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Preface to "Numerical Simulation in Biomechanics
and Biomedical Engineering”

In the last decades, the improvement of the computational technology has allowed the
introduction of advanced numerical models and high-performance simulations in several fields
of engineering. In particular, biomedical engineering, which can be a bridge discipline between
medicine and engineering, and combines the knowledge of several aspects of both fields, has received
great attention from the scientific community for its direct relation to human health. In a more general
meaning, biomedical engineering also includes the study of the processes related to nature and
animals. Specific applications can be found in the understanding of human pathologies and diseases;
in the advancement of the medical health care; and in the improvement of the diagnosis, therapies,
medical devices, and clinical outcomes, among other aspects. However, biomedical engineering
should theoretically also help to reduce the number of tests in animals, and should also contribute
to the improvement of their health care. More recent applications can be found in the analysis
of biological problems, such as the cells” culture and motility, and the microfluidic and diffusion
processes.

Numerical methods and computer simulation have been widely used to help the biomedical
engineering for providing computational models able to reproduce many aspects associated to the
human medicine and to the biology. Considerable research has been obtained with the improvement
of the computer performances that allows for the increase of more and more complexity in such
in silico modeling. Despite the extensive investigation in this field and the large improvement
in computer technology, the complex mechanism of different biological problems and related
pathologies has been not fully understood. This is partially due to the difficulties to reproduce,
with the necessary accuracy, the complexity of certain phenomena and the overall limitations of the
computational and experimental modeling.

This e-book presents a collection of several examples of application of the numerical modeling
to complex problems in the field of biomechanics and biomedical engineering. Some of the fields
included in the book are tissue engineering, computational biofluid dynamics, structural analysis of
muscle skeletal system and bone tissue, design and analysis of medical devices, 3D printing technique
for the biomedical engineering, analytical and numerical solution of blood flow, and analysis of
topological data.

The Editor thanks the contribution, effort, and dedication of the authors to describe and show by
means of their papers some of the application of the mathematics by means of the numerical models
to the biomedical engineering. Their recognized expertise in the mentioned fields of the biomechanics
and biomedical engineering have contributed to the scientific quality of this book that will certainly
be appreciated by the readers.

Mauro Malve
Editor
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Abstract: A marked interest has recently emerged regarding the analysis of the wall shear stress (WSS)
vector field topological skeleton in cardiovascular flows. Based on dynamical system theory, the WSS
topological skeleton is composed of fixed points, i.e., focal points where WSS locally vanishes, and
unstable/stable manifolds, consisting of contraction/expansion regions linking fixed points. Such an
interest arises from its ability to reflect the presence of near-wall hemodynamic features associated
with the onset and progression of vascular diseases. Over the years, Lagrangian-based and Eulerian-
based post-processing techniques have been proposed aiming at identifying the topological skeleton
features of the WSS. Here, the theoretical and methodological bases supporting the Lagrangian- and
Eulerian-based methods currently used in the literature are reported and discussed, highlighting their
application to cardiovascular flows. The final aim is to promote the use of WSS topological skeleton
analysis in hemodynamic applications and to encourage its application in future mechanobiology
studies in order to increase the chance of elucidating the mechanistic links between blood flow
disturbances, vascular disease, and clinical observations.

Keywords: fixed points; manifolds; divergence; hemodynamics; computational fluid dynamics

1. Introduction

Recent advances in medical imaging, modeling, and computational fluid dynamics
(CFD) have allowed the modeling of local hemodynamics in realistic, personalized cardio-
vascular models, fostering understanding of the association between local hemodynamics
and the initiation and progression of vascular disease, and in a wider perspective, con-
tributing to the translation of computational methods in real-world clinical settings to
complement clinical information.

It has long been recognized that hemodynamic factors regulate several aspects of
vascular pathophysiology [1,2]. Wall shear stress (WSS), the frictional force per unit area
exerted by streaming blood on the endothelium, has been identified as a major biomechani-
cal factor involved in vascular homeostasis. In fact, WSS is sensed through several vascular
mechanosensors and biochemical machineries that regulate the expression of genes coding
for extra- and intra-cellular proteins, playing a relevant role in the development, growth,
remodeling, and maintenance of the vascular system [3,4]. In this scenario, a multitude
of WSS-based descriptors of the near-wall hemodynamics has been proposed over the
years to provide potential indicators of flow disturbances associated with aggravating
biological events. In particular, regions at the luminal surface presenting with low [5]
and oscillatory [6] WSS have been identified as localizing factors of vascular disease [3,6].
However, the complex hemodynamic milieu the endothelium is exposed to can be only
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partially characterized by low and oscillatory WSS [7,8], as confirmed by a large body of
literature reporting poor-to-moderate (and sometimes, contradictory) associations between
low and oscillatory WSS with respect to vascular disease, e.g., [7-13]. This indicates a
limited current understanding of the mechanistic link between WSS and vascular disease
that hampers the use of WSS not only as a biomarker of vascular disease but also as a
predictor of its progression within a clinical context [14].

Stimulated by the need to improve the understanding of the link between altered
hemodynamics and clinical observations, the topological skeleton of the WSS vector field at
the luminal surface of an artery is receiving increasing interest [15-20]. Based on dynamical
system theory, the WSS topological skeleton is composed of a collection of fixed points,
i.e., focal points where WSS locally vanishes, and unstable/stable manifolds, consisting
of contraction/expansion regions linking fixed points. Such an interest arises from the
ability of WSS topological skeleton features to reflect cardiovascular flow features like
flow stagnation, separation and recirculation that are known to be promoting factors for
vascular disease [2,17]. Very recent studies have demonstrated that the WSS topological
skeleton governs the near-wall biochemical transport in arteries [15,16,18,21], which plays
a fundamental role in, e.g., the initiation of atherosclerosis and thrombogenesis [22,23]. In
addition, evidence of a direct association between WSS topological skeleton features and
markers of vascular diseases from real-world clinical data have recently emerged [20,24].

In the present study, we report and discuss the theoretical background of Lagrangian-
and Eulerian-based methods currently applied to the analysis of the WSS topological skele-
ton. Based on the recent promising findings highlighting a link between WSS topological
skeleton features and markers of vascular disease [17-21,24], the aim of this study is to
encourage the application of WSS topological skeleton analysis to cardiovascular flows
as an ad hoc instrument that is potentially able to further elucidate the mechanistic link
between WSS and vascular pathophysiology.

2. Topological Skeleton of a Vector Field

Topological features of a vector field have been largely studied in the context of
dynamical systems theory. A dynamical system is defined as a set of n differential equations:

x(t) = u(x,t);
(1) = ulx) o
x(ty) = xo,

where t € R7 is the time, xg € R” the initial position at time point o, i.e., xo = x(fo), and
u(x, t) the velocity field. Given the initial condition xy € R", a unique solution of Equation
(1) exists, called trajectory, given by:

() = x(to) + [ u(x(s),s) ds. @)

Associated with the dynamical system defined in Equation (1), the so-called flow map
can be defined as follows:
<I>§0 s xg — x(t), 3)

providing the expression of all the system trajectories at time ¢. In general, the topological
skeleton of the vector field u is recognized to provide the organizing structures of the
system itself.

In steady-state conditions (i.e., when vector field u(x,t) in Equation (1) does not
explicitly depend on time), the topological skeleton of a vector field consists of a collection
of fixed points (Figure 1A) and the associated stable and unstable manifolds connecting
them (Figure 1B). A fixed point (or critical point) is a point x¢, € R" where the vector field
locally vanishes. The nature of fixed points can be stable or unstable. A stable fixed point
is characterized by a sink configuration, and it attracts the nearby trajectories, while an
unstable fixed point is characterized by a source configuration, and it repels the nearby
trajectories (Figure 1A).
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Figure 1. (A) Possible configurations for a fixed point of a vector field. (B) Explanatory sketch of the
stable /unstable manifolds connecting fixed points.

A fixed point can be classified as a saddle point, node, or focus (Figure 1A): (1) a
saddle point is a point attracting and repelling nearby trajectories along different directions
(i.e., where the streamlines of the vector field intersect themselves); (2) a stable/unstable
node is characterized by converging/diverging streamlines; (3) a focus is characterized by
spiraling trajectories, and it can be attracting or repelling.

Technically, the exact location of fixed points in a domain of interest can be identified
by computing the Poincaré index [25], a topological invariant index quantifying how many
times a vector field rotates in the neighborhood of a point. For the sake of simplicity, we
consider the dynamical system in Equation (1) under steady-state conditions and lying
in a 2D space, i.e., u(x) = (X(x), Y(x)), with x € R%. An explanatory example of how to
calculate the Poincaré index can then be provided. Let xs), € IR? be an isolated fixed point
of u with a neighborhood N such that there are no other fixed points in N than x¢,,, and let
v be a closed curve inscribing N. Then, the Poincaré index Z (-, #) of the curve vy relative to
u is the number of the positive field rotations while traveling along y in a positive direction:

Z(y,u) = 2171/ /darctun< > (4)

where 0 is the vector field rotation angle. The Poincaré index is equal to —1 at saddle
point locations (Figure 1A), 1 at node or focus locations (Figure 1A), and 0 otherwise. The
algorithm for computing the Poincaré index for a 3D vector field defined on unstructured
triangle meshes is extensively described elsewhere [19].

The Poincaré index allows identifying fixed point locations, but it does not provide
information about the fixed points nature. Therefore, a criterion to distinguish between a
node or a focus and between the attractive or repelling nature of a fixed point is needed. In
light of this, the vector field # around the fixed point xf, can be expressed by linearization

as:
u(x) = ”(fo> + ]<fo> (x - xfp)' ®)

where ] is the Jacobian matrix of u. The classification of fixed points can be thus performed
by computing the eigenvalues of the Jacobian matrix J, as summarized in Table 1. In detail,
two real eigenvalues with different signs identify a saddle point. Two real eigenvalues
with the same sign identify nodes characterized as attracting or repelling (i.e., stable or
unstable, respectively) according to their sign (negative or positive, respectively). Complex
conjugate eigenvalues identify a stable or unstable focus according to the sign of the real
part (negative or positive, respectively).
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Table 1. Classification of fixed points based on the eigenvalues of the Jacobian matrix.

A Fixed Point

A <0< Ay Saddle point
A, A >0 Unstable node

A, A2 <0 Stable node
Mo =axtpi Unstable focus

Mo =—a=£pi Stable focus

The stable and unstable manifolds (or critical lines) associated with a fixed point xf,
are composed of all initial conditions xg € R” such that the trajectories initiated at these
points xg approach the fixed point xf, asymptotically. By construction, stable and unstable
manifolds act as separatrices of the vector field, portioning regions of different behavior
and dynamics. In detail, an unstable manifold attracts nearby trajectories, as opposed to
the stable manifold, which repels nearby trajectories (Figure 1B). In mathematical terms, an
unstable manifold W" associated with the generic fixed point xf, is defined as follows:

w (xfp) = {xo eER" : @ﬁo(xo) —xppast — +oo}, (6)
while a stable manifold W* can be expressed as:
W(xfp) = {xo eR": @fo(xo) —xppast— — oo}. (7)

In general, two different perspectives have been proposed to identify manifolds of a
vector field, namely the Lagrangian and Eulerian perspectives. The Lagrangian perspective
considers individual particles, tracking their motion along their paths as they are advected
by the flow field. By contrast, the Eulerian perspective considers the properties of the vector
field under analysis at each fixed location in space and time. In the following sections, a
brief theoretical background is reported for a better understanding of the theory supporting
the Lagrangian and Eulerian approaches for the analysis of vector field topology, with
particular emphasis on their application to cardiovascular flows.

3. Lagrangian Approach
3.1. Lagrangian Coherent Structures

When the vector field u(x, t) in Equation (1) is time-dependent, solutions can be com-
plex and chaotic, making the interpretation of the topological skeleton made of W*, W® and
xfp difficult. The need to robustly define intrinsic structures governing fluid /mass trans-
port under unsteady-state conditions has led to the development of the concept of coherent
structures (CS). Technically, CS are defined as emergent patterns, influencing the transport
of tracers/mass in time-dependent flows [26]. In this context, Lagrangian Coherent Struc-
tures (LCS) are coherent structures identified by applying methods based on a Lagrangian
approach. The theoretical bases of LCS lie in methods of nonlinear dynamics, chaos theory,
and fluid dynamics.

From a mathematical perspective and in relation to fluid mechanics, LCS can be
defined as material surfaces in the flow field that are dominant in attracting or repelling
neighboring fluid elements over a defined time interval [27,28]. These material surfaces are
able to localize where the flow field experiences the largest and the smallest stretching [29].
In detail, material surfaces in the flow field attracting trajectories more strongly than any
other nearby material surface are referred to as attracting LCS. Oppositely, material surfaces
repelling trajectories more strongly than any other nearby material surface are referred to
as repelling LCS.

The detection and visualization of LCS is usually performed by applying two different
Lagrangian-based approaches, namely (1) Lagrangian particle tracking and (2) the compu-
tation of the finite-time Lyapunov exponent (FTLE). Both approaches are based on particle
path information derived from the post-processing of velocity data obtained by CFD simu-

4
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lation or by in vivo (e.g., phase contrast magnetic resonance imaging (MRI)) and in vitro
(e.g., particle image velocimetry) measurements. The workflow of the Lagrangian-based
approaches to visualize LCS is sketched in Figure 2.

Lagrangian approach

Initialization of a

. cluster of particles at t,
Lagrangian N~—

particle tracking l

‘

7 N

=
Visualization of
particles paths

Particles are numerically integrated
by velocity field from t, to t=t,+&t
J

l

( N
‘Flow map d>fois obtained from the position ‘
of each particle trajectory at time t

4 N\
‘ Computation of Cauchy-Green ’
strain tensor C(x, to, t)

|

‘ Computation of maximum ’ ‘f is considered as a new
| eigenvalue Ayqx (C(xo, 80, ) | initial time t,

True

FTLE distribution

<I< tend?

' FTLE o(x,, to, t) can be computedJ_’

time history of attracting
LCS movements

Figure 2. Workflow of the Lagrangian-based approaches to visualize attracting Lagrangian coherent
structures (LCS) starting from a cluster of particles at time t; over the domain of interest. The same
procedure applies to repelling LCS by considering reversing time. FTLE: finite time Lyapunov
exponent.

The Lagrangian particle tracking is performed by seeding the domain of interest with
tracer particles and by visualizing their motion (Figure 2). The aim of this approach is
to reveal coherent features revealing how the flow under analysis is organized. From a
mathematical perspective, the position of a tracer particle is governed by the differential
equation reported in Equation (1). To obtain the position of such a particle at a desired
time ¢, Equation (1) is numerically integrated from ty to t. The direct integration of tracer
particles allows for an in-depth understanding of how tracers are transported through the
domain of interest. In detail, attracting LCS will be generally distinguishable, since tracer
particles are attracted to and along these surfaces (Figure 3). Analogously, repelling LCS
will be distinguishable from the advection of tracer particles by reversing time (Figure 3).
Attracting LCS are traced out with forward time integration of particles, while repelling
LCS are traced out with backward time integration of particles.
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attracting LCS

repelling LCS

Figure 3. Explanatory sketch of attracting and repelling LCS over time interval [fo, t]. A sphere of
tracer particles released at time fy will spread out along the attracting LCS (time ¢ ). The opposite
occurs for a repelling LCS.

Lagrangian particle tracking represents a Lagrangian-based technique aiming at
overcoming issues related to standard approaches used for topological skeleton extraction
of vector fields with unsteady-state conditions. However, the resulting tracer particle
motion complexity could obscure the interpretation of the vector field topology. For this
motivation, the second approach consists of the computation of the FTLE (Figure 2). Based
on theory, a LCS can be defined as the material surface locally maximizing the FTLE [27,30],
the Lyapunov exponent being a measure of the sensitivity to the initial position of a
dynamical system. Technically, the finite time Lyapunov exponent o (xg, fo, t) [27,28,31-35]

is defined as: 1
O'(X(), to, t) = m In \/ /\max(c(xoz to, t)), (8)

where Ay (C(xg, to, t)) is the maximum eigenvalue of the right Cauchy—-Green strain
tensor C(xo, to, t):
Clxo, to, 1) = VO, (x0) VP} (xo), )

where V@in (x0)" denotes the transpose of the gradient of the flow map in Equation (3).
From a physical point of view, C(xo, to, ) in Equation (9) represents the material deforma-
tion of infinitesimal volume elements of fluid, and it is a symmetric and positive-definite
matrix. Roughly speaking, the FTLE ¢ defined in Equation (8) measures the rate of sep-
aration of initially close vector field trajectories. Let dy be a small distance between two
material points at time f(, as depicted in Figure 4 (Panel A). It can be demonstrated [26]
that the separation J; after the time interval |t — ty| satisfies the inequality:

|[8¢]] < e7@otolE=tol| |5y, (10)

where equality holds if the initial distance dy is aligned with the eigenvector of C(xy, f, t)
associated with Ay,

The algorithm for LCS identification based on FTLE computation starts with the
initialization of a cluster of massless elemental particles at time ¢y over the domain of
interest (Figure 2). Then, particles are numerically integrated by the field in Equation (1)
from fy to t, and their trajectories are calculated. The flow map q>§0 (Equation (3)) is
obtained from the final position of each particle trajectory at time ¢ in the domain, and
subsequently its gradient V@io (xp) can be computed. For a structured grid like the one
shown in Figure 4 (panel B), Vd);o (x0) can be calculated by finite differencing, e.g., using
central differencing as follows:
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Figure 4. (A) Explanatory sketch illustrating the separation of nearby particles due to the flow map
<1>fo, during time interval |t — ty|. (B) Nodal indexing of elemental cells in a 3D-structured mesh.
Indices i, j, k represent the positions along the x, y, z directions, respectively.

Once the flow map gradient is obtained, the Cauchy—Green strain tensor C(xo, to, t)
can be computed according to Equation (9).

Finally, the maximum eigenvalue A;qx(C(xg, to,t)) and the FTLE o(xy, to, ) can be
computed according to Equation (8) (Figure 2). The obtained o (xg, fo, t) value for each
particle is assigned to the particle position at time #y. This procedure is repeated, varying
the time f( (e.g., within the cardiac cycle in cardiovascular applications) and aiming at
providing the time series of FTLE values and ultimately the time history of LCS movements
(Figure 2). Positive integration times reveal repelling LCS in the FTLE field, while negative
integration times reveal attracting LCS in the FTLE field.

In general, the computation of the spatial variation of the FTLE field requires the
vector field to be interpolated in both time and space, and high-order integration and
interpolation schemes are needed to ensure accuracy of results. Furthermore, the mesh
used to compute the FTLE distribution over the domain of interest usually needs to be
more resolved than the computational mesh for a more robust detection of LCS.

3.2. LCS Application to Intravascular Flows

Lagrangian-based approaches have been largely applied to identifying LCS in intravas-
cular flows. Indeed, Lagrangian particle tracking has been massively applied to explore
the complexity of intravascular flows, e.g., to provide a measure of stasis in idealized
computational bifurcation models [36], or to study vortices generation and their poten-
tial role in thrombogenesis in idealized aneurysm models [37,38]. Several studies have
applied particle tracking to identify flow disturbances in, e.g., carotid bifurcation models,
contributing to providing a deeper understanding of the hemodynamics-driven processes
underlying atherosclerosis onset/progression [39-42]. Moreover, particle tracking has
been used to study the hepatic perfusion in the Fontan circulation [43,44], identify the
optimal left ventricular assist device cannula outflow configurations [45], obtain a deeper
understanding of the dynamics of embolic particles within arteries [46], and detect peculiar
intravascular helical flow patterns in the aorta from in vivo, 4D-flow MRI data [47,48].

Regarding the FTLE-based analysis of the flow field, its extension to intravascular
flows is relatively recent, motivated by the fact that LCS are determined by blood flow
structures associated to adverse vascular events including flow stagnation, separation, and
recirculation. Among the main contributions, here we mention that Shadden and Taylor [32]
used LCS to quantify the extent of flow stagnation to determine where flow separated
and to understand how flow was partitioned to downstream vasculature in computational
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hemodynamic models of large vessels. LCS have been proposed as a powerful method
to capture vortex transport in blood flow. In this regard, Arzani and Shadden [33] used
LCS to characterize the hemodynamics in abdominal aortic aneurysm (AAA) models,
suggesting that AAA intravascular flow topology is dictated by systolic vortex propagation
through the abnormal vessel. Arzani et al. [49] computed FTLE fields and associated LCS
to capture a large coherent vortex in AAA computational models. Furthermore, LCS have
been applied to identify left ventricle (LV) blood flow features during heart filling. In
detail, Gharib et al. [50] used LCS to demonstrate the existence of a link between the vortex
ring formation inside the LV and the ejection fraction. Charonko et al. [51] quantified the
vortex ring volume by computing LCS from in vivo LV phase contrast MRI data of healthy
and diseased patients. Toger et al. [52] extracted LCS from in vivo LV phase contrast
MRI data to measure the vortex ring volume during LV rapid filling. The identification
of attracting and repelling LCS from LV Doppler-echocardiography data was adopted
as a criterion to discriminate between healthy and diseased patients [53]. Other studies
applied LCS to characterize the flow field through heart valves. In particular, LCS were
extracted to delineate the boundaries of the outflow jet downstream of aortic valves and
used as a measure of the severity of the valve’s stenosis [54,55]. In a very recent study [56],
FTLE-based LCS detection on computational hemodynamics models of aortic bicuspid and
mechanical heart valves was used to study mass transport processes that might be related
to valve disease. The analysis of the fluid dynamics in the neighborhood of blood clots
was another effective application of LCS to hemodynamics [57]. In addition, FTLE-based
analysis was adopted to highlight the hemodynamic impact of flow diverter stents in the
treatment of intracranial aneurysms [58,59].

We refer the interested reader to reference [31] for a broader, detailed overview of
Lagrangian methods used in post-processing of velocity data in cardiovascular flows.

3.3. LCS Application to Near-Wall Flow Features

Recently, in the study of cardiovascular flows, the concept of LCS has been extended to
analyze the near-wall flow topology, i.e., the topology of the flow field close to the luminal
surface of arteries. The rationale is in the well-established involvement of near-wall mass
transport in most of the processes concurring to determine vascular pathophysiology [5]: in
the near-wall region, blood flow regulates the local biotransport processes and imparts me-
chanical shear stress on the endothelium (i.e., the WSS), which in turn regulates important
developmental, homeostatic, and adaptive mechanisms in arteries, as well as susceptibility
to and progression of atherosclerosis [1].

Based on theory, it has been demonstrated [60] that the WSS vector field can be scaled
to provide a first-order approximation for the near-wall blood flow velocity vector field as
follows:

1y = %‘” +o(en?), (12)

where u; € R3 is the near-wall velocity, T € R3 represents the WSS vector field, y is the
dynamic viscosity, and d7 is the distance from the wall where the velocity is evaluated. By
construction, the vector field in Equation (12) is defined on the luminal surface of the vessel,
and it represents the near-wall velocity, as the velocity is zero on the surface itself due to
the no-slip condition. The LCS underlying theory described in Section 3.1 can be extended
to analyze the near-wall flow topology by using the expression of near-wall velocity u
(given by Equation (12)) in Equation (1). Such near-wall Lagrangian structures, computed
from the WSS vector field, are referred to as WSS LCS [15].

Computationally, WSS LCS can be identified on the luminal surface of the vessel
by numerically integrating a high number of luminal surface tracer particles, applying
the procedure described in the first part of Section 3.1. In detail, attracting and repelling
WSS LCS can be traced out with forward and backward time integration of surface tracer
particles based on the near-wall blood flow velocity (Equation (12)), respectively.
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The recent interest in WSS LCS from the cardiovascular fluid mechanics research
community was driven by WSS LCS ability to highlight blood flow features associated with
vascular disease initiation and progression, like flow stagnation, separation, recirculation,
flow impingement, and the interaction of vortex structures with the vascular wall [19,61,62]
These blood flow features have been classified as “aggravating flow events”, as they trigger
biological processes leading to the development or progression of vascular disease [2,17].
An example of attracting WSS LCS on the luminal surface of a patient-specific compu-
tational hemodynamic model of carotid bifurcation is presented in Figure 5. Details on
the carotid bifurcation hemodynamic modeling are reported elsewhere [9,14,20,63]. In
this specific case, luminal surface tracer particles (Figure 5A) are numerically integrated
in forward time. The resulting LCS is located at the carotid bulb, a region characterized
by flow disturbances (slow, recirculating blood flow) promoting atherosclerosis [2,4]. In
detail, the attracting WSS LCS provides the boundary at the luminal surface of the slow
vortex structure formed inside the carotid bulb (Figure 5C, where the recirculation region
is highlighted visualizing the streamlines of the cycle-average velocity vector field).

A) B) C)
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WSS LCS
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Figure 5. (A) Initial tracer particle position on the luminal surface of a carotid bifurcation model.

(B) Attracting wall shear stress Lagrangian coherent structures (WSS LCS) traced out from forward
time integration of WSS trajectories. (C) Streamlines of the cycle-average velocity vector field, colored
by cycle-average velocity magnitude.

In addition, the shear forces exerted by the streaming blood flow in the near-wall
region on the endothelium affect biotransport processes, i.e., the transport of biochemicals
through the subendothelial layer [22]. Biotransport is of paramount importance in many
cardiovascular processes, including the initiation of atherosclerosis and thrombogene-
sis [23]. In general, cardiovascular mass transport is investigated in silico by coupling the
governing equations of motion, the Navier-Stokes equations, with the advection—diffusion
equation, given by:

dc

g Ve DV?C =0, (13)

where C is a non-dimensional concentration of the species transported in the domain, u
is the fluid velocity vector, and D is the mass diffusion coefficient. However, high com-
putational costs are associated with the class of numerical simulations used to accurately
solve the near-wall transport and blood-wall transfer [64,65], making this approach ex-
pensive in hemodynamics applications. To overcome this limitation, and based on the
well-established role that WSS plays in conditioning the permeability of the endothelium
and the near-wall mass transport process, recent studies [15,18] have brilliantly demon-
strated that WSS LCS can be used as a template for near-wall mass transport. This allows
reduction of the computational effort needed to solve the full transport problem, repre-
sented by Equation (13) [15]. In particular, it has been demonstrated that attracting WSS
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LCS attract biochemicals, leading to high near-wall concentration in their neighborhood,
whereas repelling WSS LCS have been shown to act as near-wall transport barriers [15,17].

In the context of cardiovascular flows, it has been recently demonstrated that attract-
ing/repelling WSS LCS on the luminal surface of an artery match the unstable/stable
manifolds of the cycle-average WSS vector field [15,18], defined as:

_ 1T
T= ?/o T(x, t)dt, (14)

where T is the instantaneous local WSS value and T is the time duration of the cardiac cycle.
Technically, the first step in the topological analysis of cycle-average WSS at the luminal
surface of a vessel is the identification of WSS fixed points. The exact position of WSS fixed
points can be identified by computing, e.g., the Poincaré index, as explained in Section 2.
Then, the cycle-average WSS field around a fixed point xy,, according to Equation (5), by
linearization can be expressed as:

T(x) = ?(xfp) + ](xfp) (x - xfp>, (15)

where ] is the Jacobian matrix of T (see Equation (14)). The identified WSS fixed points can
be classified according to their nature (i.e., saddle, node, or focus, Figure 1A) by analyzing
the eigenvalues of the Jacobian matrix | of T (Table 1), as described in Section 2. Note
that the WSS vector field is embedded in a three-dimensional space even if it lies in a
two-dimensional space (the luminal surface of a vessel). To perform a two-dimensional
analysis, two strategies are possible. In the first strategy, a projection of the vector field into
two orthogonal directions (hence, in a two-dimensional space) is needed. In the second
one, avoiding the projection of the vector field (and thus reducing the computational steps),
a three-dimensional analysis is performed, thus obtaining three eigenvalues of the Jacobian
matrix, with one of them having a value close to zero. Then, the eigenvalue-based analysis
for the WSS fixed points classification considers only the two eigenvalues different from
zero.

Saddle-type fixed points are of particular interest, since typically a stable or unstable
manifold starts from a saddle point and vanishes into a source or sink, respectively, as
depicted in Figure 1B. Saddle point locations (where the Poincaré index is —1 and the
eigenvalues are real with different signs) are perturbed along the positive eigenvector of
J in two opposite directions, obtaining two initial conditions [18,61]. Unstable manifolds
can be traced out by numerically integrating T from these initial conditions in forward
time until trajectories reach a stable fixed point (sink configuration) or leave the domain.
Similarly, stable manifolds are delineated by integrating T in backward time starting
from the perturbation of saddle point locations along the negative eigenvector of | until
trajectories reach an unstable fixed point (source configuration) or leave the domain.

An example of unstable manifolds of cycle-average WSS on the luminal surface
of a patient-specific computational hemodynamic model of carotid bifurcation is pre-
sented in Figure 6. Details on carotid bifurcation hemodynamic modeling are reported
elsewhere [9,14,20,63]. WSS fixed points were identified by computing the Poincaré index
(Figure 6A), and subsequently, unstable manifolds were traced out by applying Runge-
Kutta 4-5 numerical integration schemes (Figure 6B). By visual inspection of Figure 6C, it
can be appreciated that cycle-average WSS unstable manifolds co-localize with attracting
WSS LCS, confirming the capability of the latter to identify critical lines of the WSS field.

10
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Figure 6. (A) Cycle-average WSS fixed points on the luminal surface of a carotid bifurcation model.
(B) Unstable manifolds of cycle-average WSS (blue lines) traced out by integrating cycle-average
WSS vectors, starting from saddle point positions. (C) Cycle-average WSS unstable manifolds
superimposed on the attracting WSS LCS. WSS vectors are normalized for visualization.

The analysis of cycle-average WSS fixed points and manifolds has been applied to
analyze cardiovascular flows. Arzani et al. [18] used WSS LCS from stable and unstable
manifolds of cycle-average WSS on patient-specific computational hemodynamics models
of AAAs, carotid arteries, cerebral aneurysms, and coronary aneurysms to characterize near-
wall flow topology and biochemical transport. Farghadan et al. [16] used WSS topology and
magnitude analysis to predict surface concentration patterns in cardiovascular transport
problems by computing WSS LCS from manifolds of cycle-average WSS in image-based
coronary and carotid artery models. Mahmoudi et al. [21] studied the near-wall transport
of some of the prominent biochemicals contributing to the initiation and progression of
atherosclerosis in computational hemodynamic models of the coronary artery, highlighting
the strength of cycle-average WSS LCS as a template for luminal surface concentration and
flux patterns of biochemicals transported with blood.

Summarizing, the Lagrangian approach for identifying near-wall topological features
is schematized in Figure 7, where the link between attracting/repelling WSS LCS with
unstable/stable cycle-average WSS manifolds, respectively, is highlighted. In addition,
Figure 7 presents a brief summary of the link between Lagrangian-based near-wall flow
topology and mass transport. For a more in-depth analysis, the interested reader can
refer to recent literature [15,17,18,21] where the link between WSS LCS, cycle-average
WSS manifolds, and biochemical transport in cardiovascular flows is unambiguously
documented.
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Figure 7. Identification and significance of the near-wall Lagrangian structures. The link between WSS LCS and cycle-
average WSS manifolds and their role in near-wall flow topology and near-wall mass transport is highlighted.

4. Eulerian Approach
4.1. Volume Contraction Theory

From a Eulerian perspective, the volume contraction theory provides a simple alterna-
tive way to analyze the behavior of a dynamical system. Contrarily to Lagrangian-based
approaches, the Eulerian perspective considers vector field properties at each point in
space and time. The here-presented volume contraction theory, based on fluid mechanics
and differential geometry, is focused on the temporal change of an elemental volume (of
fluid, for the case of interest) in the phase space of a dynamical system (fluid flow, for
the case of interest). Let V(t) be an arbitrary volume in the phase space of the dynamical
system defined in Equation (1). Let S(¢) be a closed surface enclosing the volume V (¢), i.e.,
such that S(t) = 6V (t). S(t) evolves during the time interval dt resulting in a contraction
or expansion of the volume, as depicted in Figure 8. The rate of volume variation, which
we will call volume contraction rate in the following, can be expressed as follows as a
consequence of the application of the Gauss theorem:

d‘;iit):/./su.ndsz///vv-udV, (16)

where u is the vector field defined in Equation (1) and # is the unit normal to the surface S
(Figure 8). Shrinking the near-wall volume V to a point, it can be written:

1av(y 1 B
lim & = hg\ov/ / /V VudV = (V). a7)

Equation (17) clearly shows that in the limit as V approaches zero, the local value of
vector u divergence is equal to its total flux per unit volume.

In general, in non-conservative dynamical systems, the volume of phase space is not
preserved, as it can contract or expand. Thus, trajectories tend toward a lower-dimensional
subset of phase space. From Equation (17), the volume contraction rate A(x,t) of a n-
dimensional system, representing the rate of separation of infinitesimal close trajectories,
can be obtained as:

=

Ax, t) =Veu(x,t)=trJ(u) =) A; (18)

i=1
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where tr J(u) is the trace of the Jacobian matrix of vector field # and A; are its eigen-
values. Physically, the Jacobian matrix describes how a small change at a starting point
Xo propagates to the final point of the flow map @io (x0) of Equation (3). In this sense,
Equation (18) represents the sum of the Lyapunov exponents of Equation (8).

A)

V(t+ dt)

Figure 8. Explanatory sketch of (A) volume contraction and (B) volume expansion in the phase space
of a dynamical system.

4.2. Eulerian-Based Approach for WSS Topological Skeleton Identification

It has been recently demonstrated [19] that the application of the volume contraction
theory to cardiovascular flows allows the analysis of the WSS topological skeleton on
the luminal surface of a vessel through the direct calculation of the WSS divergence.
Briefly, considering the expression of the near-wall blood flow velocity vector u, given in
Equation (12) and substituting it in Equation (17), it follows that:

. 1dvi(t .
‘I/EBV dt VHOV]J/// VTdV=(V-T). (19)

Based on Equation (19), the WSS divergence gives practical information about the
WSS topological skeleton. Note that in general, the WSS vector field defined at the luminal
surface of a vessel is not conservative, even in the case of incompressible flows.

Contextualizing the physical meaning of Equation (19) to the study of the phenomena
at the interface between blood flow and vessel wall, it can be observed that as the divergence
represents the volume density of the outward flux of a vector field from an infinitesimal
volume around a given point:

e alocal positive value of the divergence of the WSS field at the luminal surface means
that locally shear forces exert an expansion action on the endothelium;

e alocal negative value of the divergence of the WSS field at the luminal surface means
that locally shear forces exert a contraction action on the endothelium.

In general, the application of the volume contraction theory to the analysis of a dy-
namical system faces one limitation in cases where the distance between two neighboring
trajectories increases/decreases in spite of a negative/positive value of divergence, respec-
tively. As WSS divergence depends by construction upon the algebraic summation of the
magnitude of the single gradients of WSS vector components, in some cases, it might fail to
properly identify WSS expansion/contraction configuration patterns. In fact, these regions
describe specific directional arrangements of the vectors, but both variations in magnitude
and in direction are accounted for in the divergence. To overcome this limitation, which
could markedly affect the application of the Eulerian-based approach to study WSS mani-
folds in cardiovascular flows, the use of the divergence of the normalized WSS vector field
has been recently proposed [19]:

DIVy = V-7, = V- (%) (20)
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where T, is the WSS unit vector. Equation (20) can be used to encase the connections
between fixed points, i.e., manifolds, identify basins of attraction, and subdivide the
domain into different vector field behaviors. Then, in the light of the above and as depicted
in Figure 9, luminal surface regions characterized by negative values of DIV}y are referred
to as contraction regions and approximate unstable manifolds. Similarly, regions at the
luminal surface characterized by positive values of DIV}y are referred to as expansion
regions and approximate stable manifolds (Figure 9).

unstable node stable focus

N ﬁZZT?S’.'(iWu
/.\
. i
Stable N contractlon regions
(DIV,,<0)
manifolds )
g O saddle point

\//f ’

expansion regions
/‘ (DIV,,>0) unstable focus

stable node

Figure 9. Explanatory sketch of the topological skeleton of a vector field. Contraction/expansion
regions, colored in blue/red, respectively, approximating unstable/stable manifolds, are highlighted.

To complete the Eulerian-based WSS topological skeleton analysis, once WSS man-
ifolds have been identified using DIVyy, the WSS fixed point location can be carried out
using the Poincaré index, as in the Lagrangian-based analysis (as described in Section 2).
Then, the eigenvalues of the Jacobian matrix of the WSS vector field can be used to distin-
guish between a node or a focus and between the attractive or repelling nature of a fixed
point, as described in Section 2 in general terms (Table 1) and in Section 3.3 for the specific
case of a WSS vector field defined on the luminal surface of a vessel.

An example of Eulerian-based topological skeleton analysis of the cycle-average WSS
field on the luminal surface of a patient-specific computational hemodynamic model of
carotid bifurcation is presented in Figure 10A. Details on carotid bifurcation hemodynamic
modeling are reported elsewhere [9,14,20,63]. WSS fixed points were identified and classi-
fied by computing the Poincaré index and eigenvalues of the Jacobian matrix, respectively,
whereas contraction/expansion regions were identified by computing the divergence of
the normalized cycle-average WSS vector field. By visual inspection of Figure 10B, it can
be noted that cycle-average WSS contraction regions co-localize with cycle-average WSS
unstable manifolds, traced out by integrating cycle-average WSS starting from saddle
point positions, thus confirming the capability of the contraction regions to encase WSS
manifolds.

The Eulerian-based approach to analyze the WSS topological skeleton can be easily
implemented. It requires only single snapshots of the WSS vector field, and the post-
processing algorithms, based on a robust theory, are easily reproduced. This approach does
not need the Lagrangian surface transport computation, as required for Lagrangian-based
and integrated trajectory-based methods, thus reducing computational effort. Furthermore,
it is characterized by modularity in the sense that the method can be applied only for the
purpose of fixed point identification and / or classification or only for contraction/expansion
region identification.
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Figure 10. (A) Cycle-average WSS topological skeleton on the luminal surface of a carotid bifur-
cation model using the Eulerian-based approach. Cycle-average WSS fixed points and contrac-
tion/expansion regions (blue/red regions, respectively) are computed simultaneously. (B) Cycle-
average WSS topological skeleton superimposed on the cycle-average WSS unstable manifolds,
traced out by integrating cycle-average WSS vectors starting from saddle point positions. Vectors are
normalized for visualization.

4.3. Application of the Eulerian-Based Method for WSS Topological Skeleton Analysis to
Cardiovascular Flows

The described Eulerian-based method to identify the WSS topological skeleton on the
luminal surface of an artery can be easily applied (1) to cycle average WSS vectors (defined
in Equation (14) in Section 3.3) and (2) to instantaneous WSS vectors along the cardiac
cycle.

The cycle-average WSS topological skeleton highlights blood flow features associated
with vascular disease development, and it is strongly related to arterial near-wall mass
transport. In detail, on the one hand, contraction/expansion regions of cycle-average
WSS vectors, because of their capability to encase unstable/stable cycle-average WSS
manifolds, can be used to identify biochemical concentration patterns at the arterial luminal
surface. On the other hand, the instantaneous WSS topological skeleton allows analyzing
the unsteady nature of WSS fixed points and contraction/expansion regions. In detail,
instantaneous WSS fixed points may have a potential impact on the endothelial cells (ECs)
function. By definition, a WSS fixed point represents a focal point on the luminal surface of
a vessel where WSS vanishes, and low WSS is a biomechanical factor involved in vascular
dysfunction. In light of this, quantitative descriptors of WSS fixed points residence times
along the cardiac cycle were proposed [17,19], aiming at characterizing their unsteady
nature. In detail, a WSS fixed point residence time, that for each surface element measures
the accumulated amount of time that WSS fixed points spend inside that element, weighted
by the sum of the absolute values of the eigenvalues of the instantaneous WSS Jacobian
matrix, was proposed elsewhere [17]. More recently, a different formulation for quantifying
WSS fixed points was proposed [19] where the local residence time of WSS fixed points were
weighted by the absolute value of the sum of the eigenvalues of the WSS Jacobian matrix
(i.e., according to Equation (18), the absolute value of the WSS divergence, representing the
strength of the contraction/expansion of the WSS around the fixed point). In mathematical

terms:
T

Al
RTVx,, () = 47 JEe(x ) 1(V D).l 1)
0
where Xfp is the location of a WSS fixed point at time ¢t € [0,T], T is the cardiac cycle

duration, e is the generic triangular element of the superficial mesh of area A,, A is the
average surface area of all triangular elements of the superficial mesh, I, is the indicator
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function (equal to 1ifx, € e, 0 otherwise) and (V-7), is the instantaneous WSS divergence
value, representing the local strength of the contraction/expansion of the WSS around the
considered fixed point. Roughly speaking, Equation (21) allows quantifying the fraction of
the cardiac cycle for which a generic triangle mesh surface element e on the vessel luminal
surface hosted as a fixed point, weighting the residence time by the strength of the local
contraction/expansion action.

Furthermore, the strength and the nature of WSS contraction and expansion action
on the ECs lining the luminal surface, as identified by WSS contraction/expansion re-
gions, is expected to have biological consequences linked to vascular pathophysiology.
In particular, the exposure to high variability of WSS contraction and expansion action
may mechanically induce a recurring variation in EC stimulation along the cardiac cycle,
with consequent widening cell—cell junctions and associated increased endothelium per-
meability and EC dysfunction and apoptosis [7,66]. The amount of variation in the WSS
contraction/expansion action exerted at the luminal surface of a vessel along the cardiac
cycle can be quantified using the quantity topological shear variation index (TSVI) [24]:

1 T ) 1/2
TSVI = {T/ [ DIV — DIVyy | dt} . (22)
0

Equation (22) allows localizing regions on the vessel luminal surface exposed to large
variations in WSS contraction/expansion action exerted by the flowing blood along the
cardiac cycle.

An example of the distribution of WSS fixed point weighted residence time (Equa-
tion (21)) and the topological shear variation index (Equation (22)) on the luminal surface
of a patient-specific computational hemodynamic model of carotid bifurcation is presented
in Figure 11. Details on the carotid bifurcation hemodynamic modeling are reported
elsewhere [9,14,20,63]. From Figure 11, it emerged that the highest RTV I (e) values and
highest variation in the contraction/expansion action exerted by the WSS along the cardiac
cycle were mainly located at the carotid bulb and around the bifurcation apex.
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Figure 11. (A) Distribution of WSS fixed-point weighted residence RTV, (¢) and (B) Topological
shear variation index (TSVI) on a carotid bifurcation model.

Interestingly, very recent studies highlighted a link between WSS contraction/expansion
variability along the cardiac cycle and aggravating biological events at the arterial wall.
In particular, De Nisco et al. [24] applied the Eulerian-based approach for the analysis of
the WSS topological skeleton for personalized computational hemodynamic models of
ascending thoracic aorta aneurysm (ATAA) and healthy aorta, reporting that: (1) the differ-
ent spatiotemporal heterogeneity characterizing the ATAA and healthy hemodynamics
markedly reflect on their WSS topological skeleton features; (2) a link emerged between
the variability of the contraction/expansion action exerted by WSS on the endothelium
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(as quantified by the TSVI) along the cardiac cycle and ATAA wall stiffness. Morbiducci
et al. [20] demonstrated in a longitudinal study integrating clinical data with compu-
tational hemodynamics that WSS topological skeleton features quantified by the TSVI
independently predicted long-term restenosis after carotid bifurcation endarterectomy.

5. Future Directions

The translation into clinical settings of the WSS topological skeleton is hampered by
several barriers that add up to those affecting in general the translation of computational
hemodynamics and the derived knowledge, as discussed elsewhere [67]. Specifically,
as a first step, the analysis of the topological skeleton needs to be distilled into intu-
itive, clinically relevant criteria. To this aim, only semi-quantitative results are obtained
from the definition of fixed points and stable/unstable manifolds, consisting of contrac-
tion/expansion regions. However, quantitative results can be obtained by focusing on
specific features by using ad-hoc topological skeleton descriptors, such as the fixed point
weighted residence time RTV p (e) (Equation (21)) or the topological shear variation index,
TSVI (Equation (22)). Then, the definition of clinically relevant criteria based on the WSS
topological descriptors require cut-off values for an effective translation into the clinic.
These cut-off values need to be accurately defined and tested in terms of performance
including accuracy, sensitivity, specificity, and positive predictive value, among others.
Therefore, the determination of cut-off values requires adequate statistical power, obtained
usually through multiple prospective, randomized trials. Moreover, the endpoint to be
predicted should be clearly defined, as different endpoints correspond to different cut-off
values.

In the perspective of an effective translation into the clinic of quantitative topolog-
ical skeleton features, in a previous study [20], we proved that exposure to high values
of both descriptors RV, (e) and TSVI was correlated with intima-media thickness (a
marker of vascular disease) at 60 month follow-ups in carotid bifurcations after carotid
endarterectomy. To determine the cut-off values of the descriptors, a pooled distribution
for each descriptor was calculated from 46 models of healthy carotid bifurcation. The 80th
percentile of those distributions was then used. This approach allowed definition of the
cut-off values for abnormally high values of RTV (e) or the TSVI.

It is evident that cut-off values are specific to the vascular region and to the predicted
endpoint and therefore cannot be extrapolated to other conditions. In the future, the
continuous improvements in imaging and data acquisition, the increasing availability
of computational power, and the development of more and more efficient and robust
methodologies for blood flow modeling are expected to accelerate the translation into
the clinic of the analysis of the WSS topological skeleton. Our paper aims to give the
methodological basis to tackle these future efforts.

6. Conclusions

The need for the identification of hemodynamic coherent structures in blood vessels is
dictated by the so-called hemodynamic risk hypothesis, suggesting a major role of flow
disturbances in vascular pathophysiology [2]. The action of fluid forces on the endothelial
mechanosensors and biochemical machinery has been historically explained in terms of
WSS [3,4]. However, only moderate (and sometimes contradictory) associations between
vascular disease and WSS-based descriptors have emerged to date, motivating a more
in-depth analysis of the fluid near-wall transport phenomena. In this sense, the capability
of the WSS topological skeleton to capture features reflecting cardiovascular flow com-
plexity [17-20] and having a direct link to adverse vascular biological events has recently
attracted a strong research interest. In this regard, recent studies have demonstrated that
the cycle-average WSS topological skeleton governs the near-wall biochemical transport in
arteries [15,16,18], a process linked to, e.g., endothelium-mediated vasoregulation, throm-
bosis, and atherosclerosis [23]. Furthermore, evidence about the role of WSS topological
skeleton features in vascular pathophysiology emerged from very recent studies suggesting
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a direct link between WSS topological skeleton features and, e.g., aortic wall stiffness [24]
and late restenosis in endarterectomized carotid arteries [20].

Motivated by the need to characterize more precisely the WSS phenotype(s) linked
to aggravating biological events, here we provided an overview of the theoretical and
methodological basis for analyzing the WSS topological skeleton in cardiovascular flows.
In detail, the present study is intended to: (1) promote the application of WSS topological
skeleton analysis to cardiovascular flows, aiming at elucidating the role that peculiar WSS
features play in vascular pathophysiology; (2) facilitate the reproducibility and comparabil-
ity of results from WSS topological skeleton analyses among different studies; (3) confirm
its potential as a tool for increasing the chance of elucidating the mechanistic link between
flow disturbance and clinical outcomes when applied to real-world clinical data.

Here, both WSS topological skeleton Lagrangian- and Eulerian-based methods cur-
rently adopted in the literature are presented. Lagrangian-based approaches start from
the processing of Eulerian data, which represent the typical outputs of current in vivo
(e.g., phase contrast MRI), in vitro (e.g., particle image velocimetry), and computational
methods used for the investigation of cardiovascular flows. On the one hand, Lagrangian
approaches are particularly useful for revealing the global organization of the vector field
and characterizing its evolution over time, making the relevant features easy to detect
by visual inspection, as they offer effective three-dimensional (or even four-dimensional,
i.e., including time) visualizations. On the other hand, Lagrangian techniques rely on
the numerical integration of particle trajectories, requiring sufficiently resolved data in
both time and space, thus, in principle, making such methods computationally expensive
and time consuming [29]. Moreover, adopting a Lagrangian approach may result in a
poor control over the zone of investigation, which is determined by particle motion and
accumulation. For this reason, it can also be difficult to get a complete picture of the flow
at specific time instants. Furthermore, the influence of particle distribution and of particle
seeding schemes on quantities of interest is poorly investigated.

In contrast, Eulerian-based approaches usually simplify the data analysis workflow, as
they can be directly applied to the output given by the main current techniques used for the
investigation of cardiovascular flows (e.g., phase contrast MRI, CFD data). Moreover, they
usually have a simpler definition, making their implementation easy and characterized
by a reduced computational cost. More importantly, they can give a picture of the entire
vector field. However, the inherent unsteady nature of the hemodynamic vector fields (e.g.,
velocity, WSS) can make the characterization of the dynamic evolution of the vector field
features difficult with Eulerian-based approaches.

In conclusion, the theoretical background of the advanced methods of analysis of the
WSS presented here and the recent findings related to their application to cardiovascular
flows support their use to further elucidate the cause-effect relationships at the basis of the
links between local hemodynamics and vascular disease. Based on the reported evidence
about the physiological significance of the WSS topological skeleton in cardiovascular
flows, its application in future studies, including longitudinal data, biological mechanism,
and mechanobiology studies, is strongly encouraged and warranted.
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Abstract: Custom reverse shoulder implants represent a valuable solution for patients with large
bone defects. Since each implant has unique patient-specific features, finite element (FE) analysis
has the potential to guide the design process by virtually comparing the stability of multiple
configurations without the need of a mechanical test. The aim of this study was to develop an
automated virtual bench test to evaluate the initial stability of custom shoulder implants during the
design phase, by simulating a fixation experiment as defined by ASTM F2028-14. Three-dimensional
(8D) FE models were generated to simulate the stability test and the predictions were compared
to experimental measurements. Good agreement was found between the baseplate displacement
measured experimentally and determined from the FE analysis (Spearman’s rank test, p < 0.05,
correlation coefficient ps = 0.81). Interface micromotion analysis predicted good initial fixation
(micromotion <150 pm, commonly used as bone ingrowth threshold). In conclusion, the finite element
model presented in this study was able to replicate the mechanical condition of a standard test for a
custom shoulder implants.

Keywords: finite element analysis; shoulder implant stability; implant design; reverse shoulder
arthroplasty; micromotion

1. Introduction

Since its introduction in the late 1980s, reverse shoulder arthroplasty (RSA) has become a standard
treatment for patients with rotator cuff arthropathy. More recently, surgeons have expanded its
application to fracture care, rheumatoid arthritis, and even failed prior surgery replacements, further
increasing the number of surgeries [1,2]. In many cases, the presence of considerable bone loss at the
glenoid side, due to degenerative arthritis or secondary to revision surgeries, may complicate baseplate
implantation. This limits the treatment options and jeopardizes the clinical outcomes, as insufficient
bone stock can lead to suboptimal component fixation and therefore early implant failure.

Different methods have been described to address glenoid defects, depending on the bone loss
severity [3]. Eccentric reaming can be performed in case of moderate bone loss, while bone grafting is
more suitable for large defects. However, the results of bone grafting are controversial since not all
studies have reported satisfactory outcomes [4]. More recently, custom implants have been introduced
as an alternative treatment. Together with patient-specific preoperative planning and implant design,
custom implants allow for proper joint positioning and fixation of the component in the remaining
native bone [5,6].
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In order to avoid aseptic loosening of the glenoid component, a stable bone-implant interface is
necessary, in which only small relative movements are allowed. Fixation screws are used to provide
initial mechanical stability (primary fixation) which subsequently can lead to biological fixation by
bone ingrowth (secondary fixation). To enable bone ingrowth, custom implants have a porous titanium
structure (spray-coated or 3D printed) [7,8]. However, micro-motion at the bone-implant interface
above 150 pm has been shown to inhibit this mechanism and lead to an unstable fibrous tissue layer
between the metallic porous layer and the host bone [9]. Therefore, implant design should be optimized
to minimize micromotion at the time of initial fixation, thus leading to a stable bone-implant interface
and to a better osseointegration.

For patient-specific shoulder implants, the enormous design space, which allows the glenoid
component to be adapted to the patient anatomy, represents a challenge to the evaluation of the
mechanical stability. While mechanical tests can be performed extensively to assess the stability of
standard implants [10-12], for custom implants with a unique design for each patient, it is not practical
to use mechanical testing to verify the stability. Alternatively, Finite Element (FE) analysis has been
widely used to evaluate the influence of different implant configurations on the initial fixation of an
implant [13-19].

Chae et al. analyzed the bone-implant interface micromotion of an inferiorly tilted glenoid
component virtually implanted in a scapula model and found that the tilted fixation compromised initial
mechanical stability [17]. Suarez et al. investigated how a different type and number of screws impacted
the initial stability of a cementless glenoid component, reporting higher interface micromotions when
the same implant was tested in poor quality bone [14], even when more physiological loads (e.g.,
from musculoskeletal model) were applied [18]. Elwell et al. [19] reported similar results, showing
that the use of only two fixation screws could amplify the negative effect of baseplate lateralization,
thus jeopardizing implant stability and worsening its functional outcome. Hopkins et al. examined
multiple standard designs with different screw angle inclination, concluding that increasing the screw
inclination enhanced stability more than using longer and thicker screws [15]. Other studies explored
instead the effect of the prosthesis repositioning (using different glenosphere sizes or bone grafting)
and found that a lateralization of 10 mm was mechanically acceptable for osseointegration [13,16].

However, the effect of different loading directions, which in case of a custom implant cannot
be neglected due to the asymmetry of the design shape, was never systematically investigated. It is
evident that, since the main parameters (number and type of screws, baseplate dimensions, etc.) are
unique for each custom implant, FE analysis has the potential to guide the design process by virtually
comparing multiple designs without the need of a mechanical test.

Therefore, the aim of this study is to develop an automated workflow to evaluate the initial
stability of custom shoulder implants during the design phase, by simulating a fixation experiment
based on ASTM F2028-14 [20]. To our knowledge, this is the first study to automate, evaluate and
validate a full in silico modeling of the ASTM F2028-14 for a custom-made prosthesis. Moreover, the FE
model can be used to predict the relative motion at the bone-implant interface, which cannot be
quantified by the current mechanical tests.

2. Materials and Methods

A custom reverse shoulder implant was designed and 3D printed to comply with ASTM
standards [20]. To evaluate the preclinical stability of the implant, displacement of the glenoid
baseplate was measured in response to axial and shear loading, after insertion in a bone substitute.
The experimental baseplate displacement was compared to the model estimation to validate the virtual
bench test. A more detailed explanation regarding the mechanical test and the in silico model is
presented in the following sections.
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2.1. Experimental Set-Up

The ASTM F2028-14 [20] is a standard method commonly used for assessing the risk of glenoid
loosening in shoulder implants. The test protocol includes three subsequent steps: (1) an initial static
analysis to measure the baseplate displacement, (2) a fatigue phase in which the implant is cyclically
rotated around an axis loaded with a compressive axial force, and (3) an additional static phase to
measure the glenoid fixation, similarly to step 1.

The custom implant was inserted into a 20 pcf (pounds per cubic foot) polyurethane block
(Sawbones Europe AB, Sweden), which is normally used as substitute of glenoid bone in mechanical
tests [21]. Two locking and two nonlocking (compression) screws were used to fix the implant to the
artificial bone (Figure 1a). Compression screws are able to close the gap at the bone-implant interface,
by pressing the metal component towards the bone. For this reason, nonlocking screws were inserted
first, followed by the locking screws, which instead lock the implant in place thanks to the threaded
head mating the threaded holes of the implant.

Axial Load

Figure 1. Left (a), top view of the custom implant with the four main directions: anterior, posterior,
superior and inferior. Four screws were used to fix the implant: two locking (L) and two nonlocking
(compression, C). Right (b), experimental set-up with a shear load (red arrow) applied inferiorly via a
horizontal loading fixture. Axial load was applied through the glenosphere (blue arrow). Axial and
shear components of the baseplate displacement were measured superiorly with two dial indicators
(green arrows).

An axial compressive load of 430 N was applied perpendicular to the glenoid plane by a flat
polyacetal load applicator. An additional shear load of 350 N was applied parallel to the baseplate via
a horizontal loading fixture (Figure 1b). Shear and axial forces were defined in a worst-case loading
scenario, being respectively 42% and 51% of body weight (assumed to be 86 kg) [20].

Contrary to standard baseplates, which normally have a symmetric round shape, custom implants
can present an asymmetric design, consequently the shear load was applied along the four main
directions of the implant: anterior, posterior, superior and inferior (Figure 1a). Dial indicators (MTS
System, USA) were placed to measure the displacement of the baseplate. For each loading direction,
both axial and shear baseplate displacements were measured, resulting in a total of eight measurements.
Each measurement was performed three times and averaged value was obtained. The test was repeated
for six identical samples under the same conditions.

2.2. Generation of Finite Element Models

An automated workflow was developed to set-up FE simulations of a virtual bench test. To obtain
a virtual bench test that can be run multiple times by the design engineers to support possible design
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decisions and adaptations, the computational time of the simulation needs to be limited. For this
reason, the finite element model was created to simulate only the static step of the experimental test,
without considering the fatigue aspect, similarly to the work of Virani et al. [13].

2.2.1. Bone and Implant Models

The geometry files (STL) of the implant were imported into the design software 3-matic (v 14.0,
Materialise N.V., Leuven, Belgium), that includes a Python scripting interface to automate processes
(Figure 2). The bone substitute, which had to match the nonflat contact surface at the interface with the
implant, and the loading box were created through a series of Boolean operations.

Axial Load patch Axial Load patch

Superior

Posterior

Anterior

(a) (b)

Figure 2. Left (a), isometric view of the finite element (FE) model with a shear load applied
inferiorly. In blue the patch defined for the application of the axial load, in red the shear load
patch. Right (b), superior view of the FE model. In green the measurement patch defined to calculate
the baseplate displacement.

The 3D FE models were meshed with tetrahedral C3D4 elements. For the loading box, a coarse
mesh was used, with element edge lengths ranging from 2 to 4 mm. The bone block was meshed
with nonuniform elements, using a more fine mesh at the interface. A mesh convergence study was
performed upfront by evaluating the impact of different mesh size on the interface micromotion.
Ultimately, an average element edge length of 0.5 mm at the baseplate-bone interface was considered
as the converged mesh. Nonmanifold nodes were created at the bone-implant interface, to facilitate
the micromotion calculation and the convergence of the contact analysis. Due to this operation the
elements nodes in the contact surface were shared between implant and bone. The implant was meshed
with an average edge length of 0.5, for a total of approximately 630,000 elements, consistent with the
dimensions of the prosthetic components and necessary to capture the complexity of the custom design.
Ultimately, the glenosphere was meshed with an average element size of 0.5 mm. The meshing process
of the screws is described in Section 2.2.3.

All components were modeled with linear elastic material properties, which is an assumption
commonly made under these experimental conditions [22]. The loading box and baseplate were
assigned with a Young’s modulus of 110,000 MPa and a Poisson’s ratio, v, of 0.3 (corresponding to
Titanium Ti-6Al-4V, [23]). The porous structure of the baseplate, mainly consisting of 3D printed
Titanium, was modelled as a solid part and characterized by a lower stiffness. A Young’s modulus equal
to 2000 MPa and a Poisson’s ratio of 0.3 were used, consistently with the values reported in the literature
for titanium porous scaffolds [24]. The glenosphere was modeled using cobalt-chromium-molybdenum
material properties (E = 220,000 MPa, v = 0.3, [25]). The material properties of the foam block,
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representative of human glenoid trabecular bone, were taken as reference for the bone substitute (E =
200 MPa, v = 0.3, [26]).

Contact surfaces were tied or were modelled as a hard contact with friction, depending on the
interaction of the component. The interface between glenosphere and baseplate, and loading box
and bone block, were considered completely tied, with no relative motion. Coulomb friction contact
was implemented at the bone-implant interface. In the literature, values ranging from 0.5 to 0.7 are
reported for the friction coefficient between bone and porous metal [13,14,22,27], thus an average
friction coefficient of 0.6 was selected for the presented model.

2.2.2. Screw Model

In order to assess the impact of different screw types (compression and locking) on fixation,
particular attention was paid to the screw modeling. A recent study showed that an excessive
simplification of the screw shaft model has an impact on the micromotion in RSA implant design
analysis [22]. Hence, the validity of the simplification assumptions has always to be evaluated
against experimental measurements, aiming for a trade-off between acceptable computation times and
prediction accuracy.

Screws were modeled following a previously described approach [28]. This approach uses
structural elements for the connection to the bone, which avoids the need of meshing screw holes
and the associated computational cost related to additional contact analysis (Figure 3a). A script was
implemented in Python 3.7 to automate the modeling process and include the screws in the Abaqus
input file. As output of the design planning phase, five screw parameters could be extracted: position
(head coordinates), length, direction, outer diameter and root diameter.

screw-implant connectors

-

/.

| screw wire

Py

W _

screw-bone connectors

*jxé

(©

Figure 3. Left (a), top view of the model and the four screws. In blue the connectors between screw head
and implant. Right (b), detail of one screw (implant transparent). Right (c), the generated screw model.

Each screw was modeled as a wire connecting the head point (input parameter) to the endpoint
(obtained with the length and direction vector) and penetrating the elements of the bone (Figure 3b,c).
All the nodes of the bone elements lying around the wire and at a maximum distance equal to the
outer screw radius were connected perpendicular to the wire with rigid connector elements. The screw
head was fixed to the implant in a similar way, by connecting the node representing the head with the
nodes within the baseplate holes. To mesh the screw wire, beam elements (B32, three-node) with a
circular cross section equal to the root radius where used, imposing as nodes the calculated intersection
points between wire and connector elements. Since titanium screws were used, a Young’s modulus of

110,000 MPa and a Poisson’s ratio of 0.3 were assigned as material properties.
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To differentiate the mechanical behavior between locking and compression screws, additional
assumptions were made. To model the loose connection between the unthreaded head of a compression
screw and the implant, the stiffness of the first 2 mm of the screw shaft was set to 200 MPa, a value
equal to the elastic modulus of the bone substitute [14].

Moreover, nonlocking screws provide an initial compression that constrains the implant towards
thebone. The impact of this aspect on FE analysis was already examined in literature, demonstrating that
the inclusion of preload in the model is a key parameter when investigating interface micromotion [29].
For this reason, preload was explicitly modeled using the pretension section of Abaqus at the intersection
of the screwed and nonscrewed portion of the shaft, similarly to the study of Virani et al. [13]. For the
current model, the input values of the insertion force were estimated based on experimental data [30].
Briefly, a custom-made load sensor was built to measure the compression force generated by the screw
head. Screws with different lengths were inserted into synthetic bone blocks (Sawbones; Malmo,
Sweden) of 20 pcf and the force was acquired until failure of the bone substitute. This resulted in a
maximum compression of 370 N and 420 N for the two screws used in the loosening test. Since those
values were measured at failure loads, the pretensions in Abaqus were set to 260 N and 300 N, by taking
70% of the force to failure [14].

2.2.3. Boundary Conditions and Simulation Steps

Boundary and loading conditions mimicking the experimental set-up were applied.
Specifically, the bottom and side faces of the rectangular metal box were fully constrained in all
the directions. The axial load of 430 N was applied perpendicular to the glenoid plane through the
glenosphere. A patch (10 mm radius) was defined on top of the glenosphere cup surface and all nodes
lying inside were selected to apply the load (Figure 2). For the shear force, a patch of 1 mm radius was
defined on the inferior side of the cup, as to simulate the horizontal load fixture (Figure 2a).

To estimate the baseplate displacement, measurement patches of nodes (1 mm radius,
representative of the dial indicator tip) were also automatically defined on the baseplate surface, using
the known direction vector of the load (Figure 2b). For example, when the shear load was imposed
inferiorly (Figure 1a), the measurement patch was defined superiorly, centered at the intersection point
between the load direction vector and the edge of the implant surface.

All analyses were performed in Abaqus/Standard 6.14 (Dassault Systemes, Waltham, MA, USA).
To solve the nonlinear equilibrium equations the Newton’s method was used [31]. A three-step analysis
was implemented to mimic the experimental set-up and take into account the implemented surgical
technique, which consists of inserting the compression screws first followed by the locking screws:
in the first step, screw pretension was modeled (see Section 2.2.3), in the second step shear load was
applied, followed by the axial load in the third step.

The end of the first step was considered as the initial state for the displacement analysis, similarly
to the experimental set-up (pretension of the compression screws already present before the application
of the loads). Consequently, the final baseplate displacement, used for model validation, was defined
as the difference in the average displacement of the patch nodes between the second and third step.

2.3. Statistical Analyses and Sensitivity Study

Predicted implant stability values were calculated as the average of the displacements for the
nodes lying in the measurement patch, as defined in Section 2.2.3. Both the shear and axial components
of the displacements were taken into account. A Spearman’s rank order correlation test was used for
comparing the consistency of results between the experimental and in silico analysis, with a significance
level set to 0.05. Correlation coefficients whose magnitude were lower than 0.7, between 0.7 and 0.9 and
higher than 0.9, indicated respectively a moderate, high and very high correlation [32].

Besides the baseplate displacement, shear and axial micromotion at the bone-implant interface
were calculated using the FE method. These micromotions comprised the displacement values for all
nodes on the contact surface. Since nonmanifold nodes were created at the bone-implant interface,
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micromotion was defined as the relative motion between the corresponding nodes after application of
the loads. In particular, for each contact node on the implant surface, micromotion Up was calculated as:

Up =Rp —Rg, (1)

where Rp and Rp are the vector positions of the node on the prosthesis (p) and its corresponding one
on the bone surface (B), respectively. Shear (U;) and axial (U;;) micromotion were then calculated by
projecting the total micromotion on the corresponding loading direction vectors, as follows:

U, =UP-f ()

U, =UP-# 3)

where f and 71 respectively represent the unit vector of the directions along which shear and axial load
were applied. The total relative micromotion between glenoid baseplate and bone, is further referred
to as peak micromotion [33] and was visualized as a color map on the back of the prosthesis.

To evaluate the impact of changes in the model parameters on the FE output interface micromotion,
a sensitivity analysis was performed. In particular, changes in the bone substitute material properties,
the friction coefficient and the screw preload were investigated. A summary of these numerical tests is
presented in Table 1. Each parameter was modified independently, for a total of 24 simulations (six for
each loading condition).

Table 1. Parameter variation for the sensitivity analysis.

Parameter Baseline Value Sensitivity Values

Elastic Modulus Bone 200 MPa 150 MPa, 553 MPa
Coefficient of Friction (CoF) 0.6 0.5,0.7
Screw pre-load 260 N, 300 N +20%

For the stiffness of the bone surrogate, the Young’s modulus was modified to mimic the properties
of 15 pcf (osteoporotic bone) and 30 pcf foam blocks, corresponding to 150 MPa and 553 MPa
respectively [16,26].

The Coulomb’s coefficient was adapted to simulate local changes at the bone—-implant interface by
imposing values of 0.5 and 0.7, which are representative of the friction ranges found in literature.

Finally, a change in the preload of the compression screws was applied, modifying by +20% the
baseline pretension value.

A paired t-test was used to compare the peak micromotion of the baseline model with each
sensitivity model, with a significance level set to 0.01, following a Bonferroni correction of the alpha
value (¢« = 0.05,n = 6: o/n = 0.01).

3. Results

FE results for the baseplate displacement were within the variability of the experimental
measurements for all loading directions (Figure 4). The smallest displacements were found when
the shear load was applied inferiorly to the baseplate. The Spearman’s rank order test revealed a
statistically significant (p < 0.05) high correlation (ps = 0.81) between the experimental results and
FE results.
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Figure 4. Baseplate displacement measured experimentally (boxplot) and determined from the model
(red dots). For the FE analysis, predicted values were calculated as the average of the displacements for
the nodes lying in the measurement patch, as defined in Section 2.2.3. Data were normalized to the
largest micromotion measured in any of the tests. For each of the four main implant directions, both
axial and shear displacements were measured. Gray points represent outliers in the measurements.

The maximum interface micromotion was found for the anterior shear load (Figure 5). For all
the loading directions, the median peak micromotion was lower than 50 um. A 95th percentile of 141
um, 80 um, 73 um and 25 pm was reported for the anterior, posterior, superior and inferior loading
respectively. When looking at the axial and shear components, the median shear micromotion was
always higher than the axial. For none of the loading directions, micromotion above 150 pm was
reported (Figure 6).
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Figure 5. Interface micromotion. Shear and axial components of the total micromotion (peak) was
evaluated for all the loading directions. The red dashed line represents the 150 um threshold.
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Figure 6. Back view of the implant. Peak micromotion map at the bone-implant interface for all the
loading directions.

The sensitivity of the model to input parameters showed a peak micromotion for the baseline
model which was significantly different (p < 0.01) when compared to the model with reduced and
increased elastic moduli of bone substitute, for all the loading directions (Figure 7). For the anterior
loading, which reported the highest micromotion values, significant differences were also found
between the baseline model and the one with reduced/increased compression screws pretension.
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Figure 7. Change of the interface peak micromotion due to modification of different model parameters:
bone Young’s modulus (150 and 553 MPa), coefficient of friction (CoF = 0.5 and 0.7) and screw pretension
(load +20%). *: paired t-test, p < 0.01.
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4. Discussion

In this study, an automated workflow to evaluate the preclinical stability of a shoulder implant
through FE simulations was presented and validated. To our knowledge, this is the first work to
report a full in silico modeling of ASTM F2028-14 for a custom-made prosthesis. Although previous
studies [13,14,22] reported FE analysis for a similar experimental set-up, the effect of different loading
directions, which in case of a custom implant cannot be neglected due to the asymmetry of the design
shape, was never systematically investigated. This approach resulted in a total of eight measurements
that were used to support the FE predictions.

The results of the mechanical test showed an influence of the loading direction on the implant
stability. In particular, the presented design reported the lowest displacements when the shear load
was applied inferiorly to the glenosphere. This is mainly due to the presence of two screws, one locking
and one compression, in the superior part of the baseplate, which are almost perpendicular to the
direction of the inferior load and opposite to its application point. Instead, the highest displacements
were measured for the anterior loading directions, due to the absence of a good screw fixation at the
anterior side. These results further corroborate the idea that each new implant should be tested in
those different conditions.

All the experimental measurements showed a high variability. Although one unique design
was tested with six samples, this variability is likely to reflect the variations that occurred during the
production of the implants and the assembly of the different components. The 3D printed technique
used for fabrication could introduce inaccuracies, especially in the porous structure, which influenced
the mechanical measurements. Similarly, the bone substitute blocks were artificially carved to match
the nonflat baseplate surface, possibly causing additional variation.

Direct comparison of the experimental outcomes with previous studies is not possible due to major
methodological divergences. Higher mechanical loads were used to test standard implants (750 N
both in axial and shear) and only the shear displacement was measured when the load was applied
superiorly [12,13,15]. Under this configuration, the presented work reported slightly higher shear
values (Figure 4, inferior direction), meaning that the effect of a smaller applied load was compensated
by the use of a custom implant with nonstandard design (e.g., nonflat contact surface, asymmetry of
the shape).

The good agreement between experimental and FE-predicted micromotions was confirmed by a
Spearman’s rank test, resulting in a correlation coefficient of 0.81 (high), which is lower than the one
reported by Virani et al. (0.96, [13]). The lower correlation coefficient can be explained by the use of a
custom design, which leads to additional complexity in the simulation. Similar to Virani et al. [13]
overstiffening of the model was observed, which, in the context of this study, can be partially explained
by the use of linear tetrahedral elements in the meshing process, a choice justified by the need of low
computational cost.

One limit of the standard mechanical test presented here is related to the lack of micromotion
measurements at the bone-implant surface. In contrast, FE modeling can provide a valuable insight
on the interface behavior, although their accuracy cannot be directly evaluated against experimental
outputs. As previously described, micromotion above 150 um can jeopardize bone ingrowth and lead
to an unstable fixation [9]. Design engineering should take into account this aspect when looking for
possible design adaptations. For this reason, interface micromotion was estimated through the FE
model. When evaluating the two separated components, higher median values were reported for the
shear component. These results are in accordance with previous studies indicating that micromotion of
reverse implants occurs mainly in shear [34]. For none of the loading directions peak micromotion was
found to be higher than 150 um, suggesting that the implant design does not jeopardize bone ingrowth.
Additionally, the highest values were calculated at the edge of the interface, where osseointegration is
less likely to happen.

The interface micromotions predicted by the FE model were sensitive to changes in some of the
input parameters: the FE model was sensitive under all the loading directions to a change in bone
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quality (150 MPa and 553 MPa), similarly to what has been reported in the literature [14]. Moreover, this
study corroborates the idea that the impact of an adequate modeling of the compression screws cannot
be neglected [29]. A change in the screw pretension can lead to very different micromotion, thus
suggesting that pretension should always be included in the simulation and its value estimated or
derived through experimental measurements.

The generalizability of these results is subject to certain limitations which need to be addressed.
Major assumptions were made during the creation of the in-silico model, looking for a trade-off between
accuracy and computational cost. The bone substitutes were modeled with homogeneous isotropic
material properties, a simplification commonly accepted and implemented in the literature [13,14,16,22],
although not fully representative of the behavior of the bone substitute. The porous structure of
the implant was not explicitly modelled to reduce the complexity of the model. As an alternative,
a lower elastic modulus was used for the corresponding elements. While this assumption impacts
the frictional behavior at the interface, the sensitivity showed that a change in this parameter did not
substantially influence the micromotion estimations (at least in the configurations where highest values
were reported).

While 150 um is the ASTM accepted threshold to promote osseointegration [20], its application
has been challenged in the literature. Other studies [15,35] referred to lower values (20 pm-50 um)
during the evaluation of interface micromotion. When lowering the threshold, the presented model
would still predict bone ingrowth in the inner region of the prosthesis, however these results should be
interpreted carefully and always considering the simplifications of the study.

The automated workflow was built to replicate only the static analysis described in the ASTM
standard and additional efforts should be made to include the dynamic loading, which are probably
not compatible with the requirement of a low computational workflow. However, it can be assumed
that minimizing the initial static displacement with an optimized design, will also lead to better
fatigue outcome.

Validation of the model was obtained only for a single design and under a relatively limited degree
of freedom. It is believed that a more complete experimental set of tests is necessary, at least to assess
the impact of additional design changes (e.g., number and type of screws) and to ensure the validity
of the assumptions made. To further strengthen the predictive power of the simulation, alternative
micromotion metrics would be necessary since the current mechanical set-up fails to provide a direct
measure of the full-field interface micromotion [29,35].

In summary, the automated workflow presented in this study was able to replicate the mechanical
condition of a standard test for a patient-specific shoulder implant. The finite element analysis can
potentially support the engineers during the design phase, by virtually comparing different implants.
Moreover, the minimization of the interface micromotion would lead to an improved initial stability
and hence to a better clinical outcome, by allowing for secondary fixation through bone ingrowth and
reducing the risk of revision surgery due to mechanical loosening. Finally, the presented tool could be
used to define which configurations need to be tested when looking for worst case scenarios, thus
reducing the amount of required mechanical experiments.
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Abstract: Electrical and mechanical stimulations play a key role in cell biological processes,
being essential in processes such as cardiac cell maturation, proliferation, migration, alignment,
attachment, and organization of the contractile machinery. However, the mechanisms that trigger
these processes are still elusive. The coupling of mechanical and electrical stimuli makes it difficult
to abstract conclusions. In this sense, computational models can establish parametric assays
with a low economic and time cost to determine the optimal conditions of in-vitro experiments.
Here, a computational model has been developed, using the finite element method, to study
cardiac cell maturation, proliferation, migration, alignment, and organization in 3D matrices,
under mechano-electric stimulation. Different types of electric fields (continuous, pulsating,
and alternating) in an intensity range of 50-350 Vm ™!, and extracellular matrix with stiffnesses
in the range of 10-40 kPa, are studied. In these experiments, the group’s morphology and cell
orientation are compared to define the best conditions for cell culture. The obtained results are
qualitatively consistent with the bibliography. The electric field orientates the cells and stimulates the
formation of elongated groups. Group lengthening is observed when applying higher electric fields
in lower stiffness extracellular matrix. Groups with higher aspect ratios can be obtained by electrical
stimulation, with better results for alternating electric fields.

Keywords: in-silico; 3D model; cardiac cell; cardiac muscle tissue; cardiomyocyte; electrical stimulation

1. Introduction

Electrical stimulation (ES) is an essential part of the human body physiology, which has relevant
regulatory effects on cell motility, nutrient transport, and disease signaling, among others [1].
The effects due to the presence of electric fields and electric currents, generated by electric potentials,
at both the cellular and tissue levels, play a key role in processes such as embryogenesis [2],
tissue regeneration [3], and cancer development [4]. In the past decades, the application of cell ES has
been applied to study various effects, including, among others, the development and regeneration
of tissues [5,6], embryonic development [7], and tissue engineering [8]. Furthermore, ES has
been shown to play a key role in maintaining a differentiated phenotype of certain cell lineages,
such as neuroblasts and myocytes, keeping a close relationship between electrical activity and
functionality [4,9,10]. Thus, the application of electric fields during cell maturation can influence
maturation, architecture, and functionality of the developed tissues in-vitro. Different studies have
shown the advantages of applying electrical stimulation in the muscle cell culture, observing benefits
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in cell differentiation [11,12], maturation [13,14], alignment [15,16], sarcomeric organization [17],
and functional assembly [11,17]. In general, there is an improvement in the ultrastructural organization,
an increase in the synchronization and amplitude of tissue contractions, in electrically stimulated
tissues in comparison with non-stimulated ones.

Despite its observable effects [11], the mechanisms that regulate the cell response to electrical
stimulus are still, in part, unknown, especially when it is combined with other stimuli such as
mechanical cues. Cells, guided by electrotaxis, are able to detect the presence of endogenous electric
fields through the extracellular matrix (ECM), polarizing and migrating in the direction of the electric
field [4,6]. In the anodic zone, the cell is hyperpolarized tending to release K™, and acquiring a locally
more negative membrane potential. On the opposite side, in the cathodic side, the cell is depolarized,
tending to absorb Ca?* from the environment and becoming locally more positive [4]. These two effects
cause migratory effects in opposite directions, being the effective direction of migration as a result
of this balance. In fact, it depends, among other factors, on the cell phenotype, where both cathodic
and anodic migration tendencies can be observed. For instance, Cardiac Progenitor Cells (CPC),
Cardiac Fibroblasts (CF) [18] and Breast Cancer Cells [4] tend to migrate towards the cathodic direction,
while Fibroblasts (FB) [18] and Keratinocytes [19] tend to migrate towards the anodic direction.
However, this migratory tendency can be altered by changing ECM conditions. In fact, Frederich et al.,
studied the effect of the soluble Vascular Adhesion Molecules (sVCAM) on the migration of CPD
and CF [18]. They observed that, in absence of sVCAM, the directionality effects produced by the
electrotaxis disappeared for the CPC, while the direction was reversed for the CF. Thus, the complexity
of cellular environments, which coupling several stimuli simultaneously (mechanical, electrical,
and chemical), makes it difficult to study and obtain conclusions. For instance, T. A. Banks et al.
have observed differences in the direction of cell migration and alignment, between Mesenchymal
Stem Cells (MSCs) from different donors [20] as well as from previously published studies [21].
These differences might be due to the coupling of different stimuli [18]. Besides, H.Heidi Au et al.
have compared the effect of the electric stimulation coupled with mechanical cues. They conclude that
cell orientation was strongly determined by the topographical stimuli, while the electric stimuli had
less relevance in cell orientation [16].

Generally, when damage is generated in cardiac tissues, the regenerative capacity is limited.
This shortage is associated, among other factors, with the lack of cells proliferative capacity [18,22,23].
Stimulating and improving this capacity implies the need to know and control all the parameters
that influence this process. Establishing the optimal conditions necessary to stimulate and accelerate
regenerative processes implies the development of a large number of in-vitro experiments. From an
experimental point of view, performing multiple tests to regulate and optimize different parameters
entails a high time and economic cost, in addition to considerable technological complexity [11,23].
In this way, theoretical and computational models can offer support to study cell response
in complex environments, letting us study the effect of multiple parameters on cell behavior.
Thus, multiple experiments can be designed and evaluated, with reasonable economical and temporary
costs, to obtain suitable conditions for a given objective, such as the stimulation of cell proliferation
and tissue regeneration. Through these models, it is possible to purpose different hypotheses,
breaking down and studying simple cases whose effects are known. After adequate calibration,
it is possible to consider the coupling of different stimuli to analyze their effects in more complex cases.
These models can be especially useful to study the formation of cellular architecture in complex tissues,
where the architecture is closely related to the functionality [24,25]. Despite the advantages that these
models could offer, as far as we know, up to date, there are few published models related to this topic.
N. Ogawa et al. 2006 presented a computational model for cell reorientation in paramecium cells due
to the galvanotaxis stimulus [26]. They considered the electrical effect on ciliary beating to be the
main cue of cell reorientation. Despite their interesting point of view, cell-cell interactions as well as
mechanical effects of the cellular environment were not considered in their model. In previous works,
our group presented a new approach for cell galvanotaxis considering coupled effects of mechanical,
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electrical, thermal, and chemical stimuli in cell migration [27-29] and cell morphology [30] in 3D ECMs.
However complex cell-cell interactions as cell junctions and collective cell behavior for Cardiomyocytes
(CMs) were not considered. In the current work, we present a 3D mechano-electric model for the study
of cell architecture based on the orientation and cellular migration of cardiac cells. This model allows
to study the processes of migration, maturation, and proliferation as well as the formation of stable
cell chains of Cardiomyocytes (CMs), depending on the applied electrical and mechanical stimuli.

2. Methods

In order to study the cellular response to the ES as well as the mechanical stimulus, a 3D
computational model has been developed. The present model includes cell processes such as migration,
maturation, and proliferation, as well as cell interaction and adhesion. The model has been developed
based on the Finite Element Method (FEM) and depending on the cell internal deformations.

2.1. Cell Migration

Cell migration described in this section is based on the contractile effect of the actin-myosin
(AM) machinery [31-33]. During cell migration, the cell, which is anchored to ECM through the
focal adhesions, is contracted by the effect of the AM assembly. This contraction has two effects,
to evaluate the mechanical environment of the cell (stiffness) and to impulse the cell. After evaluating
the conditions of the ECM, the front part of the cell (preferential migration direction) generates new
adhesions, while the rear part releases them [34,35]. This effect, together with the cellular contraction,
drives the cell towards a new location. The direction in which the cell migrates is defined by a set of
events that include actin random [36] or guided [37,38] polymerization [34,39]. Thus, the relationship
between the cell internal stresses generated by the contraction of the AM and the produced deformation
in the ECM (Figure 1) has been established by the following equation [40,41]:

Kpas &i € < Epin OF € > Emax ,
Kucfalllllx<£n1in7£x) K b
—aciomax“min i) £; Emin L € <X E
0; = Kact&min—0max + pas =1 min =1 = (1)
KactOmax (Emax—¢;) . - .
Kactemax—0max + Kpas & £< & < Emax s

where 0; is the internal stresses generated by a cellular deformation ¢; at each evaluated FE point of
the cell membrane. Kj,s and Kgt, correspond to the stiffness of the passive and active elements of the
cell, respectively. yax, €max, and €, correspond to the maximum stress generated by the contraction
of the AM motor, the maximum and minimum deformation, respectively, for which the AM generates
active stresses. Finally, £, is the cellular strain for which maximum effort is generated, and is defined
by & = Oyax / Kact.

During the migration process, the internal stresses are transmitted to the ECM through the
multiple focal adhesions as traction forces, Fi,,.. The magnitude of these forces depends, in addition to
the internal stresses, 0, on the ligands concentration, ¢, and the number of the available receptors, 7;,
on the cell membrane as [27,30]:

Férac :U'iSk”rlljei/ (2)

where S is the membrane surface, k is the binding constant, and e; is a unit vector that points from
the evaluated membrane point towards the cell centroid. Then, the resultant traction force, Fiy,c,
is obtained through the contribution of the 1 forces of the cell as [42,43]:

no.
Firge = Z Fimc . 3
i=1

39



Mathematics 2020, 8, 1875

In addition to the traction forces, the model considers the effect of the forces generated by the
electric field, F,,, the forces due to protrusions generation, F,t, and the drag forces, Firag, due to the
viscosity of the ECM.

| Ecell |
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Figure 1. Mechanical model of the cell. The Actin-Myosin (AM) filaments generate cell internal
contraction, € 45, which is transmitted through the active, Ky, and passive, K, elements, generating
cell internal deformations, &, and the resulting stresses, o,.j;. Likewise, feyt corresponds to the
extracellular matrix (ECM) stresses generated by the deformation of the ECM with a stiffness Kgcp.

Different studies have observed a linear relationship in the migratory cell behavior with respect to
the electric field [17,20,44]. For instance, B. Frederich et al. studied different cardiac cells under direct
current electric fields of different intensity concluding that the effect of the ES is proportional to the
magnitude of the electric field [18]. Besides, C. Chen et al. showed in their review that ES stimulates
cell migration and the average displacement is increased as the intensity of the ES increases, being a
useful tool for regulating cell behavior [44]. This performance is attributed to the influence of Ca*,
which generates a hyperpolarization of the cell in the direction of the electric field (Figure 2). Therefore,
the force, Fgr, with which the cell is dragged by the electric field, E, can be defined as:

Fpp = —EQSegr, 4)

where Q) is the cell surface charge density, S is the surface of the cell membrane, and egr is the direction
of the electric field. The surface charge density can be obtained using the Gouy-Chapman membrane
charge equations as a function of the resting potential of the membrane [45].

Different experiments conclude that, although there is a linear relationship between the intensity
of the electric field and the velocity of the cell migration, cells also exhibit a threshold for which this
velocity does not increase anymore. This value of EF for which saturation of the electric forces appears,
Esat, seems to be dependent on the analyzed cell type [18,19,21,44]. This saturation effect has been
defined in the calculation of the electrical charge density of the cell as:

®)

o Q(Zrl/)) E < Esat,
erzt E> Esat ’

where Qg is the saturation charge of the cell surface, and Eg; is the electric field for which the electric
cell forces show a saturation.
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Figure 2. Cell electrotaxis. Cell membrane towards the anode is hyperpolarized allowing the influx of
Ca2* by passive electromechanical diffusion. In the cathodic side, the cell is depolarized, and its ion
channels open releasing Ca®*. The net electrotactic force depends on the balance of the two opposing
attraction forces.

The present model also considers the local repulsion force produced by the individual charge
of the cells. The repulsion electric force, F/p, experienced by the cells i and j, is proportional to the
electric charge of the cells, (); and (), and inversely proportional to the distance between them, r;;.
It can be calculated by [27,28]:

iy k, Q;5:QS:
Fl, = =00 e, 6
BT g (©)
where k, is the coulomb constant, € is the relative permittivity of the ECM, and e;; is the direction
from the jth cell towards the ith cell. With the generated forces by each jth neighbor cell and the forces
due to the electric field, the total force on the ith cell, F,j,, can be obtained by:

n=1 ..
Feee = Fep + Z ng . ()
=1

Protrusion forces, due to the extension and retraction of protrusions of the cell, generate extensions

of the cell which increase cell penetration. In general, it is considered as a random process.
Thus, the magnitude and direction of the protrusion forces, Fprot, have been calculated as [40,43]:

Fpmt =K H Firac ” €rnd / 8)

where « is a random value between 0 < k¥ < 1, and e,,,4 is a random unit vector.

Finally, the drag force effect, Fy,4q, has been considered as a force that opposes the movement of
the cell due to the medium viscosity, 7. It has been defined by the Strokes law as the resistance force to
a cell of radius r, which is moving at velocity v, as:

deg = 67Tryv. 9)

Proposing a balance of forces on the cell, and neglecting inertial effects due to the scale of the
problem, we obtain:

41



Mathematics 2020, 8, 1875

Firac + Feree + Fprot = Fdrag ’ (10)

through which the direction and velocity of cell migration are obtained.

2.2. Cell Interaction

Cells show a collective response different from their individual behavior. Cell-cell interaction has
a high impact on processes such as cell proliferation [46,47] and migration [48,49]. Through cell-cell
interactions, cells establish intercellular connections by binding, for example, their cytoskeleton
through desmosomes, or communicating electronically through gap junctions [50-52]. By counterpoint,
the cells lose some of the ability to interact with the ECM along the contact surface between two cells.
In muscle cells, cell-cell interaction is particularly important, where the final functionality of the tissue
depends drastically on the union quality between the cells [24,50]. So, to develop in-vitro muscle
tissues, a correct cell guidance to appropriate architectures is desired. Thus, the cell contact vector is
defined, for any pair of cells, through the position vectors of these cells (Figure 3a), as [41,43]:

Xij = X; — X;, 11)

where X; and X; are the position vectors of the ith and jth cells, respectively. To avoid cells overlapping,

X;j must fulfill Xj; > 2r.
< A
' i

ok

Initial Deformed
cell shape cell shape

(b) (©

Figure 3. Cell interaction. (a) X; and X; are the coordinate vectors of the ith and jth cells, respectively,
and X;; is the contact vector, which satisfies || X; || > 2r. The contact face, defined by the nodes (111 : ny)
loses the capacity to interact with the ECM. (b) The global polarization direction G, is defined
through the cell polarization e; o+ The projection of the cell contact, I;;, is defined by the projection
of the contact vector, X, in the G direction. Being the cell junction possible when l;; > I,
and || Xij |l = 2r. (c) The direction of the internal cell deformation, e;, is considered to establish the
direction of the cell mechanical stimulus.

The direction of cell contact can be defined as:

ejj = : (12)

i

tiecns and electrical, e]

while the direction of cell polarization can be determined by the mechanical, e . lecr

stimuli to which the cell is subjected, as:
e;ﬁech + e;lec (13)
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i i
where e] ., and e},

calculated as:

are the direction of the mechanical and electrical stimuli, respectively,

i thc
el =", 14
mech H Firac ” ( )
and
. F I
el — elec . (15)
elec H Fdec H

Cardiac tissues are composed of highly ordered myofibrils, which increase in size, number and
complexity during tissue development [3,23,53]. Thus, cells guided by different stimuli in the ECM,
polarize and join other cells forming myotubule-like structures. For instance, V. Planat-Bénard et al.
studied cardiomyocyte differentiation, observing how cardiac cells differentiate and form myotubule
structures after 14 days of cell culture [54]. Besides, as exposed by N. Tahara et al., cardiac precursor
migration showed that CM become connected to form coherent epithelia in bilateral cardiac precursor
populations [55]. This behavior can be observed in different in-vitro studies [3,15,56,57]. In this context,
we define the global polarization direction, G, is an indicator of the degree of alignment of the cells,
which indicates the major direction on which the cells are structured (Figure 3b). This direction is
obtained by evaluating the polarization direction of all cells as:

Ry
Gpol = o7+ (16)
re H Rpul H
where )
2 elpul
Rpol = Z H o i . 17)
i=1 pol

This direction is compared to the cell-cell contact direction to determine the quality of the cell
adhesions. Thus, to compare the direction of cell contact, e;j, with the direction of global polarization,

G o1, the projection parameter, [;;, has been defined as:

ijs
_ Proj(eij/ Gpal)

= (18)
g H Gpol H

where its value is limited within the range 0 < ll-j < 1, being 1 if the cell contact vector, ej, and the global
polarization direction, G, have the same orientation, and 0 if they are in perpendicular directions.

In addition, let us define the cell junction (CJ) as a parameter that represents the union of
appropriately oriented two, or more cells. Thus, when two cells are in contact (|| X;; [|= 2r) and the
direction of cell polarization is consistent with the polarization direction of the whole cells (I;; > l,4),
CJ represents a strong cell contact. [, represents the minimum bound of the projection parameter to
consider cell adhesion which is proposed based on the ultrastructure of cardiac tissues [24,43,50,58].

Each cell, through the previously described mechanosensing process, tends to move into a new
location (Figure 4a). Nevertheless, cells attached with strong CJ, form groups that tend to remain
attached during migration [22,59]. Each cell tends to drag the cells to which it is attached. This effect
generated by each cell in the group causes a collective migration behavior (Figure 4b). In this case,
a new equilibrium is established by [43]:

n
oy ) ) )
deg - Z Fi‘rac + Félec + F‘Inrat ’ (19)
i=1
where F’;m, Fil“, F;mt are corresponding to the contributions of the mechanical, electrical,

and protrusion forces, respectively, of each ith cell in the group. F'g:g <

force of the group, which can be calculated by [43]:

corresponds to the drag
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F§:fg = fsh67Trgrp’7Vgrp ’ (20)
where g1, and v, are the equivalent radius and the velocity of the group, respectively. f;, is a shape
factor, due to the irregular shape of the group, calculated as [30,43,60]:

I I 0.09
fan = {"’;‘; ’”‘*’"} : (21)

min

where Ly, Lyed, and 1, correspond to the maximum, medium, and minimum dimensions of the
group, respectively, which is defined in an orthogonal coordinate system.

Furthermore, cells can also be relocated to new positions, more favorable, within the same group.
After evaluating the translocation of the group, if the group does not move, the individual migration
of the cells of this group is evaluated, v;. In this case, if a cell has the capacity to migrate to a new,
and available, position within the group, then, it is relocated into that new position (Figure 4c).
Thus, the cells belonging to a group can migrate with the group, or relocate within it [22,43,61].

(a) (b) cell-cell ()
~ attachments

[P

Figure 4. Cell migration. (a) Individual cell migration is considered when cells are separated or for
cells which are not attached to another cell by CJ. v; is the individual cell velocity. (b) Collective
cell migration is considered for each group of cells attached by cell junctions. Group velocity, verp,
is defined from the migratory tendency of the cells in the group. (c) Cell relocation is considered when
group velocity is insufficient to consider the movement. A cell can migrate to a new position, with its
individual velocity, v;, without leaving the group.

2.3. Cell Fate

The mechanical properties of the ECM not only affect cell migration but also are important
for processes such as cell maturation, proliferation, and apoptosis. In the case of cardiac cells,
the mechano-electric conditions to which they are subjected during their maturation are key in the
development of functional tissues [11]. For instance, under different mechanical stimuli, cells mature
at different rates, showing faster maturation in stiffer ECMs [62-64]. To include the effect of the
mechanical stimulus, .(t), to which a cell is subjected at each instant of time, t, based on its internal
deformation, ¢;, the mechanical stimulus can be defined as (see Figure 3c) [28,65]:

e g el, (22)

1

Ye(t) =

I
.M:

Il
-

1

where ¢; and e; are the cell internal deformation and the position vector, respectively, of the ith node of
the cell, and # is the number of nodes in which the cell has been discretized.

The cell maturation time, 4 (7, t), which is the time necessary for a cell to reach the necessary
level of maturity to proliferate, is obtained for each cell at each time step, considering the mechanical
stimulus, 7.(f), as:

timat (Yer t) = tin + tp’Yc(t)r (23)
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where t,,;, is the minimum time needed to maturate. f, is a time proportionality factor, which depends
on the mechanical stimulus.
To define the status of maturation of each cell, we have defined a Maturation Index (MI) as:

t

MI = Foat £ S tmat , (24)
1 t > twat -

When maturity is reached, MI = 1, the cell has the possibility of proliferating. However,
the proliferation capacity of cardiac cells is limited [66,67], and closely related to the cell-cycle arrest
and cell junctions [23,68]. In this model, an adaptive cell phenotype is considered. In this way,
cardiac cells, initially considered as CM in the early stages of maturation (early CM), and upon
reaching the maturity state, MI = 1, can advance in the maturity of their cardiac phenotype, and reach
the state of adult CM (late CM). This phenotype change is associated with the ability of cells to
form stable cell-cell adhesions [23,54,68]. In fact, adult CM are highly ordered in stable myofibrils,
which prevents cell division [23]. Thus, CM proliferation is closely related to cell maturation and
cell-cell adhesions [23]. In this way, early CM retains the capability of proliferating where an adult CM
is considered post-mitotic and do not proliferate [23,67,69].

Thus, cell proliferation has been defined as a function of the number of CJ, which defines the
formation of cell-cell stable adhesions, and the MI, which defines the cell-cycle status. Whereas, a cell
fully incorporated into a chain undergoes cell-cycle arrest, which blocked cell proliferation. In contrast,
free cells, or partially attached to a chain, maintain their proliferation capacity due to its consideration
as early CM phenotype. This process is defined by the following equation:

1 mother — 2 daughters CJ; < CJ,;,; & MI =1,

25
no proliferation otherwise , (25)

Cell proliferation = {

where CJ; is the number of cell junctions of the ith cell, and CJ,,,,, is the number of cell junctions that
promotes cell-cycle arrest [70]. Thus, if the cell is partially surrounded, means attached to at least 4
other cells (CJ,,,, = 4), which corresponds to the 50% of the maximum possible CJ due to the model
discretization, cardiac cell phenotype is considered to achieve an adult phenotype and cell proliferation
is inhibited [43].
Once a cell proliferates, it generates two daughter cells. The locations of these new cells have been
defined as:
XD = x
@ daut — Xmoth 1 (26)
Xgaut = Xmoth +2resana ,

6(12 . are the coordinates vectors of the mother cell, the first and the second

daughters, respectively. e, is a randomly generated unit vector.

(1)
where Xy, X5, and X

2.4. Computational Model

The model has been implemented via a user-defined subroutine within the commercial Finite
Element software Abaqus Dassault Systems (UELMAT) [71]. Within this subroutine, the cell has
been defined as a discretized quasi-spherical element with 24 nodes located in the cell membrane
(see Figure 3a). The ECM, with which the cell interacts, is defined through trilinear hexahedral
elements, with dimensions of 800 x 400 x 400 um. The model has 128,000 elements and 136,161 nodes.
Each calculation step is equivalent to 0.8 h of cell-ECM interaction, analyzing a total of 160 h in
each experiment. The ECM has been considered as a linear elastic material. The model algorithm is
described in Figure 5, and the employed parameters have been detailed in Table 1.
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Table 1. Mechanical parameters considered in the model.

Parameter Description Value Refs.
Kpas Stiffness of the cell passive elements 2.8 kPa [72,73]
Kact Stiffness of the actin-myosin machinery 7.0 kPa [72,74]
Emax Maximum strain of the cell 0.09 [30,75]
Emin Minimum strain of the cell —0.09 [30,75]
Omax Maximum contractile stress exerted by the actin-myosin machinery 0.25 kPa [76,77]
v ECM Poisson ratio 04 [78,79]
7 ECM viscosity 1000 Pa-s  [64,80]
k Binding constant of the cell 108 mol~!  [28,80]
ny Number of available receptors of the cell 1.5 x 10° [28,80]
Esat Saturation value of electric field 1200 Vm ! [18]

Ot Saturation value of cell charge density 52 Cm2 [45,81]
P Concentration of the ligands at the of the cell 105 mol  [28,80]
Loan Minimum bound of projection to consider cell adhesion 0.50 [24]

Finin Minimum time needed for maturation 6 days [54,68]
tp Time proportionality 200 days [72,82]
Yiow Minimum level of mechanical stimuli for cardiac cell differentiation —0.04 [11,83]
Ymyo Maximum level of mechanical stimuli for cardiac cell differentiation —0.01 [11,83]
Yapop Maximum mechanical stimuli which trigger apoptosis 0.6 [50,82]

3. Results

A series of experiments have been developed to calibrate and compare the model results with
those obtained from the bibliography. For this aim, a rigidity range equivalent to that is used in
the bibliography for cardiac cell culture (10-40 kPa) [11,50,78,83] has been considered. Additionally,
a determined range of electric field (50-350 Vm 1) has been chosen based on the data available in the
bibliography, avoiding intensities that could cause cell damage [18,84,85]. In all the cases, the electric
field is applied in the longitudinal direction.

To study the variability of the results, for each case, 10 repetitions with different initial random
cell distributions have been generated. For representations issue, the average value of the results of
these 10 repetitions has been calculated.

3.1. Continuous Mechano-Electric Stimulation

In the first experiment, the effect induced by a constant electric field on cells is studied. Initially,
40 cells have been randomly distributed in the ECM. Their behavior has been monitored for 160 h.
Different experiments with stiffnesses of 10, 20, 30, and 40 kPa combined with electric field strengths
of 50, 150, 250, and 350 Vm !, with a total of 16 different configurations have been prepared. In this
case, the interaction of two effects on the cell and its variation is observed by changing the stiffness
and the intensity of the electric field. As observed in previous works of our group [40,43], cells tend
to occupy the center of the ECM guided by mechanical stimulation, being the area where the cells
undergo less internal deformations. The presence of a unidirectional ES guides the cells in the direction
of the electric field, while the different stiffness generate a wide range of possible results. For high
stiffness, the effects related to the mechanotaxis tend to be high, with a greater tendency of the cells to
migrate towards the center of the substrate. In the same way, for high ES cases, a high drag effect of
the cells is generated by the galvanotaxis. The final location of the cells depends on the intensity of
both stimuli.

A differentiated effect is observed for different stiffnesses, with a higher impact of the ES in lower
rigidity ECMs. As the ES increases, cells show an increase in the alignment in the longitudinal direction
as well as a high migration tendency in the direction of the electric field. For the maximum ES, cells are
rapidly dragged by the ES, hindering cell-cell interaction (Figure 6).
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Figure 6. Cardiomyocytes (CMs) in 10 and 40 kPa ECMs, under ES of 50 and 350 Vm ™!, after 160 h
of simulation (see also Supplementary Materials video 1). (a) Cells tend to form a longer group in
the longitudinal direction as the electric field increases. Under low electrical stimulus (50 Vm™1),
cells remain at the center of the ECM (top). As the stimulus increases, cells tend to move to the outer
surface of the ECM (bottom). Numerical results for Aspect Ratio (AR) (b) and directionality (c).

As the stiffness increases, the impact of the ES seems to decrease slightly, but general behavior
is maintained. For the 10 kPa ECM, cells only remain in the center of the substrate for the minimum
ES (50 Vm ™). In 40 kPa ECM, where the mechanical stimulus is higher, the cells remain in the center
of the ECM for higher electric field strengths (above 150 Vm™!). Thus, as stiffness increases the ES
and the mechanical stimuli seem to be better balanced, obtaining, in general, better results (Figure 6).
In all the cases, the increase in the ES generates a higher cells attraction in the direction of the electric
field. Thus the electric field increases the directionality of the cell migration toward the direction
of the ES, which is consistent with the bibliography [18,84]. The speed with which the cells are
attracted to the electric field also depends on the stiffness of the ECM, being the lower the stiffness the
higher the ES attraction. Besides, directionality is dependent on the ES strength as was reported by
B. Frederich et al. [18]. At the same time, the effect of mechanical stimulation on maturation increases
the number of cells at the end of the simulation as the stiffness increases. The coupled of these two
effects generate groups with a higher number of cells, maintaining a good degree of cell alignment.
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To evaluate the alignment effects in group’s morphology, we define an Aspect Ratio (AR)
parameter by comparing the geometry of the groups. Thus, AR is defined, considering the main
group’s geometry in each simulation, as:

lz 0.5
AR = {—x} , (27)
Lyl
where Iy, I, and I, are the longitudinal group length, in X direction, and the transversal group length,
in Y and Z directions, respectively. In addition, the directionality of the cells is controlled by the global
polarization vector, G .

Analyzing the effect of the stiffness and ES on the AR, it is observed that the electrical effects
are much higher than the stiffness. Likewise, the variation of AR seems to have a linear dependence
with the electric field intensity (Figure 7a). The effects of the stiffness on the AR are comparatively
low, with higher AR being observed for low stiffness. Similarly, in the directionality analysis, a greater
effect of the ES is observed in comparison with the effect of stiffness (Figure 7b). As with the AR,
the directionality is shown to be higher for cases of less rigidity and a higher electric field.
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Figure 7. Representation of the obtained numerical results applying a continuous electric field with
different intensities in ECM with different stiffnesses. Blue dots represent 10 experiment repetitions,
on which the surface with the best fit to the results is represented. (a) Aspect ratio for the different
combination of stiffness and electric stimulus. (b) Directionality for the different combination of
stiffness and electric stimulus.

3.2. Pulsatory Mechano-Electric Stimulation

In in-vitro experiments, the ES can be applied to mimic the physiological electrical currents of the
heart [17,84,85]. This is a primarily intended to activate and coordinate the spontaneous contraction
of the AM apparatus. These currents are of a pulsating type and low frequency. For instance,
S. Pietronave et al. observed an increase in the cell alignment and the expression of specific cardiac
markers while stimulating CPCs with monophasic and biphasic electric fields [84]. This is also
supported by M. Radisic et al. work, where cardiac myocytes were stimulated with monophasic
electric fields, showing an increase of the cell alignment, with myofibers aligned in the direction of the
electric field application, and ultrastructural improvement with formed GAP junctions and contractile
activity within the cells after five days [17]. In this way, we also tried to study the stimulation of the cells
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with monophasic electric fields. So, an electric pulsatory field is applied during the simulation to study
and compare the effect of different ways of stimulation on cell behavior and group’s morphologies.
In this case, the electric field is applied discontinuously with the same configurations of stiffnesses
(10, 20, 30, and 40 kPa), electric fields (50, 150, 250, and 350 mel), and initially random distributed
40 cells. The electric field is initially active and then it alternates its activation at each step (on/off).
The general behavior of the cells, observed in the previous experiment, is maintained (Figure 8).
During the steps in which the electric field is active, the cells tend to migrate in the direction of the
electric field, which is consistent with the bibliography [17,18,84]. In the steps in which the electric
field is disabled, the cells, due to mechanical stimulation, tend to migrate toward the center of the ECM
as it was seen in a previous work of our group [43]. These two effects slow down the migration to the

outer surface of the ECM. Thus, compared with the previous experiment, the effects of the electric field
are less pronounced.
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Figure 8. CMs in 10 and 40 kPa ECMs, under electrical pulsatory stimulation of 50 and 350 Vm~!,
after 160 h of simulation (see also Supplementary Materials video 2). (a) Less effect of the electric field
is observed with a greater tendency of the cells to remain close to the center of the ECM. AR (b) and
directionality (c) increase as the Electrical stimulation (ES) increases.

As in the previous case, the ES is more intensive in low stiffness ECM, showing higher values of
the directionality (Figures 8c and 9b). On the contrary, the results for the AR seems to be balanced for
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all ECM stiffness (Figure 9a). In this second experiment, the dependence of the AR with the ES seems
to follow a linear tendency (Figure 9a). The maximum values of the AR, obtained with the maximum
ES, seem to be reduced compared with the previous experiment. However, in the visual comparison of
the results, a good level of cell alignment is observed for high levels of ES, avoiding excessive drag of
the cells towards the surface of the ECM (Figure 8).
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Figure 9. Representation of the obtained numerical results applying a pulsatory electric field with
different intensities in ECM with different stiffnesses. Blue dots represent 10 experiment repetitions,
on which the surface with the best fit to the results is represented. (a) Aspect ratio for the different
combination of stiffness and electric stimulus. (b) Directionality for the different combination of
stiffness and electric stimulus.

3.3. Alternating Mechano-Electric Stimulation

The cells not only can be stimulated by a discontinuous electric field, as mentioned in the previous
case, but also by alternating electric field [11]. Thus, in the third experiment, the application of an
alternating electric field is considered. For this purpose, the direction of the electric field has been
reversed at each step. As in the previous cases, stiffnesses of 10, 20, 30, and 40 kPa, and electric fields
of 50, 150, 250, and 350 Vm ™! are applied on 40 cells initially randomly distributed. Having in account
that prolonged exposure to high-intensity electric fields can trigger cell apoptosis [18,20], cell-cell and
cell-ECM interactions are studied during 160 h of simulation.

In this case, the electric field guides cells to move alternately in the longitudinal direction while
the mechanical stimulation guides cells toward the center of the ECM. Although the cells are moving
in the longitudinal direction, the migration direction is reversed as the electric field reverses. This is
consistent with experimentally studied cases in the bibliography, where the direction of cell migration
was evaluated when the electric field was reversed [18,21]. This process reduces the effective migration
(total translocation) of the cells in the longitudinal direction. In low ES cases (50 Vm™1), the cells
migrate easily to the center of the ECM, which shows that the electric stimulus effect is lower than
the mechanical stimuli. On the contrary, in high ES (350 Vm™1), cells approach the center of the
ECM moving slightly in the longitudinal direction. Initially, cells” effective movement is almost
perpendicular to the electric field direction, toward the center of the ECM with slight movement in
the direction of X axis. As the cells reach the central position of the ECM, the presence of other cells
increases the mechanical stimuli, guiding the cells to migrate towards the other cells. The combination
of both stimuli introduce an improvement in the length of the formed groups.
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Compared with the previous cases, the groups are bigger and more elongated (Figure 10). As the
cells remain in the center of the ECM, the region of higher rigidity, the cell proliferation increases.
When the cells join a group, cell proliferation is considered to be inhibited. Unlike the previous cases,
as the cells have a combination of two different directions stimuli, groups are formed later, which gives
de cells extra time to proliferate. As in the previous experiments, the effects of ES are more pronounced
in ECM of less stiffness, where the mechanical stimulus is lower. Besides, better results of AR and
directionality are obtained (Figure 11). In this third case, it is observed that the AR tendency follows a
behavior that can be considered linear, both for the mechanical and electrical stimulus, individually
and/or combined effects (Figure 11a). On the contrary, the directionality follows a clearly non-linear
tendency. For values greater than 150 Vm ™! and for all stiffness, saturation in the directionality of the
cells is observed (Figure 11b).
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Figure 10. CMs in 10 and 40 kPa ECMs, under an alternating electric field of 50 and 350 Vm !,
after 160 h of simulation (see also Supplementary Materials video 3). (a) Higher tendency to form a
group in the longitudinal direction is observed. Cells remain close to the center of the ECM where the
cells maturate faster and the proliferation rate increases. Larger and better-oriented groups are formed

by applying an alternating electric field, with better results for AR (b) and directionality (c).
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Figure 11. Representation of the obtained numerical results by applying an alternating electric field with
different intensities in ECM with different stiffnesses. Blue dots represent 10 experiment repetitions,
on which the surface with the best fit to the results is represented. (a) Aspect ratio for the different
combination of stiffness and electric stimulus. (b) Directionality for the different combination of
stiffness and electric stimulus.

4. Discussion

ES is essential for the development of engineered heart tissues, which preserving cells’ mature
phenotype and improving the contractile properties [11,15,17,18]. Likewise, its intensity, frequency,
and duration of application can be key for the development of highly functional tissues [15].
The coupling effects of electrical and mechanical stimuli have been shown to be relevant in cardiac
tissue development [11]. This strongly encourages us to study these effects in computational models
where such stimuli can be studied, modeled, and balanced, saving time, costs, and pain in experimental
studies. Furthermore, through the parametrization of cell behavior, it is possible to evaluate different
cell and ECM conditions, including those associated with different pathologies [10,11,58].

In the proposed model, the cells initially align and migrate in the direction of the electric field
which is consistent with the bibliography [11,18,21,44,85]. It has seen that different electric field
strengths, as well as different stiffnesses of the ECM, generate differences in the direction and speed of
cell migration as was observed in experimental models [18,85]. In general, as observed in the present
model, high values of ES increase the degree of cell alignment and the groups elongated morphology.
Likewise, the greater the stiffness, the faster the cell maturation, which increases cell proliferation until
the cells join in groups where cell proliferation is inhibited. Their coupling effect is also extended to
cell-cell interaction. If the electric stimulus is higher than the mechanical stimulus, cells can be dragged
by the electric field which can delay or impede cell-cell contact and group formation. As it has been
observed in the obtained results, the formation of correctly organized groups depends on the correct
balance between the electrical and the mechanical stimulus.

As observed in the present model, cell response varies depending not only on the intensity but
also on the type of the applied electric field. Comparing the results of the applied different modes
of ES, significant differences are observed in cell response. For instance, in the cases of continuous
and pulsative electric fields, cells are dragged in the direction of the electric field and tend to migrate
towards the external face of the ECM (cathodic zone) [18,20,44]. On the other hand, in the case of the
alternating electric field, cell migration direction is reversed as the electric field changes its direction,
as can be observed in different experimental models [18,21,44].
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Better results are observed when applying a continuous electric field (Figure 6). When applying
ES discontinuously (Figure 8), the results are worse. This can be attributed to the decrease in the
effective electric stimulus which is only active half of the time. Furthermore, by disabling the electric
field, the cells only get stimulated by the mechanical cue. So, they lose some of the directionality
induced by the electric field. On the other hand, when an alternating field is applied, cells maintain
the directionality induced by the electric field. Due to the changing of the electric field polarity, the cell
drag towards the electric field is reduced, keeping the cells in the center of the ECM. Cells alternate
the direction of the migration which reduces the effective cell motility in the longitudinal direction.
Thus, cells migrate towards the center of the ECM, due to the existence of strong mechanical stimulus
and the presence of other cells, which stimulate the cells to form more elongated groups and improve
the cell-cell interaction.

In the first and second experiments, when stiffness increases, slight differences are observed,
in both AR and directionality. On the contrary, higher differences can be observed in the third
experiment. A significant change in the tendency of cell directionality is observed, where a saturation
point is detected when the applied electric field is greater than 150 Vm ™! (Figure 11b). These differences
in the results obtained for the different modes of application of the electric field, which highlights
the relevance of properly understanding the processes that trigger the electrical stimulation of the
cells. In this way, the hypothesis of the use of computational models is reinforced, to support the
experimental work, which allows advancing in the understanding of these processes.

For more rigid ECMs, larger groups can be observed. This can be attributed to, as mentioned
before, the increase in stiffness, which leads to faster maturation of the cells. Besides, as the cells are
considered initially at the stage of early CM, an increase in cell proliferation has been noted. As the
number of cells increases, the AR ratio may be decreased due to the thickening effect of the groups.
This justifies that, although visually the groups are larger in stiffer ECMs, the graphs show a slight
improvement in the results. This effect of stiffness can also be seen when comparing the number of
cells observed in the third experiment with the previous ones. As the cells are kept in the center of the
ECM, which is the stiffest zone, the maturation of the cells is faster, and the total number of cells after
160 h of simulation is higher than in other cases.

5. Conclusions

We have developed a computational model to study cardiac cell behavior in 3D matrices,
with different stiffnesses, under the effects of different external electric fields. The model has been
applied to study cell migration, polarization, organization, and formation of groups through cell
junctions. With this model, we studied the effect of the electric field, with different modes of
application which include continuous, pulsative, and alternating electric fields. Furthermore, different
combinations of ECM stiffness and electric field intensity were simulated to study the effect of the
coupling of the mechanical and electric stimuli. The obtained results are qualitatively consistent with
the bibliography [2,17,18,44,84,85]. Thus, cells tend to migrate, in the direction of the electric field,
proportionally to the intensity of the electric stimulus [18,44]. Besides, cells polarize towards the
electric field direction and tend to form aligned groups in the direction of the electric field which
depends on its intensity [17,18,44,85].

The stimulation of the cells through the application of an external electric field improves the
directionality of the cells in the longitudinal direction, which corresponds to the electric field direction.
As the electric field increases, cells tend to form elongated groups with higher AR. These effects
are more pronounced in less ECM’s stiffness, revealing the effects of the coupling of electrical
and mechanical stimuli. While the ES induce the cells to migrate in the longitudinal direction,
the mechanical stimulation guides cells to the center of the ECM. As a result, an improvement of
the AR and directionality is observed by decreasing stiffness and thereby mechanical stimulation.
Similarly, by increasing stiffness, the effects of ES decrease. In case of lower electric field (50 Vm™1),
cells tend to remain at the center of the ECM, indicating that the mechanical stimulus dominates the
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electric stimulus. Thus, the best directionality and AR results are obtained by applying the maximum
electric field combined with the minimum stiffness. On the other hand, cell maturation is faster in
more rigid ECMs, which increases the maturation speed as well as increasing the proliferation rate of
the early CM. The effect of stiffness on the proliferation can also be observed in the third experiment.
In this case, cells keep at the center of the ECM, which corresponds to the stiffest zone of the ECM,
increasing cell maturation and showing higher proliferation.

The mode of application of the electric field changed the response of the cells. Thus, a considerable
increase in directionality and AR has been observed when applying an alternating electric field. In this
case, a saturation point of the directionality is observed for ES above 150 Vm !, where this is not
observed in the other modes of the electric field. Significant differences can be observed due to the
coupling of electrical and mechanical stimuli, with substantial variations in the results. Cells are
guided by stimuli with different effects and the cellular response depends on the incidence of each
stimulus. Thus, when a high mechanical stimulus is observed, the effect produced by the electrical
stimulus tends to decrease. In the same way, for high electrical stimuli, the effect of the mechanical
stimulus loses relevance.

In conclusion, groups with higher AR can be obtained by applying higher ES. The increase in
AR seems to increase linearly by increasing the intensity of the electric field. Different electric field
applications (continuous, pulsating, or alternating) show a different influence in AR and directionality,
with better results when the alternating electric field is applied. Likewise, an increase in stiffness is
favorable to promote cell proliferation.

The presented model has been elaborated establishing a series of simplifications that must
be considered with the aim of simplifying and providing stability to the calculations. Among them,
cell morphology, which is considered spherical along with the simulation. Likewise, cellular interaction
with certain growth factors, which can modify or inhibit certain cellular behaviors, has been simplified
by considering neutral cell culture. Despite the model limitations, it is capable of evaluating the
coupling of different stimuli, electrical and mechanical, which is relevant in the case of cardiac cells.
Furthermore, the results indicate that the mode of application of the electric field can significantly
change the cell behavior. This strengthens the idea of using computational models to study the
appropriate conditions for cell culture, giving support to the in-vitro and in-vivo assays. Likewise,
computational models can reproduce a large number of culture conditions with reduced time and
economic cost, thus being able to establish preliminary studies that reduce dramatically the number of
experiments. In this case, it has been seen that the coupling of the electrical and mechanical stimulation
notably increases and accelerates the cell proliferation process. Consequently, it can be considered a
highly recommended combination for the in-vitro and in-vivo experiments.

Supplementary Materials: Supplementary Materials (video 1, video 2, video 3) can be downloaded at
http:/ /www.mdpi.com/2227-7390/8/11/1875/s1.
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Abstract: Modeling and simulation are essential tools for better understanding complex biological
processes, such as cancer evolution. However, the resulting mathematical models are often highly
non-linear and include many parameters, which, in many cases, are difficult to estimate and present
strong correlations. Therefore, a proper parametric analysis is mandatory. Following a previous
work in which we modeled the in vitro evolution of Glioblastoma Multiforme (GBM) under hypoxic
conditions, we analyze and solve here the problem found of parametric correlation. With this aim,
we develop a methodology based on copulas to approximate the multidimensional probability density
function of the correlated parameters. Once the model is defined, we analyze the experimental
setting to optimize the utility of each configuration in terms of gathered information. We prove that
experimental configurations with oxygen gradient and high cell concentration have the highest utility
when we want to separate correlated effects in our experimental design. We demonstrate that copulas
are an adequate tool to analyze highly-correlated multiparametric mathematical models such as
those appearing in Biology, with the added value of providing key information for the optimal design
of experiments, reducing time and cost in in vivo and in vitro experimental campaigns, like those
required in microfluidic models of GBM evolution.

Keywords: copulas; design of experiments; glioblastoma multiforme; mathematical modelling

MSC: 62H20; 62K05; 62P10

1. Introduction

Biological processes usually involve several cell populations interacting in a complex,
dynamic, and multiple interactive micro-environment [1]. Understanding these interactions
between cells and microenvironment is crucial in many physiological and pathological
processes [2]. However, progressing in this understanding with only in vivo experiments
is difficult. Despite them being more realistic, isolating effects or achieving particular
conditions is complex in such experiments due to technical and/or ethical reasons.

In vitro experiments permit better control of the variables, while reducing costly and
ethically-questioned animal assays. Nonetheless, the predictive power of currently avail-
able in vitro models is still poor due to the strong difficulties that we face in reproducing
the structure and distribution of the different cell populations as well as the particular
environmental conditions in which cells live, adapt and react (e.g., three-dimensionality) [3].
Microfluidics is a new in vitro technique that allows more precise reproductions of the
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microenvironment and cell distribution [4,5], including three-dimensionality, thus making
in vitro tests much closer to the actual in vivo conditions. This permits, for example, a more
reliable and efficient drug testing [6,7].

Finally, mathematical models allow to separate and quantify the effects of each mech-
anism or parameter, as well as to predict the outcome in “what if” situations, which are
sometimes impossible to achieve in in vivo or in vitro experiments [8,9]. Nevertheless, these
models are mostly non-linear, involve highly-coupled multiphysic interactions, and in-
clude many parameters. In many occasions, those parameters are difficult to measure
and have strong hidden correlations. Moreover, it is usual to have a lack of data both
for quantification and validation of the parameters and results [10]. Therefore, they are
fitted only for the results available, which usually correspond to very specific conditions.
This may lead to trivial conclusions that could have been directly derived from the model
assumptions, making the results only useful for those particular experiments, with the
obtained conclusions impossible to generalize.

In a previous paper [11], we addressed this parametric analysis in a particular
problem—the mathematical modeling of the in vitro (using microfluidic devices) evo-
lution of glioblastoma multiforme (GBM), the most aggressive and lethal among primary
glioma tumors [12]. In Ref. [11], we presented a general framework in which the main cell
processes involved (proliferation, chemotaxis, random migration, apoptosis, and necrosis),
in response to changes in the oxygen concentration, were mathematically formulated.
We then analyzed three different experimental configurations, reproducing the main GBM
migratory structures (pseudopalisade and necrotic core formation). An extensive analysis
of all model parameters was performed, both from literature and by fitting the associated
in silico results with those derived from the experiments. As main results of that work,
we identified a unique set of parameters able to accurately reproduce the quantitative
results for the three case-studies. However, we also found two model limitations: (i) the
sensitivity analysis showed that the model is strongly affected by small variations in the
oxygen cell consumption and diffusion and (ii) a strong correlation was found between the
parameters associated with those two mechanisms.

The objective of the present work is to present the possibilities in this context of-
fered by a methodology that is able to separate the correlated effects found in that study,
and to get a more accurate and reliable representation of the experimental results in the
parametric space. With that purpose, we approximate the multidimensional probability
density function of the parameters by means of appropriate copulas. Copulas allow con-
sidering separately the marginal distributions and the dependence between variables in
multivariate statistical problems, including those with high correlation. This permits using
general models for the marginal distributions, while the variable dependence model can
be different [13]. Copulas are today used in a wide range of areas in Economic sciences
and Engineering. The most recent models have been successfully applied in portfolio
management and optimization [14], actuarial analysis [15], quantitative finance and risk
theory [16,17]. A particularly hot topic is the study of climate-agent time series [18,19], hy-
drology [20,21] and weather and climate research [22,23]. Some efforts have been made in
transportation research [24] and traffic policy [25]. Recently, copulas have been successfully
applied in reliability analysis in civil [26], mechanical and structural [27], offshore [28] and
software [29] engineering. In Biology, copulas have been used in the field of genetics [30]
to model gene dependencies.

Up to the authors” knowledge, there is no work using copulas for the parametric
analysis of evolution processes in Biology, where, as commented, many of the parame-
ters involved are unknown and uncontrolled, and high correlations between parameters
are common. We prove here that copulas are an adequate tool to improve the analysis
of highly-correlated multiparametric mathematical models such as those appearing in
Biology, with the added value of providing key information for the optimal design of new
experiments with the highest information possible, thus reducing time and cost not only in
in vitro experiments but also in scarce and costly in vivo cases.
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2. Rationale of the Approach
2.1. Deterministic and Stochastic Models

Let us suppose that our problem may be represented by the following mathematical
relationship:
u="F(A0), (1)
with
* u (an m-dimensional vector) the output variable, that is, the outcome of the experi-
ments, that we measure.
e A the variables which we can control when performing the experiments (such as
environmental variables, geometric parameters, or boundary conditions).
* 0 the model parameters, that we cannot control and whose values must be determined
(0 € O, with Q) the parametric space of dimension 7).
e F the mathematical model, that relates the experimental configuration A with the
output variables u in terms of the set of parameters 6.

In relation to the accuracy and precision of the model, it is possible to define three
levels of analysis: (1) the model is perfect and the experimental measures are noise-free;
(2) the model is perfect and the experimental measures are noisy; and (3) the model is
not perfect and the measurements are noisy. Only the third case is, in general, realistic in
complex problems as the one here analyzed.

In addition, it is difficult to define universal values for the parameters in biological
problems, since they are highly-dependent on the particular experimental context.

As a consequence of all the previous observations, it is more appropriate to consider a
stochastic approach, and reformulate Equation (1) as:

U=F(A,0), 2)

where U and © are now random vectors of dimensions m and n respectively.
The proposed approach is therefore suitable when the following conditions are satis-
fied:

*  Many coupled phenomena are present, being difficult to design experiments able to
isolate each of them (complexity).

e The measurement space is large and it is possible to perform a sufficiently big number
of experiments N (data availability).

From a mathematical point of view, these two statements may be reformulated as:

e The model F includes many parameters (1 > 1) and/or is non-separable.
The separability of a model is evaluated by the possibility of approximating F as:

M n
F(A,0) ~FM(2,0) =Y []F;(A6). ®3)
i=1j=1

The lower M, the easier to define a set of different experimental configurations
S = {NM}joy,..k to isolate each of the parameters 6; by solving separately each
equation #/ = FM(A,8). Although this separability definition is not very rigorous,
it is enlightening enough for our purposes.

e  The dimension of the measurement space is high (m > 1) and/or the sample size
is large enough (N >> 1). Without loss of generality, we consider that m is, actually,
the reduced dimensionality of the space or in other words that all variables of the
ambient space are independent.

2.2. Case Study: In Vitro GBM Evolution

There have been many attempts to develop mathematical models to describe how
tumors grow and respond to therapies [10,31]. In particular, in previous works, we demon-
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strated the possibility of developing GBM pseudopalisades [32] and necrotic cores [33]
in vitro. Figure 1 illustrates one of such experiments in which a high density cell cul-
ture is exposed to oxygen flow by two lateral channels but, due to self-induced hypoxia,
the formation of a necrotic core in the central part of the chamber is observed.
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Figure 1. Formation of a necrotic core in the microfluidic device.

One of the main problems in these models is the lack of reliable values for the many
parameters involved that forces many times to rely on values fitted from different situa-
tions, leading sometimes to unreliable conclusions. We recently proposed a mathematical
model for GBM in vitro evolution [11], together with an extensive parameter discussion.
This model enables the simulation of different stages of GBM evolution under several
experimental conditions, showing robustness, while keeping a small uncertainty range in
the results. It is established in terms of three advection-reaction-diffusion equations and
the associated parameters that are expressed as:

aCa 0 9Ca 0, C 00,
FT E(Dai Kaxa*(02)xa (Ca)cag W
1 1
+ *.Ba(OZ)Ga(Ca/ Cd)ca - 7Sad(oz)ca
Ta Tad
aCqy 1
TR asad(OZ)Ca (5)
20, 920,
5 = DOzW — a3 Ha(07)Ca. (6)

Equation (4) quantifies the evolution of the cell normoxic phenotype concentration,
Ca, with three terms: random diffusion, growth-death source, and chemotaxis. Equation (5)
models the evolution of the necrotic phenotype concentration, Cgq, which contains only
the dead cells derived from the normoxic phenotype. Finally, Equation (6) defines the
O, concentration evolution in the hydrogel in which cells are embedded, considering
both oxygen diffusion and cell consumption. Functions Ba, Ga, ng, )(ga, S.q and H, are
nonlinear corrections accounting for cell metabolic behavior:

x5? defines a chemotaxis correction accounting for the oxygen concentration. It has
been shown that GBM cells present what is called the go or grow behavior [34]: cells spend
resources in proliferating when they are enough oxygenated and activate migration mecha-
nisms under hypoxia conditions, that is, when the oxygen concentration is under a certain
hypoxia threshold O? . Therefore, we state:
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0, [ 1-0,/0 if 0<0, <O}
Xa*(0) *{ 0 if  0,> 0}l @

x5 defines a chemotaxis correction accounting for the cell concentration. We assume
that cellular motility is only possible when the cell concentration is below the saturation
capacity of the hydrogel CM:
1-Ca/CM if 0<Ca<CM
Ca _ a >0 =
Xa (Ca) - { 0 if Ca > CM (8)

Ba accounts for the dependence of the proliferation activity on the oxygen concentra-
tion, in agreement with the go or grow paradigm [34]. Cell proliferation decreases when the
oxygen concentration is under the hypoxia threshold, O}, and is totally inactivated under
total lack of oxygen:

[ 0708 if 0<0,<Of
Fa(02) _{ 1 if  0,>0}. ©)
G, is a logistic growth correction accounting for space and nutrients availability [35].
Cell proliferation decreases when the cell concentration approaches the hydrogel saturation
capacity, CM:

(10)

Ga(Co/Ca) = <17Ca+Cd).

CM

S,d is a death activation function accounting for the oxygen concentration. Cell death
is a complex phenomenon that can be due to two different cell mechanisms, necrosis,
and apoptosis [36,37]. Cell necrosis is highly dependent on the oxygen concentration,
while cell apoptosis is not. Therefore, we have chosen a soft transition function for S,q4
depending on two parameters—a location parameter, O3, identifying the anoxia oxygen
concentration and a spread parameter, AO3, associated with the death stochastic nature:

_NA
Sad(02) = % <1 - tanh(OZAOAOZ> > (11
2

Finally, H, is the Michaelis-Menten correction factor in oxygen consumption, related to
the oxidative phosphorylation kinetics [38]. The consumption rate is constant for high
oxygen concentrations, but decreases to zero with a homographic shape. The value of the
oxygen concentration for which the consumption rate is halved is the so-called Michaelis-
Menten constant, OQ’I . The function H, is then stated as:

Oy

Hay(Op) = —————.
a( 2) O§A+Oz

(12)

Equations (4)-(6) are complemented with the boundary and initial conditions. For the
experiments carried out in our microfluidic devices, we assume total impermeability
(Neumann boundary conditions) for the cell populations and a fixed value for the oxygen
concentration at both sides of the channel (Dirichlet boundary conditions). Therefore, if L
is the chamber length, we may write:

0Ca
= =0,L
o 0, x=0,
aC,
g = O, X = O, L (13)

0, =05 x=0
OzZOE, x=1L,
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with Ob and O} the oxygen levels at the left and right channels of the chip.

The initial oxygen concentration is assumed to be homogeneous over the whole
chamber and equal to the maximum of both lateral oxygen concentrations, that is Oy (x, t =
0) = 09 = max(0, O%).

The resulting experimental parametric space consists, therefore, of three parameters,
corresponding to the concentration at the boundaries of the chip, (O}, 0}), and the initial
cell concentration, (Cp), assumed constant throughout the chip. That is:

A = [05,05,Col. (14)

O, 04, AO;‘ and O%VI have a clear meaning in terms of cell metabolism and are
assumed to be known and constant for all cell cultures used in our experiments, at least from
an illustrative point of view. Besides, although CM is very dependent on the experimental
conditions (hydrogel mechanical properties, nutrients, ...), we shall assume it is constant,
for the sake of simplicity. The values for these parameters were taken from a previous
work [11].

Previous research in computational biology has mainly focused on the value of the
parameters or, in the best case, in their (individual) uncertainty. However, in many cases,
the fitting process is very complex and the parameters are highly correlated due to, at least,
two facts:

e Samples variability: Different physical phenomena may have an inherent correlation
supported by physical considerations, being this correlation independent of the exper-
iments performed or the model used. For example, when working with GBM cellular
models, cell motility is induced by the random motion inherent to any cell and several
taxis effects driven by external physical or chemical stimuli. Mathematical parameters
related to these phenomena (e.g., diffusion and chemotaxis coefficients) appearing
in the model equations will present, therefore, a strong correlation in the different
experimental samples.

*  Model complexity: The non-separability of the model and/or the experiments does
not allow to isolate the particular mechanisms. For example, when working with
GBM cellular models, without further measurements of cell oxygen consumption or
oxygen flux, it is impossible to establish if a lack of oxygen in a certain region is due to
high cell consumption or due to low oxygen diffusion. The mathematical parameters
related to these phenomena (e.g., oxygen diffusion and cell oxygen consumption
coefficients) should present a strong correlation, although this correlation does not
have a physical meaning, being inherent to the model or to the experimental set-up.

Thanks to the flexibility, portability, automation, integration, and miniaturization of
the microfluidic experiments, a huge amount of data may be generated. Accordingly, this
type of experiments is a perfect domain of application for the framework presented herein.

3. Methods
3.1. Data Generation and Numerical Solution

As the methodology is based on the availability of sufficient data, the data set used
for illustrating the methodology was generated synthetically using numerical simulation.
For this purpose, the assumed values for the parameters were extracted from Ref. [11] and
a data set of “experimental” measurements was generated by simulation, using randomly
generated boundary and initial conditions.

The summary of the model parameters is shown in Table 1, together with the value
used for data generation.
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Table 1. Model parameters and values used for data generation.

Parameter Symbol Vageeng:;(iioﬂg; ta
Normoxic cell diffusion coefficient D, 5x 10 0cm?/s
Normoxic cell chemotaxis coefficient Ka 7.5 x 107 cm? /mmHg s
Oxygen diffusion coefficient Do, 1x107%cm?/s
Oxygen consumption coefficient Xa 1 x 1072 mmHg-cm?3/cell-s
Growth characteristic time Ta 200h
Death characteristic time Tad 48h
Hypoxia activation threshold ol 7mmHg
Growth saturation capacity cM 5 x 107 cell/mL
Anoxia activation location parameter o4 1.8 mmHg
Anoxia activation spread parameter AO? 0.1mmHg
Michaelis-Menten constant OéVI 2.5mmHg

With respect to the simulated virtual experiment, we set a chip length of L = 0.1 cm,
a mesh size of Ax = 0.0025cm and a time step of At = 1000s. N = 400 different ex-
periments, {A'};_1 00, were simulated varying the boundary conditions: the left and
right channel oxygen concentrations were set randomly between 0 and 7 mmHg using two
independent uniform distributions while the initial oxygen concentration was set to the
maximum of both values, as mentioned. The initial cell profile is supposed to be uniform
and randomly sampled from a reciprocal distribution (to take into account both the expo-
nential and saturated growth regimes) between 4 x 10° and 5 x 107 cell/mL. The numerical
solutions are obtained for t,, = 8d and the output variable associated to the experiment i,
ul = ug (x, tm; /\1), is the numerical solution of the model equations (the mathematical ap-
proach and numerical procedures and algorithms are detailed in Ref. [11]), with boundary
and initial conditions defined by A, at time t,, and at points given by the defined mesh
x. Here, x; = jAx,j =1, ..., 41. The computed data were all perturbed with a uniform
noise €; = 0.2 x u; x V with V a random uniform distribution V ~ ¢[~1,1]. Consequently,
u;. = us(xj,tm,/\i) +e;:,j =1,...,4landi =1, ..., 400.

Within the framework presented in Section 2.1, u = F(A, 0) are the numerical solutions
obtained, with A the control parameters, 8 the unknown parameters and F the mathematical
model presented.

3.2. Copula-Based Parametric Model Analysis
3.2.1. Concept of Copulas

In Probability and Statistics, a copula is an n-multivariate probability distribution
function U whose marginals, U;, are uniform distributions on [0, 1] [39]. They were intro-
duced by Sklar in 1959 [40]. As the marginal distributions are known, a copula describing
the structural dependence between variables is enough to perfectly define the model.

Mathematical definition.

As mentioned, a copula is a function C : I" — I, where I = [0;1] such that:

o Foruq, ..., u, € I,and if u; = 0 forsome 1 <i < n:
C(uy, ..., uy) =0. (15)

o Forujel,lgjgn:
ca,..., Lu,l, ..., 1) = uj. (16)
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e Cis n-non decreasing, that is, for each B = [}" [x;;y;] C I", the C-volume of B is
non-negative:
facw =¥ (-pfEice) o 17)

B
zexily{xiyi}

We can distinguish between parametric and non-parametric copulas. In this work,
we use a hybrid approach, as we fit the marginal distributions by means of kernel esti-
mators [41] of the probability density functions and use a parametric copula. With this
approach, the required data-set grows as O(n) where 7 is the space dimension.

3.2.2. Fitting and Model Validation

Let us suppose we have a data-set of values for different experiments, A, charac-
terized in terms of a resultant mean value yi and a covariance matrix £, i = 1, ..., N,
obtained from different measurements associated to the configuration i. As the assumed
model F is known, it is possible, for each piece of data u;, to obtain the set of parameters o
which best fits it.

In order to avoid pathological numerical convergence, we only take into account
those sets of parameters 6’ which lie inside the bibliography ranges considered in Ref. [11],
amplified by 50% to avoid considering the parameters bounds as deterministic values,
that, as shown in Table 2, are very large ranges. Therefore, the resulting intervals are [(1 —
) Xing, (1 4 K) Xsup), being Xin¢ and xgyp the lower and upper bounds detailed in Ref. [11]
and x = 0.5, as summarized in Table 2. As a result of this process, we obtain a dataset with
n = 6 (number of parameters), N = 111 (dataset size) and m = 41 (measurement space
dimension), so we are under the scope of the presented framework: N x m > n > 1.

Table 2. Parameter ranges considered in the analysis.

Parameter Lower Bound Upper Bound Units
D, 3.3 x 10712 7.5x107° cm?/s
Ka 1x 10710 1.1x1073 cmz/mmHgs
Do, 5x10°° 3x10°° cm?/s
K 5x 10710 1.1x10°° mmHg-cm3/cell-s
Ta 8 3000 h
Tad 24 917 h

Once Bi, i =1,..., N are obtained, the next step is the adjustment of the marginal
distributions. The values 6%, j = 1, ..., n, are used for fitting the marginal random variable
®j whose cumulative distribution is assumed to be Gj, Here, we can follow either a para-
metric (that is, Gj(x) = G;(x;&;)) or a non-parametric approach (which is the one followed
in this work). The values 911: are therefore transformed into uniformly distributed ones via
the standard transformation y; = G;j (6]’) As y' are considered uniformly distributed with a
joint dependence, it is possible to fit this structural dependence using parametric copulas.

To summarize, the steps of the training process are:

1. Problem minimization to obtain 6. We have to minimize the residual function R':

R'(6) = (F(x,0) o) ()1 (F(A,0) o), (18)

where the Mahalanobis distance has been used to take into account the sample vari-
ability. Assuming that I/ = oI , Equation (18) can be rewritten as:

i 1 i il
R(0) = =5 |[F(1,0) —

(19)
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Kernel density estimation of the marginal distributions from the data 9]’
3. Transformation into uniformly distributed values y;
4. Copula fitting of the y data to capture the joint dependence.

The presented sequence of steps allows moving from a dataset S = {Oi},-:L . Ntoa
probabilistic model for the random vector © (the marginal kernel densities and the copula
parameters encoding the structural dependence), as it is the aim of statistical procedures.

~ To avoid overfitting, we follow a typical train-test approach: we divide the datasets
Al — uf (where #' includes g/ and Z) in two separate subsets, one used for training and the
other used for testing.

If we consider now the test data-set, the procedure is:

1. Problem minimization to obtain 6.
Testing the statistical fitting:

e Marginal fitting: q-q plots, histograms, empirical cumulative distribution func-
tions (ecdf), boxplots, parametric or non-parametric statistical tests [42].

e Joint 2 vs. 2 correlations: correlations, scatterplots, parametric statistical tests for
correlations [42].

e Whole joint structural dependence: multivariate parametric and non-parametric
statistical tests [43].

3.2.3. Model Analysis and Parameter Estimation

Once the distribution of the random vector O is learned, the model is known from a
probabilistic point of view. The first straightforward application is parameter estimation
It is important to emphasize that with “parameter estimation” we refer to the parameters
of the mathematical model, not to the parameters of the distributions used in the statistical
characterization (actually, the statistical characterization may be non-parametric), that may
be estimated via common statistical inference techniques. A point estimate of the model
parameters is given by:

b =Plo)], (20)

where P is a central tendency operator, for example, the expectation operator E, mini-
mizing the L? squared norm dispersion (its minimum is the variance), or the geometric
median operator M, minimizing the L? norm dispersion (its minimum is the mean absolute
deviation).

However, it is more interesting to perform a confidence region estimation. As sug-
gested in Ref. [44], in this work, we use the so-called Highest Density Regions (HDR)
because of their easy interpretation, straightforward generalization to multi-dimensional
spaces and direct computation. Recall that, under some distributional assumptions
(e.g., normality assumption), HDR computation is reduced to other standard confidence
region computation techniques (e.g., x> quantile tolerance ellipsoids). HDR computation
enables reliable parameter estimation since, given a significant level threshold , it is
possible to define an HDR region in which the parameters are located withap =1 —«
probability. This may be performed for single parameters, or, in general, k-tuples of param-
eters.

This methodology is also applicable to conditional distributions. Let us suppose that
we know the value of a certain subset of parameters 8" and let us define 6 = (8',60%).
Knowing the distribution ©, that is obtained after the fitting-validation procedure, it is
possible to define the conditioned distribution of © given ©* = 6* by its density f’ defined
in terms of the density f of 0:

N £(6',6")
fe'e) = , 1)
J f(n,67)dy
so all HDR computations are now applied to the distribution of ® given ®* = 6* by
replacing f by f'.
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3.2.4. Design of Experiments

Design of experiments techniques aim to maximize the information obtained from each
performed experiment, in order to reduce the number of them required [45]. In particular,
in this work, we use the techniques within the Bayesian Experimental Design (BED),
based on the Bayesian interpretation of probability.

BED aims to maximize the expected utility of the experiment outcome [46]. The utility
function expresses how useful is the information provided by an experiment. Of course,
the optimal experiment design depends on the chosen utility criterion. In this work,
the definition of the utility function is based on the Shannon entropy or Information
entropy [47].

Under these assumptions, the utility of an experiment A is defined as the prior-
posterior gain in Shannon information. That is, the additional information that the experi-
mental configuration A provides about our model parameters. The utility U(A) then writes:

U(A) ://f(a,uM)logf(u\B,A)d(-)du—/f(u|/\)logf(u|/\)du, 22)

where u is the experimental observation and 6 is a vector of parameters to be determined.
f(u|6,A) is the probability density of obtaining an experimental outcome u given the
experimental configuration A and the model parameters 6 and f(6,u|A) is obtained as
follows, being f(8) the prior PDF over the parameters 6:

f(O,u[A) = f(0)f(u|6,A). (23)

If we assume that # has a multivariate normal distribution (what is indeed not nec-
essary but has been here considered for illustration purposes) with covariance matrix
L = 0?1, and knowing that the entropy of a multivariate normal distribution of dimension
n is only dependent on the standard deviation ¢ [48], we have the following expression for
the utility:

Ur) = fglog <27Te(72> - /f(u|/\) log f(u|A) du. (24)

We assume that we measure the alive cell concentration at 5 given points: u; = Ca(x =
x), k=1, ...,5 where x; = 0.015cm, x; = 0.035cm, x3 = 0.050 cm, x4 = 0.065 cm, x5 =
0.085 cm. We work under the homoscedasticity and independence assumption so that each
concentration measurement is assumed to be normally distributed with y; = u; and 0; = o,
i=1,...,5. The uncertainty associated with the measurement of the cell concentration is
assumed to be ¢ = 1 x 10° cell/mL.

As we work under the assumptions detailed above, Equation (24), representing the
utility of an experimental configuration A, may be computed via numerical integration.
A convergence analysis was performed, justifying the use of a given value of Ny (number of
sampling points for the model parameter) and N, (number of sampling points for the
experimental outcome) for each computation in the numerical integration process.

The simulations were performed for ten different oxygen levels at each side of the chip
,0b = 0y(x = 0) and O = Oy(x = L) (from 0 to 9 mmHg) and four different initial cell
concentrations (1 x 10° cell/mL, 5 x 10° cell/mL, 1 x 107 cell/mL and 5 x 107 cell/mL).

In order to avoid numerical problems, in all simulations the uniform distributions of
the parameters were sampled from e = 0.01 to 1 — e = 0.99.

4. Results
4.1. Copula Fitting
4.1.1. Marginal Distributions

First of all, we obtain the fitting of the univariate marginal distributions. Figure 2
shows the kernel estimation of the marginal distribution of the different parameters.
We have chosen a Gaussian kernel for all the estimations with variable bandwidths
(w1 = 7.46 x 10" em? /s, wy = 9.52 x 10710 cmz/(mmHg-s), w3 = 1.66 x 1070 cm?/s,
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wy = 2.17 x 10719 mmHg-cm3/ (cell-s), ws = 9.57 x 10*s and wg = 2.74 x 10*s). The val-
ues are generally concentrated around the one used for the data generation, although the
distributions present a variable uncertainty, related to the model complexity and its in-
fluence on the minimization procedure. For example, it is interesting to observe that all
distributions present a multimodal feature, surely related to the existence of several local
minima in the minimization procedure.
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Figure 2. Kernel density estimation of the marginal distributions.

4.1.2. Parametric Copula Structure

Then, the data are transformed into uniformly distributed values using the cumulative
distribution function (CDF) associated to this kernel estimation and a ¢-Student copula
fitted by means of maximum likelihood (ML) estimation. The use of a t-Student copula
is justified as it allows a different structural dependence for each of the variable pairs
considered [16] and, besides, it outperforms Gaussian copula when estimating the co-
occurrence of extreme events [49]. We obtain a copula with v = 1.8 degrees of freedom and
a Pearson correlation matrix of:

1.00 093 071 0.77 0.70 0.40
093 1.00 074 074 0.77 0.38
P 0.71 051 1.00 091 0.61 0.20 (25)
077 074 091 1.00 054 0.26
070 0.77 0.61 054 1.00 0.24
040 0.38 0.20 026 0.24 1.00

Note that the value obtained for v is far from the Gaussian limit (v — o), justifying

the use of the t-Student model.

4.1.3. Complete Probabilistic Model and Bayesian a Posteriori Corrections

In order to briefly analyze the aspect of the whole model, we represent in Figure 3a

the bivariate joint distribution of (Dp,, aa). Knowing the whole joint distribution function
allows us to make a posteriori corrections using Bayesian theory and conditional probability
as explained in Section 3.2.3. If we are interested in the joint distribution of two parameters
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a, [mmHg - cm?/cell - 5]

(a) Bivariate joint distribution of (Do, &a).

(e.g., Do, and a,), assuming that we know the rest (D,, Ka, Ta, Taq), the uncertainty of
the parameter estimation obviously decreases, as can be seen in Figure 3b. In order to
compare the impact of setting a posteriori the rest of the parameters, contour plots of both
distributions, absolute and conditional (normalized between 0 and 1 to compare them
more easily) are depicted in Figure 3c.
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(b) Bivariate joint distribution of (Dp,, #a) assuming we
know the rest of parameters.
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(c) Comparison between the distribution shape of (a) and (b).

Figure 3. Bivariate joint distribution functions of Dp, and «,.

4.2. Validation of the Results Using Test Data

Over-fitting is one of the main problems in any statistical or numerical parametric
fitting. In our methodology, this is avoided by using a sub-set of the data as test data for
validating the models.

4.2.1. Marginal Distributions

Marginal distributions are validated as pointed out in Section 3.2. To do so, new “ex-
perimental” data are compared to the data generated from the multivariate model. It is
important to note that the original data are not used, but, on the contrary, a new data-set
is strictly generated from the parametric copula and marginal densities, using the same
procedure described for the generation of the original data. The histogram of data, the ecdf
of the test data (with 95% confident interval) compared to the model data, the boxplot of
both test and model data and the Q-Q plot of the test data, when compared to the model,
are shown in Figure 4 for D, as an illustrative example. The validation of the whole set
of variables has been performed and good agreement was found between the model and
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test data except, if at all, for the extreme values, at the tail values of the distributions.

In Figure 5, the ecdf of the test data for each model parameter is shown.
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Figure 4. Validation of the marginal distributions for the parameter D,.
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Figure 5. Empirical cumulative distribution functions (ecdf) of the test data for each parameter.

4.2.2. Joint Dependencies

Testing the structural dependence between parameters is not trivial. In Section 3.2,
a multivariate statistical test was referenced. However, here we evaluate merely the
differences in the correlation coefficients between the model-based and the test data.
In Figure 6b, we represent the Kendall T correlation index between the variables for the
model and test data. We observe again a good agreement between the model values of
the correlation coefficients (Figure 6a) and those obtained from the sample of the test data
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(Figure 6b), even though the test sample is finite, which can cause differences between the
model and the statistical values.

Tad b 5 0.13

D, K, Do, Qy Ta Tad

(a) Kendall 7 for the training data.

D, 037  0.34
K, 0.45  0.31
Do, 038 027

Qa | 0.49 0.26

Ta| 0.37 0.45

0.38 0.31

Tad | 0.34 0.31 0.27 0.26

D, K, Do, Qy Ta Tad
(b) Kendall 7 for the test data.

Figure 6. Kendall 7 correlation coefficient for each pair of variables for the training and test data.

4.3. Parameter Estimation

In Figure 7, we show p-confident HDR regions for p = 0.90, p = 0.95 and p = 0.99
for the pair of variables Do, — a;. We present the results for the absolute distribution
and the conditional distribution when the rest of parameters are known. The results
are compared with the classical ellipsoid estimation, which is based on the normality
assumption. The differences, both in the shape and the size of the regions, are clear and are
explained by the complex dependence structure between variables.
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(b) Conditional distribution.
Figure 7. Do, — a, point (mean) and region (HDR) estimations.

4.4. Estimation of the Output Variables

Once the multivariate distribution of the random vector © is characterized, we know
the distribution of the random vectors U = F(A, ®). In Figure 8, we show the distribution
of the vector U for three experiments, which illustrates completely different behaviors
corresponding to the main histopathological features of GBM. For the first one, the oxygen
flow is set to 2 mmHg in the left channel and 0 in the right channel and the initial concen-
tration of cells is Co = 4 x 10° cell/mL (pseudopalisade experiment in Ref. [11]). For the
second one, the oxygen flow is set to 7 mmHg in both channels and the initial concentration
of cells is Cy = 40 x 10° cell/mL (necrotic core experiment in Ref. [11]). Finally, for the third
one, the oxygen flow is set to 7 mmHg in both channels and the initial concentration of
cellsis Cy = 4 x 10° cell/mL (double pseudopalisade experiment in oxygenated conditions
in Ref. [11]).
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(c) Double pseudopalisade experiment.

Figure 8. Distribution of the measured variable for in silico experiments.
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4.5. Design of Experiments

In this section, the aim is to determine the experimental configuration with the highest
utility, that is, to choose both right and left oxygen flow levels and the initial cell concentra-
tion to get the maximum possible information from the new experiment. We focus here on
the effect of coupling between parameters and how it affects the utility interpretation and
model parameter estimation.

Two different families of simulations were carried out. In the first one, only one
parameter dependence is analyzed at a time, leaving the rest fixed at the value set in
Section 3.1. These figures show configurations where, if the rest of the parameters are
assumed to be known, the unknown parameter will be estimated accurately. This is the case
in Figure 9a,b. In the second family, two parameter dependencies are analyzed. They are
considered as bivariate distributions in order to observe the effect that the parameter
correlation has in characterizing these parameters, that is, how it modifies the utility values.
Figure 9¢, which belongs to this family, illustrates experimental configurations where the
two-dimensional vector will be estimated accurately.

In Figure 9 we compare the iso-utility curves when analyzing one or two parameter
dependencies for the pair of parameters related to oxygen, changes in the cell population
and cell motility respectively. We assume for all figures Cy = 5 x 107 cell/mL. In these
figures we can see the most useful experiments (those configurations corresponding to the
highest utility values) and those that lead to a poor adjustment of the model parameters.

This analysis may be performed for different parameter combinations, and for different
degrees of knowledge. For instance, Table 3 summarizes all possibilities when exploring
the relationship between Do, and «,, as we are interested in the estimation of these two
parameters, both individually or jointly. The cases analyzed in this paper are reported in
the third column.

Table 3. Different possibilities when exploring the relationship between Dp, and «, in the utility
computation.

Parameters to Be Estimated Known Parameters Figure

Do, None -
Do, Da, Ka, Ta, Tad -

Do, Da, Ka, Ta, Tads Xa Figure 9a
Na None -
Xa Da, Ka, Ta, Tad -

Xa Da, Ka, Ta, Tad, Do, Figure 9b
Do,, &a None -

Do,, ta Da, Ka, Ta, Tad Figure 9¢
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Figure 9. Iso-utility curves for parameters related to oxygen for an initial concentration of Cy =
5 x 107 cell /mL.

5. Discussion

The train-test methodology based on copulas followed in the fitting process has shown
that it is possible to establish a gradation in the strength of the parameter dependencies.
Figure 6a illustrates the strength of this relationship, showing that there are pairs of
phenomena difficult to isolate from the experimental and/or computational points of
view. For example, cell random motility and chemotaxis migration (t = 0.77). Both
phenomena have similar effects but in the opposite direction. Thus, it is difficult to isolate
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their individual effect on cell behavior if we have limited measurements available on the
cell profiles. It is then only possible to evaluate, on the outcome, their combined resultant
effect, that is, the average cell motility. This analysis may be done for each parameter
couple, justifying the approach adopted in this work.

It is important to note that the high complexity of biological systems, resulting in
coupling between pairs of variables, is moderated by the values of the rest, since the
bivariate random distributions (shown for example in Figure 3a) are only a projection of
the whole 6-dimensional joint distribution. Comparing Figure 3a,b, for example, we can
observe the conditioning effect in location, spread, and directionality of the dependency.

Once the probabilistic model is fitted, predicting the actual value of the model param-
eters is easily carried out. As it is observed in Figure 7, the normality assumption for the
confidence region estimation is not always a good starting hypothesis. First, it does not take
into account the complexity of the relationship between the model parameters (i.e., physical
phenomena) and may lead to non reliable values (meaningless physical magnitudes, such
as negative oxygen diffusion). Secondly, it may mislead with respect to the uncertainty
that we actually have for different significant levels. In any case, the confident region
estimation using HDR and a proper probabilistic analysis are very informative about the
degree of reliability of the mathematical model used for a biological explanation. These
two observations become even more evident when the uncertainty of the model is reduced,
as it can be seen when comparing Figure 7a,b: the chosen significant level has a major
impact on the confidence region size and shape. In all the cases analyzed, this uncertainty
reduction makes the confidence region to concentrate around the parameter values used in
the data generation process.

Knowledge of the model parameter variation (from a probabilistic point of view)
allows to predict the outcome of a given experiment. This can be used not only for
model calibration and validation, but for experimental planning (deciding the appropriate
material, equipment or accuracy of the measuring devices and techniques to be used).
For example, in Figure 8, it may be seen that the necrotic core experiment requires less
accuracy in the measurement of the cell profile in the central part of the chamber for param-
eter estimation, while the pseudopalisade experiment requires a measurement technique
able to detect extremely low alive cell concentrations. It can also be observed that the
appearance of significant alive cells at the right side of the chamber in the pseudopalisade
experiment would not be explained by the model parameter variability, but rather by a
model limitation.

The probabilistic knowledge of the model can be further exploited in experimental
planning and design by using BED theory. In the analysis performed in this work, there
are several aspects important to remark. All graphics showing the utility function are
symmetric with respect to the line O; = O;. This is coherent with the symmetrical config-
uration of the experimental set-up (geometry and properties). The utility value should
therefore not be modified by flipping the boundary conditions. Besides, it can be seen that
the level curves belonging to Do, and &, have similar shapes. This is due to the correlation
between parameters, as it can be observed from the Kendall correlation coefficient T for
each pair of variables (Figure 6b). The coefficient corresponding to Do, and &, is high and,
consequently, they are strongly correlated, so the experiments needed to characterize the
value of one of them are similar to the ones needed to characterize the other.

Iso-utility curves give us a picture that may be interpreted biologically and is coherent
with the different phenomena occurring in the microfluidic device. However, the coupling
between them makes this interpretation difficult. In this work, the utility has been com-
puted for four different initial cell concentrations, ranging from a low concentration Cy =
1 x 10° cell/mL to the chip saturation concentration Cy = CM =5 x 107 cell/mL. The max-
imum utility is always reached for the highest initial concentration (5 x 107 cell/mL).

A summary of the analysis is presented in Table 4, where the best experimental config-
uration is presented for each of the parameters’ calibration, together with the maximum
utility value.
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Table 4. Most useful experimental configuration for each of the parameters’ evaluation.

Parameters to Be ~ Upper O, Concentration Lower O, Concentration Maximum
Estimated [mmHg] [mmHg] Utility Value

Do, 7 0 1.58

Xy 5 2 1.53
(Do,, a) 5 1 2.58
Ta 7 0 0.07

Tad 7 0 1.29
(Tas Tad) 7 0 1.63
D, 8 0 0.51

Ka 7 1 0.35
(Da, Ka) 8 0 0.49

For the analyzed family of experiments, the most useful experiments are always the
ones performed for high concentrated cell cultures. As most phenomena are related to cell
concentrations, the higher the concentration, the more quantifiable the different biological
mechanisms. Besides, it results clear that configurations with oxygen gradient are more
useful for accurately characterizing the parameters related to oxygen (Do,, ,) and cell
migration (D,, Ka), when the other parameters are assumed to be known. However, this
gradient has to be moderate to avoid regions of total normoxia or total anoxia. When
the aim is to perfectly discriminate between their effects, softer gradients are generally
preferred (Figure 9¢c, Table 4). Finally, for high initial cell concentrations, growth and
death parameters are also well characterized under gradient conditions: we need to
induce localized hypoxic conditions in order to evaluate growth under saturation capacity
and death.

6. Conclusions

Mathematical modeling of complex cell processes is very challenging due to its in-
trinsic non-linearity, highly-coupled multiphysic interactions, and the many correlated
parameters which are difficult to measure or simply unknown. These parameters are most
times obtained for a particular problem under specific conditions, leading in many cases to
conclusions, directly derived from the modeling assumptions and therefore providing little
new information. Also, they are difficult to generalize.

As a result, a proper and extensive parametric analysis is mandatory. This should
include an extensive and detailed study of the values reported in the bibliography, a careful
sensitivity analysis and a sufficient number of different experiments, not only for calibration
but also for validation, avoiding parameter overfitting.

This analysis, although it allows the identification of the optimal set of parameters,
is most times difficult to extend to other problems with reasonable accuracy and therefore
with a certain validation of its actual physical character and its value range. It is also
difficult to discriminate between correlated parameters associated to mechanisms that
cannot be isolated in the experiments. Hence, we need additional information both to
get a better discrimination between them, and to identify the optimal conditions for
additional experiments to provide the maximum information possible in order to get
such discrimination.

We have proved here that copulas are a simple and powerful tool to detect and
improve highly-correlated multiparametric mathematical models such as those appearing
in Biology, with the added value of providing key information for the optimal design of new
experiments with the highest information possible for the problem in hands, thus reducing
time and cost not only in our in vitro experiments but also in scarce and costly in vivo cases.

80



Mathematics 2021, 9, 27

Author Contributions: Conceptualization M.D., M.H.D. and J.A.-J.; Methodology J.A.-J.; Soft-
ware and validation J.A.-]., M.P.-A.; Writting original draft M.D., ].A.-]. and M.P-A.; Figures and
visualization J.A.-J., M.P.-A. and T.R.; Supervision M.D. and M.H.D.; Project administration and
funding M.D., M.H.D. and J.A.S.-H. All authors reviewed the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the financial support from the Spanish Ministry of
Economy and Competitiveness (MINECO) and FEDER, UE through the project PGC2018-097257-
B-C31, the Spanish Ministry of Science and Innovation through the project PID2019-106099RB-
C44/AEI/10.13039/501100011033, the Government of Aragon (DGA) and the Centro de Investiga-
cion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN). CIBER-BBN
is financed by the Instituto de Salud Carlos III with assistance from the European Regional Develop-
ment Fund.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data and codes available under request to the authors.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References

1. Quail, D.E; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423. [CrossRef]
[PubMed]

2. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646-674. [CrossRef] [PubMed]

3. Scannell, ].W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in pharmaceutical R & D efficiency. Nat. Rev.
Drug Discov. 2012, 11, 191. [PubMed]

4, Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 2014,
507, 181. [CrossRef] [PubMed]

5. Bhatia, S.N.; Ingber, D.E. Microfluidic organs-on-chips. Nat. Biotechnol. 2014, 32, 760. [CrossRef] [PubMed]

6. Boussommier-Calleja, A.; Li, R.; Chen, M.B.; Wong, S.C.; Kamm, R.D. Microfluidics: A new tool for modeling cancer-immune
interactions. Trends Cancer 2016, 2, 6-19. [CrossRef] [PubMed]

7. Zervantonakis, K.; Hughes-Alford, S.K.; Charest, ].L.; Condeelis, ].S.; Gertler, E.B.; Kamm, R.D. Three-dimensional microfluidic
model for tumor cell intravasation and endothelial barrier function. Proc. Natl. Acad. Sci. USA 2012, 109, 13515-13520. [CrossRef]
[PubMed]

8. Byrne, H.; Alarcon, T.; Owen, M.; Webb, S.; Maini, P. Modelling aspects of cancer dynamics: A review. Philos. Trans. R. Soc. Lond.
A Math. Phys. Eng. Sci. 2006, 364, 1563-1578. [CrossRef]

9.  Kitano, H. Computational systems biology. Nature 2002, 420, 206. [CrossRef]

10. Bearer, E.L.; Lowengrub, J.S.; Frieboes, H.B.; Chuang, Y.L.; Jin, E; Wise, S.M.; Ferrari, M.; Agus, D.B.; Cristini, V. Multiparameter
computational modeling of tumor invasion. Cancer Res. 2009, 69, 4493-4501. [CrossRef]

11.  Ayensa-Jiménez, J.; Pérez-Aliacar, M.; Randelovic, T.; Olivén, S.; Ferndndez, L.; Sanz-Herrera, ]J.A.; Ochoa, I.; Doweidar, M.H.;
Doblaré, M. Mathematical formulation and parametric analysis of in vitro cell models in microfluidic devices: Application to
different stages of glioblastoma evolution. Sci. Rep. 2020, 10, 1-21. [CrossRef] [PubMed]

12.  Brat, D.J. Glioblastoma: Biology, genetics, and behavior. In American Society of Clinical Oncology Educational Book; American
Society of Clinical Oncology: Alexandria, VA, USA, 2012; pp. 102-107._am.2012.32.102. [CrossRef]

13.  Ang, A; Chen, J. Asymmetric correlations of equity portfolios. J. Financ. Econ. 2002, 63, 443—-494. [CrossRef]

14. Boubaker, H.; Sghaier, N. Portfolio optimization in the presence of dependent financial returns with long memory: A copula
based approach. J. Bank. Financ. 2013, 37, 361-377. [CrossRef]

15.  McNeil, A.; Frey, R.; Embrechts, P. Quantitative Risk Management: Concepts, Techniques, and Tools; Princeton University Press:
Princeton, NJ, USA, 2017.

16. Kole, E.; Koedijk, K.; Verbeek, M. Selecting copulas for risk management. J. Bank. Financ. 2007, 31, 2405-2423. [CrossRef]

17.  Meucci, A. A new breed of copulas for risk and portfolio management. Risk 2011, 24, 122-126.

18. Solari, S.; Losada, M. Non-stationary wave height climate modeling and simulation. . Geophys. Res. Ocean. 2011, 116. [CrossRef]

19. Munkhammar, J.; Widén, J. An autocorrelation-based copula model for generating realistic clear-sky index time-series. Sol. Energy
2017, 158, 9-19. [CrossRef]

20. Arya, FK,; Zhang, L. Copula-based Markov process for forecasting and analyzing risk of water quality time series. ]. Hydrol. Eng.

2017, 22, 04017005. [CrossRef]

81



Mathematics 2021, 9, 27

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.
41.
42.
43.

44.
45.
46.
47.
48.

49.

Laux, P; Wagner, S.; Wagner, A.; Jacobeit, J.; Bardossy, A.; Kunstmann, H. Modelling daily precipitation features in the Volta
Basin of West Africa. Int. |. Climatol. A |. R. Meteorol. Soc. 2009, 29, 937-954. [CrossRef]

Schoelzel, C.; Friederichs, P. Multivariate non-normally distributed random variables in climate research-introduction to the
copula approach. Nonlinear Process. Geophys. 2008, 15, 761-772. [CrossRef]

Laux, P; Vogl, S.; Qiu, W.; Knoche, H.R.; Kunstmann, H. Copula-based statistical refinement of precipitation in RCM simulations
over complex terrain. Hydrol. Earth Syst. Sci. 2011, 15, 2401-2419. [CrossRef]

Zou, Y.; Zhang, Y. A copula-based approach to accommodate the dependence among microscopic traffic variables. Transp. Res.
Part C Emerg. Technol. 2016, 70, 53-68. [CrossRef]

Spissu, E.; Pinjari, A.R.; Pendyala, R.M.; Bhat, C.R. A copula-based joint multinomial discrete-continuous model of vehicle type
choice and miles of travel. Transportation 2009, 36, 403—422. [CrossRef]

Kilgore, R.T.; Thompson, D.B. Estimating joint flow probabilities at stream confluences by using copulas. Transp. Res. Rec. 2011,
2262,200-206. [CrossRef]

Bartoli, G.; Mannini, C.; Massai, T. Quasi-static combination of wind loads: A copula-based approach. |. Wind Eng. Ind. Aerodyn.
2011, 99, 672-681. [CrossRef]

Dong, S.; Zhou, C.; Tao, S.S.; Xue, D.S. Bivariate Gumbel distribution based on Clayton Copula and its application in offshore
platform design. Period. Ocean Univ. China 2011, 41, 117-120.

Pham, H. Recent studies in software reliability engineering. In Handbook of Reliability Engineering; Springer: London, UK, 2003;
pp- 285-302.

Kim, J.M.; Jung, Y.S.; Sungur, E.A.; Han, K.H.; Park, C.; Sohn, I. A copula method for modeling directional dependence of genes.
BMC Bioinform. 2008, 9, 225. [CrossRef]

Kim, Y.; Jeon, H.; Othmer, H. The role of the tumor microenvironment in glioblastoma: A mathematical model. IEEE Trans.
Biomed. Eng. 2017, 64, 519-527. [CrossRef]

Ayuso, ] M.; Monge, R.; Martinez-Gonziélez, A.; Virumbrales-Mufioz, M.; Llamazares, G.A.; Berganzo, J.; Hernandez-Lain, A ;
Santolaria, J.; Doblaré, M.; Hubert, C.; et al. Glioblastoma on a microfluidic chip: Generating pseudopalisades and enhancing
aggressiveness through blood vessel obstruction events. Newuro-Oncology 2017, 19, 503-513. [CrossRef]

Ayuso, ].M.; Virumbrales-Mufioz, M.; Lacueva, A.; Lanuza, PM.; Checa-Chavarria, E.; Botella, P.; Ferndndez, E.; Doblare, M.;
Allison, S.J.; Phillips, R.M.; et al. Development and characterization of a microfluidic model of the tumour microenvironment.
Sci. Rep. 2016, 6, 36086. [CrossRef]

Hatzikirou, H.; Basanta, D.; Simon, M.; Schaller, K.; Deutsch, A. ‘Go or grow”: The key to the emergence of invasion in tumour
progression? Math. Med. Biol. A ]. IMA 2012, 29, 49-65. [CrossRef] [PubMed]

Stramer, B.; Mayor, R. Mechanisms and in vivo functions of contact inhibition of locomotion. Nat. Rev. Mol. Cell Biol. 2017, 18, 43.
[CrossRef] [PubMed]

Galluzzi, L.; Vitale, I; Aaronson, S.A.; Abrams, ].M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I; An-
drews, D.W.,; et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018.
Cell Death Differ. 2018, 25, 486. [CrossRef] [PubMed]

Sendoel, A.; Hengartner, M.O. Apoptotic cell death under hypoxia. Physiology 2014, 29, 168-176. [CrossRef] [PubMed]

Chance, B.; Williams, G.R. The respiratory chain and oxidative phosphorylation. Adv. Enzymol. Relat. Areas Mol. Biol. 1956,
17, 65-134.

Jaworski, P; Durante, F.; Hardle, W.K.; Rychlik, T. Copula Theory and Its Applications: Proceedings of the Workshop Held in Warsaw,
Poland, 25-26 September 2009; Springer: Berlin, Germany, 2010; Volume 198.

Sklar, M. Fonctions de repartition an dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 1959, 8, 229-231.

Wand, M.P.; Jones, M.C. Kernel Smoothing; CRC Press: Boca Raton, FL, USA, 1994.

Kottegoda, N.T.; Rosso, R. Applied Statistics for Civil and Environmental Engineers; Blackwell Malden: Malden, MA, USA, 2008.
Fan, Y. Goodness-of-fit tests for a multivariate distribution by the empirical characteristic function. |. Multivar. Anal. 1997,
62, 36-63. [CrossRef]

Hyndman, R.J. Computing and graphing highest density regions. Am. Stat. 1996, 50, 120-126.

Fisher, R.A. The Design of Experiments; Oliver and Boyd: Edinburgh/London, UK, 1937.

Chaloner, K.; Verdinelli, I. Bayesian Experimental Design: A Review. Stat. Sci. 1995, 10, 273-304. [CrossRef]

Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. . 1948, 27, 379-423. [CrossRef]

Ahmed, N.A.; Gokhale, D. Entropy expressions and their estimators for multivariate distributions. IEEE Trans. Inf. Theory 1989,
35, 688-692. [CrossRef]

Demarta, S.; McNeil, A.J. The t copula and related copulas. Int. Stat. Rev. 2005, 73, 111-129. [CrossRef]

82



. mathematics

Article

Empowering Advanced Driver-Assistance Systems
from Topological Data Analysis

Tarek Frahi "*, Francisco Chinesta !, Antonio Falcé6 2, Alberto Badias 3, Elias Cueto 3, Hyung Yun Choi ¢,
Manyong Han 5 and Jean-Louis Duval ¢

check for

updates
Citation: Frahi, T.; Chinesta, E,; Falco,
A.; Badias, A.; Cueto, E.; Choi, H.Y,;
Han, M.; Duval, J.-L. Empowering
Advanced Driver-Assistance Systems
from Topological Data Analysis.
Mathematics 2021, 9, 634.
https://doi.org/10.3390/math9060634

Academic Editors: Duarte Valério and

Mauro Malve

Received: 31 January 2021
Accepted: 11 March 2021
Published: 16 March 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 PIMM Lab, Arts et Metiers Institute of Technology, 151 boulevard de 1’'Hopital, 75013 Paris, France;
Francisco.Chinesta@ensam.eu

Departamento de Matematicas, Fisica y Ciencias Tecnolégicas, Universidad Cardenal Herrera-CEU, CEU
Universities, San Bartolome 55, 46115 Alfara del Patriarca, Valencia, Spain; afalco@uch.ceu.es

I3A, Aragon Institute of Engineering Research, Universidad de Zaragoza, 50018 Zaragoza, Aragon, Spain;
abadias@unizar.es (A.B.); ecueto@unizar.es (E.C.)

Department of Mechanical and System Design Engineering, Hongik University, 94 Wausanro, Mapogu,
Seoul 04066, Korea; hychoi@hongik.ac.kr

Digital Human Lab, Hongik University, 94 Wausanro, Mapogu, Seoul 04066, Korea; myhan0521@gmail.com
ESI Group, 3bis rue Saarinen, CEDEX 1, 94528 Rungis, France; Jean-Louis.Duval@esi-group.com
Correspondence: tarek.frahi@ensam.eu

Abstract: We are interested in evaluating the state of drivers to determine whether they are attentive
to the road or not by using motion sensor data collected from car driving experiments. That is, our
goal is to design a predictive model that can estimate the state of drivers given the data collected
from motion sensors. For that purpose, we leverage recent developments in topological data analysis
(TDA) to analyze and transform the data coming from sensor time series and build a machine learning
model based on the topological features extracted with the TDA. We provide some experiments
showing that our model proves to be accurate in the identification of the state of the user, predicting
whether they are relaxed or tense.

Keywords: Morse theory; topological data analysis; machine learning; time series; smart driving

1. Introduction

While there have recently been considerable advances in self-driving car technology,
driving still relies mainly on human factors. Even in self-driving mode, human drivers
must often make decision in a fraction of a second to avoid accidents. Therefore, it is still
of utmost importance to develop systems capable of discerning if the human driver is
attentive or not to the road conditions. In general, the so-called advanced driver assistance
systems (ADAS) [1,2] are systems that are able to improve the driver’s performance, among
which, adaptive speed limiters, pedestrian detectors [3], and cruise controllers are some
of the most popular systems. Fatigue alerting systems are among the most useful among
ADAS systems, and the aim of this work is to contribute to the development of such a
system based on a systematic analysis of drivers in actual driving conditions.

The estimation of the driver’s condition (degree of attention to the road, fatigue, etc.)
is a very important factor to ensure safety in driving [4,5]. A recent review on the topic can
be found in [6]. The goal of this work is to extract behavior patterns from car user data to
be able to accurately estimate their state. We used data obtained by the laboratory of prof.
Hyung Yun Choi at Hongik University in Seoul. His experiment involved the application
of mechanical stimulation to people seated in an automobile.

Our main goal is to extract patterns of behavior from experimental data so as to allow
us to learn the most relevant factors affecting driver’s attention to the situation of the road.

In the present work, we combine some tools from Morse theory [7] and topological
data analysis (TDA) with all of the associated concepts and methods (e.g., Betti numbers,
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homology persistence, barcodes, persistence images, etc.) [8], most of them introduced
and employed later in order to analyze and classify the experimental data. This allows us
to introduce concepts as barcodes, that is, persistent and life-time diagrams in a similar
way to how they are used in persistent homology. Our main goal is to predict car user
behavior following a supervised approach [9]. Instead of considering an original sensor
signal as the quantity of interest, we focus on its topological features. In this sense, the
framework proposed in this paper allows us to unveil the true dimensionality of data or,
in other words, the actual number of factors affecting driver’s performance. Thus, we
model a sensor signal as a dynamical system, and, therefore, our approach seems to be
better at describing its properties, or rather its variations, such as extrema, patterns, and
self-similarity, than other approaches. We note that our approach is, in some senses, similar
to that followed by Milnor and Thurston [10] in the study of the combinatorial properties
of dynamical systems by combining tools from automata theory.

The structure of the paper is as follows: In Section 2, we describe the material and
methods employed in this work. Particular attention is paid to the process of data acquisi-
tion and the description of time series and data curation. In Section 3, we present the main
results of this work, and we discuss the main consequences in Section 4. As a complement,
in Appendix A, we thoroughly illustrate the process of computing persistence images for
the data of interest.

2. Material and Methods

In this section, we describe the collection and preprocessing of the experimental data.
In Section 2.1, we describe the data acquisition, and in Section 2.2, we provide a description
of the time series. Section 2.3 is devoted to data preprocessing. The mathematical tools
used to describe the times series at a topological level are explained in Section 2.4. Finally,
the image classification methodology is given in Section 2.5.

2.1. Data Acquisition

Our proposed predictor directly uses the data collected from the experiments. The data
acquisition process involves measuring the response of human behavior when an excitation
is applied to the seat. Figure 1 shows the location of the sensors in the experiments.

Seat /

(floor)
sensor

Figure 1. Scheme of the data acquisition process showing the location of the sensors.

The excitation signal is an angular acceleration imposed on the seat of the user. This ac-
celeration is an oscillating chirp function with a frequency range of 1 to 7.5 Hz on the X axis
in rotation. The linear acceleration a = (a, a4y, a.) and angular velocity w = (wy, wy, w:)
were measured in both the head and the seat by two IMU (Shimmer inertia measurement

84



Mathematics 2021, 9, 634

unit (IMU) sensors) at 256 Hz. By observing the floor excitation signals, we noted that the
excitation is purely rotational around the X-axis—see Figure 2.

i R

0 5 10 15 20 25 30 35
Figure 2. Floor excitation: X-axis angular velocity time series.

Several experiences were conducted by nine people by taking into account a set of
six fixed states: driver, passenger, tense person, relaxed person, rigid seat, and SAV (sport
activity vehicle seat). In particular, for each individual, eight experiments for the six
available states were performed:

Class Label

1 SAVRelaxedPassager
SAVTensePassager
SAVRelaxedDriver
SAVTenseDriver
RigidRelaxedPassager
RigidTensePassager
RigidRelaxedDriver
RigidTenseDriver

O N U= WD

As a consequence, we worked with a sample of 72 experiences, each of them encoded
in a time series (as we explain later). Our goal is to classify the behavior of a generic driver,
assigning one of the two states (tense or relaxed) by using the sensor data.

2.2. Time Series Description

The data acquired from sensors (see Figures 3 and 4) were stored into six-dimensional
time series, for both linear acceleration and angular velocity of the head movement. The
sampling frequency of the data was 256 Hz, and the duration of the experiment was 34 s;
hence, the resulting data dimensionality is 256 x 34 = 8704. For each times series, where
1 <t < 8704, we constructed three new times series called the sliding window, embedding
a length of 5800. The first one is given by the times values from t = 1 to t = 5800, the
second is given by the times values from t = 1450 to t = 7250, and, to conclude, the
third time window is defined as from t = 2904 to t = 8704. Each element in the sample
(1 <i < 72) was encoded by means of three six-dimensional time series representing each
of the three sliding windows that we represent in matrix form as follows:

at(1)  a(2) a4 (5800) al(1450)  a%(1451) al(7251)
aé(l) aé(2) a§(5800) aé,'(l450) aé,'(l451) a%(7251)
TS, _ | A a;(5800) | 1o _ | al(1450) al(1451) al(7251)
3(i-1)+1 w%(l) w%(z) w§(5800) 77 23(i1)+2 w§(1450) w§(1451) w2(7251)
wy(1)  wp(2) w}(5800) w, (1450) ~ w, (1451) wy(7251)
wi(1l) wi(2) w?(5800) w!(1450) w?(1451) wt(7251)
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and

TS5 =

a%(2903)  a%(2905) % (8704)
a’(2903)  a(2905 al (8704
Y Y Y

al(2903)  af(2905) al(8704)
w(2908) Wi (2905) w!(8704)
wy(2903)  w;(2905) wy(8704)
w!(2903)  w?(2905) w!(8704)

Here, the matrices have a size of 6 x 5800 and 1 < i < 72. This allows us to represent
the information by using a third-order tensor, namely, Z € R?16>6x3800 defined by

Ziik = (TSi)x

for1 <i<216,1 <j<6and1 <k < 5800. We can identify Z; = TS, for 1 <i < 216.

0 5 10

I “ HHH \m
Ml \“ \‘m I

15 20 25 30 35

Figure 3. Sensor data: linear acceleration time series.
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Figure 4. Sensor data: angular velocity time series.

2.3. Data Preprocessing

In order to obtain a single series for each observation, we concatenated all of the 6 time
series (linear accelerations and angular velocities) for each observation horizontally and
then created a data frame by stacking the 216 in sample observations.
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The concatenation operation on the multidimensional time series collapsed the last
two dimensions into one dimensional arrays with a length of 5800 x 6 = 34,800. The result
is the two-dimensional table of concatenated time series

vec(21,,:)

D= c R216%34500
vec(Za16,:,:)

We chose not to filter the signals because the topological sub-level set method should
filter the high-frequency features naturally. We also chose to keep working on acceleration
signals in order to avoid signal deviations after two integrations in time so as to obtain
positions, the sensors not always keeping a zero mean height. Thus, the approach is
completely (topologically) data-based.

The six time series Z; of each observation were collapsed into a single concatenated
time series with a size of 34,800—see Figure 5. The concatenated time series for the 216
observations were then stacked to create the dataset D with a size of 216 x 34,800. We also
used binary labels in the chained time series Z; on the two target classes that we were
interested in. In particular, we wrote Zi(“) where & is "0" for a relaxed driver and “1” for a
tense one.

’ !
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Figure 5. Tensor reduction of a sensor time series.

2.4. Extracting Topological Features from a Time Series

The idea to extract the topological information regarding the times series is to consider
each sample observation as a piecewise linear continuous map from a closed interval to the
real line. Therefore, we used a construction closely related to the Reeb graph [11] used in
Morse theory to describe the times series at the topological level.

To this end, we consider the time series x; for0 <t < N —1 (N > 3) given by a vector

X = (xo,xl,...,xN,l) (S RN.

we can view X as a function also denoted by X : {0,1,...,N —1} — R defined by
X(i) = x; for 0 < i < N — 1. Here, to study the topological features of X we use the
sub-level set of a piecewise-linear function fx : R — R associated with X satisfying that
fx(l) IX(i) = xz-forO <i<N-1

To construct this function, we consider the basis functions { ¢y, ..., pn_1} of continu-
ous functions ¢; : R — R defined by

s—i+1 if i—-1<s<i
pi(s):=q i+1—-s if i<s<i+1
0 i sgli—1i+1]
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wherei=1,...,N —2and

1-s if 0<s<1
(PO(S):{

0 if sel01]

() [ SNF2 i N-2<s<N-1
PN-18) = 0 if s¢[N—2,N-1]

This allows us to construct a piecewise continuous map fx : R — R by
N-1

fx(s) =Y xj9;(s),

j=0

and also to endow RN with a norm given by

11 = ey = () Ifx(S)Izds>1/2.

In particular, we prove the following result, which helps us to identify the time series
given by the vector X in RN with the function fx in L?(R).

Proposition 1. The linear map ® : (RN, || - [|) — (L*(R), || - [l 2()) given by D(X) = fx is
an injective isometry between Hilbert spaces. Furthermore, ®(RN) is a closed subspace in L*(RN).

Proof. The map is clearly isometric and injective because {¢y, ..., n_1} is a set of linear
independent functions in L?(R). [

Here, we describe the maps fx € ®(RN) at the combinatorial level using the connected
components (intervals) associated with its A sub-level sets

LS\ (fx):={x€[0,N—-1]: fx(x) <A}

for A € R. For this purpose, we introduce the following distinguished objects related to the
supp(fx) = [0,N —1] C Rof fx:
e The nodes or vertices denoted by

V= {[0],[1),...,[N—1]}

that represent the components of the vector X,;
e The faces denoted by

F:={0,1[,2],...,[N-2,N-1]}

that represent the intervals used to construct the connected components of the sub-
level sets of the map fx. Recall that we consider

i+1]:={zeR:z=puxjq+(1—p)x;, 0<pu <1} CR.

Let
Amax = _max fx(s) = max X(0),
and
Amin = se[%,lzivlll] fxls) = os?%iArlqu(i)'

For each Apin < A < Amax, we introduce the following symbolic A sub-level set for
the map fx :
LSy(fx) :=={c € F: f(o) <A}
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For Amin < A < A’ < Amay, it holds

LSy (fx) C LSy (fx)-

Our next goal was to quantify the evolution of the above symbolic A sub-level with.
To this end, we introduce the notion of feature associated with the A sub-level set LS, (fx)-
We define the set of features for functions in ®(RVN) as

F(@RN):={[i,jJCR:0<i<j<N-1}

We note that LS, (fx) C F C F(®(RYN)). Then next definition introduces the notion
of features for a symbolic A sub-level set as the interval of §(®(RN)) constructed by a
maximal union of faces of LS, (fx).

Definition 1. We suggest that 1 € F(®(RN)) is a feature for the symbolic A sub-level set LSy (fx)
if there exists Iy, . .., Iy € LS, (fx) such that I = U}‘Zl Ty and for every J € LS, (fx) such that
J #T; for 1 <i < kit holds that INJ = @. We denote by F(LS)(fx)) the set of features for the
A sub-level set LS (fx)-

A feature for a A sub-level set LS, (fx) is the maximal interval of §(®(RN)) that we
can construct by unions of intervals in LS) (fx). To illustrate this definition, we give the
following example:

Example 1. Let us consider the time series

X =(11,14,9,7,9,7,8,10,9).

This allows us to construct the map fx as shown in Figure 6. Then, Ay = 7 and Amax = 14,
and we have the following symbolic A sub-level sets.

LS —7(fx) =@

LS)=s(fx) = LSx=7(fx) U {[5,6]}

LS)—9(fx) = LSa=s(fx) U {[2,3],[3,4], [4,5]}
LS —10(fx) = LSr=o(fx) U {[6,7],(7,8]}

LS —11(fx) = LSa=10(fx)

LSy=12(fx) = LSr=11(fx)

LSy=13(fx) = LSr=11(fx)

LSy=14(fx) = LSr=11(fx) U{[0,1]}.

This allows us to compute the available features for each A-value:

A=7[A=8[A=9[A=10[A=11[A=12][A=13[A=14
S(LSA\(fx) | @ | [56] | [26] | 28 | [28 | [28 | [28 | [0,8]

Let §(fx) be the whole set of features for fx, that is,

S(fx) ={I:I € F(LSA(fx)) for some Apmin < A < Amax}-
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Figure 6. The map fx for X = (11,14,9,7,9,7,8,10,9).
Example 2. From Example 1, we obtain
$(fx) = {[5.6],2,6],[2,8],[0,8]}.

We can represent the map A — LS (fx) from [Amin, Amax] to F(fx) as shown in Figure 7.

10
9
F(@RY
S(®(RY))
8 ! '
1 1
B 1 1
1 1
1 1
6 o—o—— I
' 1 1
' 1 1
5 ._l 1 1
Lo i
4 1
P :
1
3 \ 1 1
\ 1 1
1 1
2 o —
1
1
B 1
1
&
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Y A

Figure 7. The map A — LS, (fx) for X = (11,14,9,7,9,7,8,10,9).

LetI € F(fx); in order to quantify the persistence of this particular feature for the map

fx, we use the map A — LS, (fx) from [Amin, Amax] to §(fx). To this end, we introduce the
following definition: the birth point of the feature I is defined by

a(l) =inf{A : T € F(LSA(fx))}
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and the corresponding death point by

b(I) = sup{A : T € F(LSA(fx))}-

In particular, we note that a([0, N — 1]) = Amax (see Figure 7). Since a(I) < b(I) < o0
holds for all T € F(fx), I # [0, N — 1], we call the finite interval [a(I), b(I)] the barcode of the
feature I € F(fx) \ {[0,N —1]}.

Example 3. From Example 1 we consider the features [5,6] € LSy—_g(fx), [2,6] € LSr—9(fx),
and [2,8] € LSy—19(fx). Then, the feature [5,6)] has its birth point at a([5,6]) = 8 and its death
point at b([5,6]) = 9; the feature (2,6] has its birth point at a([2,6]) = 9 and its death point at
b([2,6]) = 10. Finally, the feature [2, 8] has its birth point at a([2,8]) = 10 and its death point at
b([2,8]) = 14. As a consequence, the set

B(fx) = {([5,6];8,9), (]2,6];9,10), ([2,8];10,14) }

of features and its corresponding barcodes contain the relevant information of the shape of fx
(see Figure 7).

Thus, we define the set of barcodes for fx by
B(fx) = {(La(D),b(1)) : T € F(f) \ {0, N —1]}}
and its persistence diagram as
PD(fx) = { (a(l),b(1) € R : T §(fx) \ {0, N 1]} }
(see Figure 8). An equivalent representation of the persistence diagram is the life-time

diagram for fx, which is constructed by means of a bijective transformation T(a,b) =
(a,b — a), acting over PD(fx), that is,

LT (fx) = { (a(), b(1) — a(1)) € B2 : 1 € §(fx)) \ {0, N~ 1]} };

see Figure 9.

14
|
o

12

10

Figure 8. Persistence diagram for the map fx when X = (11,14,9,7,9,7,8,10,9).
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Lifetime transformation

b-a

Figure 9. Life-time diagram for the map fx when X = (11,14,9,7,9,7,8,10,9).

In order to determine the grade of similarity between two barcodes from two different
time series, we need to set a similarity metric. To this end, we construct the persistent
image for fx as follows: we observe that L7 (fx) is a finite set of points, namely,

‘CT(fX) = {(ullbl - al)/' “/(ak/ bk - ak)}

for some natural numbers k > 1 and such that by —ay < by —ay ... < by — a. Then, we
consider a non-negative weighting function w : L7 (fx) — [0,1] given by

bi*ai

= forl1 <i<k
by — a

w(a;, b — a;)

Finally, we fix M, a natural number, and take a bivariate normal distribution g, (x, y)
centered at each point u € LT (fx) and with its variance oid = & max;<;<¢(b; — a;) id,
where id is the 2 x 2 identity matrix. A persistence kernel is then defined by means of a
function py : R? — R, where

ox(xy) =), wu)gu(xy). €y
u€£T(fx>

We associate with each X € R a matrix in RM*M as follows: let ¢ > 0 be a non-

negative real number that is sufficiently small, and then consider a square region Qx, =
[, B] x [a*, B*] C RZ, covering the support of px(x,y) (up to a certain precision), such that

// ox(x,y)dxdy >1—¢
QX,E
holds. Next, we consider two equispaced partitions of the intervals

a=py<pp...<pm=Panda” =pi<pi...<py=B"
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Now, we put

M—-1M-1 M-1M-1
Oxe= U Ulpopial xpfrial= U U Py
i=0 j=0 i=0 j=0

The persistence image of X associated with the partition P = {P,;} is then described
by the matrix given by the following equation:

i=M—1,j=M~1

PI(X,M, P, ¢) = <//P px(x,y)dxdy) € RMXM, @
ij

i=0,j=0

2.5. Classification

Image classification is a procedure that is used to automatically categorize images
into classes by assigning to each image a label representative of its class. A supervised
classification algorithm requires a training sample for each class, that is, a collection of data
points whose class of interest is known. Labels are assigned to each class of interest. The
classification problem applied to a new observation is thus based on how close a new point
is to each training sample. The Euclidean distance is the most common distance metric
used in low-dimensional datasets. The training samples are representative of the known
classes of interest to the analyst. In order to classify the persistence diagrams, we can use
any state-of-the-art technique. In our case, we considered the random forest classification.

Recall that we conducted 9 different experiments, with 24 samples associated with each
one of them corresponding to 3 samples for each of the different experimental conditions:
relaxed rigid driver, relaxed rigid passenger, relaxed SAV driver, relaxed SAV passenger,
tense rigid driver, tense rigid passenger, tense SAV driver, and tense SAV passenger. Their
respective labels are {0,0,0,0,1,1,1,1}. Therefore, we designed the following training
validation process: The model is trained over 144 samples and evaluated over the remaining
unseen 72 experiments (two-to-one training-to-testing ratio). The split between training
and sampling is achieved using random shuffling and stratification to ensure balance
between the classes. In order to improve the evaluation of the model generalizability, we
also performed a cross-validation procedure following a leave-one-out strategy, consisting
of iteratively training over the full dataset except one sample that was left out and used to
test and score the model. We used the accuracy metric to evaluate the classification model.
We can represent the performance of the model using the so-called confusion matrix: a
2D entries table where elements account for the number of samples in each category, with
the first axis representing the true labels and the second axis the predicted labels. We also
computed the different classification metrics to obtain a more detailed reporting of the
model performances.

3. Results

The trained random forest classifier model for the persistence images has a notably
high accuracy score on the training dataset (144) for both approaches and high accuracy for
the testing dataset (72 samples). This suggests strong differentiation of the images with the
respect to their generating signals, see Figure 10. The scores on the training and testing
are 93 and 83%, respectively. The leave-one-out cross-validation achieved a score of 81%,
indicating a good variance-bias trade-off and good generalization potential of the model.
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Confusion Matrix for Train Set Confusion Matrix for Test Set

Actual label
Actual label

Predicted label Predicted label
Figure 10. Model performance for prediciting the attention state.

4. Discussion

The combination of Morse theory and topological data analysis allows us to extract
information from real data without the need for smoothness or regularity assumption on
the time series. In our case, input data for each experiment were reduced from six-sensor
time series of measurements to one single image containing the persistent pattern for
attention to the road. Using the obtained persistence images as the new inputs, supervised
learning proved to successfully predict the attention state of the driver or passenger.

The procedure used and described in this paper does not involve any additional
pre-processing of the sensor data; is robust to noise and degraded signals; and supports
large quantities of data, which makes it efficient and scalable.

It is important to highlight the fact that while the proposed methodology based on the
TDA (successfully applied in large datasets [9]) seems general and powerful and it was able
to extract the main data features, the validity of the driver behaviors observed in the analyzed
dataset should be carefully checked due to the overly reduced dataset employed (limited to
nine individuals) that does not allow for the full validation of prediction robustness.
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Appendix A

We can illustrate the process of computing the persistence diagrams, the lifetime

diagrams, and the persistence images for the driver time series for each experimental setup:

© NG LN

Relaxed driver with SAV seat;
Relaxed driver with rigid seat;
Relaxed passenger with SAV seat;
Relaxed passenger with rigid seat;
Tense driver with SAV seat;

Tense driver with rigid seat;

Tense passenger with SAV seat;
Tense passenger with rigid seat.

Figure A1l. Relaxed driver with SAV seat.

Figure A3. Relaxed passenger with SAV seat.
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Figure A7. Tense passenger with SAV seat.
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Figure A8. Tense passenger with rigid seat.
Appendix B
To better evaluate a classification model, we are interested in quantities that express
how often a sample is correctly or wrongly labelled into a particular class over all the
samples and all the classes:
e A True positive (TP): the correct prediction of a sample into a class;
e A True negative (TN): the correct prediction of a sample out of a class;
® A False positive (FP): the incorrect prediction of a sample into a class;
e A False negative (FN): the incorrect prediction of a sample out of class.
Therefore, we can examine in more detail the classification model performance using
the following metrics:
e The precision P is the number of correct positive results divided by the number of all
positive results.
TP
P=—— Al
TP+ FP (A1)
e The recall R is the number of correct positive results divided by the number of all
relevant samples.
TP
R= ——+ A2
TP+ FN (A2)
e The F-1 score is the harmonic mean of precision and recall.
P xR
F1=2x A3
P+R (A3)
e Theaccuracy A is the number of correct predictions over the number of all samples.
TP+ TN
A= + (A4)
TP+TN+FP+FN
We can summarize the presented metrics for our model in the following two reports:
precision recall fl-score  support precision recall fl-score support
° .o .92 0.93 72 ) e.82 6.86 6.84 36
1 .92 .94 0.93 72 1 0.85 6.81 6.83 36
accuracy 9.93 144 accuracy 8.83 72
macro avg 0. .93 0.93 144 macro avg 0.83 6.83 6.83 72
weighted avg 9. .93 9.93 144 weighted avg 0.8 6.83 0.83 72
(a) Training set. (b) Testing set.

Figure A9. Classification report.
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Abstract: Despite significant progress, malapposed or overlapped stents are a complication that
affects daily percutaneous coronary intervention (PCI) procedures. These malapposed stents affect
blood flow and create a micro re-circulatory environment. These disturbances are often associated
with a change in Wall Shear Stress (WSS), Time-averaged WSS (TAWSS), relative residence time (RRT)
and oscillatory character of WSS and disrupt the delicate balance of vascular biology, providing a pos-
sible source of thrombosis and restenosis. In this study, 2D axisymmetric parametric computational
fluid dynamics (CFD) simulations were performed to systematically analyze the hemodynamic effects
of malapposition and stent overlap for two types of stents (drug-eluting stent and a bioresorbable
stent). The results of the modeling are mainly analyzed using streamlines, TAWSS, oscillatory shear
index (OSI) and RRT. The risks of restenosis and thrombus are evaluated according to commonly
accepted thresholds for TAWSS and OSI. The small malapposition distances (MD) cause both low
TAWSS and high OSI, which are potential adverse outcomes. The region of low OSI decrease with
MBD. Overlap configurations produce areas with low WSS and high OSI. The affected lengths are
relatively insensitive to the overlap distance. The effects of strut size are even more sensitive and
adverse for overlap configurations compared to a well-applied stent.

Keywords: hemodynamics; overlap; malapposition; stent; stenosis; thrombosis

1. Introduction

Percutaneous coronary intervention (PCI) with modern drug-eluting stents (DES) has
revolutionized the treatment of arterial diseases. However, their benefits could be compro-
mised by potential complications such as restenosis and thrombosis [1-4]. Complications of
PCI continue to be a concern, with approximately 1-2% of stent patients dying from throm-
botic occlusions and 10-15% requiring additional interventions due to restenosis [3-7]. The
deployment of a coronary stent near a complex atherosclerotic lesion (i.e., located close to a
bifurcation, near concomitant lesions or with eccentric plaque formation) may promote
the occurrence of gaps between the vessel wall and the struts, defined as malapposition
distance (MD) [8-10]. It appears in up to 33% of implanted DES and up to 75% of patients
with very late (i.e., >1 year) stent thrombosis [10-12]. Furthermore, the use of two partially
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overlapped stents (i.e., with a certain overlap distance (OD)) may be necessary in the event
of incomplete coverage of lesions with a single stent. Approximately 30% of PCI patients
requiring stenting are in situations where stents overlap [7].

Stent implantation by itself generates geometric irregularities on the vascular walls
that modify the hemodynamics along the entire length of the stent [13-15]. Local hemo-
dynamic parameters, in particular abnormal wall shear stress (WSS), critically affect the
evolution of atherosclerosis plaque and have been associated with an increased risk of
thrombosis or restenosis [1,2,5,6,16]. Moreover, stent malapposition and overlapping have
been associated with hemodynamic disturbances that may increase the risks of adverse
clinical outcomes [2,8,10,17-22].

Several studies have been performed to analyze how the presence of stents perturbs the
hemodynamics in a vessel. Computational fluid dynamics (CFD) calculations performed
on simplified stent models inside an idealized coronary artery [5,6,8,10,22] have been used
to investigate the effects of malapposed struts on the blood flow. These studies have
shown that, as the MD increases, recirculation regions located near the wall tend to grow
downstream from the malapposed struts until a critical MD is reached. Above this MD
threshold, recirculation regions gradually reduce in size until the interaction between
the wall and the misaligned struts disappears. Moreover, it has been reported that the
regions near the malapposed struts (more specifically at the gaps between the wall and
the struts) are subjected to high wall shear stress [5,6,10] and that the abnormal region
tends to increase with MD [6]. While several studies have been conducted to highlight the
hemodynamic perturbations induced by malapposed stents, few are devoted to studying
overlapping configurations. An in vitro study by [18], using the particle image velocimetry
technique with a vascular phantom under physiological flow conditions, showed that
overlapping sections tend to disrupt the flow and create a WSS deficiency. [17,19] obtained
similar conclusions after performing 3D CFD simulations based on realistic artery-stents
geometries reconstructed from computed tomography images. Additionally, a 2D CFD
study by [22] revealed also that strut overlapping increases the amount of flow recirculation
compared to non-overlapped segments. Moreover, congruent struts (i.e., one strut on top of
the other) have been identified as critical configurations due to the major flow disturbance
that they produce [22] and the important drop of WSS around them [17].

Although complex 3D studies have provided promising results, identifying areas
where malapposed and/or overlapping struts can lead to the development of abnormal
WSS and significantly disturb blood flow on patient-specific geometries, no practical
information has been given yet to clinicians to assist them in their choice when a stent is
incorrectly positioned.

This lack of knowledge is mainly due to the difficulty: (1) to model complex con-
figurations due to the computation times required (often incompatible with operational
workflow) and (2) to identify the disturbance effect of each of the different parameters
separately. Using static CFD models based on 2D geometries, researchers have found the
location and general tendency of disturbed flow regions for different degrees of strut malap-
position and overlapping [6,10,22]. However, to our knowledge, a complete parametric
study designed to highlight critical malapposition and overlapping stent configurations, for
which flow disturbance over a cardiac cycle becomes significant, has never been conducted.

Therefore, in this study, we designed and used two-dimensional parametric CFD
models to investigate the hemodynamic effect of several stent malapposition and overlap-
ping configurations while considering (1) pulsatile flow conditions, (2) the non-Newtonian
nature of blood flow and (3) the most commonly used flow-related indices to assess the
hemodynamic impact on the vessel wall over a cardiac cycle.

The use of 2D axisymmetric models requires much lower computational costs and
enables a systematic evaluation of the effect of all relevant geometrical parameters (malap-
position and overlapping distances) by means of several sequential simulations. The
identification of specific critical configurations that can promote restenosis and thrombosis
and clearly describe the temporal and spatial evolution of hemodynamic disturbances
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remain the main objectives of this study. The present study is complementary to the patient-
specific 3D studies by providing general information and cut-off values for overlapping and
malapposed distances. The purpose of this work is to provide general criteria on the effect
of misalignment and overlapping distances and not patient-specific information (which
must be assessed for each patient). The results could provide a new decision-making
tool for cardiologists by predicting the risks of complications related to malapposition
and overlapping.

2. Materials and Methods

Two distinct CFD Models of stented segments of coronary arteries were considered.
The first one mimics several cases of a single malapposed stent, while the second account
for overlapping stent configurations. Furthermore, all the boundary conditions and con-
stitutive laws used in these models will be described in the following sections, as well
as the chosen hemodynamic metrics to evaluate the impact of each configuration on the
vessel wall.

2.1. Parametric CFD Models of Malapposed and Overlapped Stents
2.1.1. Geometries

Hemodynamic disturbances produced by the stent struts near the arterial wall were
studied numerically with the CFD approach. Moreover, 2D axisymmetric geometries mod-
eling the two “stent-artery” configurations of interest (i.e., malapposition and overlapping)
were used to perform dynamic flow analyses (Figure 1A,B). The geometrical parameters
used to define and design the idealized “stent-artery” were as follows: malapposition and
overlapping distances (i.e., MD and OD) for the two models of interest. Realistic diversity
in clinical data was investigated by varying MD 0 um < MD < 450 pm and OD (in the
overlapping range of 2 to 3 struts). Moreover, two strut sizes were considered in this study.
The first one is a Cobalt-Chromium drug-eluting stent (CC-DES) (Synergy, Boston Scientific,
Marlborough, MA, USA) with a section of 85 um x 90 um (i.e., Height (H) x Width (W)).
The second one is a bioresorbable stent (BVS, Abbot, Abbott Park, IL, USA) with a thicker
section of 150 um x 215 um. The diameter of the artery lumen was taken as 3 mm. Once
deployed, the inter-strut distance is 2 mm for both types of stents. Therefore, the total
length of the stents is 10.54 mm and 11.29 mm for CC-DES and BVS respectively. The
insertion of the apposed struts in the arterial wall has also been considered with a strut
indentation of 0.15 * H + 20 pum (see Figure 1A inner box). A luminal protrusion caused
by the stent struts in contact with the arterial walls is also introduced to each model with
the aim of estimating with more accuracy the flow recirculation due to the presence of the
struts and the associated hemodynamics variables (see Figure 1A,B). The latter could be in
fact slightly underestimated, if the struts are just apposed on the arterial walls.
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Figure 1. Cont.
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Figure 1. (A) Single stent geometry with three malapposed struts (# 1, 2, and 3) and three correctly
apposed struts (# 4, 5, and 6) and (B) two overlapping stents (first stent: struts # 1 to 6, second stent:
struts # I to (VI) and (C) 3 overlapping configurations, with two congruent struts, with incongruent
struts and three congruent struts.

2.1.2. Studied Malapposition Configurations

This strut configuration is displayed in Figure 1A. It illustrates one stent with three
misaligned struts and three correctly apposed ones. The MD of the first three struts was
between 0 and 450 um for both stents (i.e., CC-DES and BVS). The three apposed struts were
placed downstream and remained fixed for all simulations. The following configurations
were studied: for the CC-DES: MD = 0, 40, 60, 80, 115, 130, 150, 180, 225, 300 and 450 pm
(i.e., n =11 cases), and for the BVS: MD = 0, 40, 80, 115, 150, 180, 225, 300 and 450 um (i.e.,
n =9 cases). When MD = 0 um the six struts are correctly apposed (i.e., total stented artery
length of 10.54 and 11.29 mm for CC-DES and BVS, respectively), these two specific cases
(one for each stent) will be considered as the optimal clinical configurations. A total of
20 distinct configurations were studied.

2.1.3. Studied Overlapping Configurations

This strut configuration is illustrated in Figure 1B,C. This configuration corresponds
to the partial overlapping of 2 stents. This overlapping is for example used to treat arteries
with multistenosis, bifurcations... The OD was between 2000 pm + 2W (strut width) and
4000 pm + 3W (strut width). For reasons of simplicity and homogeneity between the two
stents, these distances will be named without considering the width of the struts (different
for the two stents). Two types of geometric configurations were considered, congruent
and incongruent struts [17,22]. In the first case, the well-apposed and overlapping struts
are stacked one on top of the other, forming a higher obstacle. In the second case, both
struts are separated, leaving a gap between the overlapped one and the vessel wall (see
Figure 1B). For the two stent types, simulations were performed for the following con-
figurations: OD = 2000, 2500, 3000, 3500 and 4000 um (12 = 2 x 5 cases). Notice that when
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OD = 2000 pm there are two pairs of congruent struts and when OD = 4000 um there are
three pairs of congruent struts and for intermediate cases (i.e., from OD = 2500 to 3500 pm)
there are incongruent struts at the overlapping section. A total of 10 distinct simulations
were performed.

2.1.4. Constitutive Law

Blood density was assumed to be constant with a value of 1060 kg m~3. The non-
Newtonian nature of blood flow was taken into account using the Carreau-Yasuda
model [19]:

B= Hoo + (Mo — Hoo) [T+ (A §)7) M1/ 6

where p is the dynamic viscosity, 1y and u, are the viscosity values at zero and infinity
shear rate, respectively, S is the shear rate, A is the time constant, and m is the power-law
index. These fluid constants values were taken from [19] and are used in [20] among other
studies: py = 0.0035 Pa's, pg =0.25Pas,A=25sand m=1/4.

2.1.5. Boundary Conditions

The blood flow was considered laminar and unsteady. The Reynolds number (Re) for
the present simulations was 252.

The artery wall and struts were assumed to be rigid with the no-slip condition and a
time-dependent velocity profile (see Figure 2) was applied at the inlet of the axisymmetric
domain to mimic the pulsatile behavior of coronary blood flow (with a time period equal
to 0.908 s). The physiological waveform was adapted from [23]. The same velocity profile
was used for the outlet to guarantee mass conservation. The inlet and outlet regions were
extended about six times the radius of the artery. These lengths were chosen with precision
after the first series of simulations that proved that these extensions were sufficient to
provide a fully developed flow. Additionally, in order to minimize the effect of the initial
transients, two complete cardiac cycles were simulated for all the configurations studied
and only the results of the second cycle were considered. A third cycle was performed as a
test-case with a malapposition configuration with MD = 150 um. However, no significant
difference in velocity responses was found compared to the results from the second cycle.
These different tests ensured the quality of the results.
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Figure 2. (A) Physiological velocity waveform adapted from Davies et al. (2006) and (B) Velocity
profile imposed at the inlet.

2.1.6. Computational Fluid Dynamics Simulations

An APDL program file (ANSYS v19.2, ANSYS Inc., Canonsburg, PA, USA) was
developed for the two studied configurations (malapposition and overlapping) in order to
simplify the parameterization. The finite element problems are then generated and solved
automatically after the selection of the different parameters. This parametric program
allows easy utilization (for a stent designer, a clinician...). ANSYS FLUENT was used to
mesh the fluid domain with hexahedral and triangular elements and calculate the velocity
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and pressure distributions. Mesh refinement was performed on the regions around the
struts and vessel walls to improve the accuracy of the computations.

The malapposition configuration with MD = 150 um was used to perform an analysis
of the influence of the mesh on the convergence of the results. A baseline element size was
defined for the different regions (Zone 1: central zone of the artery, Zone 2: intermediate
zone of the artery and Zone 3 in the vicinity of the struts). For each of these zones,
the average element sizes were: zone 1 = 5 um, zone 2 = 3 pym, zone 3 = 1.5 um. The
mesh obtained with these values was identified as the baseline mesh. A refined mesh
was obtained by dividing all element sizes by two (i.e., zone 1 = 2.5 pm, zone 2 = 1.5 um,
zone 3 = 0.75 um). In addition, a further refinement operation was applied to all lines
representing the struts and wall of the artery. Approximately 60,000 elements were obtained
for the baseline mesh and 180,000 for the refined mesh. After performing a steady-state
analysis, the velocity profiles obtained for the two mesh densities were compared and
were found to be similar. In addition, the maximum velocity in the whole fluid domain
obtained with the base mesh (0.539993 m/s) and the one obtained with the refined mesh
(0.540401 m/s) showed a difference of less than 0.1%.

A similar approach was carried out for an overlapping configuration with
OD = 2000 m. The conclusions were similar.

The time step was 0.001 s (908 time-steps per cardiac cycle) and convergence criteria
for both pressure and velocity residuals were 10~°.

2.2. Hemodynamic Metrics

WSS and its derived indexes, time-averaged WSS (TAWSS) and oscillatory shear index
(OS]), are of great interest while studying the impact of stent struts on hemodynamics. The
definitions of these parameters are recalled below.

TAWSS represents the average stress magnitude experienced by the vascular wall
during a cardiac cycle and is derived as follows:

T
TAWSS = % /0 |WSS| dt ®

where T denotes the period of the cardiac cycle and [WSS| the modulus of the vector WSS.
TAWSS is insensitive to the direction of the WSS vector.

OSl is a non-dimensional scalar used to evaluate the oscillatory nature of vascular
flows (i.e., how much the WSS vectors change their direction over a cycle) and is calculated

as follows: .
- WSS dt
OSI :1 1 - M 3)
2 o IWSS| dt

OSI varies between 0 and 0.5 with a value of 0 when there is no oscillatory WSS and
0.5 when it is fully oscillatory.

The RRT measures how long the particles stay near the wall of the vessel. Longer time
of contact between atherogenic particles and the arterial wall could cause a high risk of
atherosclerosis formation [20,24,25]. High RRT (RTT > 10 Pa 1) is recognized as critical for
atherogenesis and in-stent restenosis [20]. Thus, RRT was defined as follows:

1
RRT = ((1 - ZOSI)TAWSS> @

As this previous definition shows, RRT combines the information provide by TAWSS
and OSIL.
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2.3. Pathological OSI, TAWSS and RRT Thresholds

It is generally accepted that an abnormally low WSS increases the risk of resteno-
sis [1,14,26,27] A TAWSS < 0.5 Pa is a common threshold value to indicate low WSS over
the cardiac cycle [5,8,19]. On the other hand, high shear stresses (TAWSS > 2.5 Pa) have
been associated with plaque rupture [28] that could lead to thrombosis. In addition, high
shear stresses have been reported to increase the activation of platelets which are the main
cellular components of a thrombus [2,6,10,20,29]. Regarding oscillatory flow, OSI > 0.1 was
associated with an increased risk of arterial narrowing [16,19,30,31]. Additionally, other
authors have reported that thrombus formation is enhanced at areas characterized by high
OSI because slow and reversed flow promotes platelet aggregation [1,29]

In this work the following thresholds were used: TAWSS < 0.5 Pa increases the risk of
restenosis, TAWSS > 2.5 Pa promotes thrombosis and OSI > 0.1 promotes both restenosis
and thrombosis. RRT > 10 Pa~! promotes restenosis. The threshold for RRT is variable
between studies in the literature. For instance, itis 5 Pa~1 in [20] and 10 Pa~! in [25]. In the
present study, the RRT should be less than 8 Pa~!. According to [24], RRT is recommended
as a unique and robust measure of low and oscillating shear flow.

3. Results
3.1. Results for Malapposition
3.1.1. Effect of Malapposition on the Velocity Field

Figure 3 displays the most relevant streamlines in the vicinity of the first stent strut
at the diastolic peak (See Figure 2) when the average flow velocity is the highest and
recirculation regions reach their maximum extensions. For the well-apposed configuration
(see MD = 0 pum for both the CC-DES and BVS stents in Figure 3), there were relatively
small recirculation regions upstream and downstream from the apposed strut. It should be
noticed that the recirculation zone is much larger for the BVS stent. As soon as the stent
began separate from the wall (i.e., with further increments of MD), upstream recirculation
disappeared but the one located downstream from the malapposed strut started growing
and moving to the right until it disappeared as well (see MD = 115 um for CC-DES stent
and MD = 300 um for BVS stent in Figure 3). As expected, flow disturbance was more
enhanced for the large strut (i.e., BVS stent). Moreover, flow accelerated through the wall
separation gap as MD increased giving, as a result, a larger velocity gradient.

Velociy w; ,,:,:\/\\ 215um
T o o —

CC-DES BVS

40 pm MD =0 pum

300pym MD=115um MD=80um MD

™MD

Figure 3. Most relevant streamlines in the vicinity of the first strut at the diastolic peak in-
duced by Cobalt-Chromium drug-eluting stent (CC-DES) and bioresorbable stent (BVS) stent for
MD =0, 40, 80, 115 and 300 pm.
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3.1.2. Effect of Malapposition on TAWSS

Figure 4 illustrates the TAWSS distribution along the arterial wall for the whole
extension of the stent for the most pertinent MD values. First, the normal TAWSS magnitude
of about 1.5 Pa (i.e., the shear stress value for a vessel without stent) was locally disturbed
even for well-apposed stent. Furthermore, peaks of TAWSS, sometimes with maximum
values above 2.5 Pa (see MD > 80 um in Figure 4), developed in the malapposed region.
The amplitude of these peaks increased with MD values and was higher for BVS stent
(compared to CC-DES stent). In the well-apposed area, there were no TAWSS peaks for all
values of MD. The TAWSS plateaus between two well-apposed struts (1.5 Pa) were slightly
modified. The amplitude of the plateaus between the three well-applied struts rapidly
converges to the values of the plateaus of a well-applied stent. These perturbations were
more significant for BVS stents than for CC-DES stents.

CC-DES BVS

6
Malapposed region MD=0:m " Malapposed region MD=0um

TAWSS (Pa)
TAWSS (Pa)

Axial distance (mm) Axial distance (mm)

Figure 4. Time-averaged wall shear stress (TAWSS) distribution for the malapposition configuration.
For simplicity reasons, only five representative configurations are displayed for each strut size
(MD =0, 40, 80, 115 and 300 pm). Strut locations are indicated with black rectangles. Notice that axial
distance = 0 mm corresponds to the location of the first malapposed strut. Three TAWSS ranges can be
defined: TAWSS < 0.5 Pa (Low TAWSS), 0.5 < TAWSS < 2.5 Pa (Normal TAWSS) and TAWSS > 2.5 Pa
(High TAWSS).

For small malapposition distances (see MD = 40, 80 and 115 pm for both strut sizes in
Figure 4), some segments of the vessel wall in the malapposed region were below 0.5 Pa,
indicating an abnormally low TAWSS. These segments, with low values, vanished for
MBD =300 pm (for both types of stents). These areas, with low shear stress, are located
near and downstream of the struts. Additionally, BVS struts produced larger regions with
low TAWSS.

3.1.3. Effect on the Oscillatory Character of WSS Caused by Malapposed Strut

Figure 5 displays the OSI distribution along the stented region of the arterial wall’s
five most representative MD values. First, in the case of a correctly apposed stent (see
MD = 0 um for both strut sizes in Figure 5), the effect of recirculation was similar for
all the struts. However, as the stent began to separate from the wall, high peaks of OSI
appeared downstream from each malapposed strut. These peaks were present for small
wall separations but disappeared with further increments of malapposition distance (see
Figure 5, MD = 115 um for CC-DES and MD = 300 pum for BVS). These results suggest that
malapposed struts promote significant flow recirculations during the cardiac cycle, which
confirms the flow perturbation in Figure 3 by considering the temporal evolution of the
flow recirculation regions.
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Figure 5. OSI distribution for malapposition configuration. For simplicity reasons, only five repre-
sentative configurations are displayed for each strut size (MD = 0, 40, 80, 115 and 300 um). Strut
locations are indicated with black rectangles. Notice that axial distance = 0 mm corresponds to the
location of the first strut. Two OSI ranges can be defined: OSI < 0.1 (Low recirculation) and OSI > 0.1
(High recirculation).

3.1.4. Effect of Malapposition on RRT

Figure 6 displays the RRT distribution along the stented region of the arterial wall
across the stented region, for the five most representative MD values (MD = 0, 40, 80,
115, and 300 pum). Firstly, well-apposed struts produce peaks in the distribution of RRT
located around each strut, with values significantly above the thresholds. These peaks
are significantly larger for BVS stents with larger struts. They split into several peaks at
low MD values. Therefore, the arterial wall affected by RRT values above the threshold is
divided into several critical areas, very close to each other. This phenomenon is much more
important when the dimensions of the struts increase (for BVS stent). On the other hand, all
MD values do not disturb the downstream RRT distributions (for the three well-apposed
struts). When MD is higher or equal to 115 um for the CC-DES stent and 300 pm for the
BVS stent, the amplitude of the peaks (for the malapposed struts) decreases drastically and
is significantly below the thresholds.
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Figure 6. Relative residence time (RRT) distribution for the malapposition configuration. For sake of simplicity, only five
representative configurations are displayed for each strut size (MD = 0, 40, 80, 115 and 300 um). Strut locations are indicated
with black rectangles. Notice that axial distance = 0 mm corresponds to the location of the first malapposed strut.
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3.1.5. Relationship between OSI and TAWSS for Malapposion Configuration

Figure 7 plots the distribution of TAWSS versus OSI for all the nodal solutions on
the arterial wall. Only the configurations including an OSI peak higher than 0.1 in the
malapposed region were considered (MD = 40, 60 and 80 um for CC-DES stent and
MD = 40, 80, 115, 150 and 180 um for BVS stent). The high OSI values were always
associated with low TAWSS < 0.5 Pa.
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Figure 7. OSI vs. TAWSS plots. Each point represents a nodal solution of the arterial wall. The
considered configurations were MD = 40, 60 and 80 pm for CC-DES stent and MD = 40, 80, 115, 150
and 180 um for BVS stent.

3.1.6. Effect of MD Distance on Arterial Wall Extent with a Risk of Restenosis/Thrombus

Figure 8 displays the evolution of the total wall length affected by low TAWSS
(<0.5 Pa), high TAWSS (>0.5 Pa) and high OSI (>0.1) versus malapposition distance. First
of all, the evolution of the different affected lengths was similar for both stents, but much
more significant for the BVS one. For both stents: (1) the total wall lengths affected by
high OSI and low TAWSS increased until they reached a maximum value followed by a
decreasing tendency that finished in a plateau (2) The wall extension affected by a high
OSI reached a maximum before that corresponding to low TAWSS (i.e., at about one strut
height) and (3) With regard to the total length affected by a high TAWSS, it has always
tended to increase. Three zones were identified (see Figure 7), the first one prone to develop
restenosis, the second one with risk of developing both restenosis and thrombosis and the
last one prone to develop mainly thrombosis.
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Figure 8. Evolution of affected arterial length vs. malapposition distance (MD). High risk of restenosis
(zone 1), restenosis and thrombosis (zone 2) and mainly thrombosis (zone 3).

Malapposed CC-DES struts increased the total extension of the affected wall up to
1.6 mm (at MD = 130 um) for low shear stress, 1.75 mm (MD = 450 pum) for high shear
stress, and 0.42 mm (at MD = 60 um) for high flow oscillation. For malapposed BVS struts,
the total affected wall raised up to 4.64 mm (at MD = 180 um) for low shear stress, 2.65 mm
(MD = 450 pum) for high shear stress, and 1.41 mm (MD = 150 um) for high flow oscillation.
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These affected lengths were significantly larger for BVS struts (up to 2.9 times for low
TAWSS, 1.51 times for high TAWSS, and 3.31 times for high OSI). The areas of the wall with
high risk of restenosis/thrombus increase drastically with the dimensions of the struts.

3.2. Results for Overlapping
3.2.1. Effect of Overlapping on the Velocity Field

Figure 9 depicts the effect of different OD levels on the blood flow at the diastolic
peak when recirculation regions reach their maximum extensions in the overlapping
section for the diastolic peak. For congruent struts (i.e., with OD = 2000 and 4000 pm,
see Figure 9), large recirculation regions appeared downstream from each pair of piled
struts. With intermediate OD values (i.e., for incongruent struts with OD = 3000 um, see
Figure 9), these recirculation regions moved downstream from each overlapping strut
and reduced their extensions compared to congruent configuration. Additionally, small
recirculation regions reappeared downstream from each well-apposed strut. Moreover,
flow acceleration occurred through the gap between the overlapping struts and the vessel
wall. Finally, similar to malapposition configurations, flow disturbance was more notorious
for large struts (i.e., BVS stent).
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Figure 9. Streamlines at diastolic peak for overlapping stents. For simplicity reasons, just three
representative configurations are presented for each strut size.

3.2.2. Effect of Overlapping on TAWSS

Figure 10 illustrates the TAWSS distribution at the overlapping region of CC-DES and
BVS stents. First, the perturbation of the TAWSS distribution is localized in this overlapping
zone and up to the first strut downstream. TAWSS peaks appear at the location of the over-
lapping struts for configuration with incongruent stents (blue rectangles in OD = 1000 pm,
see Figure 10). Moreover, for all OD values, some regions with a TAWSS below 0.5 Pa
(abnormally low value) appeared on the arterial wall. For congruent configurations (i.e.,
OD =0 and 2000 pm, see Figure 10) and small strut size, flow reattachment downstream
from each pair of piled struts allowed to recover a normal TAWSS value (1.5 Pa). However,
for large struts, the perturbation was so significant that the normal TAWSS level could not
be reached in the overlapping region.
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Figure 10. TAWSS distribution for overlapping configuration. For simplicity reasons, three represen-
tative configurations are displayed for each strut size. Strut locations on the X-axis are indicated with
black and blue rectangles for the first and second strut respectively. Notice that axial distance = 0 mm
corresponds to the location of the first stent. Three ranges can be defined: TAWSS < 0.5 Pa (Low
TAWSS), 0.5 < TAWSS < 2.5 Pa (Normal TAWSS) and TAWSS > 2.5 Pa (High TAWSS).

3.2.3. Effect on the Oscillatory Character of WSS Due to Overlapping

Figure 11 displays the OSI distribution of overlapping CC-DES and BVS stents. First,
the most important peaks of OSI were located at the overlapping region. Moreover, the
distribution of peaks was different for congruent and incongruent cases. When the struts
of two overlapping stents were piled on top of each other (see OD = 2000 and 4000 pm
in Figure 11), the highest OSI peaks were located downstream from each congruent pair.
On the other hand, when overlapping was incongruent, the highest peak of OSI was
located downstream from each of the overlapping struts of the second stent (see Figure 11,
blue rectangles in OD = 3000 um). In general, more peaks were present for incongruent
configurations. For the BVS stent, the peaks are wider and higher for all the studied
configurations. Downstream of this zone, the OSI distribution rapidly reverts to that of a
well-apposed single stent.
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Figure 11. Oscillatory shear index (OSI) distribution for overlapping configuration. For simplicity
reasons, three representative configurations are displayed for each strut size. Strut locations on the
X-axis are indicated with black and blue rectangles. Notice that axial distance = 0 mm corresponds to
the location of the first stent. Two ranges can be defined: OSI < 0.1 (Low recirculation) and OSI > 0.1
(High recirculation).
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3.2.4. Effect of the Overlapping on the RRT

Figure 12 displays the RRT distribution of overlapping CC-DES and BVS stents.
First, for the set of overlap values studied, the RRT distribution is only modified in this
overlap area and not for the upstream (stent 1) and downstream (stent 2) sections. In the
configurations with congruent struts (OD = 2000 pm and OD = 4000 pm), in addition to
the RRT peaks located in the vicinity of the struts in contact with the arterial wall, another
peak appears downstream of the congruent struts. This new peak is less wide but with
values higher than the threshold chosen for this study (8 Pa~1). For the configurations with
non-congruent struts, the RRT distribution is significantly affected with the appearance of
a weak peak upstream of the struts detached from the wall and especially a downstream
zone (up to the strut in contact with the arterial wall) with several peaks clearly exceeding
the RRT thresholds.
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Figure 12. RRT distribution for overlapping configuration. For sake of simplicity, three representative
configurations are displayed for each strut size (OD = 2000 um, 3000 pm and 4000 um). Strut
locations on the X-axis are indicated with black (upstream stent) and blue rectangles (downstream
stent). Notice that axial distance = 0 mm corresponds to the location of the first stent.

3.2.5. Relationship between OSI and TAWSS for Overlapping Configuration

Figure 13 shows the distribution of TAWSS versus OSI for all the configurations
including an OSI peak higher than 0.1 in the overlapping region (OD = 2000, 2500, 3000,
3500 and 4000 um for both the CC-DES and BVS stents). It can be seen that, similarly
as found for malapposition configurations (see Figure 8), high OSI values were always
associated with low TAWSS < 0.5 Pa).
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Figure 13. OSI vs. TAWSS plots. Each point represents a nodal solution of the arterial wall. The
considered configurations were OD = 200, 2500, 3000, 3500 and 4000 um for both stent types.
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3.2.6. Effect of Overlapping Distance on Arterial Wall Extent with a Risk of
Restenosis/ Thrombus

Figure 14 displays the evolution of the total arterial extension affected by low TAWSS
(<0.5 Pa), high TAWSS (>0.5 Pa) and high OSI (>0.1) versus overlapping distance (OD). In
general, the effect of different OD levels on the arterial length affected by low TAWSS and
high OSI was rather constant for both strut sizes but more significant for the BVS stent.
Regarding high TAWSS, it did not affect significantly the vessel wall.
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Figure 14. Evolution of affected arterial length vs. overlapping distance (OD).

Overlapping CC-DES stents increased the total arterial extension affected by low
TAWSS up to 2.31 mm (at OD = 2500 pm) and the one affected by high flow oscillation up
to 0.41 mm (at OD = 4000 um). For overlapping BVS stents, the total affected wall raised
up to 5.81 mm (at OD = 4000 um) and up to 1.55 mm (at OD = 3500 um) for low TAWSS
and high flow oscillation, respectively. Moreover, the increment of wall extension affected
by high TAWSS was relatively small for both stent sizes (maximum of 0 mm and 0.22 mm
for CC-DES and for BVS, respectively). Finally, the increment of wall segments affected by
low TAWSS and high OSI were significantly larger for BVS stents, up to 2.47 and 3.48 times
respectively (i.e., taking into account the mean total affected lengths shown in Figure 14).

4. Discussion

This study investigated the hemodynamic conditions in coronary arteries with malap-
posed and overlapped stents while considering a pulsatile non-Newtonian blood flow and
WSS-related indices computed over a cardiac cycle. The use of axisymmetric CFD models
simplified the systematic analysis of each geometry by performing a parametric study with
a significant number of computations (n = 30). The obtained results help to clarify the
impact of different degrees of strut misalignment on local hemodynamics (TAWSS, OSI
and RRT).

First, the regions of the vessel wall affected by high OSI were always under low
TAWSS for all the studied configurations (see Figures 7 and 14). This suggests that a
condition for OSI is the occurrence of low TAWSS as stated by [8,18,32].

4.1. Malapposed Configuration

The analysis of the malapposition geometries showed that regions of the arterial
wall affected by both low shear stress and oscillatory flow (i.e., TAWSS < 0.5 Pa and
OSI > 0.1) were present for small degrees of malapposition distance (MD). The extension
of the vessel affected by high OSI reached a maximum when MD was close to one strut
height (i.e., H =85 pm and H = 150 um for CC-DES and BVS stents, respectively). With
further increments of MD, the region with high flow oscillation decreased until it vanished
(see MD = 115 um for CC-DES stent and MD = 300 um for BVS stent in Figure 4). These
results are confirmed by the RRT distribution (see Figure 6). Indeed, when the MD values
increase (see MD = 115 um for CC-DES stent and MD = 300 um for BVS stent in Figure 6),
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the RRT peaks strongly decrease and fall below the threshold. The areas, in the overlap
section, affected by the adverse effect of RRT tend to vanish. In addition, low shear stresses
continued to develop on the arterial wall even when the OSI canceled out, indicating
that the velocity gradient near the wall was low but the flow was no more oscillatory.
These tendencies agree with the conclusions of previous works [8,10,22,33] and can be seen
in Figure 8.

With the increment of MD and the shift of recirculation regions downstream from the
malapposed struts, the free space near the arterial wall increased and the local resistance to
flow decreased. Consequently, fluid accelerated through the gap between the malapposed
struts and the vessel wall (see Figure 3) and caused localized regions with high shear stress
(i.e., TAWSS > 2.5 Pa, see Figure 4). Moreover, the magnitude of the high shear stress
and the size of the affected wall extensions increased gradually with the degree of wall
separation (see Figures 4 and 8, respectively), which is consistent with the conclusions
of [6,10]. Additionally, the presence of consecutive misaligned struts produced a decreasing
effect on TAWSS values. It was always particularly enhanced between the first and the
second strut (see Figure 4).

The configuration that led to the higher risk of potential restenosis occurred when
the malapposed struts were separated from the wall of approximately one strut height
(see zone 1 in Figure 8). This configuration promotes the formation of large recirculation
zones downstream from each malapposed strut, resulting in abnormally low TAWSS. On
the other hand, the risk of potential thrombosis was more significant for configurations
with large wall separations due to the occurrence of larger segments with high TAWSS
(see zone 3 in Figure 8). In such configurations, the risk of thrombus development had
previously been noted by [34]. In the intermediate zone (see zone 2 in Figure 8), the risk
of restenosis and thrombosis coexisted. The conclusions were similar for the two studied
stents. However, the concerned length is much more important for BVS stent.

4.2. Overlapping Configuration

The analysis of the overlapping geometry revealed an important deficit of shear
stress (TAWSS < 0.5 Pa) compared to non-overlapping segments of the stented artery (see
Figure 10), which was in agreement with the results of [17-19]. In general, two congruent
struts (i.e., with OD = 2000 pm and 4000 um) were found to act as a single apposed strut
with double height. Consequently, congruent struts produced similar TAWSS distributions
than single apposed struts but with more significant hemodynamic disturbances (see
OD = 2000 pm and 4000 um in Figure 10). Moreover, the configurations with congruent
struts were found to produce a large recirculation area downstream from the stacked struts
at the diastolic peak (see Figure 9). As the RRT is a function of the OSI and TAWSS, the
RRT provides general information combining the two previous information (see Figure 12).
A similar disturbed flow region was identified by [17,22,35] after performing steady-state
analyses on realistic and idealized CFD models, respectively. However, our transient
studies revealed that, in terms of the hemodynamic effect on the vascular wall over the
cardiac cycle, congruent struts configuration was not necessarily worse than incongruent
struts configurations. As seen in Figure 14, the total arterial lengths affected by low shear
stress (TAWSS < 0.5 Pa) and high oscillation (OSI > 0.1) are rather constant for all the
studied range of overlapping distance. It should be noted that the total stented length
varies significantly with the OD value. In fact, this length varies from 18.9 mm to 16.81 mm
for the CC-DES stent and from 19.50 to 17.35 mm for the BVS one.

For overlapping configurations, the wall lengths affected by high shear stresses
(TAWSS > 2.5 Pa) were relatively smaller than for malapposition configurations. Regarding
incongruent strut configurations, TAWSS peaks appeared in regions with significant gaps
between the vessel wall and overlapping struts (see OD = 3000 um in Figure 10). However,
these peaks were considerably lower than those caused by malapposition configurations
(see Figure 4). Since the gap between the wall and the overlapping struts is less significant
(i.e., 52 um and 107 um for CC-DES and BVS struts, respectively) compared to the cases
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with large MDs (i.e., up to 450 um), the TAWSS peaks were relatively small and in the order
of magnitude of small malapposition distances.

The potential risks of restenosis are relatively similar for all the overlapping struts
configurations studied, as highlighted by [36]. As OSI and TAWSS are fluctuating in the
non-congruent cases, the distribution of RRT is highly variable and shows several peaks in
the overlap area. As seen in Figure 14, low shear stress and flow oscillation always affected
the vessel wall for all the studied cases (i.e., OD from 2000 to 4000 um). On the other hand,
the risk of thrombosis seems to be reduced for these configurations.

4.3. Effect of the Strut Dimensions

It is obvious that thinner struts (i.e., CC-DES in this study) represent smaller obstacles
to blood flow. So, this improves the shear stress distribution and allows a faster flow
reattachment between strut cells [5,37]. In this work, BVS struts were associated with
larger hemodynamic disturbances for all the studied configurations. The RRT plots (See
Figures 6 and 12) for malapposition and overlapping stents show the adverse effect of the
strut dimensions.

In the case of the correctly apposed stents cases (see MD = 0 um in Figure 4), the BVS
struts increased the extension of regions with low shear stress and high oscillatory flow
2.43 times and 2.37 times, respectively. However, both strut sizes allowed flow reattachment
to reach normal shear stress values (TAWSS around 1.5 Pa).

Regarding malapposition and overlapping configurations, the performance difference
between CC-DES and BVS struts was more notorious. For malapposition cases, the use
of BVS struts increased up to 2.9, 1.51 and 3.31 times the wall segments affected by low
TAWSS, high TAWSS and high OSI, respectively. Regarding overlapping configurations,
the use of BVS struts increased up to 2.47 and 3.48 times the wall segments affected by
low TAWSS and high OSI, respectively. These results suggest that, in the case of equal
strut misalignment degrees (i.e., malapposition or overlapping), thicker struts will always
induce significantly larger hemodynamic disturbances than smaller struts and will increase
the risk of restenosis and/or thrombosis.

5. Study Limitations

First of all, the use of idealized axisymmetric models disregards the 3D effect that
coronary stents could have on the blood flow. The models in the present study are two-
dimensional, while real blood vessels are three-dimensional. The 2D models assume
rotational symmetry and no tangential flow component. However, this component exists
in the reality but it is neglected in the study. Additionally, stents are not axisymmetric. For
these reasons, the present work is useful to show tendencies of the hemodynamic variables
on the malapposition and overlapping rather than provide detailed information on the
flow structures and WSS patterns.

Moreover, our model does not consider any arterial curvature (i.e., we considered
straight arteries) or residual stenosis that may remain after PCI. These geometric simplifi-
cations affect the hemodynamic results. However, the use of realistic 3D models requires
significant computational costs, which are not compatible with parametric studies. Further-
more, a 3D model is especially justified for the analysis of a patient-specific configuration.
The use of 2D axisymmetric models let us fulfill the objectives of this work which were:
(1) to clarify the hemodynamic evolution for different degrees of strut misalignment, and
(2) to identify critical configurations that may be associated with restenosis and thrombosis.
Such goals can be only be reached with systematic parametric analysis.

In addition, the compliance of the arterial wall was also neglected. However, it is
known that stent deployment and atherosclerotic plaque reduce the compliance of the
artery wall [38]. Additionally, as demonstrated in the literature [39], the WSS and its related
indices are not affected by the vessel compliance for straight arteries.
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Finally, the biological response of the vascular wall was not considered, and only the
hemodynamic effects were investigated. Incorporating more complex models to predict
drug deposition or thrombus formation [10] could give a deeper insight into this subject.

6. Clinical Application

Stent deployment is a challenging task, especially for stenoses with complex con-
figurations (i.e., with excessive lengths, close to bifurcations, concomitant lesions, etc.).
Therefore, the ideal stent implantation is difficult to achieve in clinical practice. The fact is
that interventional cardiologists frequently encounter incomplete strut apposition and over-
lapping. The main conclusions found in this study may provide interesting information for
cardiologists and stent designers to know: (1) how different degrees of malapposition and
overlapping disturb blood flow and (2) which configurations are the most critical ones and
their potential link to poor clinical outcomes.

First, this study highlights that malapposed struts will produce the maximal flow
recirculation near the artery wall when malapposition distance is close to one strut height
(i-e., critical point for restenosis). With further increments of wall separation, recirculation
regions will disappear but the artery wall will be subjected to high shear stresses (critical
point for thrombosis). Since there is a decreasing effect on shear stress for consecutive
struts, the risk of plaque rupture and platelet activation is higher for regions close to the
first group of misaligned struts. Second, stent overlapping was more prone to increase the
risk of restenosis due to the appearance of segments of the artery wall subjected to low
shear stress and flow recirculation. In terms of critical configurations, the risk seems to be
comparable for all of them (i.e., incongruent and congruent struts). From a hemodynamic
point of view, the best is to avoid overlapping if possible. Indeed, for all overlapping
configuration, the extent of the zones where risks of stenosis/thrombus is significantly
greater than for malapposed configuration. Finally, thicker struts are more sensitive to strut
misalignment problems.

7. Conclusions

This axisymmetric numerical study allows evaluation of the risks related to a malap-
position or an overlapping stent. The numerical models show that the relative extent of
the areas with high risk (restenosis/thrombus) is considerably increased in regions with
overlapped stent compared to regions without overlapped stent and even compared to
areas of malapposed stent. Since it is generally accepted that low TAWSS (TAWSS < 0.5 Pa),
high TAWSS (TAWSS < 2.5 Pa), high OSI (OSI < 0.1) and RRT > 8 Pa~! are important factors
for atherogenesis and thrombogenesis, the results indicate that adverse hemodynamics
caused by overlapping stents may be partly responsible for adverse clinical outcomes in
patients treated with overlapping stents. The development of risk areas for malapposition
is significantly lower than for overlap. In addition, it was shown that the size of the struts
has a very negative effect on the development of risk areas. In cases where stent overlap
cannot be avoided, deployment strategies should be optimized or new stent designs should
be considered to reduce the risk of restenosis.
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Abstract: Radioembolization (RE) is a treatment for patients with liver cancer, one of the leading
cause of cancer-related deaths worldwide. RE consists of the transcatheter intraarterial infusion of
radioactive microspheres, which are injected at the hepatic artery level and are transported in the
bloodstream, aiming to target tumors and spare healthy liver parenchyma. In paving the way towards
a computer platform that allows for a treatment planning based on computational fluid dynamics
(CFD) simulations, the current simulation (model preprocess, model solving, model postprocess)
times (of the order of days) make the CFD-based assessment non-viable. One of the approaches to
reduce the simulation time includes the reduction in size of the simulated truncated hepatic artery. In
this study, we analyze for three patient-specific hepatic arteries the impact of reducing the geometry
of the hepatic artery on the simulation time. Results show that geometries can be efficiently shortened
without impacting greatly on the microsphere distribution.

Keywords: computational fluid dynamics; radioembolization; hemodynamics; liver cancer; hepatic
artery; computational cost analysis; personalized medicine; patient specific

1. Introduction

Liver cancer is one of the leading types of cancer in incidence and mortality rates
worldwide [1]. Radioembolization (RE) is a safe and effective intraarterial targeted therapy
for unresectable primary and secondary liver tumors and it consists in the microcatheter-
based infusion of yttrium-90 (Y-90) radiolabeled microspheres that are transported in the
bloodstream until they get lodged in the tumoral tissue, where they deliver high tumorici-
dal doses of radiation to cancer cells, while ideally sparing healthy liver parenchyma [2].

In the last decade, a number of studies have been published on the computational fluid
dynamics-based (CFD) simulation of the hepatic artery hemodynamics and microsphere
transport during RE [3]. Some studies have focused on the type of microcatheter (e.g.,
standard end-hole microcatheter, antireflux catheter, angled-tip microcatheter) [4-6], and
others have focused on the influence of various treatment and patient parameters (e.g.,
injection velocity, microcatheter location, hepatic artery geometry, etc.) on the microsphere
distribution [7-9]. The ultimate goal of these studies is to provide the multidisciplinary
team (interventional radiologists, hepatologists, nuclear oncologists, nuclear medicine
physicians, etc.) that plans the treatment with additional information that can be of
interest when planning the treatment. Moreover, CFD-based computer platforms have
been presented in the literature for RE planning, such as the Computational Medical
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Management Program, by which the optimal temporal and spatial points for microsphere
infusion are determined [10] or CFDose, a simulation-based tool to calculate the patient-
specific dosimetry to be infused to the patient [11]. However, the former can be used with a
smart microcatheter (not commercially available yet) whose tip can be placed at a specified
location within the infusion cross-sectional plane and a microsphere delivery system (not
commercially available yet) that infuses at a specified temporal point in the cardiac cycle.

These simulation-based tools must be fast enough in providing results to be of use
in the clinical setting. The phenomena involving the microsphere-hemodynamics have
been proved to be dependent on local effects near the microcatheter tip, therefore three-
dimensional (3D) and transient models are needed [3]. One could use CFD simulations or
fluid—structure interaction (FSI) simulations, which consider the interaction between the
fluid and the (rigid or deformable) solid. However, FSI simulations are far more expensive
computationally than CFD simulations. A study by Childress et al. [12] showed that
using CFD simulations instead of FSI simulations resulted in an important simulation-time
reduction (3.5 days vs. 11-14 h [in a 10-processor 6-core 40-GB-RAM 3.33-GHz CPU]), with
minor influence in the results, so CFD simulations could suffice.

One approach to reduce current CFD simulations’ computational time would be the re-
duction of the size of the geometry where the CFD simulation is carried out. This geometry
simplification should not result in marked differences in the calculated segment-to-segment
microsphere distribution. Therefore, the hypothesis behind this study is that simulation
times can be reduced considerably if the arterial geometry is effectively shortened, whether
downstream or upstream (or both) from the microcatheter-tip location, obtaining a segment-
to-segment microsphere distribution similar to that of the baseline geometry simulation. To
do so, a geometry-reduction strategy is developed with one patient-specific case and this
strategy is applied to two other patient-specific cases to assess the impact of the reduction
on the simulation results, in terms of downstream microsphere distribution, and simulation
times were analyzed.

2. Materials and Methods

In this section, we first introduce the three patients that are modeled in this study
(one for developing the geometry-reduction strategy and two additional cases where the
strategy is applied and assessed). Second, we show the baseline and simplified versions
of the three 3D patient-specific hepatic artery geometries used in this study. For the first
geometry, Patient 1, we conducted a step-by-step upstream and downstream simplification
process to analyze to what extent each simplification influences the segment-to-segment
microsphere distribution. Patient 2 and Patient 3's hepatic arteries were later simplified
accordingly. Finally, the CFD model is presented.

2.1. Patients: Hepatic State and Radioembolization

This study was done using the patient-specific geometry of three patients: hereafter
(Patient 1, Patient 2, and Patient 3, Tables 1-3). Regarding the geometries, these were
reconstructed with MeVis (MeVis Medical Solutions AG, Bremen, Germany). Regarding
the liver segment volumes, with segments defined as proposed by Couinaud [13], these
were either obtained from the report provided by MeVis (Patients 1 and 3, Tables 1 and 3)
or they were taken from the literature to be physiologically realistic (total volume according
to reference [14] and fractional segmental volume according to reference [15]) (Patient 2,
Table 2). As for the cancer scenarios, the same fictional cancer scenario was posited in the
three patients. The scenario consists of a hepatocellular carcinoma (HCC) in segment 8.
The tumor volume is equal to 20% of the healthy tissue volume of segment 8.
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Table 1. Patient 1 liver mass volumes and blood flow rates per segment.

Healthy Tissue Volumetric Flow Rate
Segment Vo]unzle (mL) Tumor Volume (mL) (mL/min)

S1 - - -

S2 241 - 24.1

S3 96 - 9.6
Sda 24 - 2.4
S4b 48 - 4.8

S5 330 - 33

S6 183 - 18.3

S7 228 - 22.8

S8 340 68 68
Total 1490 68 183

Table 2. Patient 2 liver mass volumes and blood flow rates per segment.

Healthy Tissue Volumetric Flow Rate
Segment Vo]unz,e (mL) Tumor Volume (mL) (mL/min)
S1 - - -
S2 157.8 - 15.8
S3 157.4 - 15.7
S4 309.4 - 30.9
S5 151.7 - 15.2
S6 193.1 - 19.3
S7 155.3 - 155
S8 385.4 77.1 77.1
Total 1510 77.1 189.5

Table 3. Patient 3 liver mass volumes and blood flow rates per segment.

Healthy Tissue Volumetric Flow Rate
Segment Vo]ur:e (L) Tumor Volume (mL) (mL/min)

S1 62 - 6.2

S2 128 - 12.8

S3 181 - 18.1
Sda 73 - 7.3
S4b 11 - 1.1

S5 124 - 124

S6 169 - 16.9

S7 373 - 37.3

S8 204 39.8 40.3
Total 1325 39.8 152.4

The perfusion model developed by Aramburu et al. was used to determine the segmental
arterial blood flow rates [16]. A normal/healthy tissue perfusion of k; =0.1 mL min~ ! mL~! was
adopted for all segments, with a tumor tissue perfusion of k; = 0.5 mL min~! mL~1 [17,18].
In this model, the average blood flow rate flowing towards a segment s, i.e., g5, is calculated
with Equation (1):

qs = VO,skl + Vc,skz/ 1)

where g; is the volumetric flow rate to segment s (with s from segment 1 [S1] to segment 8
[S8]), Vi is the volume of healthy tissue in segment s, V. s is the volume of the tumor tissue
in segment s, kj is the healthy tissue arterial perfusion, and k; is the tumor tissue arterial
perfusion. Tables 1-3 collect the liver volumes and flow rates of each patient analyzed
per segment.

The RE treatment was computer-simulated with Y-90 resin SIR-Spheres® (Sirtex Med-
ical Limited, Australia). The activity to be delivered was calculated with the body sur-
face area method [19], assuming a 1.76 m 74 kg male in all cases. According to this
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method, 1.7 GBq must be administered in the analyzed cases, that is, approximately
34 million microspheres.

The infusion device modeled was a 2.7 F end-hole microcatheter with inner and
outer diameters of Dy, = 0.65 mm and Doy = 0.9 mm, respectively, modeling a Progreat®
microcatheter (Terumo, Tokyo, Japan). A selective catheter location was modeled and
located before the first branch that irrigates segment 8, approximately in the initial 1/3 of
the branch. The tip of the microcatheter was radially centered in the lumen of the artery.
An additional microcatheter location was assumed for Patient 2, explained later.

2.2. Baseline and Simplified Hepatic Artery Geometries

As previously said, the geometry of Patient 1's hepatic artery was modified step
by step, with the aim of generating a rule that ensures that the segment-to-segment mi-
crosphere distributions calculated from the simulations with the baseline and simplified
geometries are similar. Once the simplification with the desired characteristics (i.e., minor
impact on segment-to-segment microsphere distribution) were obtained, hepatic arteries
for Patient 2 and Patient 3 were likewise simplified. For Patient 1 (Patient 1-Baseline),
four simplifications were made to the baseline geometry. Figure 1 shows the geometries
obtained from the simplifications. The arrowhead illustrates the microcatheter-tip position
in each case, arrows indicate the branches feeding the tumor-bearing segment 8, and labels
S51-S8 indicate the segment(s) that each outlet irrigate(s). First, the upstream branches
were removed, giving as a result two simplifications. The first one consists of a simplified
geometry where the branches irrigating the segments with no tumors are truncated (Patient
1-Reducl, see Figure 1b). In the second (upstream) simplification, in addition to the simplifi-
cations made in the first (upstream) simplification, all the upstream branches that are farther
than 3 cm from the microcatheter-tip are removed (Patient 1-Reduc2, see Figure 1c). Then,
the downstream branches were simplified, truncating at locations where the bifurcation
gives rise to two daughter vessels that irrigate the same segment (Patient 1-Truncated-3cm,
see Figure 1d). Finally, the geometry has been truncated before the first bifurcation, adding
a branch in the perpendicular direction to the inlet boundary, with the same diameter and
a length of 1 cm (Patient 1-Reduc3, see Figure 1e). This final simplification is for obtaining a
fully developed-like flow on original inlet section.

The criterion that we are going to establish to deem a simplification as valid is a
maximum of 10 percent points of difference at a given segment between the segment-
to-segment microsphere distributions of the simulations of the baseline and simplified
geometries. In the clinical application of these simulations, we are interested in predicting
the segment-to-segment microsphere distribution for a potential improvement in the
treatment planning, so the validity criterion of the simplification is based on these results.
Qualitative assessment of velocity contours and vectors is used to analyze if the geometry
reduction-related changes in blood-flow patterns are excessive.
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