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Abstract 
Designing drugs that are selective is crucial in pharmaceutical research to avoid 

unwanted side effects. To decipher selectivity of drug targets, computational 

approaches that utilize the sequence and structural information of the protein 

binding pockets are frequently exploited. In addition to methods that rely only 

on protein information, quantitative approaches such as proteochemometrics 

(PCM) use the combination of protein and ligand descriptions to derive 

quantitative relationships with binding affinity. PCM aims to explain cross-

interactions between the different proteins and ligands, hence facilitating our 

understanding of selectivity.  

 

The main goal of this dissertation is to develop and apply field-based PCM to 

improve the understanding of relevant molecular interactions through visual 

illustrations. Field-based description that depends on the 3D structural 

information of proteins enhances visual interpretability of PCM models relative 

to the frequently used sequence-based descriptors for proteins. In these field-

based PCM studies, knowledge-based fields that explain polarity and 

lipophilicity of the binding pockets and WaterMap-derived fields that elucidate 

the positions and energetics of water molecules are used together with the 

various 2D / 3D ligand descriptors to investigate the selectivity profiles of 

kinases and serine proteases. 

 

Field-based PCM is first applied to protein kinases, for which designing 

selective inhibitors has always been a challenge, owing to their highly similar 

ATP binding pockets. Our studies show that the method could be successfully 

applied to pinpoint the regions influencing the binding affinity and selectivity 

of kinases. As an extension of the initial studies conducted on a set of 50 
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kinases and 80 inhibitors, field-based PCM was used to build classification 

models on a large dataset (95 kinases and 1572 inhibitors) to distinguish active 

from inactive ligands. The prediction of the bioactivities of external test set 

compounds or kinases with accuracies over 80% (Matthews correlation 

coefficient, MCC: ~0.50) and area under the ROC curve (AUC) above 0.8 

together with the visual inspection of the regions promoting activity 

demonstrates the ability of field-based PCM to generate both predictive and 

visually interpretable models. Further, the application of this method to serine 

proteases provides an overview of the sub-pocket specificities, which is crucial 

for inhibitor design. Additionally, alignment-independent Zernike descriptors 

derived from fields were used in PCM models to study the influence of protein 

superimpositions on field comparisons and subsequent PCM modelling.  
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Tiivistelmä 
 
Lääketutkimuksessa selektiivisten lääkeaineiden suunnittelu on ratkaisevan 

tärkeää haittavaikutusten välttämiseksi. Kohdeselektiivisyyden selvittämiseen 

käytetään usein tietokoneavusteisia menetelmiä, jotka hyödyntävät proteiinien 

sitoutumiskohtien sekvenssi- ja rakennetietoja. Proteiinilähtöisten menetelmien 

lisäksi kvantitatiiviset menetelmät kuten proteokemometria 

(proteochemometrics, PCM) yhdistävät sekä proteiinin että ligandin tietoja 

muodostaessaan kvantitatiivisen suhteen sitoutumisaffiniteettiin. PCM pyrkii 

selittämään eri proteiinien ja ligandien vuorovaikutuksia ja näin auttaa 

ymmärtämään selektiivisyyttä. 

 

Väitöstutkimuksen tavoitteena oli kehittää ja hyödyntää kenttäpohjaista 

proteokemometriaa, joka auttaa ymmärtämään relevantteja molekyylitasoisia 

vuorovaikutuksia visuaalisen esitystavan kautta. Proteiinin kolmiulotteisesta 

rakenteesta riippuva kenttäpohjainen kuvaus helpottaa PCM-mallien tulkintaa, 

etenkin usein käytettyihin sekvenssipohjaisiin kuvauksiin verrattuna. Näissä 

kenttäpohjaisissa PCM-mallinnuksissa käytettiin tietoperustaisia 

sitoutumistaskun polaarisuutta ja lipofiilisyyttä kuvaavia kenttiä ja WaterMap-

ohjelman tuottamia vesimolekyylien sijaintia ja energiaa havainnollistavia 

kenttiä yhdessä lukuisten ligandia kuvaavien 2D- ja 3D-deskriptorien kanssa. 

Malleja sovellettiin kinaasien ja seriiniproteaasien selektiivisyysprofiilien 

tutkimukseen. 

 

Tutkimuksen ensimmäisessä osassa kenttäpohjaista PCM-mallinnusta 

sovellettiin proteiinikinaaseihin, joille selektiivisten inhibiittorien suunnittelu 

on haastavaa samankaltaisten ATP-sitoutumistaskujen takia. Tutkimuksemme 

osoitti menetelmän soveltuvan kinaasien sitoutumisaffiniteettia ja 
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selektiivisyyttä ohjaavien alueiden osoittamiseen. Jatkona 50 kinaasia ja 80 

inhibiittoria käsittäneelle alkuperäiselle tutkimukselle rakensimme 

kenttäpohjaisia PCM-luokittelumalleja suuremmalle joukolle kinaaseja (95) ja 

inhibiittoreita (1572) erotellaksemme aktiiviset ja inaktiiviset ligandit 

toisistaan. Ulkoisen testiyhdiste- tai testikinaasijoukon bioaktiivisuuksien 

ennustaminen yli 80 % tarkkuudella (Matthews korrelaatiokerroin, MCC noin 

0,50) ja ROC-käyrän alle jäävä ala (AUC) yli 0,8 yhdessä aktiivisuutta tukevien 

alueiden visuaalisen tarkastelun kanssa osoittivat kenttäpohjaisen PCM:n 

pystyvän tuottamaan sekä ennustavia että visuaalisesti ymmärrettäviä malleja. 

Tutkimuksen toisessa osassa metodin soveltaminen seriiniproteaaseihin tuotti 

yleisnäkemyksen sitoutumistaskun eri osien spesifisyyksistä, mikä on 

ensiarvoisen tärkeää inhibiittorien suunnittelulle. Lisäksi kentistä johdettuja, 

proteiinien päällekkäinasettelusta riippumattomia Zernike-deskriptoreita 

hyödynnettiin PCM-malleissa arvioidaksemme proteiinien päällekkäinasettelun 

vaikutusta kenttien vertailuun ja sen jälkeiseen PCM-mallinnukseen. 
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Introduction 
Pharmaceutical companies often aim at “magic bullet” drug molecules that act 

exclusively on a singe target, thus minimizing side effects. However, 

complexity of the biological systems poses a major challenge for designing 

selective molecules. Studies conducted to analyse drug-target interaction 

networks have revealed that the majority of the drugs available on the market 

have the potential to bind to multiple targets (Mestres et al., 2008) and are 

likely to induce unwanted side effects (Smith et al., 2006; Peters, 2013). The 

low selectivity profiles of drug molecules highlight the importance of 

understanding the polypharmacological profiles in the initial stages of drug 

design. Proteochemometrics (PCM) (Prusis et al., 2001), a statistical modelling 

approach that aims to quantify the structure-activity relationships by 

considering both protein and ligand features, has been developed to study 

polypharmacology. PCM has been used in this dissertation with the aim of 

elucidating the features that promote selectivity and identifying the potential 

off-targets (proteins not intended as targets) across a protein family. 

 

This dissertation was conducted as a joint collaborative project between the 

Division of Pharmaceutical Chemistry and Technology at the University of 

Helsinki and the Computer-Aided Drug Design group of Orion Pharma. The 

study mainly focuses on the development of field-based PCM approaches and 

their application to understand the selectivity profiles of ligands that bind to 

kinases and serine proteases. The methods developed not only help to predict 

off-targets, but also provide an illustration of the regions in protein binding sites 

and ligands that are likely to influence binding affinity and selectivity.  
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In the initial stages of the project, field-based PCM relying on the fields derived 

from 3D protein structures was established. The concept of using 3D structural 

information in PCM mainly evolved from the application of molecular 

interaction fields to decipher ligand selectivity (Hoppe et al., 2006; Wohlfahrt 

et al., 2009). Field-based PCM was developed to overcome the drawbacks of 

sequence-based PCM. Models that utilize the amino acid sequence descriptor 

information fail to consider the spatial arrangement of amino acids in the 

binding site and have limited visual interpretability.  Nevertheless, the 

orientation or directionality of amino acids is critical for ligand design. 

Therefore, building visually interpretable PCM models that take advantage of 

the highly informative protein field descriptors could benefit the day-to-day 

inhibitor design.  

 

The suitability of employing knowledge-based and WaterMap fields derived 

from protein binding sites in PCM modelling was first tested on kinases, 

resulting in Publications I and II. In Publication I, field-based PCM models 

with a set of 50 kinases and 80 inhibitors were built using the linear Partial 

Least Squares (PLS) regression approach to enable easy interpretation and 

visualization of the kinase and ligand features relevant for selectivity. In 

Publication II, the kinase dataset was expanded to build a global field-based 

PCM model using non-linear machine learning approaches to classify active 

and inactive ligands. Further, the applicability of the field-based methods to 

other protein families was demonstrated by building PCM models with serine 

proteases (Publication III).  

 

Field-based methods are sensitive to shifts in protein superimposition. Building 

PCM models based on the fields calculated from poorly aligned structures 
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could have a significant impact on the model quality. To assess the influence of 

alignment errors in PCM modelling, a systematic comparison was made 

between the models built on protein fields of superimposed proteins and 

alignment-independent Zernike descriptors (Novotni and Klein, 2003)  

(unpublished results). Models based on superimposed protein fields and 

Zernike descriptors have virtually the same performance. For the kinase dataset, 

Matthews correlation coefficient for field-based models is 0.52 and for Zernike 

descriptor based models 0.48. Only preliminary results were obtained at the 

time of writing the thesis.  
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Review of the literature 
The target families used for PCM modelling and overviews of computational 

approaches used for selectivity design are presented in this section.  

 

1 Target families 

1.1 Kinases 

1.1.1 Kinases as enzymes 

Protein kinases are one of the largest families of drug targets, encoded by more 

than 518 genes in humans (Manning et al., 2002). Kinases are enzymes 

involved in phosphorylation, a post-translational modification that catalyses the 

transfer of a phosphate group from adenosine triphosphate (ATP) to the 

substrate proteins (Zuccotto et al., 2010). For a kinase to promote catalysis of 

phosphate transfer, it should remain in the activated state, which can be 

triggered by various signalling events (Johnson, 2007). Following 

phosphorylation, the substrates can alter the recognition properties of enzymes 

through conformational changes. The best example of this phenomenon is the 

sequential activation of kinases in the Mitogen-activated protein kinase 

(MAPK) pathway, where phosphorylation of MAP3K activates MAP2K, which 

in turn triggers MAPK activity (Cargnello and Roux, 2011). Kinases play a key 

role in mediating various cellular, metabolic and signalling pathways via 

phosphorylation (Johnson, 2007; Melnikova and Golden, 2008). Among the 

substrates phosphorylated by kinases are the G protein-coupled receptors 

(GPCRs) that participate in a wide array of signal transduction pathways. The 

phosphorylated GPCRs can in turn initiate other signalling events and cellular 

responses (Tobin, 2008). 
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1.1.2 Kinase families 

All eukaryotic kinases share a catalytic domain that is homologous among the 

kinase subfamilies (Hanks et al., 2013). Apart from the kinase domain, there are 

83 additional domains observed in 258 kinases (Manning et al., 2002). These 

additional domains are unique to certain groups of kinases. They mediate 

various signalling activities and control the phosphorylation states of the 

kinases that act in a network (Manning et al., 2002). Based on phylogenetic 

classification, kinases can be categorized into 11 major groups, which are 

further classified into several families and subfamilies 

(http://kinase.com/wiki/index.php/Kinase_classification; Manning et al., 2002).  

 

1. AGC – Adenine Guanine Cytosine kinase  

2. CAMK – Calcium / Calmodulin-dependent protein Kinase  

3. CK I – Casein Kinase I  

4. CMGC (CDK, MAPK, GSK and CLK families)  

5. STE – Serine / Threonine Protein kinase  

6. TK – Tyrosine Kinase  

7. TKL – Tyrosine Kinase-Like  

8. RGC – Receptor Guanylate Cyclases 

9. OPK – Other Protein kinases 

10. PKL – Protein kinase-like / Pseudokinases 

11. Atypical kinases 
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1.1.3 Structural organization of kinases 

 

 
Figure 1. Structural organization of kinase domains. The crystal structure of ABL1 

kinase with the bound inhibitor dasatinib (PDB: 2GQG) is shown here. The kinase 

structure is represented as a cartoon and the ligand is shown in ball and stick style. 

Different colours in the figure correspond to different structural elements. The 

gatekeeper residue, DFG (Asp-Phe-Gly) motif and HRD (His-Arg-Asp) motif are 

shown as thin tubes. 

 

The kinase domain (Figure 1) includes two lobes, namely the N-terminal lobe 

with five  strands and one  helix and the C-terminal lobe mainly with  
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helices (Huse and Kuriyan, 2002). The ATP molecule binds in a cleft located 

between the two lobes and participates in hydrogen bonding interactions with 

the residues in the hinge region (Zuccotto et al., 2010). A glycine-rich loop 

present in the N-terminal lobe facilitates phosphoryl transfer by interacting with 

ATP. The catalytic loop found in the C-terminal lobe contains the highly 

conserved HRD (His-Arg-Asp) motif that stabilizes the conformation of the 

activation loop (Kornev et al., 2006). The activation loop that is centrally 

located and contains about 20-30 residues controls the activation states of the 

kinases (Huse and Kuriyan, 2002; Kornev et al., 2006). The orientation of the 

DFG (Asp-Phe-Gly) motif present in the activation loop serves as a deciding 

factor for whether the kinases are in active or inactive state (Kornev et al., 

2006). 

 

1.1.4 Active and inactive forms of kinases  

Kinases are known to exist in two different conformations, the DFG-in / active 

and DFG-out / inactive conformation. In the active form, the phenylalanine of 

the DFG motif points away from the ATP binding pocket (Figure 2, left panel) 

and one of the residues, serine, threonine or tyrosine, frequently remains 

phosphorylated in the activation loop (Huse and Kuriyan, 2002; Kornev et al., 

2006). The phosphorylation states of these residues can either be influenced by 

additional domains present in kinases or by autophosphorylation, which occurs 

due to receptor dimerization (Nolen et al., 2004; Johnson, 2009). Nevertheless, 

phosphorylation is not always necessary for kinase activation. There are 

examples of kinases that can be activated without phosphorylation, e.g. CDKs 

that are activated by cyclins (Nolen et al., 2004). In case of inactive 

conformation, the phenylalanine of the DFG motif is oriented towards the ATP 

binding site (Figure 2, right panel), which can sometimes block the ATP 
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binding pocket and direct the ligands towards allosteric pocket (Nolen et al., 

2004; Kornev et al., 2006). 

 

 
Figure 2. Detailed view of the different activation states of kinases. Left panel 

corresponds to the DFG-in conformation of KIT kinase with bound adenosine 

diphosphate (PDB: 1PKG). Right panel represents the DFG-out conformation of KIT 

kinase with the bound inhibitor Imatinib (PDB: 1T46). The X-ray ligands are shown in 

orange and activation loops are shown in magenta in both conformations. 

 

1.1.5 Kinases and associated diseases 

Genetic abnormalities can lead to aberrant activation of kinases (Tsatsanis and 

Spandidos, 2000; Fleuren et al., 2016) that are involved in modulating the cell 

growth and differentiation processes. Their atypical activation can have a 

significant effect on the phosphorylation patterns of the substrates, which might 

lead to uncontrolled proliferation of cells, resulting in cancer (Zhang et al., 

2009; Fleuren et al., 2016). Therefore, kinases are the promising drug targets 

for cancer, alongside heart diseases, diabetes and inflammatory disorders 

(Melnikova and Golden, 2008; Fleuren et al., 2016). 

 

1.1.6 Kinase inhibitors: an overview 

Of the 33 clinically approved kinase inhibitors currently available on the market 

(http://www.brimr.org/PKI/PKIs.htm), many are known to interact with 

multiple kinases and are likely to induce side effects. The vast majority of these 
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inhibitors target the ATP binding site of kinases, whose high similarities often 

pose a major challenge for designing selective inhibitors (Huang et al., 2010). 

Another known issue in kinase inhibitor design is the drug resistance arising 

from gene amplifications and mutations in kinase domains, which frequently 

limits the efficacy of kinase inhibitors (Bikker et al., 2009). A typical example 

for drug resistance is the ineffectiveness of imatinib in targeting BCR-ABL1 

kinase, which has either a mutated gatekeeper residue (T315I), resulting in 

unfavourable interactions, or includes multiple copies of the gene, leading to 

reactivation of signalling pathways (Gorre et al., 2001; Daub et al., 2004; 

Barouch-Bentov, 2012). 

 

1.1.7 Selectivity of kinase inhibitors 

Generally, type I inhibitors compete with ATP and bind to rigid active 

conformations (Liu and Gray, 2006; Muller et al., 2015). These inhibitors 

mainly interact with the residues in hinge region by forming hydrogen bonds 

(Zuccotto et al., 2010). The hinge interactions are well conserved among the 

kinase families. Therefore, the gatekeeper residue located close to the hinge 

region acts as a determinant for the selectivity of type I inhibitors by 

influencing the size/accessibility of the hydrophobic back pockets (Zuccotto et 

al., 2010, Muller et al., 2015). The presence of smaller and medium gatekeeper 

residues such as Leu, Val, Thr and Met offers more room in the back cavity, 

thereby promoting the efficacy and selectivity of kinase inhibitors. On the other 

hand, bulky residues such as Phe and Tyr often contribute to steric hindrance 

and restrict inhibitor binding (Zuccotto et al., 2010). An example of a highly 

potent inhibitor, where the small size of the gatekeeper residue is exploited for 

selectivity, is skepinone-L, which targets the p38 /  MAPK kinase (Koeberle 

et al., 2011). 
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Type II inhibitors bind to inactive conformations that have dynamic and 

extended binding pockets  (Liu and Gray, 2006; Muller et al., 2015). These 

inhibitors also participate in hinge interactions that mimic ATP. Additionally, 

they interact with the hydrophobic back pockets, enhancing their selectivity 

(Muller et al., 2015). BCR-ABL inhibitors imatinib and nilotinib serve as 

examples for achieving selectivity through interactions with the hydrophobic 

back pocket (Barouch-Bentov, 2012; Muller et al., 2015).  

 

Non-ATP competitive inhibitors known as type III inhibitors bind to the 

allosteric pocket that is adjacent to the hydrophobic pocket in DFG-out kinases 

(Muller et al., 2015). Allosteric pockets are not well conserved across kinases 

(Treiber and Shah, 2013) and this contributes to the high selectivity of type III 

inhibitors. An example of an allosteric inhibitor that adopts type III binding 

mode is trametinib, which targets MEK1 and MEK2 kinases (Zhao et al., 

2014). 

  

Recently, the cavity between the folded p-loop / glycine-rich loop and helix C 

has been targeted for designing the selective inhibitor SCH772984 against 

ERK1/2 kinase. This selectivity strategy could be exploited for kinases that 

have folded p-loop conformations (Muller et al., 2015). 
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1.2 Serine proteases 

1.2.1 Proteases as enzymes 

More than 550 genes in humans encode proteases (Puente et al., 2003; Cera et 

al., 2009). Proteases are enzymes that catalyse the cleavage of peptide bonds of 

their substrates (Cera et al., 2009). Information concerning all proteases and 

their probable cleavage sites is included in the MEROPS database 

(http://merops.sanger.ac.uk), a comprehensive resource (Rawlings, 2016). 

Proteases have a pivotal role in regulating various physiological processes 

including cell-cycle regulation, digestion, blood coagulation, wound healing 

and immune response (Hedstrom et al., 2002; Cera et al., 2009). They also act 

as key regulators of signalling pathways, as proteolysis (digestion of peptides to 

amino acids) can modulate the activities of many kinases and transcription 

factors (Ehrmann and Clausen, 2004).  

 

1.2.2 Protease families 

Proteases are broadly classified into 7 families, depending on the catalytic 

residues or metal ions involved in protein degradation: threonine proteases, 

aspartic proteases, serine proteases, cysteine proteases, metalloproteases, 

glutamic acid proteases and asparagine peptide lyases (Oda, 2012). Nearly one-

third of the human proteases belong to the serine protease family (Puente et al., 

2003; Cera et al., 2009). Serine proteases can further be classified into several 

subfamilies based on their substrate specificities. Trypsin-like and 

chymotrypsin-like proteases that have roles in digestion, thrombin-like 

proteases that are involved in blood coagulation and elastase-like proteases that 

trigger immune response comprise the serine proteases found in eukaryotes. 

Another class of serine proteases known as subtilisin-like proteases is mainly 

found in prokaryotes and it differs from other subfamilies based on the 
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arrangement of catalytic residues in protein scaffolds ( /  in subtilisin and /  

in other subfamilies) (Siezen and Leunissen, 1997). Only the eukaryotic serine 

proteases are discussed in detail in the following sections. 

 

1.2.3 Structural organization of serine proteases 

Serine proteases have two six-stranded  barrels with the active site enclosed 

between the two (Hedstrom et al., 2002) (Figure 3). A catalytic triad formed by 

aspartate, serine and histidine residues in the active site acts as a charge relay 

system (Hedstrom et al., 2002; Cera et al., 2009). These catalytic triads form a 

part of the extensive intramolecular hydrogen-bonding network and regulate the 

activities of serine proteases (Hedstrom et al., 2002). Another component linked 

to the catalytic triad is the oxyanion hole, a pocket formed between the 

positively charged backbone NH groups of Gly193 and Ser195 residues in the 

active site and the negatively charged carbonyl groups of substrate peptides. 

The oxyanion hole is involved in the stabilization of transition state 

intermediates formed during peptide hydrolysis (Hedstrom et al., 2002). 

Further, the active site is divided into sub-pockets characterized by specific 

amino acid residues that cleave different regions of the substrate peptide 

(Figure 4). 
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Figure 3. Structural organization of serine proteases. The crystal structure of 

coagulation factor Xa with the bound inhibitor ZK-807834 (PDB: 1FJS) is shown here. 

The protease structure is represented as a cartoon and the ligand is shown in ball and 

stick style. The catalytic triad Asp102-His57-Ser195 is shown in orange as thin tubes. 

S1, S2 and S4 correspond to the different sub-pockets. The residues in S1 (Asp189), 

S2 (Tyr60, Gln61) and S4 (Tyr99, Phe174, Trp215) are shown as thin tubes, 

highlighted in green, blue and magenta, respectively. 

 

1.2.4 Activation of serine proteases 

Serine proteases or in general proteases exist as inactive precursors termed 

‘zymogens’ to avoid unwanted protein degradation. These zymogens have a 

distorted active site and are converted into active enzymes upon initiation of 

peptide-bond cleavage in the N-terminus region (Neurath et al., 1967; Khan and 

James, 1998). Zymogen activation can also be influenced by a drop in pH 
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levels, an autocatalytic mechanism (Khan and James, 1998). Examples of 

zymogens that are later converted to active serine proteases include 

chymotrypsinogen, trypsinogen and proelastase. Upon activation, they are 

converted into chymotrypsin, trypsin and elastase, respectively (Khan and 

James, 1998). 

 

1.2.5 Sub-pocket specificity of serine proteases 

The interactions occurring at the protein-protein interface between substrates 

and enzymes act as the determinants of sub-pocket specificity. The active sites 

of the proteases that bind to the substrate and catalyse the proteolysis reaction 

are usually represented as Sn…S4-S3-S2-S1 S1’-S2’-S3’-S4’…. Sn’ from N 

terminus to C terminus (Schechter, 2012). The corresponding substrate peptide 

residues on which these proteases act are denoted as Pn…P4-P3-P2-P1 P1’-

P2’-P3’-P4’…. Pn’. The cleavage occurs in the region between prime and non-

prime sites (P1’ P1) (Figure 4). The cleavage sites are unique for specific 

proteases.  

Figure 4. Illustration of sub-pockets and peptide sites of proteases. Reproduced in part 

by permission from Macmillan Publishers Ltd: Nature Reviews Drug Discovery (Turk, 

B. Targeting Proteases: Successes, Failures and Future Prospects. Nat. Rev. Drug 

Discov. 2006, 5 (9), 785–799.), copyright (2006). 



 15 

Generally, analysis of sub-pocket specificities in proteases is focused on S1/P1 

interactions (Hedstrom et al., 2002). Considering the S1 specificities of serine 

protease subfamilies, the trypsin-like and thrombin-like proteases have a 

negatively charged Asp, which prefers substrates with positively charged Lys / 

Arg at P1. On the other hand, the hydrophobic Phe and Val residues of 

chymotrypsin-like and elastase-like proteases have a preference for substrates 

that contain aromatic or small aliphatic residues at P1. S1-S4 sub-pocket 

specificities of the four serine protease subfamilies are shown in Figure 5. 

 

 
Figure 5. Sub-pocket specificities of serine protease families. The ligands are shown in 

green with the ball and stick style. Key residues in the different sub pockets S1 (green), 

S2 (blue) and S4 (magenta) are shown as thin tubes. (a) Trypsin-like (PDB: 2XBW) 

(b) Thrombin-like (PDB: 1QUR) (c) Chymotrypsin-like (PDB: 3N7O) (d) Elastase-

like (PDB: 5A8X) 
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1.2.6 Proteases and associated diseases 

Diminished proteolysis or excessive proteolysis resulting from genetic 

irregularities affects many signalling pathways that have predominant roles in 

causing cancer, inflammation, cardiovascular diseases and viral infection (Drag 

and Salvesan, 2010). The role of proteases in regulating a multitude of 

biological processes makes them promising drug targets. 

 

1.2.7 Protease inhibitors: an overview 

Thirty-two protease inhibitors targeting various protease classes, such as 

metallo (14), aspartic (8), serine (9) and threonine (1), have been approved so 

far to treat hypertension, thrombosis, respiratory diseases, pancreatitis and 

cancer (Turk, 2006). Protease inhibitors can be small molecules (e.g. 

Angiotensin Converting Enzyme (ACE) inhibitor, captopril) or peptides (e.g. 

Factor X inhibitor, bivalirudin) or peptidomimetics (e.g. HIV protease inhibitor, 

saquinavir). A majority of the protease inhibitors currently available on the 

market target ACE, which regulates blood pressure (Turk, 2006). 

 

Based on their mechanism of action, peptidic inhibitors targeting serine 

proteases can be grouped into three categories, namely canonical, non-

canonical and serpins.  

Canonical inhibitors are reversible protein inhibitors whose binding is 

influenced by the presence of a protease-binding loop that remains 

complementary to the active site (Krowarsch et al., 2003). Their interactions 

mimic enzyme-substrate complexes (Turk, 2006). Hirustasin, which inhibits 

trypsin, chymotrypsin and kallikrein, is an example of a canonical inhibitor.  
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Non-canonical inhibitors are peptides that bind through their N-terminus to the 

active site, forming a strong parallel  sheet, which is further strengthened by 

additional interactions with the regions outside the active site (Krowarsch et al., 

2003). Hirudin, a natural peptide inhibitor, interacts with the thrombin active 

site in a similar fashion. 

 

Serpins (serine proteinase inhibitors) are globular proteins that act as natural 

irreversible inhibitors of serine proteases (Gettins, 2002). Serpins tend to adopt 

multiple conformations and modulate the activity of serine proteases through a 

complete blockage of the active sites (Janciauskiene, 2001). Typical examples 

of serpin inhibitors include Alpha-1 antitrypsin, which acts on neutrophil 

elastases, and antithrombin, which regulates various coagulation factors. 

Mutations in serpins can affect their inhibitory properties, leading to several 

disease states, including inflammation, bleeding disorders and 

neurodegenerative diseases (Janciauskiene, 2001). 

 

Besides peptidic inhibitors, there are many competitive small molecule 

inhibitors. Some synthetic covalent inhibitors such as halomethyl ketones and 

-lactams bind irreversibly to serine proteases (Sanderson, 1999; Powers et al., 

2002). The irreversible inhibitors are usually not favoured owing to selectivity 

issues arising from their tendency to block many proteases (Turk, 2006). 

Therefore, designing reversible inhibitors that resemble the transition state 

intermediates of substrate hydrolysis is an ideal strategy in the protease field 

(Turk, 2006; Drag and Salvesan, 2010). Examples of reversible inhibitors 

include non-covalent thrombin inhibitors such as argatroban and napsagatran 

(Sanderson, 1999). 
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Selective targeting of proteases can be achieved by designing inhibitors that 

bind non-competitively through exosite and allosteric interactions. Exosite 

inhibitors have direct effects on the active site and influence the catalytic rates 

by binding to secondary sites that remain far from the active site (Turk, 2006; 

Drag and Salvesan, 2010). The thrombin inhibitor desirudin, which binds to the 

fibrinogen-binding site, is an example of an exosite inhibitor (Warkentin, 

2004). Allosteric inhibitors have indirect effects on substrate recognition by 

inducing conformational changes in the enzymes and are highly selective. The 

designed ankyrin repeat proteins (motifs with 33 residues) that target caspase-2 

protease serve as an example of allosteric inhibition (Drag and Salvesan, 2010). 
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2 Selectivity of drug targets 

The term ‘selectivity’ refers to the potential of a ligand to bind to a specific 

drug target or affect a particular cell population (Mecher et al., 2005). A drug 

that hits many targets and pathways besides the desired ones can have harmful 

side effects. As of September 2015, altogether 270 drugs have been withdrawn 

from the market due to adverse effects resulting from their binding to off-

targets (http://cheminfo.charite.de/withdrawn). Non-steroidal anti-inflammatory 

drugs like rofecoxib and valdecoxib, which have the potential to increase the 

risk of heart attack and stroke, serve as typical examples of drug withdrawals 

that are initiated for safety reasons (Qureshi et al., 2011). It is also very 

common that candidate drugs have to be pulled from clinical trials because of 

adverse drug reactions (Kola and Landis, 2004; Peters, 2013). Since drug 

development is expensive and time-consuming, screening for potential off-

targets and analysing the selectivity profiles of ligands in the early stages of 

drug design are likely to reduce failure rates at a later point (Peters, 2013).   

 

Nevertheless, selectivity should not be gained at the expense of efficacy 

(Mencher and Wang, 2005). It is highly probable that the effectiveness of a 

drug might be reduced by directing it to a single target. Disease states are often 

influenced by multiple targets or in many cases the involvement of biological 

pathways rather than individual targets (Mencher and Wang, 2005; Mestres et 

al., 2008). Therefore, considering selectivity in a broader sense by designing 

promiscuous ligands that have targeted polypharmacology by acting on targets 

associated with specific biochemical pathways would help to establish a 

balance between efficacy and side effects induced by non-specific binding 

(Peters, 2013). An example for targeted polypharmacology is the kinase 

inhibitor sorafenib, which is highly effective in controlling tumor progression 
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and angiogenesis by acting on vascular endothelial growth factor receptor 

(VEGFR) and platelet-derived growth factor receptor (PDGFR). Apart from 

being efficacious, its limited side effects make sorafenib a promising inhibitor 

for treating renal cell and hepatocellular carcinomas (Adnane et al., 2005). 

 

2.1 Computational approaches to address selectivity 

Pharmaceutical companies usually conduct safety screening against a panel of 

targets to test for potential off-target effects (Peters, 2013). Despite the 

availability of a multitude of experimental approaches (Graczyk, 2007; 

Karaman et al., 2008; Cheng et al., 2010), conducting an exhaustive screening 

is often not possible. Computational approaches that consider the binding 

characteristics, such as shape, electrostatics, flexibility, hydration and allostery 

are frequently exploited to understand selectivity across protein families, taking 

advantage of the target’s structural information (Huggins et al., 2012). 

Commonly used computational methods for selectivity design are described in 

the following section, with a specific focus on examples related to kinases and 

proteases. 

 

2.1.1 Shape complementarity 

Designing a ligand whose shape remains complementary to the binding pocket 

helps to gain selectivity by optimizing the interactions with the binding site 

residues (Huggins et al., 2012). Shape complementarity can be analysed 

through ligand-based approaches such as Phase Shape (Sastry et al., 2011). 

Examples of achieving selectivity through shape complementarity include the 

design of ROCKI (Rho-associated protein kinase) inhibitors, whose ATP 

binding site shape is influenced by the unique arrangement of five key residues 

not found in other kinases (Breitenlechner et al., 2003), and the development of 
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HIV protease inhibitors, in which the mutant I84V affects the binding site 

shape, and hence, the affinity of the inhibitors (Kovalevsky et al., 2006).  

 

2.1.2 Charge complementarity 

Charge complementarity is a key concept in molecular recognition. Charged 

ligands form salt bridges (combination of electrostatic and hydrogen bonding 

interactions), which enhance their selectivity profiles against lipophilic ligands 

(Huggins et al., 2012). Variations in charges across the binding pockets can be 

analysed through the calculation of molecular electrostatic potentials with the 

help of software packages such as Adaptive Poisson Boltzmann Solver (Baker 

et al., 2001). Differences in the electrostatics of the S1 sub-pocket of factor Xa 

(Gln192) and thrombin (Glu192) have been exploited to design a selective 

inhibitor DX-9065, which is ~20 times more potent on factor Xa than thrombin 

(Pinto et al., 2010). 

 

2.1.3 Conformational flexibility 

Accounting for conformational flexibilities through molecular dynamics 

simulations distinguishes the desired target from an off-target, thereby 

improving selectivity (Huggins et al., 2012). This is true for kinases that switch 

between DFG-in and DFG-out conformations based on the movements of the 

activation loop. The tendency to adopt the DFG-out conformations is not 

observed in many kinases, which provides an opportunity for designing 

inhibitors that selectively target DFG-out states (Huggins et al., 2012). Typical 

examples include imatinib and BIRB796, which inhibit the DFG-out states of 

ABL and p38 MAP kinase, respectively. 
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2.1.4 Water molecules in the binding site 

Position and energetics of water molecules in the binding site, analysed through 

approaches such as WaterMap, have been shown to influence selectivity 

profiles of drug molecules (Abet et al., 2008; Robinson et al., 2010; Beuming et 

al., 2012). A ligand that binds by displacing unfavourable water molecules in 

the target can have many fold higher affinity than an off-target (Huggins et al., 

2012). Analysing the thermodynamic properties of water molecules in the 

factor Xa binding site revealed that displacing the entropically structured water 

molecules in the S4 sub-pocket enhanced ligand binding by contributing to 

energetically favourable interactions with the hydrophobic residues of the S4 

sub-pocket (Abel et al., 2008). In another study, the presence of high-energy 

hydration sites displaced during ligand binding in Src kinase has been 

suggested to increase the binding affinity by 15-fold relative to GSK-3 , which 

lacked this hydration site (Robinson et al., 2010). 

 

2.1.5 Allosteric binding 

Targeting binding sites other than the primary active sites could enhance 

selectivity with respect to off-targets (Huggins et al., 2012). Although 

computational approaches such as molecular dynamics can support the 

identification of allosteric sites, experimental confirmation is required in most 

cases. Kinase inhibitors that bind to the allosteric pocket of DFG-out 

conformations have been shown to be selective, compared with the DFG-in 

inhibitors targeting ATP binding sites (Zuccotto et al., 2010; Treiber and Shah, 

2013). 
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2.2 Systematic comparison of protein binding sites: a strategy to elucidate 

ligand selectivity 

Comparing proteins based on binding site properties extracted from sequence 

and structure information has been shown to be valuable for understanding the 

selectivity of ligands. Selected studies focusing on the comparison of binding 

sites in kinases and serine proteases are presented here. 

 

2.2.1 Kinases 

 Identification of energetically favourable binding site residues that influence 

a specific kinase-ligand interaction generates a binding site signature. 

Subsequent mapping of these signatures to the multiple sequence alignment 

of all protein kinases could recognize potential off-targets (Sheinerman et 

al., 2005). 

 Hierarchical clustering of 75 kinases utilizing knowledge-based interaction 

fields derived from polar and lipophilic probes grouped the kinases 

distinctly based on their ligand binding modes and different conformations 

of the activation loops. The possibility to compute similarity and difference 

fields provides a way to visualize the regions that can be exploited for 

selectivity design (Hoppe et al., 2006). 

 FLAP (Fingerprints for Ligands and Proteins) approach allows exploration 

of the protein-ligand interaction space by defining 4-point pharmacophoric 

fingerprints based on molecular interaction fields for proteins and the 

features complementary to the binding site for ligands. FLAP analysis that 

accounts for shape complementarity and flexibility when applied to kinases 

could distinguish the similarities and differences among binding sites and 

contribute to selective inhibitor design (Baroni et al., 2007). 
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 Binding site similarity analysis based on a geometric hash approach, which 

accounts for atom-atom similarity, and CavBase, which characterizes the 

properties of protein binding sites, explained probable cross-relationships 

among kinase subfamilies (Kuhn et al., 2007; Kinnings and Jackson, 2009).  

 Pharmacophoric fingerprints extracted from C  atoms in the binding cavity 

classified the ATP binding sites of 522 kinases with an AUC (Area Under 

the ROC Curve; For details, see Methods) of 0.89. The distinct 

classifications of kinase sub-groups generated by this alignment-free 

approach could provide a way to analyse the ligand binding preferences of 

various kinase families (Figure 6) (Weill and Rognan, 2010).  

 Alignment-independent Zernike descriptors computed from DrugScore 

potential fields enabled identification of distant kinases that are likely to be 

hit by similar ligands, thereby providing a way to predict off-targets and 

hence selectivity (Nisius and Gohlke, 2012). 

 Exploration of the key binding site interactions from knowledge-rich 

databases like KLIFS (Kinase-Ligand Interaction Fingerprints) could 

provide insight into the affinity and selectivity promoting regions of kinase 

families and subfamilies (http://klifs.vu-compmedchem.nl; Van Linden et 

al., 2014). 

 Knowledge on differences in ATP binding pockets computed from multiple 

target and off-target structures, using a grid-based pocket detection 

approach, enables visualization of kinase sub-pockets relevant for designing 

selective inhibitors (Volkamer et al., 2016). 
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Figure 6. ATP binding sites of multiple PDB structures representing 4 kinase 

subtypes, clustered based on the pharmacophoric fingerprints of binding cavities. 

Figure reproduced with permission from (Weill, N.; Rognan, D. Alignment-Free Ultra-

High-Throughput Comparison of Druggable Protein-Ligand Binding Sites. J. Chem. 

Inf. Model. 2010, 50 (1), 123–135). Copyright (2010) American Chemical Society. 
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2.2.2 Serine proteases 

 Clustering the water sites found in the crystal structures of thrombin and 

trypsin revealed the presence of 22 conserved water sites in thrombin that 

contribute to substrate specificity and could be readily exploited for 

thrombin inhibitor design (Sanschagrin et al., 1998). 

 GRID molecular interaction fields of 3D protein structures computed with 

ten different probes and subsequent principal component analysis identified 

the selectivity promoting regions of factor Xa, trypsin and thrombin 

(Kastenholz et al., 2000). 

 Hierarchical clustering of knowledge-based interaction fields derived with 

polar and lipophilic probes highlighted differences in ligand binding 

specificities for trypsin, thrombin and factor Xa (Hoppe et al., 2005).  

 Cluster analysis of the serine protease families based on the properties of 

binding cavities detected by CavBase explained cross-reactivity (Figure 7) 

(Glinca and Klebe, 2013).    

 C  distance calculations of amino acid residues and subsequent multivariate 

analysis identified the deviations in distances of sub-pocket residues 

between the coagulation factors (II, VII, IX, X and XI) (Uzelac et al., 2015).   

 Ensemble clustering of the propagated motifs that lie in close proximity to 

the binding cavity captured the conformational flexibilities of binding sites 

and classified the serine protease families correctly based on their ligand 

binding preferences (Guo and Chen, 2015). 
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Figure 7. Heatmap showing the clusters of serine proteases generated based on the 

properties of binding cavities. Deep blue and deep red colours correspond to maximum 

similarity and dissimilarity, respectively. Black lines in the heatmap separate the 

different clusters. Figure reproduced in part with permission from (Glinca, S.; Klebe, 

G. Cavities Tell More than Sequences: Exploring Functional Relationships of 

Proteases via Binding Pockets. J. Chem. Inf. Model. 2013, 53 (8), 2082–2092). 

Copyright (2013) American Chemical Society. 
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3 Deciphering ligand selectivity through predictive modelling 

Apart from the computational approaches presented above, ligand selectivity 

can also be investigated through Structure Activity Relationship (SAR) 

analysis. The concept of SAR first evolved from the analysis of the relation 

between chemical composition of ammonium salts and their physiological 

action (Brown and Fraser, 1868). An attempt to estimate this relationship 

quantitatively was introduced by Hansch and Fujita in 1964 (Hansch and Fujita, 

1964). Quantitative structure-activity relationship (QSAR) and quantitative 

structure-property relationship (QSPR) are the statistical methods commonly 

employed in drug discovery to elucidate relationships between chemical 

structures and biological activities / physicochemical properties.  

 

3.1 QSAR: an overview 

QSAR models can highlight ligand features that have the potential to modulate 

the ligands’ activities at drug targets, hence providing a way to propose suitable 

chemical modifications relevant for enhancing the efficacy of the ligand. Since 

its inception in 1964, there has been a growing trend for applying QSAR 

modelling in various fields of science. A simple search in PubMed with the 

term “QSAR” results in 14587 hits with more than 500 publications in 2016, 

revealing the popularity of these methods. QSAR models should be validated 

based on a set of principles published by the Organization for Economic Co-

operation and Development (OECD), with a specific focus on robustness, 

applicability domain and mechanistic interpretation (http:// www.oecd.org). 

Apart from their applications in drug discovery to predict binding affinities and 

toxicities, QSAR techniques are also used in other fields such as environmental 

research, chemical mixtures modelling and nanomedicine (for review, see 

Cherkasov et al., 2014).  
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3.1.1 Classical versus non-classical QSAR 

QSAR techniques fall into two categories, namely classical and non-classical 

QSAR depending on the compound series, descriptors and machine learning 

approaches used for modelling (Table 1) (Fujita and Winkler, 2016). 

 

Table 1. Differences between classical QSAR and non-classical QSAR models 

(adapted from Fujita and Winkler, 2016). 

 

 Classical QSAR Non-classical QSAR 

Type of compounds Congeneric series Large and diverse datasets 

Descriptors Empirical descriptors like 

Hammett substituent 

parameters and log P that 

reflect the compound’s 

electrostatic, hydrophobic 

and steric properties 

Non-empirical descriptors 

that cover a wide range of 

properties including 

physicochemical 

properties, molecular 

connectivity and 

stereochemistry 

Machine learning approach Simple linear regression 

techniques like PLS 

Both linear and non-linear 

techniques (PLS, RF, 

SVM, etc.) 

Applicability domain  Small; local models Reliable predictions for a 

large set of new 

compounds; global models 

Interpretation Easy to interpret and gain 

clear insights into relevant 

molecular features 

Limited interpretability 

due to multiple modes of 

action resulting from 

heterogeneous datasets 

PLS – Partial Least Squares Regression; RF-Random Forests; SVM-Support Vector 

Machines 
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3.1.2 QSAR modelling 

QSAR modelling involves a series of steps: data collection, data curation, 

descriptor calculation, model building and model validation. A typical QSAR 

modelling workflow is presented in Figure 8 (Golbraikh et al., 2012).  

 

 
Figure 8. Predictive QSAR modeling workflow. Figure reproduced by permission 

from John Wiley & Sons, Inc.: Tropsha, A. Best Practices for QSAR Model 

Development, Validation, and Exploitation. Mol. Inform. 2010, 29 (6–7), 476–488., 

copyright (2010). 

 

Data collection 

The most common resources for extracting structural and activity data suitable 

for QSAR modelling are public databases like ChEMBL (Bento et al., 2014), 

ZINC (Irwin et al., 2012) and PubChem (Kim et al., 2016). Also, commercial 
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databases such as WOMBAT and Merck Index are used (for review, see Oprea 

and Tropsha, 2006).  

 

Data curation 

Following data collection, data need to be curated to avoid errors resulting from 

incorrect chemical structures. Adopting a curation protocol that involves 

removal of inorganic compounds and salts, removal of duplicates and 

standardization of chemical structures would allow generation of reliable 

chemical structures ideal for descriptor calculations (Fourches et al., 2010). In 

addition to the chemical structures, the quality of biological data also influences 

QSAR modelling (Williams and Ekins, 2011). Care should be taken when 

utilizing the data generated by experiments conducted under similar assay 

conditions.   

 

Descriptor calculations 

QSAR models can be derived from 1D, 2D or 3D descriptors that differ by the 

level of information encoded (Damale et al., 2014). Seldom, QSAR modelling 

is also extended to 4D or more, with the inclusion of advanced descriptors that 

takes into account e.g. ligand and receptor flexibility (Kuz’min et al., 2005). A 

detailed account of the descriptors used in QSAR modelling is provided in 

Table 2. 

 

 

Model building 

QSAR models are generally built by employing supervised machine learning 

algorithms (Wikberg et al., 2011). Supervised approaches allow the model to 

learn from the training set that includes both input data and output variables. 
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The knowledge acquired is then used to predict an external set. Supervised 

machine learning approaches can be further classified into regression and 

classification techniques based on the output variables involved, either real 

values or class labels (Wikberg et al., 2011). Examples of supervised machine 

learning algorithms include linear regression, random forests, support vector 

machines and artificial neural networks. The choice of the machine learning 

algorithm to be used for QSAR modelling depends on many factors such as the 

dataset, model training time, predictive performance on external test sets and 

ease of interpretation (Sorich et al., 2003; Louis et al., 2010; Wikberg et al., 

2011; Varnek and Baskin, 2012).  

 

Model validation 

QSAR models can be evaluated by internal cross-validation involving repeated 

exclusion of subsets of compounds from model training and using them for 

predictions, external prediction of compounds not used for training and Y-

scrambling, which involves randomization of response variables (Grammatica 

et al., 2007; Tropsha, 2010; Golbraikh et al., 2012). Correlation between the 

observed and predicted variables (R2), predictions from cross-validation (Q2) 

and errors from cross-validation / external prediction (RMSEP) are some of the 

measures commonly used to assess prediction performances of QSAR models 

(For details on performance measures, see Methods). 

 Machine learning algorithms used for model building and model validation 

used in this thesis are explained in detail in the Methods section. 
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3.1.3 Comparative molecular field analysis in medicinal chemistry 

Comparative molecular field analysis (CoMFA) (Cramer et al., 1988), a 3D 

QSAR technique that relies on a template with the native binding mode has 

long been used in medicinal chemistry for its ability to visually illustrate the 

features of ligands that affect biological activity (Verma et al., 2010). CoMFA 

models are built based on a grid defined around the ligands that are 

superimposed on the template. The interaction energies calculated from steric 

and electrostatic fields are assigned to the grid points and are later used as 

descriptors to study their correlation with biological activities using Partial 

Least Squares (PLS) regression approach. The output from PLS models is then 

used to generate contour maps to gain visual understanding (Cramer et al., 

1988; Zhang et al., 2011). 

 

3.1.4 QSAR and selectivity 

Assessing selectivity through QSAR has often been shown to be tedious, as it 

involves generation and comparison of multiple QSAR models. Studies on 

serine proteases demonstrated that multiple CoMFA models had to be 

generated for different classes of serine proteases (factor Xa, thrombin, tissue 

plasminogen activator, trypsin and plasmin) to understand the selectivity of a 

series of indole/benzimidazole-5-carboxamidines (Bhongade et al., 2005). 

 

An alternative approach to circumvent the limitations of generating multiple 

QSAR models for selectivity analysis is comparative binding energy analysis 

(COMBINE). In COMBINE, the interaction energies calculated from ligand-

receptor complexes are used to predict bioactivities (Ortiz et al., 1995). 

COMBINE analysis of ligands bound to several structurally related receptors 

could guide selectivity design. Studies on a series of 3-amidinophenylalanines 
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bound to various serine proteases showed that COMBINE could be successfully 

used to analyse the sub-pocket specificities of thrombin, trypsin and factor Xa 

(Murcia et al., 2006). 

 

3.2 Proteochemometrics 

Although QSAR modelling is frequently used to understand SAR, its 

dependency on ligand descriptors limits its usefulness in selectivity-related 

studies. Despite the availability of approaches like COMBINE for selectivity 

analysis, the need to generate ligand-receptor complexes through docking is a 

drawback. As the quality of the docked poses can often be questionable, using 

them to calculate interaction energies poses a major challenge for generating 

reliable QSAR models based on COMBINE. To deal with all of these 

limitations, Peteris and his co-workers developed proteochemometrics (Prusis 

et al., 2001), a method that accounts for selectivity by combining both protein 

and ligand description with experimentally measured data. In 

proteochemometric models, protein and ligand descriptors are generated 

independently and do not require ligand-receptor complexes. A PCM modeling 

workflow describing the approaches used in this thesis is shown in Figure 13. 

The advantage of using protein descriptors in PCM models comes mainly from 

their ability to extrapolate to novel chemical and target space (Van Westen et 

al., 2011; Cortés-Ciriano et al., 2015).  

 

Apart from the large-scale applications of PCM in modelling the bioactivities of 

many drug targets (Prusis et al., 2001; Lapins et al., 2002; Strömbergsson et al., 

2006; Kontijevskis et al., 2008; Lapins et al., 2008; Prusis et al., 2008; 

Kontijevskis, A. et al., 2009; Lapins et al., 2010; Fernandez et al., 2010; Bruyn 

et al., 2013; Ain et al., 2014; Cortes et al., 2015; Paricharak et al., 2015; De 
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Rasti et al., 2016; Simeon et al., 2016), its suitability to model antigen-antibody 

interactions (Mandrika et al., 2007; Dimitrov et al., 2010; Dimitrov et al., 

2015), predict ligand binding free energies (Kramer et al., 2011), investigate 

spectral properties of fluorescent proteins (Nantasenamat et al., 2014) and 

utilize omics data to predict drug sensitivities against cancer cell lines (Cortés-

Ciriano et al., 2015) makes proteochemometrics a promising approach. 

Reviews by Van Westen et al. and Cortes-Ciriano et al. summarize all PCM 

studies conducted up to 2013, together with the commonly employed machine 

learning approaches in PCM (Van Westen et al., 2011; Cortés-Ciriano et al., 

2015). Some of the recently conducted studies (beyond 2013) are reported in 

Table 3. 
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Although the usefulness of PCM is usually shown theoretically based on the 

model’s predictabilities and interpretabilities, there are also instances where 

follow-up experimental validations (Table 4) have been done to demonstrate 

the successful applications of PCM in compound design. 

 

Table 4. Examples of prospective validations of PCM models. 

 

PCM study Experimental validation / Inference Reference 

SVM modelling of GPCRs 

and kinases 

Novel scaffolds were identified by 

PCM:  3 agonists and 6 antagonists for 

ADRB2 and 5 inhibitors for EGFR 

Yabuuchi et 

al., 2011 

SVM modelling of HIV 

reverse transcriptase 

mutants 

Experimental measurements of EC50 for 

317 protein-ligand pairs shows a 

correlation of 0.69 with the EC50 

predicted by PCM models; PCM 

models outperform both QSAR and 

KNN, with an increase in R0
2 by 40-

60% 

Van Westen et 

al., 2011 

RF modelling of oxytocin 

receptor 

Experimental testing of 128 compounds 

resulted in 10 hits with >20% inhibition 

at 10 M concentration; 6 hits retrieved 

from chemogenomics screening, 

including 2 potent antagonists (87 and 

38% inhibition at 10 M concentration) 

 

 

 

 

Weill et al., 

2011 
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PCM study Experimental validation / Inference Reference 

RF modelling of 

OATP1B1 and OATP1B3 

receptors 

Comparison of model predictions and 

experimental validations of 54 

compounds shows that OATP1B1 and 

OATP1B3 inhibitors can be correctly 

classified as actives and inactives with 

80% and 74% accuracy, respectively. 

De Bruyn et 

al., 2013 

RF - Random Forest; SVM - Support Vector Machine; KNN - K-Nearest Neighbour

 

3.2.1 Protein descriptors in PCM modelling 

Protein descriptors that explain the characteristics of a target’s binding site can 

be derived from either the amino acid sequences or from the 3D structures. 

Some of the commonly used sequence-based descriptors include Z-scales 

(Sandberg et al., 1998), FASGAI (Liang et al., 2008) descriptors that account 

for physicochemical properties, T-scales (Tian et al., 2007) and ST-scales 

(Yang et al., 2010) that describe topological properties and BLOSUM matrix-

derived amino acid descriptors (Georgiev, 2009). A benchmarking study by 

Van Westen et al. (2013) shows that Z-scale descriptors generate the best-

performing models, and this is in line with the increased use of Z-scale 

descriptors in sequence-based PCM studies conducted to date (Van Westen et 

al., 2011; Cortés-Ciriano et al., 2015).  

 

Although structure-based descriptors are not frequently used in PCM 

modelling, the additional information captured by the 3D descriptors and visual 

interpretability open up new opportunities for future developments in 3D PCM. 

Some typical examples of the 3D descriptors used in PCM studies include local 

substructures of proteins (Strömbergsson et al., 2006; Strömbergsson et al., 
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2008) and pharmacophoric properties of binding cavities (Weill and Rognan, 

2009; Meslamani et al., 2012; Shaikh et al., 2016). 

 

None of the descriptors discussed in this section are used in our studies. 3D 

field-based descriptors used in this thesis are explained in detail in the Methods 

section.  

 

3.2.2 Ligand descriptors in PCM modelling 

Ligand descriptors can either be 2D descriptors, comprising the ligand’s 

physicochemical properties and molecular connectivity, or 3D descriptors, 

allowing the conformational space and stereochemistry of the ligands to be 

explored (Damale et al., 2014). A wide array of descriptors available for 

explaining the ligand space is compiled in the “Molecular Descriptors for 

Chemoinformatics” book by Todeschini and Consonni (Todeschini and 

Consonni, 2009). The choice of the ligand descriptors to be used for PCM 

modelling is purely subjective and depends on the dataset (similarity or 

dissimilarity between ligands), flexibility of the ligands and interpretability.  

 

In PCM studies, the most commonly used ligand descriptors are circular 

fingerprints that take into account the molecule’s connectivity and chemical 

features by considering neighbouring atoms within a certain diameter 

(http://www.rdkit.org). These descriptors are mainly used for their simplicity 

and good model predictabilities (Van Westen et al., 2011; Cortés-Ciriano et al., 

2015). Apart from circular fingerprints, 3D Grid INdependent Descriptors 

(GRIND) is also frequently used to provide spatial representation of molecules 

and enhance interpretability. GRIND descriptors are alignment-independent 

variables, resulting from the transformation of molecular interaction fields 
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derived from several probes that describe the hydrogen bonding and 

hydrophobic properties of a molecule (Pastor et al., 2000). Despite the frequent 

usage of certain ligand descriptors, several PCM studies have used multiple 

ligand descriptors and compared the model performances based on the 

predictabilities during internal and external validations (Weill and Rognan, 

2009; Huang et al., 2012; Gao et al., 2013; Shiraishi et al., 2013; Cortés-Ciriano 

et al., 2015). Ligand descriptors used in this thesis are summarized in Table 5 of 

the Methods section. 

 

3.3 Perspectives on QSAR / PCM modelling 

Despite the popularity and usefulness of QSAR and PCM modelling 

approaches in drug discovery, there are some limitations inherent to these 

predictive modelling techniques. Experimental errors and errors during data 

curation can have a significant impact on the model quality (Dearden et al., 

2009). One of the commonly encountered problems in QSAR / PCM modelling 

is the error in descriptor calculations resulting from incorrect chemical 

structures and the discrepancies in values calculated by different software 

(Dearden et al., 2009). Other sources of error arise from insufficient training 

data and the use of incorrect statistics for model evaluation. The pitfalls of 

using q2 based on LOO validation and R2 based on training data as the only 

measures to evaluate model performances have been discussed in Tropsha et al. 

(2001) and Alexander et al. (2015), respectively. Another well-known problem 

is model overfitting, owing to the use of excessive numbers of descriptors in 

model training (Topliss and Costello, 1972).   

 

QSAR models can be useful only if the descriptors reflect the actual 

phenomena (Johnson, 2008). The choice of descriptors is crucial to acquire a 
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meaningful interpretation of the models. Even though 2D descriptors are widely 

used in QSAR / PCM modelling, failure to account for the spatial 

representation of the molecules limits their usefulness. On the other hand, using 

3D descriptors also entails limitations such as incorrect 3D conformations 

(Guimarães et al., 2016) used for descriptor calculations, limited exploration of 

the ligand conformational space (Cappel et al., 2015) and need for bioactive 

conformations for CoMFA models (Cramer et al., 1988).  
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Aims of this thesis 
 
The main objective of this thesis was to deal with the limitations inherent to 

sequence-based PCM models that lack visual interpretability. To this end, we 

developed field-based proteochemometrics and applied this method to model 

the bioactivities of kinase and serine protease families. We used field-based 

protein descriptors and several 2D / 3D ligand descriptors to generate 

proteochemometric models that are visually interpretable. Extensive validations 

were conducted to support the credibility of the models and their usefulness for 

real-time purposes.  

Specific aims were as follows: 

1. To demonstrate the possibilities of applying field-based descriptors in 

proteochemometric modelling using kinases as a specific example 

(Publication I) - To build models on continuous bioactivity data using knowledge-

based and WaterMap fields derived from kinase binding sites and 

2D ligand descriptors  - To visualize the features identified as important for binding affinity 

and selectivity 

2. To investigate the prediction capabilities of field-based proteochemometric 

models on kinases (Publication II) 

- To build global classification models to predict active and inactive 

ligands 

3. To use information-rich 3D descriptors for both kinases and ligands and to 

extend the application of field-based proteochemometric approaches to 

study the features relevant for the selectivity of serine proteases 

(Publication III) 
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- To build predictive and visually interpretable models on a set of 24 

serine proteases and 5863 inhibitors - To perform extensive validations, such as Leave One Target Out 

(LOTO) and Leave One Compound Cluster Out (LOCCO), to 

investigate the extrapolative power of the models in terms of target 

and chemical space 

4. To investigate the influence of protein superimposition on field calculations - To use alignment-independent Zernike descriptors for proteins in 

proteochemometric modelling - To evaluate the prediction performances of the models based on 

protein fields and Zernike descriptors (unpublished results) 
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Materials and Methods 
This section includes a short description of the materials and methods used in 

this thesis. Detailed explanations concerning the methods are available in the 

original publications (I – III).  

 
1 Data collection 

1.1 Interaction data 

The experimental data used in proteochemometric modelling were mainly 

extracted from scientific literature and public databases such as ChEMBL and 

Kinase SARfari. ChEMBL (Bento et al., 2014) is an open source database that 

includes the bioactivity data of 2 million compounds (small molecules, 

peptides and antibodies) and about 11000 targets. Additional information about 

assay conditions, patents and literature references make this database a useful 

resource for conducting large-scale virtual screening and chemogenomics 

studies (Bento et al., 2014). Kinase SARfari is a resource dedicated to support 

chemogenomics research on kinases by integrating the information about 

sequences, 3D structures and bioactivities 

(https://www.ebi.ac.uk/ChEMBL/sarfari/kinasesarfari). In Publication I, the 

interaction data (Kd / Ki) for 50 kinases and 80 inhibitors were extracted from 

three publications (Karaman et al., 2008; Davis et al., 2011; Metz et al., 2011). 

In Publication II, activity data (Kd, Ki, inhibition% and residual activity) for 95 

kinases and 1572 inhibitors were compiled from a variety of sources, including 

the literature used in Publication I, Kinase SARfari and ChEMBL 18 (GSK and 

Millipore screening data). In Publication III, bioactivity data (Ki) for 24 

proteases and 5863 inhibitors were extracted from ChEMBL 20. ChEMBL 18 

and 20 mentioned here correspond to the different versions of ChEMBL. 
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1.2 Criteria for ligand selection 

In Publication I, we applied some criteria to choose the kinase inhibitors that 

have the potential to bind to either DFG-in/active or DFG-out/inactive 

conformations of kinases. Since our models were mainly focused on the DFG-

in conformations, we carefully extracted the DFG-in-like inhibitors based on 

the literature and by performing a fingerprint-based similarity search to known 

DFG-in inhibitors. Similarity searches based on Extended-connectivity 

fingerprints such as ECFP4 hardly found any DFG-in like inhibitors, owing to 

the diverse nature of compounds in the kinase dataset. Therefore, the commonly 

used MACCS keys (Durant et al., 2002) that rely on the predefined SMARTS 

patterns are an ideal choice for conducting fingerprint-based searches. In 

addition to filtering the DFG-in-like inhibitors, we removed compounds that 

had activity data for less than three kinases. In Publications II and III, no 

specific compound selection criteria were applied. All data available in the 

literature and public databases were used to build global predictive 

proteochemometric models for kinases and serine proteases. 

 

1.3 Ligand structures 

Ligands collected from scientific literature were downloaded from PubChem 

database in SDF format, whereas the structures of ligands from ChEMBL and 

Kinase SARfari were generated in Maestro (Schrödinger, 2011) based on their 

SMILES notation. Schrödinger’s LigPrep module was then used to convert 2D 

structures to 3D and generate possible ionization states at pH 7.0 . To 

explore the conformational space further, ConfGen’s (Watts et al., 2010) 

conformation generation module was employed. The force fields used in 

ConfGen were OPLS-2001 for initial structure generation and OPLS-2005 for 

energy minimization. From the multitude of conformations generated for each 



 49 

ligand, the lowest energy conformation was chosen for 3D descriptor 

calculations. 

 

1.4 Protein structures 

X-ray structures of kinases (95) and proteases (24) used in this study were 

downloaded from PDB. The completeness of the structures (no missing 

residues within 5Å of the crystal ligands) together with the resolution (< 3 Å) 

was used as the main criterion for choosing structures. Initially, the protein 

structures were cleaned by removing water molecules, additional chains and 

ligands. A standard protocol defined by the nodes in a KNIME workflow was 

used for protein preparation. KNIME (Berthold et al., 2007) is an open source 

workflow tool with a wide range of applications, including data mining, text 

processing, sequence analysis and statistical data analysis. An advantage of 

using KNIME is the possibility to integrate the modules provided by 

commercial vendors like Schrödinger and MOE. The workflow used for protein 

preparation included the following steps: (1) Correct residues with missing 

atoms, (2) Add hydrogen atoms, (3) Assign protonation states to ionizable 

residues based on the pH values determined from pKa predictions of PROPKA, 

(4) Optimize the geometry of hydrogen atoms, keeping heavy atoms fixed.  

 

2 Protein superimposition 

Protein superimposition is a procedure used to align protein structures to enable 

easy comparison. Following superimposition, the orthosteric binding pockets fit 

on top of each other, which makes them suitable for field comparisons. We 

used Schrödinger’s protein structure alignment tool that relies on dynamic 

programming to provide a best fit based on the sequence and secondary 

structural elements and to minimize the RMSDs of C  atoms. The common 
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reference structures used for superimposing kinases and proteases were c-Met 

kinase (PDB: 3A4P) and Matriptase (PDB: 1EAX), respectively. 

 

3 Methods for protein descriptor calculations 

3.1 Knowledge-based fields 

The ligand binding sites of kinases and serine proteases were described by 

fields derived from the knowledge-based contact potentials calculated by MOE. 

Knowledge-based contact potentials (Figure 9) are the joint probability 

densities derived from interatomic distance, lone-pair interaction angle and out-

of-plane angle (MOE, 2011). The joint probability densities are expressed by  
                  Pr (Ligand = l | Position = x, Protein = p)    

  
The hydrophilic and hydrophobic contact probabilities are calculated by 

considering the conditional probability of observing a ligand atom l at position 

x, provided the ligand atom l is in contact with the protein structure p. In 

knowledge-based field calculations, preferences for hydrophilic and 

hydrophobic contacts are determined based on the protein crystallographic data 

available in PDB (MOE, 2011). An advantage of using the knowledge-based 

contact potentials is that the directional preferences are taken into account and 

additional information is provided for describing the target-ligand interaction 

space.  
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Figure 9. Contact maps of selected ligand atoms and amino acid residues. Hydrophilic 

and hydrophobic contact maps are shown in red and green, respectively. Figure 

created using MOE (Molecular Operating Environment) is reproduced with 

permission from Chemical Computing Group                     

(https://www.chemcomp.com/journal/f_surfmap.htm). 
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In our studies, we calculated the knowledge-based fields by spanning a grid 

around the binding site. The crystal ligands extracted from PDB structures 

determined the size of the grid. For kinases, the dimensions of the grid were 

defined by 41 X-ray ligands (Publications I and II). For serine proteases, the 

peptide-like inhibitor that extends across the S1-S4 sub-pockets of Activated 

Protein C crystal structure (PDB: 1AUT) was used as the reference for grid size 

definition (Publication III). The space between the grid points was set to 0.5 . 

The hydrophilic and hydrophobic contact probabilities were calculated at every 

grid point and were influenced by the neighbouring atoms (Figure 10). The 

contact probabilities that exceeded the 0.9 thresholds were used as descriptors 

in proteochemometric modelling (Figure 11). 

 
Figure 10. Schematic representation of the grid enclosing the ligand-binding site of 

ABL1 kinase. Blue and orange spheres with varying colour intensities correspond to 

the polar and lipophilic field points with different contact probabilities. Figure adapted 

with permission from (Subramanian, V.; Prusis, P.; Pietilä, L. O.; Xhaard, H.; 

Wohlfahrt, G. Visually Interpretable Models of Kinase Selectivity Related Features 

Derived from Field-Based Proteochemometrics. J. Chem. Inf. Model. 2013, 53, 3021–

3030). Copyright (2013) American Chemical Society. 
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Figure 11. Knowledge-based fields calculated from the ligand-binding site of ALK 

kinase. The inhibitor TAE-684 extracted from the X-ray structure 2XB7 is shown as 

reference. Only the fields that lie in close proximity to the inhibitor are shown for 

clarity. Left panel: Polar protein fields with probability density > 0.9. Right panel: 

Lipophilic protein fields with probability density > 0.9. 
 

3.2 WaterMap-derived fields 

Schrödinger’s WaterMap (WaterMap, 2012; Abel et al., 2008) can be used to 

predict the position of water molecules in the binding site. WaterMap 

calculations are based on molecular dynamics simulations that involve explicit 

water molecules. The predicted water sites are assigned statistical 

thermodynamic properties such as enthalpy, entropy and Gibb’s free energy 

that are likely to influence ligand binding. Displacement of entropically 

unfavourable water molecules in the binding site facilitates ligand binding and 

maximizes affinity (Abel et al., 2008; Michel et al., 2009). Therefore, analysing 

the position and energetics of the water molecules is crucial in drug design. 

 

We have calculated the WaterMaps for the kinase and serine protease binding 

sites (Figure 12a) and projected them onto the knowledge-based grids to derive 

WaterMap fields (Figure 12b, c) (Publications I-III). Water density values were 
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initially assigned to the grid points to extract the high-density regions (density > 

0.06). Gibb’s free energy value was subsequently assigned to classify these grid 

points as stable ( G < -1 kcal/mol) or unstable water fields ( G > 3 kcal/mol), 

which were later used as descriptors in proteochemometric modelling. 
 

 

 
Figure 12. (a) WaterMaps calculated from the ligand-binding site of ALK kinase. The 

inhibitor TAE-684 extracted from the X-ray structure 2XB7 is shown as a reference. 

Water molecules with G < -1 kcal/mol (stable - green) and G > 3 kcal/mol (unstable 

- red) are highlighted with larger spheres. (b) Unstable water fields with ∆G > 3 

kcal/mol. (c) Stable water fields with ∆G < -1 kcal/mol. 

 

3.3 Zernike descriptors 

Zernike descriptors (Novotni and Klein, 2003) are alignment-independent 

descriptors commonly used for shape retrieval and comparison of ligand 

binding sites (Nisius and Gohlke, 2012). These descriptors are a vector of 

coefficients of terms in the Zernike polynomial expansion series and are 
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insensitive to misalignments of binding sites. We have calculated Zernike 

descriptors using our in-house scripts by transforming the knowledge-based and 

WaterMap-derived fields through a series expansion in 3D Zernike 

polynomials. Zernike function can be represented as 

 =                            Eq.1 

where  is the field vector,  is the Zernike moment,  is the Zernike 

polynomial and N is the maximum number of expansion terms. n, l and m in 

Eq.1 correspond to the principal, azimuthal and magnetic quantum numbers, 

respectively. 

 

Zernike descriptors were computed with varying orders of N (3, 5, 10, 20, 30, 

40, 50) and used as protein descriptors in PCM modelling. 

 

4 Ligand descriptors 

Both 2D and 3D ligand descriptors were used for proteochemometric modelling 

(Table 5). This includes Open Babel’s (Boyle et al., 2011) FP4 fingerprints 

(Publications I and II), Mold2 (Hong et al., 2009) descriptors (Publications I and 

II), Volsurf (Cruciani et al., 2000) descriptors (Publication I), 4-point 

pharmacophoric fingerprints (4-PFP) from Canvas (Canvas, 2014; Duan et al., 

2010) (Publications II and III), MOE (MOE, 2015) descriptors (Publication III), 

RDKit fingerprints (http://rdkit.org) (Publication III) and Pentacle’s GRIND 

descriptors (Pastor et al., 2000) (Publication III).  
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Table 5. Ligand descriptors for PCM modeling. 

 

Descriptor Information encoded 

2D descriptors 

Open Babel FP4 

fingerprints 

Atom and bond properties assigned based on predefined 

SMARTS patterns 

Mold2 Counts of atoms and bonds, physicochemical properties 

and topological descriptors 

MOE descriptors Counts of atoms and bonds, physicochemical properties 

and descriptors that account for molecule’s topology, 

pharmacophore features and partial charges 

RDKit fingerprints Circular fingerprints that describe molecule’s connectivity 

and chemical features 

3D descriptors 

Volsurf Physiochemically relevant numerical descriptors derived 

from GRID molecular interaction fields calculated based 

on water, hydrophobic and hydrogen bond acceptor 

probes 

4-PFP Pharmacophoric fingerprints based on the hydrogen bond 

donor (D), hydrogen bond acceptor (A), hydrophobic (H) 

and aromatic ring features (R) 

GRIND Alignment-independent variables obtained from the 

transformation of molecular interaction fields calculated 

using hydrogen bond donor (O), hydrogen bond acceptor 

(N1) and hydrophobic (DRY) probes 
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5 Data pre-processing 

Descriptors with near-zero variance were removed to reduce random noise. 

Presence of multiple classes of descriptors could introduce bias in the 

modelling process, which makes it necessary to apply the scaling and centring 

techniques. All of the descriptors were centred and scaled to unit variance 

(UV). In UV scaling, the descriptors are multiplied by the base weight, which is 

the inverse of the standard deviation calculated for each descriptor column. 

Additionally, block scaling (SIMCA, 2011) was applied for the descriptors in 

PLS models. Each descriptor class was considered as a separate entity called a 

block. In case of block scaling, each variable was multiplied by the block 

weight 1/ b, where b is the number of variables in each block. 

 

6 Principal Component Analysis 

Principal Component Analysis (PCA) (Wold et al., 1987) is a dimensionality 

reduction technique that involves orthogonal transformation of variables. The 

projection of variables to a lower dimensional space transforms them into 

linearly uncorrelated variables and they constitute the principal components 

(PCs). The transformed values for each data point constitute the PC scores, and 

the weights that explain the contributions of original variables towards the PC 

score calculations represent the loadings. PCA enables one to visualize the 

variation in data. We have applied PCA to both protein and ligand descriptors 

(Publications I-III). 

 

7 Cross-term descriptors in proteochemometric modelling 

Cross-terms (Wikberg et al., 2004) are commonly used to introduce non-

linearity in models that use linear approaches like PLS. Cross-terms can be 

computed as a product of protein-protein or ligand-ligand or protein-ligand 
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descriptors. Protein-protein and ligand-ligand cross-terms account for the 

intramolecular interactions in target and ligand space, respectively, whereas, 

protein-ligand cross-terms that explain the intermolecular interactions between 

proteins and ligands facilitate understanding of selectivity. Only the protein-

ligand cross-terms are used in our studies (Publications I and III). 

 

8 Generation of training and test sets 

The reliability of the PCM models can be best assessed by training the models 

on a dataset (training set) and using them to predict the bioactivities of a new 

set (test set) that has not been used in training the model. The training and test 

sets in PCM models can either be generated randomly (Publication III) or 

selected carefully after performing a diversity analysis on the dataset 

(Publication II). Training and test sets used for PCM modelling in different 

publications are presented in Table 6. 
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9 Machine learning approaches 

9.1 Partial Least Squares Regression 

Partial Least Squares (PLS) (Geladi et al., 1986; Wold et al., 2001) regression is 

a linear modelling technique used to study the correlation between a set of 

independent/predictor variables (X) and one or more dependent/response 

variables (Y). The PLS components are extracted by projecting both X and Y 

variables into new spaces to explain the maximum covariation between X and 

Y. In Publications I and III, we used the PLS approach to model the correlation 

between protein/ligand descriptors (X) and experimental binding affinities (Y). 

The equation describing the protein-ligand interactions in PLS models can be 

expressed as follows (Lapinsh et al., 2005): 

 

 Eq.2 

 

where Yc is the computed Y value, Ym is the mean Y value, xl is the ligand 

descriptor matrix, xp is the protein descriptor matrix and xl*xp is the cross-term; 

coeffl, coeffp and coeffl,p are the regression coefficients of ligands, proteins and 

cross-terms, respectively.  

 

9.2 Random Forests 

Random Forests (RF) (Breiman, 2001) are non-linear machine learning 

approaches dependent on an ensemble of decision trees to generate predictive 

models. A decision tree is a tree-like model that includes a series of decisions 

and possible outcomes. Using a single decision tree could lead to biased 

modelling and affect the prediction accuracies. Growing a random forest of 

decision trees by selecting random subsets of attributes from the feature space 

could significantly boost the model performances. The RF approach employs a 
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bagging algorithm where subsets of samples are randomly excluded to estimate 

the prediction errors. RF models are robust, as they are not strongly dependent 

on data pre-processing strategies and are less sensitive to outliers and noise. RF 

was used for training classification models in Publication II and regression 

models in Publication III. 

 

9.3 Support Vector Machines 

Support Vector Machine (SVM) (Cortes and Vapnik, 1995) is a machine 

learning approach that aims to construct hyperplanes to maximize the 

separation between different classes of data. For data that are not linearly 

separable, SVMs project the data to a high-dimensional feature space by 

employing kernel tricks. SVMs rely on many different kernel functions, some 

of which include radial basis function kernel, polynomial kernel, linear kernel 

and string kernels. The kernel functions differ by the parameters used and the 

way in which the feature mapping is performed. Optimizing the kernel 

parameters is critical in SVM modelling to find the optimal classifier.  We have 

used SVM to train classification models on a kinase dataset to separate actives 

and inactives (Publication II). 

 

10 Model validation 

10.1 Cross-validation 

Validating the models is crucial to assess their robustness. One of the 

commonly used internal validation procedures is cross-validation (CV), where a 

subset of data is excluded from the modelling process and used as an external 

test set. The different variants of cross-validation include 

(i) K-fold CV: Data are split into k subsets. The model is trained on k-1 

subsets and tested on the omitted set. This procedure is repeated, 
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until each of these subsets is tested once. The K-fold CV approach is 

frequently used in model validation. 

(ii) Leave One Out validation (LOO): It is an exhaustive validation 

procedure, where each and every observation is excluded for testing 

and the model is trained on the remaining observations. This 

approach is not so robust and the studies have shown that using 

LOO as the only validation approach is not optimal, but using it in 

combination with other validation techniques could be useful 

(Golbraikh et al., 2001). 

(iii) Leave One Target Out Validation (LOTO): The observations 

corresponding to the targets used in PCM modelling are excluded 

one at a time to evaluate the model’s extrapolation capabilities in 

terms of target space.  

(iv) Leave One Compound Cluster Out validation (LOCCO): The 

observations corresponding to a compound cluster (compounds 

grouped together based on their descriptor space) are excluded to 

assess the model’s prediction performances on a new compound 

space. 

(v) Double CV: It is a nested CV approach, where the validations are 

conducted by considering outer and inner loops. In the outer loop, 

the dataset is split randomly into training and test sets. The training 

set is validated by dividing it into k subsets in the inner loop to 

choose the optimal model for external test set predictions. Double 

CV provides a robust way to validate the models. 

(vi) Repeated random subsampling: Also known as the Monte Carlo 

method, where the validations are performed multiple times on 

different random splits of training and test sets. This method has the 
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disadvantage of choosing the same observation numerous times and 

excluding some observations completely from the validation cycles. 

K-fold CV (7-fold in Publication I, 5-fold in Publications II and III), LOTO 

(Publication I and III) and LOCCO (Publication III) are the validation 

procedures used in our studies. 

 

10.2 External prediction 

A model that performs well in internal cross-validation does not ensure its 

predictability on a completely external test set (Golbraikh et al., 2002). So, 

there is a need to assess the external predictive power of the models by either 

acquiring a new set of observations (Publication I) or by dividing the existing 

dataset into training and test sets (Publications II and III).  

 

10.3 Permutation validation 

Permutation validation / Y scrambling (Eriksson et al., 1997) is a procedure 

generally used to evaluate model overfitting. Models dependent on a large 

number of descriptor variables can often result in spurious correlations (Topliss 

and Costello, 1972; Eriksson et al., 1997) and perform poorly when applied to 

an external test set. Therefore, it is necessary to validate the models on random 

data. We have conducted permutation testing 20 times by fitting the models to 

random data generated by reordering experimental affinity values (Publication 

I) or activity classes (Publication II).  

 

11 Model performance 

In the assessment of the continuous model performances (Publications I and III) 

based on internal cross-validations, external predictions and permutation 

validations, the following measures were used: 
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Correlation coefficient (R2) and Predictability (Q2): R2 is a measure used to 

estimate the agreement between the observed and calculated values of the 

training data. 

                                     Eq.3  

 

Here,  refers to the observed measurements and  is the mean value of all of 

the observed measurements. 

 

Q2 is an estimate of the correlation between the observed and predicted values 

during CV rounds. 

                                         Eq.4 

Here,  refers to the observed measurements of the subset excluded during CV; 

 corresponds to the predicted values during cross-validation and  is the 

mean value of all of the observed measurements. 

 

Root Mean Square Error of Estimation (RMSEE): Prediction errors computed 

by comparing the calculated values (Ycalculated) of all of the observations (N) 

used for modelling with the experimentally measured values (Yi) 

                               Eq.5 

 

Root Mean Square Error of Prediction (RMSEPCV): Prediction errors 

computed by comparing the values of all of the observations (N) predicted 

during CV rounds (YPredCV) with that of the experimentally measured values 

(Yi) 

                               Eq.6 
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Root Mean Square Error of Prediction (RMSEPtest): Prediction errors 

computed by comparing the values of all the observations (N) predicted for an 

external test set (YPredicted) against the experimentally measured values (Yi) 

                             Eq.7 

 

Assessment of Permutation validation results 

The intercepts obtained by plotting the correlation coefficients of the original 

and permutated values against the correlation (R2) and predictability (Q2) values 

were used as the basis of assessing permutation validation (Figure 14). R2 

intercepts below 0.3 and negative Q2 intercepts imply that a model is valid 

(Eriksson et al., 1999) enough for further predictions and interpretations. 

 

 
Figure 14. An example of permutation validation conducted on serine protease dataset. 

Permutation plots shown here correspond to the PLS models based on protein fields 

and RDkit fingerprints. Colored dots in the figure correspond to the R2 and Q2 values 

of the 20 models built with randomly permuted Y values. 
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For classification models, the performances were evaluated by computing 

several measures (accuracy, sensitivity/true positive rate, specificity/1-false 

positive rate, Matthews correlation coefficient (MCC) (Matthew, 1975), kappa 

coefficient (Cohen, 1960) and area under the ROC curve (AUC) (Linden, 

2006)) dependent on the number of true positives (TP), false positives (FP), 

true negatives (TN) and false negatives (FN).  

                                     Eq.8 

                                                     Eq.9 

                                                   Eq.10 

                 Eq.11 

        Eq.12 

 

where ; N is the total 

number of observations. 

 
AUC: AUC refers to Area Under the Curve and it is a measure of a classifier’s 

potential to rank true positives higher than false positives; AUC values are 

estimated based on the ROC curve, which is a plot of the false-positive rate 

(FPR) against the true-positive rate (TPR) (Figure 15). AUC of 1 implies that 

the classification is perfect, and AUC of 0.5 indicates randomness. 
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Figure 15. ROC curves of the SVM classification models of the kinase dataset shown 

relative to the ROC curves with random and maximum AUCs. 

 

12 Model interpretation 

12.1 Interpretation of PLS models 

PLS models were interpreted by analysing the features that have a positive 

influence on binding affinity (Publications I and III). Protein and ligand 

descriptors related to affinity of ligands towards kinases/proteases were 

identified based on the positive PLS coefficients (coeffl and coeffp as described 
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in Eq. 2). Further, to interpret the features related to selectivity, we used cross-

term coefficients (coeffl,p in Eq. 2). The descriptors used in PCM modelling 

being the PC scores, the original protein field points and ligand functional 

groups / fingerprints were traced back by examining the loadings of the PCs. 

Since interpretation of the protein field points is a laborious process, we 

restricted the interpretation to positive PLS coefficients and analysed only the 

top 10 loadings of PCs.  

 

12.2 Interpretation of RF models 

In RF models, Gini index and the descriptor’s correlation to active class were 

used as the basis for interpretation (Publication II). Gini indices are a measure 

of the homogeneity of the nodes and depend on the variables used for splitting 

in decision trees. The higher the decrease in Gini index, the more the descriptor 

has relevance for classification (Liaw, 2002). However, the Gini indices fail to 

account for the descriptor’s relevance for active or inactive class. Subsequently, 

the descriptors that had high correlation values for the active class were selected 

for interpretation. The protein field points and ligand’s 4-PFPs that make a 

ligand active or inactive towards a specific kinase were identified by analysing 

the loadings of PCs, as described above. 

 

13 Applicability Domain (AD) analysis 

A model’s usefulness can be evaluated by its capability to predict new targets 

and ligands that have not been used in the modelling process. The scope and 

accuracy of predictions can be ascertained based on the similarity of the 

external ligand or target to its training space (Jaworska et al., 2005).  
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13.1 Ligand space 

In Publications II and III, the AD analysis was conducted by inspecting the 

Tanimoto similarities of the test set ligands based on their fingerprints against 

the training set compounds.  

 

                             Eq.13 

 

Here,  is the number of bits found in both training and test set ligands; 

NTr is the number of bits found only in the training set ligand and NTe is the 

number of bits found only in the test set ligand. 

 

The similarity thresholds ideal for reliable predictions of the test set ligands was 

determined by considering their prediction accuracies (> 80%) in Publication II 

and RMSEPs in Publication III (RMSEPtest < 1). 

 

13.2 Target space 

The extent to which the models can be applied to understand polypharmacology 

depends on their extrapolative power. Extrapolation to novel targets was 

assessed by computing the Euclidean distance between the training and test set 

kinases, based on the PC scores of protein field descriptors (Publication II). 

Euclidean distances were calculated by using the following formula: 

 

               Eq.14 

 

where KinTr and KinTe refer to the protein descriptors of training and test set 

kinases, respectively. 
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Summary of main results 
1 Characterization of datasets 

The ligand, target and bioactivity space of the kinase and serine protease 

datasets were analysed by considering the description of the molecules, 

knowledge-based and WaterMap-derived fields of the protein’s binding pockets 

and the distribution of bioactivities, respectively. Ligand space was analysed 

only by considering the descriptors that gave the best performance in PCM 

modelling (for details, see Table 8 and 10) 

 

1.1 Kinase dataset 

Ligand space 

In Publication I, clustering 80 ligands based on the Euclidean distances 

computed from the PC scores of Open Babel fingerprints shows that there are 

many compounds that overlap in terms of chemical space, which in turn limits 

the diversity of the dataset. Ligands clustered together based on chemical space 

have different propensities towards kinases (Figure 16), which makes it rather 

difficult to predict the bioactivities of new compounds. Among the 80 ligands 

for which activity data are known for all 50 kinases, 29 ligands are highly 

selective, interacting with less than 5 kinases. Nearly 20% of the ligands are 

non-selective, the most promiscuous being staurosporine, which interacts with 

47 out of 50 kinases in the dataset. Considering the grouping patterns of ligands 

based on their selectivity, no distinct clusters are observed with respect to 

ligands that act on 5 kinases or 40 kinases.  

 

In Publication II, the dataset was extended to include 1572 inhibitors. Principal 

component analysis based on 4-PFPs shows the uniform distribution of the 

compounds in the PC space, which in turn reflects the diversity of the dataset. 
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Sixty-two PCs that explain 80% of the total variation in data were extracted to 

be used in PCM modelling. For simplicity, only two PCs that explain 33% of 

the variance are shown here (Figure 17). Further, comparing the distributions of 

Tanimoto similarities of the training and test ligands (Figure 18) shows that 

nearly 80% of the test set ligands have Tanimoto similarities above 0.7 with the 

training set ligands. The overlap in chemical space between the training and test 

set compounds is comparatively higher than the similarities among the training 

set compounds, supporting the reliability of the test set predictions. 
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Figure 16. Hierarchical average linkage clustering of 80 kinase inhibitors based on 

their Open Babel fingerprints (Publication I). Different coloured text in the figure 

corresponds to selectivities of the compounds, categorized by number of kinases, with 

which they are active (Most selective (green): 5 kinases; Moderately selective 

(black): 6-20 kinases; Least selective (red):  20 kinases). 
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Figure 17. Scatter plots of the first two principal components of the 4-PFP descriptor 

space of 1572 kinase inhibitors (Publication II). Green and red dots correspond to 

inhibitors in training and test set, respectively. 
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Figure 18.  Distribution of Tanimoto similarities computed based on the 4-PFPs of 

kinase inhibitors in Publication II. Green bars correspond to the Tanimoto similarities 

among the 1257 ligands in training set; Red bars correspond to the Tanimoto 

similarities of the 315 test set ligands against the training set ligands. 

 

Target space 

As far as the kinase space is concerned (Publications I and II), it includes 

multiple representatives from all of the major kinase families. The knowledge-

based and WaterMap fields seem to be rather similar for various kinase 

subgroups, which is reflected in their clustering patterns (Figures 19 and Figure 

20). For most of the kinase families, the subtypes are grouped together in the 

same cluster. However, there are a few exceptions. For instance, the CDK 

(CDK2, CDK5, CDK9) and PAK (PAK1, PAK6, PAK7) subtypes are placed 

apart in different clusters, despite their high sequence similarity. The even 

spread of different kinase families along the cluster tree together with the 

subgroup similarities enables extrapolation to novel kinases and provides a 

dataset suitable for predicting the activity and selectivity profiles of inhibitors 
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that bind to different kinase subgroups. The 50 kinases in Publication I are a 

subset of the 95 kinases included in Publication II. 

 

 
Figure 19. Similarity heatmaps of 50 kinases derived from the combined knowledge-

based and WaterMap fields (Publication I). The row labels correspond to the various 

kinase subtypes with the family names preceding them. 
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Figure 20. Hierarchical average linkage clustering of 95 kinases derived from the 

combined knowledge-based and WaterMap fields (Publication II). Different colours 

correspond to kinase subfamilies (AGC, CAMK, CK1, CMGC, OPK, STK, TK, TKL). 

Kinases included in the target prediction test set are underlined. Boxes in the cluster 

represent the kinase subtypes grouped together. 



 78 

Activity space 

In Publication I, the bioactivity spectrum of kinases covers a wide range of 

continuous values with pKd / pKis varying from 5 to 11 (Figure 21). Of the total 

of 951 observations considered for modelling, nearly 85% of the interaction 

data falls within the range of 5-8. With only a few highly potent compounds, 

the dataset is imbalanced in terms of pKd / pKi ranges, and it might create a 

challenge for future predictions of compounds with high potencies. 

 

In Publication II, the dataset is compiled from multiple sources and includes 

different types of bioactivities. Therefore, classifying the data points as actives 

and inactives based on certain cut-offs seems to be an optimal choice for 

modelling (Table 7). Analysing the distributions of bioactivity ranges clearly 

shows that nearly 75% of the interaction data belongs to the inactive class 

(Figure 22). This data imbalance is likely to have an impact on the bioactivity 

predictions. 

 

 
Figure 21. Distribution of pKd / pKi values of 80 inhibitors against 50 kinases in 

Publication I  
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Table 7. Distribution of actives and inactives in four different datasets used in 

Publication II 

 

Dataset Interaction data Number of 

data points 

Actives 

(cut-off) 

Inactives 

(cut-off) 

Ambit pKd 5491 1474 (>= 5) 4017 (<5) 

Metz pKi 31667 9151 (>= 5) 22516(<5) 

GSK Inhibition% at 1 M 17629 3288 (>=10%) 14341 (<10%) 

Millipore Residual activity 8400 1816 (<=50%) 6584 (>50%) 

 

  
 

 
Figure 22. Distribution of data points (1572 inhibitors and 95 kinases) in four different 

datasets used in Publication II. (a) Ambit (B) Metz (C) GSK (D) Millipore 
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1.2 Serine protease dataset 

Ligand space 

The serine protease dataset of 5863 inhibitors is quite sparse in terms of 

activity. For many inhibitors, interaction data are available only for 1 or 2 

proteases. K-means clustering of the inhibitors based on RDkit circular 

fingerprints resulted in 20 clusters (Figure 23) that had significant overlap in 

chemical space (for details, see Publication III). However, there are a few 

exceptions, with three clusters containing compounds with polycyclic ring 

systems linked to chlorine or fluorine and compounds with pyrazopyrimidines 

remaining distant from the rest. 

 
Figure 23. Distribution of the 20 compound clusters in two dimensions. Different 

colours correspond to different clusters. dc1 and dc2 refer to discriminant coordinates. 

Figure reproduced from Supplementary Material of Publication III. 
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Target space 

Owing to the limited availability of interaction data, the number of serine 

proteases was restricted to 24 in this dataset. Knowledge-based and WaterMap 

fields of the serine proteases resulted in clusters where even some of the 

subgroups are placed apart, e.g. kallikrein 1, 3, 5 and 7 (Figure 24). The low 

similarity between the different proteases and the uneven distribution of data 

points with 70% representing either coagulation factor Xa or thrombin make it 

rather difficult to extrapolate in terms of target space.  

 

Activity space 

Unlike the kinase dataset, the bioactivities of serine proteases are more 

uniformly distributed with the presence of many highly potent and moderately 

potent compounds (Figure 25). Of the 7908 data points used for modelling, 

10% have pKis less than 5, with the majority of the interaction data representing 

kallikrein 7 and coagulation factor XII. Of the data points, 26% have pKis 

ranging from 8 to 11. Most of these highly potent compounds target coagulation 

factor Xa, thrombin, plasma kallikrein and granzyme B. 
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Figure 24. Hierarchical average linkage clustering of 24 serine proteases derived from 

Knowledge-based and WaterMap fields (Publication III). 
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Figure 25. Distribution of pKi values of 5863 inhibitors against 24 serine proteases in 

Publication III 
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2 Field-based PCM on continuous data 

In Publication I, PCM models were built on a dataset of 50 kinases and 80 

inhibitors with 951 known Kd or Ki values, retrieved from well-curated sources. 

Polar, lipophilic and WaterMap fields were used as protein descriptors together 

with the different 2D (Open Babel, Mold2) and 3D (Volsurf) ligand descriptors. 

PLS models based on ligands’ Open Babel fingerprints showed the best 

performance during both internal cross-validation (Q2: 0.465; RMSEPcv: 0.796) 

and external prediction (RMSEPtest: 0.800). An interesting observation is that 

the cross-terms, introduced to account for non-linearity in PLS models 

improved the model’s overall performance by about 30%, with R2 increasing 

from 0.336 in models without cross-terms to 0.662 in models with cross-terms. 

Also, the predictabilities (Q2) of the models were improved with the inclusion 

of the cross-terms (Table 8). 

 

In Publication III, PCM modelling was conducted on a dataset with pKi values 

extracted for 24 serine proteases and 5863 inhibitors. Field-based descriptors 

were used for proteins, as in Publication I, whereas, ligands were described by 

RDkit fingerprints, MOE descriptors, 4-PFPs and GRIND descriptors. Both 

PLS and RF approaches were used for model training. Considering the model 

performances with respect to different ligand descriptors (Table 8), RF models 

based on RDkit fingerprints had the best performance, with R2 and Q2 as high 

as 0.957 and 0.737, respectively. Further, the RMSEP values from cross-

validation and external test set predictions were below 1, making these models 

more robust. Overall, PLS models had slightly poorer performances than the RF 

models, regardless of the ligand descriptors used. However, the PLS models 

based on RDkit fingerprints performed reasonably well during the model 

training (R2:0.670; Q2:0.588). Their RMSEPtest values were close to 1 and the 
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prediction errors were within the experimental error ranges, which is typically 1 

log unit. Therefore, the models are sufficiently valid to be considered for further 

predictions and interpretations. 

 

Table 8. Performances of field-based PCM models on continuous data. 

 

Ligand 

descriptors 

Method Correlation 

(R2) 

Predictability 

(Q2) 

RMSEPcv
a RMSEPtest

b 

Kinase dataset 

Open Babelc PLS 0.336 0.250 0.954 0.865 

Open Babel PLS 0.662 0.465 0.796 0.800 

Mold2 PLS 0.539 0.445 0.811 0.716 

Volsurf PLS 0.520 0.400 0.842 0.947 

Serine protease dataset 

RDkit 
PLS 0.670 0.588 1.024 1.006 

RF 0.957 0.737 0.799 0.810 

MOE 
PLS 0.505 0.428 1.219 1.129 

RF 0.961 0.703 0.857 0.840 

4-PFP 
PLS 0.543 0.438 1.229 1.136 

RF 0.928 0.566 1.025 0.990 

GRIND 
PLS 0.273 0.238 1.360 1.300 

RF 0.951 0.430 1.175 1.150 
a Root mean square error of prediction resulting from cross-validation 
b Root mean square error of prediction resulting from external test set predictions 
c PCM models without cross-terms 
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3 Influence of protein descriptors in PCM modelling 

Protein descriptors used in PCM models are likely to have an impact on the 

model’s prediction performances. To verify this, performances of PLS models 

based on ligand’s Open Babel fingerprints and different combinations of 

protein fields / sequence-based descriptors were compared in Publication I. 

Building PLS models using knowledge-based fields (polar and lipophilic) or 

WaterMap-derived fields separately did not result in significant variations 

regarding performances. Nevertheless, using these two descriptors in 

combination boosts the model’s overall performance and lowers the prediction 

errors. On comparing the performances of field-based and sequence-based PCM 

models, models derived from sequence information had consistently lower 

predictabilities (Q2: 0.32-0.37) and higher RMSEPs (0.84-0.90) than the field-

based model (Q2: 0.47; RMSEP: 0.80). Similar trends were observed regardless 

of the sequence descriptors used (Table 9). 

 

In Publication III, the effect of including protein descriptors in PCM modelling 

was assessed by building RDkit fingerprint-based models on serine protease 

dataset, where the protein fields were excluded completely. Eliminating protein 

descriptors led to a significant drop in prediction performances (Table 9), with 

R2 and Q2 going as low as 0.5, relative to the models trained with protein fields 

(R2 :0.957 ; Q2: 0.737).   

 

Unlike kinases in Publication I, a slightly different trend is observed with the 

sequence-based PCM models on serine proteases (Publication III). Sequence-

based models perform nearly as well as field-based models in terms of internal 

and external validations (Table 9). However, their limited visual interpretability 

makes them less favourable than field-based models. 
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4 Field-based PCM on classification data 

In Publication II, attempts were made to build a global classification model for 

kinases to test the robustness of the field-based PCM approaches, in terms of 

predictions. RF and SVM models were built on ligand and target prediction sets 

to classify the actives and inactives with Open Babel fingerprints, Mold2 and 4-

PFPs as ligand descriptors. Results of the best-performing RF models are 

reported in Table 10.  

 

Table 10. Performance of field-based PCM models on classification data generated by 

using the Random Forest approach. 

 

Ligand 

descriptors 

Cross-validation External prediction 

Accuracy MCCa AUCb Accuracy MCCa AUCb 

Ligand Prediction dataset 

Open Babel 0.82 0.48 0.86 0.78 0.25 0.73 

Mold2 0.83 0.50 0.88 0.83 0.47 0.85 

4-PFPc 0.83 0.49 0.87 0.81 0.42 0.83 

Target Prediction dataset 

Open Babel 0.83 0.49 0.86 0.80 0.39 0.82 

Mold2 0.83 0.49 0.87 0.81 0.42 0.83 

4-PFPc 0.83 0.49 0.87 0.81 0.41 0.82 
a Matthews correlation coefficient 
b Area Under the ROC curve 
c 4-Point pharmacophoric fingerprints 
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Considering the internal cross-validation performances, the ligand and target 

prediction models have nearly the same performance, with AUCs of over 0.85 

and MCC ranging from 0.48 to 0.50. With regard to external test set 

predictions, models based on Mold2 and 4-PFPs are more efficient in predicting 

external ligands and targets (Table 10) than Open Babel fingerprint models.  

The low performance of the Open Babel models can be attributed to the 

simplistic functional groups description provided by the Open Babel 

fingerprints. These descriptors are less informative than the more complex 

Mold2 and 4-PFPs, which capture additional information relevant for making 

good predictions. 

 

Predicting the activities of test set kinases using the models based on target 

prediction datasets with AUCs above 0.87 (Table 10) shows that the target 

prediction PCM models can be used to estimate the polypharmacological 

profiles of the kinase inhibitors with reasonable accuracy. 

 

Efforts to compare the classification performances based on different kinase 

families revealed no significant differences in AUCs, except that the AGC and 

OPK families have low sensitivities owing to the sparse distribution of activity 

points and the presence of few closer homologues. Furthermore, analysis of the 

prediction performances of data retrieved from different sources (Ambit, Metz, 

GSK and Millipore) suggested that prediction accuracies are independent of the 

data source and activity type (pKd, inhibition%, residual activity). Prediction 

accuracies are reasonable provided that sufficient data points are available for 

each activity category.  
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5 Visual interpretation of PCM models 

An important aspect of the field-based PCM modelling is the ability to acquire 

visual interpretation of both the protein and ligand features important for 

binding affinity and selectivity, simultaneously. Interpreting the PLS 

continuous models on kinase dataset (Publication I) revealed that the presence 

of polar, lipophilic and unstable water field points in close proximity to the 

well-conserved hinge motifs is generally important for the affinity of ABL1 

kinase towards any ligand (Figure 26 a, b). Likewise, for Dasatinib to interact 

with any kinase, the presence of “hetero-N-nonbasic”, “isothiourea” and 

“hetero-S” functional groups is relevant. To elucidate the features that 

contribute to the selective binding of dasatinib towards ABL1, the protein and 

ligand features should be considered as a combination and not as separate 

entities (Figure 26 c, d). Existence of lipophilic field points near the aryl 

chloride of dasatinib influences selectivity. Further, the unstable water field 

points in this region are expected to promote strong binding, as they are likely 

to be displaced during ligand binding. Additionally, the model suggests that the 

stable water field points near the hydroxy group of dasatinib might influence 

selectivity, probably by mediating the interactions of dasatinib with ABL1 

binding site residues. 
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Figure 26. Protein field points and ligand functional groups relevant for the 

interactions of the inhibitor dasatinib with ABL1 kinase. (a) & (b) Features that 

influence binding affinity. Polar, lipophilic and unstable water field points are shown 

as slate, orange and pink spheres, respectively. (c) & (d) Features related to selectivity. 

Lipophilic, unstable and stable water field points are represented as yellow, red and 

green spheres, respectively. Ligand functional groups (from Open Babel) relevant for 

affinity (N: hetero-N-nonbasic, S: hetero-S, U: isothiourea) and selectivity (Cl: aryl 

chloride, A: primary alcohol) are indicated in blue and magenta, respectively. Figure 

adapted with permission from (Subramanian, V.; Prusis, P.; Pietilä, L. O.; Xhaard, H.; 

Wohlfahrt, G. Visually Interpretable Models of Kinase Selectivity Related Features 

Derived from Field-Based Proteochemometrics. J. Chem. Inf. Model. 2013, 53, 3021–

3030). Copyright (2013) American Chemical Society. 

 

In Publication II, interpretation of the RF classification models provided an 

illustration of the protein and ligand features that make a compound active or 

inactive towards a specific kinase. Features relevant for the interactions of 

TAE-684 towards ALK and AKT2 kinase are presented in Figure 27. Polar and 

unstable water field points near the hinge motif serve as the affinity-promoting 

regions, together with the 4-PFP AAAR. In contrast to the unstable water field 
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points seen in the hydrophobic pocket of ALK kinase, the stable water field 

points in AKT2 kinase are expected to weaken ligand binding, thereby 

contributing to the low affinity of TAE-684 towards AKT2 kinase. Further, the 

interactions between the piperazine moiety of TAE-684 and E1210 in ALK 

kinase is most likely mediated by the stable water present in this region. On the 

other hand, in AKT2 kinase, a phenylalanine (F239) is present in the same 

position as glutamate (E1210) in ALK kinase, which leads to unfavourable 

interactions with piperazine, lowering affinity. 

 

 
 
Figure 27. Protein field points and ligand pharmacophoric groups relevant for the 

strong binding of TAE-684 towards ALK kinase and weak affinity of TAE-684 

towards AKT2 kinase. Polar, lipophilic, unstable and stable water field points that are 

likely to influence affinity are shown as blue, yellow, red and green spheres, 

respectively. 4-PFPs (AARR, AAAR) identified to be important for the interactions of 

TAE-684 and ALK kinase are represented as colored circles (A = H-acceptor (green); 

R = Aromatic ring (brown)). Figure reproduced by permission of The Royal Society of 

Chemistry (Subramanian, V.; Prusis, P.; Xhaard, H.; Wohlfahrt, G. Predictive 

Proteochemometric Models for Kinases Derived from 3D Protein Field-Based 

Descriptors. Med. Chem. Commun. 2016, 7, 1007–1015). 

http://pubs.rsc.org/en/content/articlelanding/2016/md/c5md00556f 
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6 Applicability domain analysis 

Models are considered useful provided that they can be successfully applied to 

predict a new compound or target space. In Publication I, the models had 

limited applicability because the training space includes only active 

representatives of 80 inhibitors and inactives are excluded from the modelling 

domain. Despite these limitations, when applied to a small test set of 25 kinase 

inhibitors, the RMSEPtest obtained was close to 0.8. In Publication II, 64% of 

the test set compounds, whose 4-PFP-based Tanimoto similarities with the 

training set compounds exceeded 0.8, were predicted with more than 80% 

accuracy. Additional efforts to predict external targets revealed that the 

Euclidean distances calculated based on the protein field descriptors should be 

below 0.992 for reliable prediction of test set kinases. In Publication III, 

prediction errors of 84% of the test set compounds were below 1 provided that 

their RDkit-based Tanimoto similarities were above 0.7. Overall, in kinase and 

protease models, a few test set compounds were poorly predicted, despite their 

high similarities with the training set.  

 

In addition to external test set predictions, the applicability domain was further 

explored by LOTO and LOCCO validations. LOTO validations on kinase 

(Publication I) and protease datasets (Publication III) resulted in average 

RMSEPs of 0.820  0.022 and 1.302  respectively. Even though the 

LOTO RMSEPs seem to be higher than the model’s global RMSEPs, assessing 

the predictions of individual targets showed that the models can be extrapolated 

to novel targets provided that there are some close homologues whose activity 

space overlaps with the target to be predicted. In Publication III, LOCCO 

models with excluded compound clusters had a significant drop in performance. 

Further, the high RMSEPs (1.550  resulting from LOCCO validations 
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revealed that it is more demanding to extrapolate to novel compound space for 

the serine protease dataset.  
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Additional Unpublished Results 

1 PCM models on superimposed protein fields and Zernike descriptors: a 

comparative study 

As protein fields are sensitive to errors in protein structural alignments, there is 

a need to investigate the extent to which these errors can influence a model’s 

prediction power. PCM models based on protein fields and alignment-

independent Zernike descriptors (N=10) were built using RDkit fingerprints as 

ligand descriptors (Table 11). RF classification and RF regression techniques 

were used to model the bioactivities of kinases and serine proteases, 

respectively.  

 
Table 11. RF-based PCM models on superimposed protein fields and Zernike 

descriptors. 

 

Protein 

descriptors 

Ligand 

descriptors 

Cross-validation 

(MCCa / Q2b) 

External Prediction 

(MCC / R2c
test) 

Kinase dataset (classification) a 

Protein fields 
RDkit 

0.52 0.48 

Zernike (N=10) 0.48 0.48 

Serine protease dataset (Continuous) b 

Protein fields 
RDkit 

0.67 0.71 

Zernike (N=10) 0.67 0.71 
a Matthews correlation coefficient (MCC) values reported for classification models 
b Predictabilities (Q2)  resulting from cross-validation 
c Correlation (R2

test) resulting from external test set predictions reported for continuous 

models 
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Comparing the model performances based on protein fields and Zernike 

descriptors, the predictions seem to be nearly the same during both internal 

cross-validation and external predictions (Table 11). Similar trends were 

observed for both kinase and serine protease datasets, suggesting that the 

structural alignments used for field calculations are reasonably good and the 

global performances of the models are not affected. 

 

An in-depth analysis was conducted to examine the prediction differences of 

the individual kinases and serine proteases. When the predictions made by 

field-based and Zernike descriptor-based PCM models for the individual 

observations were compared (Table 12), the correlation of 0.77 for kinases and 

0.92 for serine proteases confirms the robustness of field-based and Zernike 

descriptor models, in terms of predictions, with a few exceptions. On analysis 

of the individual predictions of kinases, predictions based on Zernike 

descriptors were found to improve by at least 10% for five kinases. It is 

probable that these kinases had poor superimposition, which in turn contributed 

to shifts in field positions and hence the predictions were affected in field-based 

models. On the other hand, predictions based on Zernike descriptors 

deteriorated by more than 10% for nearly 15 kinases. This drop in predictions 

could be attributed to the information loss that occurs during the transformation 

of fields to alignment-independent descriptors. A slightly different scenario was 

observed in serine protease models, as the predictions based on Zernike 

descriptors improved by 10% for only one protease and reduced by 10% for 

three proteases. Overall, the protease models are more stable with respect to 

predictions. 
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Nevertheless, the results obtained for Zernike descriptors are preliminary. A 

detailed analysis concerning the shifts in protein structure alignments and 

subsequently field point positions is necessary to draw further conclusions. 

 

Table 12. Comparison of prediction performances of protein fields and Zernike 

descriptor-based (N=10) PCM models.  

 

Protein 

target 

Performance 

measure 
R2

(fields,Zernike)
a 

Predictions of individual proteins 

Improved by 

atleast 10%d 

Reduced by 10% 

or moree 

Kinases MCCb 0.77 DAPK1, GAK, 

EPHA7, 

CAMKK2, ERK1 

MAPKAPK2, 

GSK3B, DRAK2, 

ALK, EPHA3, 

PAK7, EPHB4, 

PRKR, JNK1, 

CSNK1G3, 

CAMK4, RET, 

MEK1, CSNK1G1, 

EFGR_mut 

Serine 

proteases 

R2
test

c 0.92 APC FXIIa, KLK5, FIXa 

a Correlation between predictions obtained from field-based and Zernike descriptor- 

based PCM models 
b Matthews correlation coefficient 
c Correlation resulting from external test set predictions 
d Kinases whose MCC values and serine proteases whose R2

test values improved by 

atleast 10% 
e Kinases whose MCC values and serine proteases whose R2

test values reduced by 10% 

or more 
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2 Impact of expansion order in Zernike descriptor-based PCM modelling 

It is often a challenge to decide the extent to which Zernike polynomials should 

be expanded. Expanding the Zernike polynomials increases the level of 

description and captures more information from the protein fields. As there are 

no standard methods, the order of expansion is decided on a trial and error 

basis. Therefore, the Zernike descriptors were calculated by assigning a series 

of N values (N=3, 5, 10, 20, 30, 40, 50). Performances of PCM models based 

on Zernike descriptors (Table 13) remained nearly the same up to the order of 

40 for both internal and external validations (MCC: 0.46 - 0.50). Expanding the 

Zernike polynomials further by setting N to 50 led to a decrease in both internal 

and external MCCs, suggesting that these descriptors tend to add random noise 

to the models. The model performances neither increase nor decrease 

significantly by expanding Zernike polynomials beyond the order of 10. As 

inclusion of irrelevant descriptors is likely to result in overfitted models, the 

optimal value of N can be chosen as 10.  

 

Table 13. Impact of expansion order in Zernike descriptors based PCM modelling on 

kinase dataset. 

Order of 

expansion (N) 

No. of Zernike 

descriptors 

Cross-validation 

(MCC)a 

External Prediction 

(MCC)a 

3 6 0.49 0.47 

5 12 0.49 0.48 

10 36 0.48 0.48 

20 121 0.50 0.48 

30 256 0.49 0.47 

40 441 0.49 0.46 

50 676 0.47 0.44 
aMatthews correlation coefficient 
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Discussion 
1 Impact of data quality and coverage in PCM modelling 

Information-rich databases like ChEMBL (Bento et al., 2014), BindingDB (Liu 

et al., 2007), PDBbind (Wang et al., 2005) and PubChem (Kim et al., 2016) 

offer the possibility to conduct large-scale data analysis and generate QSAR / 

PCM models to elucidate structure activity relationships of specific targets or 

target families. Nevertheless, the inconsistencies found in these databases 

resulting from multiple measurements by different assays for the same protein-

ligand pair, incorrect structures, erroneous measurement units and incorrect 

values raise concern about the data quality and their use for generating 

empirical models (Williams and Ekins, 2011, Tiikkainen et al., 2012).  

 

The reliability of the models based on experimental data collected from various 

sources and different assay conditions is often questionable. Yet, another 

concern is the reproducibility. Experimental measurements made for a specific 

protein-ligand pair by two different laboratories can have significant variations, 

as reported in Publication I. Lack of standard operating protocols often makes it 

difficult to compare the experimental results. The reproducibility issues can 

impose limitations on model quality and their usefulness for making further 

predictions. Despite these limitations, the wealth of data available in public 

databases is frequently exploited in QSAR and PCM modelling.  

 

Data collection suitable for model generation is a crucial step and it should be 

done with caution. Building models exclusively by utilizing the data from well-

curated sources as in Publication I, can limit the applicability domain of the 

models. Extracting data from various sources after applying certain filters 

(Kramer et al., 2012) and ensuring checks for data quality (Tiikkainen et al., 
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2012) would help to establish predictive modelling. An alternative option 

would be to use manually curated datasets, which has been thoroughly 

investigated in terms of data quality and coverage. Such large datasets are 

frequently not available for many targets. However, the recently published 

proteochemometric models on kinases with 356908 data points (Christmann-

Franck et al., 2016) and the ligand-based activity prediction models generated 

for a set of 280 kinases (Merget et al., 2016) serve as examples of large-scale 

predictive modelling.  

 

Data coverage is yet another important aspect in PCM modelling. It is often 

demanding to generate datasets with a complete bioactivity matrix. In 

Publications II and III, the sparse activity matrix led to a rise in prediction 

errors for a few test set compounds that had good overlap with the training set 

descriptor space. The model’s robustness increases with data coverage, which 

in turn limits the application of proteochemometric approaches for some of the 

less extensively studied targets, with meager activity data. 

 

2 Availability of structures for field-based PCM modelling 

Protein fields used for PCM modelling are highly dependent on X-ray 

structures. It is often challenging to find crystal structures with high resolution 

and completeness for all of the targets included in PCM modelling. Lack of 

crystal structures limits the use of field-based PCM for these targets. This is 

true for GPCRs with only a few solved crystal structures. Using homology 

models for field calculations could be an alternative. However, homology 

models have their own limitations, as the model quality depends on sequence 

identity with the template and correctness of the alignment. Homology models 

are frequently mere reflections of template structures and fail to account for 
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protein flexibility and structurally more different areas, which in turn adds to 

errors during field calculations and subsequent PCM modelling. 

 

3 DFG-in (active) and DFG-out (inactive) conformations of kinases 

As protein fields are influenced by conformational flexibilities of the target 

protein, it is necessary to separate the active and inactive conformations of 

kinases prior to field calculations. It is easy to distinguish between DFG-in and 

DFG-out kinase structures by means of manual inspection, considering the 

orientation of phenylalanine in the DFG motif. However, the experimental data 

lack clear-cut information regarding the binding modes of inhibitors, which 

makes it difficult to discriminate DFG-in and DFG-out inhibitors. PCM models 

in Publications I and II are based on the DFG-in conformations of kinases, 

owing to the presence of abundant structural data for active conformations. The 

selection of DFG-in like inhibitors in Publication I is based on the information 

available in the literature (Karaman et al., 2008; Uitdehaag and Zaman, 2011) 

and a similarity search conducted against the known references. It is probable 

that there are more DFG-out-like inhibitors than the ones described in the 

literature. Combining protein fields generated from DFG-in conformations 

together with the experimental data of DFG-out inhibitors could lead to 

additional sources of error in PCM modelling.  

 

4 Influence of ligand conformations in PCM modelling  

In Publication II, the influence of 3D conformation generation in 4-PFP 

descriptor calculations and subsequent PCM modelling was investigated. The 

results show that neither the 4-PFP calculations nor the model’s overall 

performances are affected by the ligand conformations used. Nevertheless, the 
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probability of predicting active ligands correctly improved by using the lowest 

energy conformation, when compared to the other higher energy conformations. 

 

In Publication III, models based on 3D GRIND descriptors had the worst 

performance, despite using the lowest energy conformation. However, the 4-

PFP models on serine proteases performed better than the GRIND models, 

further confirming that 4-PFPs are less sensitive to the conformations used. In 

case of GRIND models, the starting conformations used for descriptor 

calculations have an impact on the model performance (Caron et al., 2007). 

Therefore, it is not straightforward to generalize that PCM models are not 

influenced by 3D ligand conformations used for descriptor calculations. It 

should rather be considered on a case-by-case basis, depending on the 

descriptor type and the flexibility of the ligands. 

 

5 QSAR versus Field-based PCM 

In Publications I and III, field-based PCM is shown to be clearly advantageous 

over traditional QSAR methods. In Publication I, reliable QSAR models were 

obtained for only 44% of the kinase targets with a wide range of activity values, 

which serves as evidence that ligand descriptors alone cannot capture all of the 

features relevant for binding. Moreover, to understand selectivity with respect 

to different targets, comparison of multiple QSAR models is required, which is 

frequently not feasible considering the data availability for individual targets. 

Even though some targets have limited data, field-based PCM models that take 

advantage of the protein structural information and ligand description of 

multiple targets and ligands allow investigation of the target-ligand interaction 

space in greater depth. However, the field-based PCM models have their own 
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limitations such as issues with data coverage, availability of crystal structures 

and poor protein superimposition affecting field calculations.  

 

6 Predicting mutants in field-based PCM studies 

Previously conducted studies on kinases and proteases have shown that mutants 

can cause drug resistance, thereby revealing the need for the design of 

inhibitors targeting these mutants (Gorre et al., 2001; Kovalevsky et al., 2006). 

Sequence-based PCM studies conducted on HIV protease mutants serve as an 

example for using PCM to predict the bioactivities of mutants (Lapins et al., 

2008; Van Westen et al., 2013). However, the field-based PCM models 

reported in our studies have limitations in predicting the activities of mutant 

types. The limited structural and activity data for mutant structures have 

restricted our studies mostly to wild types. In kinase PCM modelling, EGFR 

mutant T719S was included in the external test set. Prediction accuracy of this 

mutant was quite limited due to the absence of similar mutant representatives in 

the training set. Nevertheless, availability of more structural and activity data 

would support field-based PCM modelling of mutants in the future. 

 

7 Complementarity of docking and field-based PCM approaches 

Docking, a commonly used structure-based approach in drug design to study 

the interactions between proteins and ligands provides 3D illustrations of the 

features that affect binding. Although, docking aims to provide visual 

interpretation as that of field-based PCM, there is a need to conduct several 

docking experiments to estimate selectivity. The problems inherent to docking, 

such as difficulties in generating the right binding pose and poor abilities to 

rank binding affinities, can sum up to large errors in identifying the compounds 

that bind selectively. Nevertheless, docking does not require large-scale 
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experimental data for a set of compounds measured against a panel of targets, 

unlike PCM modelling. Overall, docking and field-based methods complement 

each other, with neither superior to the other. 
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Conclusions and Perspectives 
The current study is dedicated to the development of field-based 

proteochemometrics, tackling limitations in visual interpretability, a frequent 

issue encountered in sequence-based PCM models. In Publication I, PCM 

studies on kinases demonstrated the first successful application of field-based 

PCM to generate visually interpretable models. Possibilities to visually inspect 

the features that affect the selective binding of a drug towards a target are 

highly beneficial in suggesting suitable chemical modifications and designing 

compounds with improved efficacy. Subsequent studies on kinases in 

Publication II proved that the protein field-based descriptors also have the 

potential to generate predictive PCM models. The highlight of this study is the 

estimation of potential polypharmacology, which could be valuable for the 

design of new kinase inhibitors. Further, studies on serine proteases in 

Publication III provided an example that field-based PCM can be applied to any 

target family with well-characterized 3D structures and adequate experimental 

data.  

 

In summary, PCM models can be used to investigate the target-ligand 

interaction space in greater depth, hence being more advantageous than the 

traditional QSAR approaches. Field-based PCM models are either more 

predictive, as in kinases, or as predictive as sequence-based models in serine 

proteases with the benefit of visual interpretation. The ability to illustrate 

molecular interactions similar to structure-based approaches like docking 

together with the possibilities to extrapolate to novel chemical and target space 

makes field-based PCM a promising approach. 
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Field-based PCM studies conducted so far provide clear evidence for the 

usefulness of the method in drug design, and new avenues for further 

development are likely to emerge. The protein fields used for PCM modelling 

are generated from a single protein structure. The different binding modes of 

the ligands, their flexibilities and the conformational changes of the protein 

induced during ligand binding influence the field calculations, and this might 

have an impact on the predictions of novel ligands in PCM modelling. 

Generating fields based on an ensemble of protein conformations could solve 

this problem to some extent. Currently, the model interpretation procedure is 

highly demanding, as it involves extensive manual work. Selectivity 

interpretation is restricted to the top 5 or 10 cross-terms. Automating the field 

interpretations would enable interpretation of all cross-terms, thereby providing 

a more thorough understanding of the selectivity-related features. Also, there is 

a need to investigate PCM modelling based on alignment-independent Zernike 

descriptors in greater depth. Conducting further comprehensive studies by 

introducing artificial shifts in alignments and analysing their effects on field 

calculations and Zernike descriptors could shed light on the prediction issues in 

PCM modelling, probably caused by the fields calculated from misaligned 

structures.  
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