19 research outputs found

    High-Throughput Screening for Drug Discovery

    Get PDF
    The book focuses on various aspects and properties of high-throughput screening (HTS), which is of great importance in the development of novel drugs to treat communicable and non-communicable diseases. Chapters in this volume discuss HTS methodologies, resources, and technologies and highlight the significance of HTS in personalized and precision medicine

    Immune-Mediated Drug Induced Liver Injury: A Multidisciplinary Approach

    Get PDF
    This thesis presents an approach to expose relationships between immune mediated drug induced liver injury (IMDILI) and the three-dimensional structural features of toxic drug molecules and their metabolites. The series of analyses test the hypothesis that drugs which produce similar patterns of toxicity interact with targets within common toxicological pathways and that activation of the underlying mechanisms depends on structural similarity among toxic molecules. Spontaneous adverse drug reaction (ADR) reports were used to identify cases of IMDILI. Network map tools were used to compare the known and predicted protein interactions with each of the probe drugs to explore the interactions that are common between the drugs. The IMDILI probe set was then used to develop a pharmacophore model which became the starting point for identifying potential toxicity targets for IMDILI. Pharmacophore screening results demonstrated similarities between the probe IMDILI set of drugs and Toll-Like Receptor 7 (TLR7) agonists, suggesting TLR7 as a potential toxicity target. This thesis highlights the potential for multidisciplinary approaches in the study of complex diseases. Such approaches are particularly helpful for rare diseases where little knowledge is available, and may provide key insights into mechanisms of toxicity that cannot be gleaned from a single disciplinary study

    Immune-Mediated Drug Induced Liver Injury: A Multidisciplinary Approach

    Get PDF
    This thesis presents an approach to expose relationships between immune mediated drug induced liver injury (IMDILI) and the three-dimensional structural features of toxic drug molecules and their metabolites. The series of analyses test the hypothesis that drugs which produce similar patterns of toxicity interact with targets within common toxicological pathways and that activation of the underlying mechanisms depends on structural similarity among toxic molecules. Spontaneous adverse drug reaction (ADR) reports were used to identify cases of IMDILI. Network map tools were used to compare the known and predicted protein interactions with each of the probe drugs to explore the interactions that are common between the drugs. The IMDILI probe set was then used to develop a pharmacophore model which became the starting point for identifying potential toxicity targets for IMDILI. Pharmacophore screening results demonstrated similarities between the probe IMDILI set of drugs and Toll-Like Receptor 7 (TLR7) agonists, suggesting TLR7 as a potential toxicity target. This thesis highlights the potential for multidisciplinary approaches in the study of complex diseases. Such approaches are particularly helpful for rare diseases where little knowledge is available, and may provide key insights into mechanisms of toxicity that cannot be gleaned from a single disciplinary study

    Application and Development of Computational Methods for Ligand-Based Virtual Screening

    Get PDF
    The detection of novel active compounds that are able to modulate the biological function of a target is the primary goal of drug discovery. Different screening methods are available to identify hit compounds having the desired bioactivity in a large collection of molecules. As a computational method, virtual screening (VS) is used to search compound libraries in silico and identify those compounds that are likely to exhibit a specific activity. Ligand-based virtual screening (LBVS) is a subdiscipline that uses the information of one or more known active compounds in order to identify new hit compounds. Different LBVS methods exist, e.g. similarity searching and support vector machines (SVMs). In order to enable the application of these computational approaches, compounds have to be described numerically. Fingerprints derived from the two-dimensional compound structure, called 2D fingerprints, are among the most popular molecular descriptors available. This thesis covers the usage of 2D fingerprints in the context of LBVS. The first part focuses on a detailed analysis of 2D fingerprints. Their performance range against a wide range of pharmaceutical targets is globally estimated through fingerprint-based similarity searching. Additionally, mechanisms by which fingerprints are capable of detecting structurally diverse active compounds are identified. For this purpose, two different feature selection methods are applied to find those fingerprint features that are most relevant for the active compounds and distinguish them from other compounds. Then, 2D fingerprints are used in SVM calculations. The SVM methodology provides several opportunities to include additional information about the compounds in order to direct LBVS search calculations. In a first step, a variant of the SVM approach is applied to the multi-class prediction problem involving compounds that are active against several related targets. SVM linear combination is used to recover compounds with desired activity profiles and deprioritize compounds with other activities. Then, the SVM methodology is adopted for potency-directed VS. Compound potency is incorporated into the SVM approach through potencyoriented SVM linear combination and kernel function design to direct search calculations to the preferential detection of potent hit compounds. Next, SVM calculations are applied to address an intrinsic limitation of similarity-based methods, i.e., the presence of similar compounds having large differences in their potency. An especially designed SVM approach is introduced to predict compound pairs forming such activity cliffs. Finally, the impact of different training sets on the recall performance of SVM-based VS is analyzed and caveats are identified

    Field-based Proteochemometric Models Derived from 3D Protein Structures : A Novel Approach to Visualize Affinity and Selectivity Features

    Get PDF
    Designing drugs that are selective is crucial in pharmaceutical research to avoid unwanted side effects. To decipher selectivity of drug targets, computational approaches that utilize the sequence and structural information of the protein binding pockets are frequently exploited. In addition to methods that rely only on protein information, quantitative approaches such as proteochemometrics (PCM) use the combination of protein and ligand descriptions to derive quantitative relationships with binding affinity. PCM aims to explain cross-interactions between the different proteins and ligands, hence facilitating our understanding of selectivity. The main goal of this dissertation is to develop and apply field-based PCM to improve the understanding of relevant molecular interactions through visual illustrations. Field-based description that depends on the 3D structural information of proteins enhances visual interpretability of PCM models relative to the frequently used sequence-based descriptors for proteins. In these field-based PCM studies, knowledge-based fields that explain polarity and lipophilicity of the binding pockets and WaterMap-derived fields that elucidate the positions and energetics of water molecules are used together with the various 2D / 3D ligand descriptors to investigate the selectivity profiles of kinases and serine proteases. Field-based PCM is first applied to protein kinases, for which designing selective inhibitors has always been a challenge, owing to their highly similar ATP binding pockets. Our studies show that the method could be successfully applied to pinpoint the regions influencing the binding affinity and selectivity of kinases. As an extension of the initial studies conducted on a set of 50 kinases and 80 inhibitors, field-based PCM was used to build classification models on a large dataset (95 kinases and 1572 inhibitors) to distinguish active from inactive ligands. The prediction of the bioactivities of external test set compounds or kinases with accuracies over 80% (Matthews correlation coefficient, MCC: ~0.50) and area under the ROC curve (AUC) above 0.8 together with the visual inspection of the regions promoting activity demonstrates the ability of field-based PCM to generate both predictive and visually interpretable models. Further, the application of this method to serine proteases provides an overview of the sub-pocket specificities, which is crucial for inhibitor design. Additionally, alignment-independent Zernike descriptors derived from fields were used in PCM models to study the influence of protein superimpositions on field comparisons and subsequent PCM modelling.Lääketutkimuksessa selektiivisten lääkeaineiden suunnittelu on ratkaisevan tärkeää haittavaikutusten välttämiseksi. Kohdeselektiivisyyden selvittämiseen käytetään usein tietokoneavusteisia menetelmiä, jotka hyödyntävät proteiinien sitoutumiskohtien sekvenssi- ja rakennetietoja. Proteiinilähtöisten menetelmien lisäksi kvantitatiiviset menetelmät kuten proteokemometria (proteochemometrics, PCM) yhdistävät sekä proteiinin että ligandin tietoja muodostaessaan kvantitatiivisen suhteen sitoutumisaffiniteettiin. PCM pyrkii selittämään eri proteiinien ja ligandien vuorovaikutuksia ja näin auttaa ymmärtämään selektiivisyyttä. Väitöstutkimuksen tavoitteena oli kehittää ja hyödyntää kenttäpohjaista proteokemometriaa, joka auttaa ymmärtämään relevantteja molekyylitasoisia vuorovaikutuksia visuaalisen esitystavan kautta. Proteiinin kolmiulotteisesta rakenteesta riippuva kenttäpohjainen kuvaus helpottaa PCM-mallien tulkintaa, etenkin usein käytettyihin sekvenssipohjaisiin kuvauksiin verrattuna. Näissä kenttäpohjaisissa PCM-mallinnuksissa käytettiin tietoperustaisia sitoutumistaskun polaarisuutta ja lipofiilisyyttä kuvaavia kenttiä ja WaterMap-ohjelman tuottamia vesimolekyylien sijaintia ja energiaa havainnollistavia kenttiä yhdessä lukuisten ligandia kuvaavien 2D- ja 3D-deskriptorien kanssa. Malleja sovellettiin kinaasien ja seriiniproteaasien selektiivisyysprofiilien tutkimukseen. Tutkimuksen ensimmäisessä osassa kenttäpohjaista PCM-mallinnusta sovellettiin proteiinikinaaseihin, joille selektiivisten inhibiittorien suunnittelu on haastavaa samankaltaisten ATP sitoutumistaskujen takia. Tutkimuksemme osoitti menetelmän soveltuvan kinaasien sitoutumisaffiniteettia ja selektiivisyyttä ohjaavien alueiden osoittamiseen. Jatkona 50 kinaasia ja 80 inhibiittoria käsittäneelle alkuperäiselle tutkimukselle rakensimme kenttäpohjaisia PCM-luokittelumalleja suuremmalle joukolle kinaaseja (95) ja inhibiittoreita (1572) erotellaksemme aktiiviset ja inaktiiviset ligandit toisistaan. Ulkoisen testiyhdiste- tai testikinaasijoukon bioaktiivisuuksien ennustaminen yli 80 % tarkkuudella (Matthews korrelaatiokerroin, MCC noin 0,50) ja ROC-käyrän alle jäävä ala (AUC) yli 0,8 yhdessä aktiivisuutta tukevien alueiden visuaalisen tarkastelun kanssa osoittivat kenttäpohjaisen PCM:n pystyvän tuottamaan sekä ennustavia että visuaalisesti ymmärrettäviä malleja. Tutkimuksen toisessa osassa metodin soveltaminen seriiniproteaaseihin tuotti yleisnäkemyksen sitoutumistaskun eri osien spesifisyyksistä, mikä on ensiarvoisen tärkeää inhibiittorien suunnittelulle. Lisäksi kentistä johdettuja, proteiinien päällekkäinasettelusta riippumattomia Zernike-deskriptoreita hyödynnettiin PCM-malleissa arvioidaksemme proteiinien päällekkäinasettelun vaikutusta kenttien vertailuun ja sen jälkeiseen PCM-mallinnukseen

    IN SILICO METHODS FOR DRUG DESIGN AND DISCOVERY

    Get PDF
    Computer-aided drug design (CADD) methodologies are playing an ever-increasing role in drug discovery that are critical in the cost-effective identification of promising drug candidates. These computational methods are relevant in limiting the use of animal models in pharmacological research, for aiding the rational design of novel and safe drug candidates, and for repositioning marketed drugs, supporting medicinal chemists and pharmacologists during the drug discovery trajectory.Within this field of research, we launched a Research Topic in Frontiers in Chemistry in March 2019 entitled “In silico Methods for Drug Design and Discovery,” which involved two sections of the journal: Medicinal and Pharmaceutical Chemistry and Theoretical and Computational Chemistry. For the reasons mentioned, this Research Topic attracted the attention of scientists and received a large number of submitted manuscripts. Among them 27 Original Research articles, five Review articles, and two Perspective articles have been published within the Research Topic. The Original Research articles cover most of the topics in CADD, reporting advanced in silico methods in drug discovery, while the Review articles offer a point of view of some computer-driven techniques applied to drug research. Finally, the Perspective articles provide a vision of specific computational approaches with an outlook in the modern era of CADD

    Computational Approaches: Drug Discovery and Design in Medicinal Chemistry and Bioinformatics

    Get PDF
    This book is a collection of original research articles in the field of computer-aided drug design. It reports the use of current and validated computational approaches applied to drug discovery as well as the development of new computational tools to identify new and more potent drugs

    IN SILICO APPROACHES IN DRUG DESIGN AND DEVELOPMENT: APPLICATIONS TO RATIONAL LIGAND DESIGN AND METABOLISM PREDICTION

    Get PDF
    In the last decades, the applications of computational methods in medicinal chemistry have experienced significant changes which have incredibly expanded their approaches, and more importantly their objectives. The overall aim of the present research project is to explore the different fields of the modelling studies by using well-known computational methods as well as different and innovative techniques. Indeed, computational methods traditionally consisted in ligand-based and the structure-based approaches substantially aimed at optimizing the ligand structure in terms of affinity, potency and selectivity. The studies concerning the muscarinic receptors in the present thesis applied these approaches for the rational design of novel improved bioactive molecules, interacting both in the orthosteric (e.g., 1,4-dioxane agonist) and in the allosteric sites. The research includes also the application of a novel method for target optimization, which consists in the generation of the so-called conformational chimeras to explore the flexibility of the modelled GPCR structures. In parallel, computational methods are finding successful applications in the research phase which precedes the ligand design and which is focused on a detailed validation and characterization of the biological target. A proper example of this kind of studies is given by the study regarding the purinergic receptors, which is aimed at the identification and characterization of potential allosteric binding pockets for the already reported inhibitors, exploiting also innovative approaches for binding site predictions (e.g., PELE, SPILLO-PBSS). Over time, computational applications felt a rich extension of their objectives and one of the clearest examples is represented by the ever increasing attempts to optimize the ADME/Tox profile of the novel compounds, so reducing the marked attrition in drug discovery caused by unsuitable pharmacokinetic profiles. Coherently, the first and main project of the present thesis regards the field of metabolism prediction and is founded on the meta-analysis and the corresponding database called MetaSar, manually collected from the recent specialized literature. This ongoing extended project includes different studies which are overall aimed at developing a comprehensive method for metabolism prediction. In detail, this Thesis reports an interesting application of the database which exploits an innovative predictive technique, the Proteochemometric modelling (PCM). This approach is indeed at the forefront of the latest modelling techniques, as it perfectly fits the growing request of new solutions to deal with the incredibly huge amount of data recently produced by the \u201comics\u201d disciplines. In this context, MetaSar represents an alternative and still appropriate source of data for PCM studies, which also enables the extension of its fields of application to a new avenue, such as the prediction of metabolism biotransformation. In the present thesis, we present the first example of these applications, which involves the building of a classification model for the prediction of the glucuronidation reaction. The field of glucuronidation reactions is exhaustively explored also through an homology modelling study aimed at defining the complete three-dimensional structure of the enzyme UGT2B7, the main isoform of glucuronidation enzymes in humans, in complex with the cofactor UDPGA and a typical substrate, such as Naproxen. The paths of the substrate entering to the binding site and the egress of the product have been investigated by performing Steered Molecular Dynamics (SMD) simulations, which were also useful to gain deeper insights regarding the full mechanism of action and the movements of the cofactor
    corecore