dissipation is 5.5 mW at a low bit rate and 9.1 mW at a high bit rate. The output frequency range is 25 to 330 MHz.ABSTRACT I CONTENTS IV LIST OF FIGURES VII LIST OF TABLES XII CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 MOTIVATION 4 1.3 THESIS ORGANIZATION 12 CHAPTER 2 DIGITAL DISPLAY INTERFACE 13 2.1 OVERVIEW 13 2.2 DISPLAYPORT INTERFACE CHARACTERISTICS 18 2.2.1 DISPLAYPORT VERSION 1.2 18 2.2.2 EMBEDDED DISPLAYPORT VERSION 1.2 21 2.3 DISPLAYPORT INTERFACE ARCHITECTURE 23 2.3.1 LAYERED ARCHITECTURE 23 2.3.2 MAIN STREAM PROTOCOL 27 2.3.3 INITIALIZATION AND LINK TRAINING 30 2.3.3 VIDEO STREAM CLOCK RECOVERY 35 CHAPTER 3 DESIGN OF DISPLAYPORT RECEIVER 39 3.1 OVERVIEW 39 3.2 PHYSICAL LAYER 43 3.3 LINK LAYER 55 3.3.1 OVERALL ARCHITECTURE 55 3.3.2 AUX CHANNEL 58 3.3.3 VIDEO TIMING GENERATION 61 3.3.4 CONTENT PROTECTION 63 3.3.5 AUDIO TRANSMISSION 66 3.4 EXPERIMENTAL RESULTS 68 CHAPTER 4 DESIGN OF EMBEDDED DISPLAYPORT RECEIVER 81 4.1 OVERVIEW 81 4.2 PHYSICAL LAYER 84 4.3 LINK LAYER 88 4.3.1 OVERALL ARCHITECTURE 88 4.3.2 MAIN LINK STREAM 90 4.3.3 CONTENT PROTECTION 93 4.4 PROPOSED CLOCK RECOVERY SCHEME 94 4.5 EXPERIMENTAL RESULTS 100 CHAPTER 5 PROPOSED VIDEO CLOCK SYNTHESIZER AND FREQUENCY CONTROL SCHEME 113 5.1 MOTIVATION 113 5.2 PROPOSED VIDEO CLOCK SYNTHESIZER 115 5.3 BUILDING BLOCKS 121 5.4 FREQUENCY ERROR COMPENSATION 126 5.5 EXPERIMENTAL RESULTS 131 CHAPTER 6 CONCLUSION 138 BIBLIOGRAPHY 141 초 록 152Docto
    corecore