807 research outputs found

    Effect of ageing on carotid artery morphology, hemodynamics, and the development of atherosclerosis.

    Get PDF
    Cardiovascular diseases and ageing are two main challenges for health services. Cardiovascular disease is characterised by atherosclerosis, leading to heart attack and stroke. Atherosclerosis is a focal disease and occurs preferentially in regions of arterial bifurcation and curvature where complex flow features are observed. The carotid arteries represent a region of significant involvement in atherosclerosis. Previous studies have shown that haemodynamic factors are important determinants of the local distribution of atherosclerosis. However, longitudinal studies are lacking. The aim of this study was to investigate age-related changes in carotid artery morphology and haemodynamics based on longitudinal data acquired from a group of middle-aged subjects recruited to a cardiovascular disease prevention programme in Italy. The longitudinal study started in 1996 and participants were examined twice 12 years apart. All subjects underwent blood viscosity measurements and echo-Doppler examinations of the common carotid artery at baseline and follow-up. From the acquired ultrasound data, common carotid artery diameter, blood flow velocity, and intima-media thickness were measured, and wall shear stress, circumferential wall tension and Peterson elastic modulus were calculated. It was found that with ageing, blood viscosity increased, common carotid artery diameter increased, mean blood velocity and wall shear stress decreased, while intima-media thickness, circumferential wall tension and arterial stiffness increased. Interrelationships of the data were also examined: reductions in common carotid wall shear stress were independently associated with intima-media thickening. Furthermore, ageing-associated wall shear stress reduction predicted the development of atherosclerotic plaques, independently of known cardiovascular risk factors. In addition, in participants presenting shear stress reductions in only one side of the common carotid artery, development of atherosclerosis in the carotid tree was limited to the same body side. In conclusion, this longitudinal study confirms the role of arterial wall shear stress as a mediator of the effects of ageing on atherosclerosis.Open Acces

    Understanding the role of hemodynamics in the initiation, progression, rupture, and treatment outcome of cerebral aneurysm from medical iamge-based computational studies

    Get PDF
    About a decade ago, the first image-based computational hemodynamic studies of cerebral aneurysms were presented. Their potential for clinical applications was the results of a right combination of medical image processing, vascular reconstruction, and grid generation techniques used to reconstruct personalziaed domains for computational fluid and solid dynamics solvers and data analysis and visualization techniques. A considerable number of studies have captivated the attention of clinicians, neurosurgeons, and neuroradiologists, who realized the ability of those tools to help in understanding the role played by hemodynamics in the natural history and management of intracranial aneurysms. This paper intends to summarize the most relevant results in the filed reported during the last years.Fil: Castro, Marcelo Adrian. Universidad TecnolĂłgica Nacional. Facultad Regional Buenos Aires; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentin

    Microcirculation and inflammation in a numerical simulation approach

    Get PDF
    Inflammation is the response of the organism to eradicate the agent of lesion or infection in order to achieve hemostasis. This response requires the migration of specific leukocyte populations from the blood circulation towards the inflamed area. Leukocyte recruitment constitutes a complex cellular process by which leukocytes are first recruited to the endothelial vascular wall of post-capillary venules across which they further extravasate into the interstitial tissue. Recruitment is mediated via cell-cell interactions between the leukocyte and the endothelium and occurs through a multi-step cascade: tethering, rolling, slow rolling, arrest, crawling, adhesion and transmigration. However, whether or not the leukocytes adhere to the endothelium depends not only on the chemical forces generated by adhesion molecules on leukocytes and endothelial cells, but also on the physical forces that act on those cells. It has been suggested that fluid shear stress resulting from blood flow also regulates leukocyte activity which makes the fluid dynamic environment of the circulation to be considered an important aspect for leukocyte recruitment and migration during the inflammatory response. Most of the studies on the inflammatory response and in particular on leukocyte recruitment are based on animal models and involve, among others, the quantification of inflammatory mediators and cellular players, and/or the analysis of the leukocyte-endothelial cell interactions by intravital microscopy. However, the contribution of hemodynamics for leukocyte recruitment has been seldom addressed in those studies. This is mostly due to the fact that the study of hemodynamics in in vivo animal models is not straightforward and moreover, that several hemodynamic parameters cannot be experimentally determined due to technical constraints. In this work, we reasoned that these limitations could be circumvented by the development and use of numerical simulations to describe leukocyte recruitment. Many of the processes, which take place in living organisms, can be expressed as mathematical equations. This applies to leukocyte recruitment, for which scarce numerical models existed before the beginning of this work. Importantly, these mathematical simulations were performed without considering simultaneously all the players in the process, namely the vessel, the blood flow and the leukocytes. Moreover, most of these studies were two dimensional, assumed blood as a Newtonian fluid with constant viscosity and did not take into account in vivo experimental data. Taken this, our major goal with this work was to understand the contribution of hemodynamics to leukocyte recruitment in inflammation. For such purpose, we aimed here at developing numerical simulations that more adequately reproduced this process. For such, we set up animal models of inflammation to obtain the experimental data required for the development of those numerical simulations. Finally, we used these models to investigate the role of hemodynamics in leukocyte recruitment in inflammation. First, we considered the simpler case of a numerical simulation that assumed leukocytes to be rigid spheres and blood, a non-Newtonian fluid. For such, we initially developed an animal model of inflammation in Wistar rats using a lipopolysaccharide (LPS) as an inflammatory agent. Blood samples were collected for determination of TNF-α levels to ensure the triggering of the inflammatory process. Importantly, the number of rolling and adherent leukocytes in post-capillary venules was monitored using an intravital microscopy approach. As expected, our results showed that there is an increase in TNF-α concentrations after 15 minutes of LPS administration and a significant increase in the number of rolling and adherent leukocytes. The recorded intravital microcopy images, along with other recorded parameters, were then used, in collaboration with a group of mathematicians, to develop a numerical model capable of describing leukocyte recruitment in the microcirculation. To evaluate the contribution of hemodynamics, the localized velocity fields and shear stresses on the surface of leukocytes and near the vessel wall contact points have been computed in two discrete situations, namely as a single leukocyte or when a cluster of them are recruited towards the vessel wall. In the first situation, our numerical results showed the presence of one region of maximum shear stress on the surface of the leuko- cyte close to the endothelial wall and of two regions of minimum shear stress on the op- posite side of the cell. The different areas of shear stress observed in the surface of the leukocyte may be important in directing it towards the endothelial wall during an inflammatory response. The identification of a region of maximum shear stress is consistent with the molecular mechanisms that govern leukocyte rolling because it may actually cor- respond to the area that supports the interaction with the endothelium. On the other hand, the relatively lower shear stress regions may correlate with leukocyte surface areas where binding to the endothelium is not occurring at the moment, thus enabling the roll- ing of the cell along the endothelium. It was also observed that the shear stress at the endothelium gets higher as a cluster of leukocytes moves in the main stream. This sug- gests that the presence of a cluster of leukocytes may potentiate leukocyte rolling, as the increase in the shear stress promoted by the recruited leukocytes may support the migra- tion and recruitment of additional cells. Despite closely simulating leukocyte recruitment, our initial numerical simulation consid- ered the simple case of leukocytes as rigid spheres. However, while circulating leukocytes maintain an approximately spherical shape, rolling leukocytes are known to deform. In order to account for the leukocyte deformability changes that occur during its recruit- ment in inflammation, we needed to assess the deformability profile of the leukocytes under flow and therefore, to “directly” observe them regardless of the other blood cells. For such, intravital microscopy was performed in the mouse cremaster of a transgenic mice strain (Lys-EGFP-ki) in which fluorescent neutrophils can be individually tracked. By using PAF as an inflammatory agent, the analysis of the leukocyte-endothelial cell interac- tions showed a continuous increase in the number of rolling and adherent neutrophils up to 4 hours after the introduction of the inflammatory stimuli, thus confirming the devel- opment of an inflammatory response. As the properties of the red blood cells modulate blood flow properties, erythrocyte deformability was also addressed in this model. A con- tinuous decrease of this parameter was observed throughout time. The decrease in the erythrocyte deformability will most probably lead to an increase in the blood viscosity and to the decrease of the blood flow velocity. These conditions should facilitate the mi- gration of leukocytes from the mainstream to the endothelial wall and promote leukocyte slow rolling and adhesion during the inflammatory response. Importantly, in the intravital microcopy images obtained with this latter model, we clearly observed the deformation of neutrophils along the endothelial wall during rolling, as well as the formation of tethers. As such, in these images, leukocyte trajectories were tracked and their velocities and diameters were measured and further applied to the numerical simulations. Using a recent validated mathematical model describing the coupled defor- mation-flow of an individual leukocyte and the respective experimental results, numerical simulations of the recruitment of an individual leukocyte and of two leukocytes under different velocities were performed, considering a constant blood viscosity. The mathe- matical models obtained showed that under conditions of increased velocity the cell movement is accelerated along the endothelial layer, favouring the dissociation of leuko- cyte-endothelium interactions at designated attraction points. These observations lead us to propose that, in order to attain an efficient inflammatory response, the blood flow ve- locity needs so as to decrease to facilitate slow rolling and subsequent adhesion. These results are corroborated by the decrease in the erythrocyte deformability observed in our animal model, which will ultimately have an impact on the blood flow velocity. Our results further showed that in the vicinity of an adherent leukocyte there is an early slight decel- eration of the rolling leukocyte when compared with the case of an individual leukocyte. As such, these observations strongly suggest that the presence of an adherent cell in the vicinity should decrease the velocity of another leukocyte that is being recruited, thus promoting its slow rolling, and contributing to its capture by the endothelial cells. Altogether, our experimental data and numerical simulations support our working hy- pothesis that the hemodynamic properties of the flow and of the cells in circulation should play an essential role in the margination and rolling of the leukocytes to the endo- thelial wall, which in turn will impact the success of the inflammatory response. In partic- ular, our results strongly suggest that changes in hemodynamic conditions, such as de- creased flow velocities and the increase of the shear stress, will contribute to target leu- kocytes to the endothelial wall. Given our results, we propose that any change in the he- modynamic properties will certainly influence the outcome of the inflammatory response. As such, the adherence of the leukocytes to the endothelium should depend not only on the relative magnitude of the chemical forces generated by the interaction of adhesion molecules between leukocytes and endothelial cells, but also on the physical forces that act on the leukocytes. In this respect, our results suggest that alterations in the blood flow, for example in the flow velocity, will occur during an inflammatory process, thus potentiating the recruitment of more leukocytes towards the inflamed area and contrib- uting to a successful inflammatory response. Overall, the numerical simulations allowed us to better understand the contribution of the hemodynamic properties of the flow to the progression of an inflammatory response and to deepen our knowledge on leukocyte recruitment in inflammation. Importantly, our work provided numerical tools that can be used for the subsequent study and modulation of the hemodynamic parameters involved in an inflammatory response. In particular, these numerical simulations will surely enable us, in the near future, to determine or es- timate a large set of parameters which are unlikely to be recoverable by in vivo experi- ments. Moreover, our methods will allow us to analyze how the parameters evolve over time. Altogether our results further reinforce the notion that the improvement and de- velopment of animal models and numerical tools will certainly provide the medical and biological community with useful tools to study leukocyte recruitment in inflammation. By closely reproducing the microcirculation and the inflammatory process, these tools will be critical for a better comprehension of the inflammatory process and of the mecha- nisms underlying a multitude of inflammatory pathological conditions

    Towards patient-specific modelling as a pre-operative planning strategy and follow up assessment for the treatment of advanced heart failure with rotary blood pumps

    Get PDF
    Background: Ventricular Assist Devices (VADs) insertion is an established treatment for patients with end-stage heart failure waiting for a heart transplant or in need for long-term circulatory support (destination therapy). Rotary blood pumps (RBP) are the most popular devices in view of their size and performance. Pre-operative planning strategy for the insertion of a left ventricular assist device (LVAD) requires a timely discussion at a Multi-Disciplinary Team Meeting (MDT). Clinical-decision making is based according to the needs of the patient and must be processed without delays. Nevertheless, thrombus formation remains a feared complication which affects outcome. VADs operate in a flow regime which is difficult to simulate: the transitional region at the boundary of laminar and turbulent flow (low Reynolds number). Different methods have been used but the best approach remains debatable. Computational Fluid Dynamics (CFD) is an attractive and invaluable tool for the study of the interactions between VADs and the cardiovascular system. The aim of this thesis is three-fold: a) to investigate the use of pressure-volume analysis in a clinical setting through the review of six heart failure patients previously discussed at a MDT meeting with a view to predict or guide further management; b) to review the theory behind modelling approaches to VADs and their interactions with the cardiovascular system for better understanding of their clinical use. Then, an overview of computational fluid dynamics (CFD) is considered as a prelude to its application to the analysis of VADs performance. Additionally, the development of a simplified model of centrifugal pump will be used in initial simulations as preliminary analysis; c) to examine an example of a proof-of-concept pilot patient-specific model of an axial flow pump (HeartMate II) as pre-operative planning strategy in a patient-specific model with a view to identify potential critical areas that may affect pump function and outcome in a clinical setting. Material and Methods: 3D reconstruction from CT-scan images of patients who underwent the insertion of rotary blood pumps, namely HeartWare HVAD and HeartMate II. Ansys Fluent has been used for CFD analysis based on the fundamental governing equations of motion. Blood has been modelled as incompressible, Newtonian fluid with density = 1060 and viscosity = 0.0035 kg/m-s. The laminar and SST models have been used for comparison purposes. The rotational motion of the impeller has been implemented using the moving reference frame (MRF) approach. The sliding mesh method has also been used to account for unsteady interaction between stationary and moving part. The no-slip condition has been applied to all walls, which were assumed to be rigid. Boundary conditions consisting of velocity inlet and pressure outlet of the pump based on different settings and constant rotational speed for the impeller. Pressure-velocity coupling has been based on the coupled scheme. Spatial discretisation consisted of the “least square cell based” gradient for velocity and “PRESTO” or second order for pressure. Second order upwind has been set for the momentum, turbulent kinetic energy and specific dissipation rate. First order implicit has been set for transient formulation. The pseudo transient algorithm (steady state), the high order relaxation term and the warped-face gradient correction have been used to add an unsteady term to the solution equations with the aim to improve stability and enhance convergence. Specific settings have been considered for comparison purposes. Results: Pressure-volume simulation analysis in six advanced heart failure patients showed that an integrated model of the cardiovascular system based on lumped-parameter representation, modified time-varying elastance and pressure-volume analysis of ventricular function seems a feasible and suitable approach yielding a sufficiently accurate quantitative analysis in real time, therefore applicable within the time-constraints of a clinical setting. Lumped-parameter models consist of simultaneous ordinary differential equations complemented by an algebraic balance equation and are suitable for examination of global distribution of pressure, flow and volume over a range of physiological conditions with inclusion of the interaction between modelled components. Higher level lumped-parameter modelling is needed to address the interaction between the circulation and other systems based on a compromise between complexity and ability to set the required parameters to personalise an integrated lumped-parameter model for a patient-specific approach. CARDIOSIM© fulfils these requirements and does address the systems interaction with its modular approach and assembly of models with varying degree of complexity although 0-D and 1-D coupling may be required for the evaluation of long-term VAD support. The challenge remains the ability to predict outcome over a longer period of time. The preliminary CFD simulations with the HeartWare HVAD centrifugal pump demonstrated that it is possible to obtain an accurate analysis in a timely manner to complement the clinical review process. The simulations with the pilot patient-specific model of the HeartMate II axial flow pump revealed that a complex 3D reconstruction is feasible in a timely manner and can be used to generate sufficiently accurate results to be used in the context of a MDT meeting for the purposes of clinical decision-making. Overall, these three studies demonstrate that the time frame of the simulations was within hours which may fit the time constraints of the clinical environment in the context of a MDT meeting. More specifically, it was shown that the laminar model may be used for an initial evaluation of the flow development within the pump. Nonetheless, the k- model offers higher accuracy if the timeline of the clinical setting allows for a longer simulation. Conclusion: This thesis aimed at the understanding of the use of computational modelling as a pre-operative planning strategy and follow up assessment for the treatment of advanced heart failure with rotary blood pumps. The novelty lays in the use of both pressure-volume simulation analysis and 3D flow dynamics studies in VADs with a view to treatment optimisation and outcome prediction within the time constraints of a clinical setting in the context of a MDT meeting. The clinical significance and the contribution to the field is a more targeted approach for different groups of patients and a more quantitative evaluation in the clinical decision process based on a pro-active co-operation between clinicians and scientists reducing the potential for “guess work”. The results of this thesis are a proof-of-concept as a prelude to a potential future implementation of patient-specific modelling within a clinical setting on a daily basis demonstrating a clear clinical significance and contribution to the field. The proposed approach does not consider modelling and simulation as a substitute for clinical experience but an additional tool to guide therapeutic intervention and complement the clinical decision process in which the clinician remains the ultimate decision-maker. Such an approach may well add a different dimension to the problem of heart failure with potential for high return in terms of patient’s outcome and long-term surveillance. The same principles would be applicable to other cardiovascular problems in line with the current concept of “Team Approach” such as the Heart Team, the Structural Heart Team or the Aortic Team. The present work has taken this concept closer to clinical delivery and has highlighted its potential but further work remains to be done in refining the technique.Background: Ventricular Assist Devices (VADs) insertion is an established treatment for patients with end-stage heart failure waiting for a heart transplant or in need for long-term circulatory support (destination therapy). Rotary blood pumps (RBP) are the most popular devices in view of their size and performance. Pre-operative planning strategy for the insertion of a left ventricular assist device (LVAD) requires a timely discussion at a Multi-Disciplinary Team Meeting (MDT). Clinical-decision making is based according to the needs of the patient and must be processed without delays. Nevertheless, thrombus formation remains a feared complication which affects outcome. VADs operate in a flow regime which is difficult to simulate: the transitional region at the boundary of laminar and turbulent flow (low Reynolds number). Different methods have been used but the best approach remains debatable. Computational Fluid Dynamics (CFD) is an attractive and invaluable tool for the study of the interactions between VADs and the cardiovascular system. The aim of this thesis is three-fold: a) to investigate the use of pressure-volume analysis in a clinical setting through the review of six heart failure patients previously discussed at a MDT meeting with a view to predict or guide further management; b) to review the theory behind modelling approaches to VADs and their interactions with the cardiovascular system for better understanding of their clinical use. Then, an overview of computational fluid dynamics (CFD) is considered as a prelude to its application to the analysis of VADs performance. Additionally, the development of a simplified model of centrifugal pump will be used in initial simulations as preliminary analysis; c) to examine an example of a proof-of-concept pilot patient-specific model of an axial flow pump (HeartMate II) as pre-operative planning strategy in a patient-specific model with a view to identify potential critical areas that may affect pump function and outcome in a clinical setting. Material and Methods: 3D reconstruction from CT-scan images of patients who underwent the insertion of rotary blood pumps, namely HeartWare HVAD and HeartMate II. Ansys Fluent has been used for CFD analysis based on the fundamental governing equations of motion. Blood has been modelled as incompressible, Newtonian fluid with density = 1060 and viscosity = 0.0035 kg/m-s. The laminar and SST models have been used for comparison purposes. The rotational motion of the impeller has been implemented using the moving reference frame (MRF) approach. The sliding mesh method has also been used to account for unsteady interaction between stationary and moving part. The no-slip condition has been applied to all walls, which were assumed to be rigid. Boundary conditions consisting of velocity inlet and pressure outlet of the pump based on different settings and constant rotational speed for the impeller. Pressure-velocity coupling has been based on the coupled scheme. Spatial discretisation consisted of the “least square cell based” gradient for velocity and “PRESTO” or second order for pressure. Second order upwind has been set for the momentum, turbulent kinetic energy and specific dissipation rate. First order implicit has been set for transient formulation. The pseudo transient algorithm (steady state), the high order relaxation term and the warped-face gradient correction have been used to add an unsteady term to the solution equations with the aim to improve stability and enhance convergence. Specific settings have been considered for comparison purposes. Results: Pressure-volume simulation analysis in six advanced heart failure patients showed that an integrated model of the cardiovascular system based on lumped-parameter representation, modified time-varying elastance and pressure-volume analysis of ventricular function seems a feasible and suitable approach yielding a sufficiently accurate quantitative analysis in real time, therefore applicable within the time-constraints of a clinical setting. Lumped-parameter models consist of simultaneous ordinary differential equations complemented by an algebraic balance equation and are suitable for examination of global distribution of pressure, flow and volume over a range of physiological conditions with inclusion of the interaction between modelled components. Higher level lumped-parameter modelling is needed to address the interaction between the circulation and other systems based on a compromise between complexity and ability to set the required parameters to personalise an integrated lumped-parameter model for a patient-specific approach. CARDIOSIM© fulfils these requirements and does address the systems interaction with its modular approach and assembly of models with varying degree of complexity although 0-D and 1-D coupling may be required for the evaluation of long-term VAD support. The challenge remains the ability to predict outcome over a longer period of time. The preliminary CFD simulations with the HeartWare HVAD centrifugal pump demonstrated that it is possible to obtain an accurate analysis in a timely manner to complement the clinical review process. The simulations with the pilot patient-specific model of the HeartMate II axial flow pump revealed that a complex 3D reconstruction is feasible in a timely manner and can be used to generate sufficiently accurate results to be used in the context of a MDT meeting for the purposes of clinical decision-making. Overall, these three studies demonstrate that the time frame of the simulations was within hours which may fit the time constraints of the clinical environment in the context of a MDT meeting. More specifically, it was shown that the laminar model may be used for an initial evaluation of the flow development within the pump. Nonetheless, the k- model offers higher accuracy if the timeline of the clinical setting allows for a longer simulation. Conclusion: This thesis aimed at the understanding of the use of computational modelling as a pre-operative planning strategy and follow up assessment for the treatment of advanced heart failure with rotary blood pumps. The novelty lays in the use of both pressure-volume simulation analysis and 3D flow dynamics studies in VADs with a view to treatment optimisation and outcome prediction within the time constraints of a clinical setting in the context of a MDT meeting. The clinical significance and the contribution to the field is a more targeted approach for different groups of patients and a more quantitative evaluation in the clinical decision process based on a pro-active co-operation between clinicians and scientists reducing the potential for “guess work”. The results of this thesis are a proof-of-concept as a prelude to a potential future implementation of patient-specific modelling within a clinical setting on a daily basis demonstrating a clear clinical significance and contribution to the field. The proposed approach does not consider modelling and simulation as a substitute for clinical experience but an additional tool to guide therapeutic intervention and complement the clinical decision process in which the clinician remains the ultimate decision-maker. Such an approach may well add a different dimension to the problem of heart failure with potential for high return in terms of patient’s outcome and long-term surveillance. The same principles would be applicable to other cardiovascular problems in line with the current concept of “Team Approach” such as the Heart Team, the Structural Heart Team or the Aortic Team. The present work has taken this concept closer to clinical delivery and has highlighted its potential but further work remains to be done in refining the technique

    Numerical Simulation in Biomechanics and Biomedical Engineering

    Get PDF
    In the first contribution, Morbiducci and co-workers discuss the theoretical and methodological bases supporting the Lagrangian- and Euler-based methods, highlighting their application to cardiovascular flows. The second contribution, by the Ansón and van Lenthe groups, proposes an automated virtual bench test for evaluating the stability of custom shoulder implants without the necessity of mechanical testing. Urdeitx and Doweidar, in the third paper, also adopt the finite element method for developing a computational model aim to study cardiac cell behavior under mechano-electric stimulation. In the fourth contribution, Ayensa-Jiménez et al. develop a methodology to approximate the multidimensional probability density function of the parametric analysis obtained developing a mathematical model of the cancer evolution. The fifth paper is oriented to the topological data analysis; the group of Cueto and Chinesta designs a predictive model capable of estimating the state of drivers using the data collected from motion sensors. In the sixth contribution, the Ohayon and Finet group uses wall shear stress-derived descriptors to study the role of recirculation in the arterial restenosis due to different malapposed and overlapping stent conditions. In the seventh contribution, the research group of Antón demonstrates that the simulation time can be reduced for cardiovascular numerical analysis considering an adequate geometry-reduction strategy applicable to truncated patient specific artery. In the eighth paper, Grasa and Calvo present a numerical model based on the finite element method for simulating extraocular muscle dynamics. The ninth paper, authored by Kahla et al., presents a mathematical mechano-pharmaco-biological model for bone remodeling. Martínez, Peña, and co-workers propose in the tenth paper a methodology to calibrate the dissection properties of aorta layer, with the aim of providing useful information for reliable numerical tools. In the eleventh contribution, Martínez-Bocanegra et al. present the structural behavior of a foot model using a detailed finite element model. The twelfth contribution is centered on the methodology to perform a finite, element-based, numerical model of a hydroxyapatite 3D printed bone scaffold. In the thirteenth paper, Talygin and Gorodkov present analytical expressions describing swirling jets for cardiovascular applications. In the fourteenth contribution, Schenkel and Halliday propose a novel non-Newtonian particle transport model for red blood cells. Finally, Zurita et al. propose a parametric numerical tool for analyzing a silicone customized 3D printable trachea-bronchial prosthesis

    Modeling Reactive Hyperemia to Better Understand and Assess Microvascular Function: A Review of Techniques

    Get PDF
    Reactive hyperemia is a well-established technique for the non-invasive evaluation of the peripheral microcirculatory function, measured as the magnitude of limb re-perfusion after a brief period of ischemia. Despite widespread adoption by researchers and clinicians alike, many uncertainties remain surrounding interpretation, compounded by patient-specific confounding factors (such as blood pressure or the metabolic rate of the ischemic limb). Mathematical modeling can accelerate our understanding of the physiology underlying the reactive hyperemia response and guide in the estimation of quantities which are difficult to measure experimentally. In this work, we aim to provide a comprehensive guide for mathematical modeling techniques that can be used for describing the key phenomena involved in the reactive hyperemia response, alongside their limitations and advantages. The reported methodologies can be used for investigating specific reactive hyperemia aspects alone, or can be combined into a computational framework to be used in (pre-)clinical settings

    Experimental and computational study of vascular access for hemodialysis

    Get PDF

    An Efficient Hemodynamic Workflow in Computational Surgery

    Get PDF
    For few decades, it has been shown that atherosclerosis is the cause of the majority of clinical cardiovascular diseases including peripheral arterial diseases. The diagnosis and treatment for vascular disease has evolved significantly over the past years considering the rapid advances in imaging technologies. In recent years, computational fluid dynamics has been increasingly used as a simulation tool for blood flows. Numerous researches connect wall shear stress quantities to endovascular diseases such as stenosis, aneurism, and atherosclerosis. A thorough knowledge of vascular anatomy and hemodynamic would be beneficial for understanding the development and progression of the disease, the therapeutic decision process and follow up. The objective of this dissertation is to propose a computational fluid dynamic framework that includes: Understanding how streamline efficiently hemodynamic simulation for main arteries to produce database for clinical study/Providing some confidence estimate on numerical results/Extending the state of the art of clinical study by including motion and particles analysis.Computer Science, Department o
    • …
    corecore