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Abstract

The detection of novel active compounds that are able to modulate the bio-
logical function of a target is the primary goal of drug discovery. Different
screening methods are available to identify hit compounds having the desired
bioactivity in a large collection of molecules. As a computational method, vir-
tual screening (VS) is used to search compound libraries in silico and identify
those compounds that are likely to exhibit a specific activity. Ligand-based
virtual screening (LBVS) is a subdiscipline that uses the information of one or
more known active compounds in order to identify new hit compounds. Differ-
ent LBVS methods exist, e.g. similarity searching and support vector machines
(SVMs). In order to enable the application of these computational approaches,
compounds have to be described numerically. Fingerprints derived from the
two-dimensional compound structure, called 2D fingerprints, are among the
most popular molecular descriptors available.

This thesis covers the usage of 2D fingerprints in the context of LBVS. The first
part focuses on a detailed analysis of 2D fingerprints. Their performance range
against a wide range of pharmaceutical targets is globally estimated through
fingerprint-based similarity searching. Additionally, mechanisms by which fin-
gerprints are capable of detecting structurally diverse active compounds are
identified. For this purpose, two different feature selection methods are applied
to find those fingerprint features that are most relevant for the active com-
pounds and distinguish them from other compounds. Then, 2D fingerprints are
used in SVM calculations. The SVM methodology provides several opportuni-
ties to include additional information about the compounds in order to direct
LBVS search calculations. In a first step, a variant of the SVM approach is ap-
plied to the multi-class prediction problem involving compounds that are active
against several related targets. SVM linear combination is used to recover com-
pounds with desired activity profiles and deprioritize compounds with other
activities. Then, the SVM methodology is adopted for potency-directed VS.
Compound potency is incorporated into the SVM approach through potency-
oriented SVM linear combination and kernel function design to direct search
calculations to the preferential detection of potent hit compounds. Next, SVM
calculations are applied to address an intrinsic limitation of similarity-based

methods, i.e., the presence of similar compounds having large differences in their



potency. An especially designed SVM approach is introduced to predict com-
pound pairs forming such activity cliffs. Finally, the impact of different training

sets on the recall performance of SVM-based VS is analyzed and caveats are
identified.
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Introduction

Drug discovery is concerned with the detection of small molecules that are ac-
tive against a biological target and modulate its biological function. The whole
process until a drug can be used as a medication for a specific disease requires
several years and is very costly [1|. Furthermore, only a small proportion of
candidate compounds is approved and brought to market [1, 2]. The drug dis-
covery process involves several preclinical and clinical stages with numerous
investigators involved. In the preclinical phase, the major stages include the
identification and validation of novel drug targets, the identification of active
compounds (so-called hits), and the transformation of hits to lead compounds
that can be further optimized [2—4].

The major source of hits is high-throughput screening (HTS) [5, 6]. In HTS,
a very large collection of compounds is tested for a biochemical or cellular
effect [6]. Those compounds having a positive response in the screening are
considered as hit compounds. In follow-up screens, these hits are analyzed con-
cerning pharmacological and physicochemical properties and evaluated for their
potential to become a lead compound [6]. In general, HTS data are of limited
quality due to the presence of false-positive and false-negative activity measure-
ments. The typically large number of false-positives makes subsequent control
experiments necessary. False-negative measurements are often a consequence
of limited purity and stability of test compounds or of too low concentrations
in the screening assay [5, 7.

In order to compensate for such limitations, computational approaches have
been developed. Among them, virtual screening (VS) was introduced as a com-
putational, “time-efficient and cost-effective” [5] analog to HTS. In VS, a large
compound library is screened in silico against a drug target of interest. Test

compounds can then be prioritized according to their probability to possess
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a specific activity and a reduced list of compounds is submitted to biological
experiments [5, 7-9]. Although VS also suffers from false predictions, it was
shown that VS often produces higher hit rates than HTS [9].

In general, HT'S and VS are considered to be complementary screening meth-
ods [5, 7]. Hence, the integration of computational and biological screening is
considered in order to reduce the number of candidate compounds and thereby

the costs of experimental testing [7, 10].

VS includes two different approaches: structure-based virtual screening (SBVS)
[11, 12] and ligand-based virtual screening (LBVS) [10, 11, 13]. SBVS methods
use the three-dimensional (3D) structure of a target in order to make assump-
tions about the interactions between ligand and target. The most popular SBVS
method is docking, where database compounds are docked into the 3D struc-
ture of the target in order to predict the hypothetical binding modes. Then, a
score is calculated that reflects the estimated binding affinity of the compound
and serves as an indication which compounds should be tested [12, 14].

In contrast, LBVS makes use of ligand information only. The LBVS methods
require one or more compounds with a specific activity to identify new hits.
Conceptually, LBVS is based on the similarity property principle (SPP) formu-
lated by Johnson and Maggiora in 1990 [15|. The principle states that “similar
molecules should have similar biological properties (activity)”. Subdisciplines of
LBVS methods include pharmacophore searching [16], shape comparison [17],
similarity searching [18, 19|, and machine learning [13]. In the following, sim-
ilarity searching and an example of a machine learning method, the support

vector machines, are discussed in more detail.

Similarity searching

Similarity searching is one of the most widely used LBVS approaches in drug
discovery. One or multiple active compounds are used as reference compounds
(or templates) to screen a large database of compounds with unknown activity.
The database compounds are compared to the reference set and ranked in the

order of decreasing similarity. According to the SPP, those compounds that
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Similarity searching

are located at the top positions of the ranking most probably exhibit a similar
bioactivity [19].

For similarity searching, three principal components have to be defined: (i) a
molecular representation for the compounds, (ii) a coefficient for determining
the similarity, and (4ii) a search strategy |19, 20]. They are discussed in detail

in the following.

Molecular representations

Molecular descriptors are used to numerically describe the molecular structure
and compound properties. There are many molecular descriptors of differ-
ent complexity available that capture different levels of compound information
[21]. In general, one can classify molecular descriptors as one-, two- or three-
dimensional (1D, 2D, 3D) depending on the structure representation from which
they are derived [7]. 1D descriptors are calculated from the molecular formula
not considering atom connectivities. Examples of 1D descriptors are atom count
and molecular weight. 2D descriptors are derived from the molecular graph and
include topological descriptors as well as calculated descriptors approximating
compound properties like logP. Molecular conformations are used to determine
3D descriptors. These descriptors comprise, e.g., volume or molecular surface
[7].

The most popular molecular descriptors include molecular fingerprints (FPs)
that are bit or integer string representations capturing structural features and
physicochemical properties of compounds [22]. In binary fingerprints, each bit
in the string encodes the presence or absence of a specific feature. If a specific
feature is present in the molecule, the bit is set to '1’; otherwise, it is set to
'0’. There are also non-binary count fingerprint versions where the bits are
replaced with an integer indicating the frequency of the features. Integer-based
fingerprints are derived when compound features are hashed.

In analogy to the molecular descriptors, one can distinguish 2D and 3D FPs
based on the structure representation of the molecule [19]. Furthermore, dif-
ferent types of fingerprints have been introduced that vary in the encoding of
chemical information and how they are calculated. Hence, they capture dif-

ferent aspects of chemical information [22]|. Important molecular fingerprints
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Figure 1: Fingerprint prototypes. Three different fingerprint designs are compared. (i)
An exemplary keyed substructure FP is shown. Bit positions are set on (i.e., blue) if the
corresponding substructure is present and set off otherwise (i.e., white). Two substructures,
a carbonyl group and a ring, that account for two bits set are highlighted in the compound
structure. () In a pharmacophore FP, each bit accounts for one geometrical arrangement
of atom types. Here, the three-point pharmacophore pattern “hydrophobic - hydrophobic -
hydrogen bond acceptor” with the defined inter-feature distances is available in the structure
and the according bit is set on. (#7) A combinatorial FP encoding local atom environments is
illustrated. Around a central atom, here a carbon, three layers are created up to a diameter
of four bonds. The resulting circular environments are hashed. The figure is adapted from
[22].

include substructure-based fingerprints, pharmacophore fingerprints, and com-
binatorial fingerprints like circular atom environments. These fingerprint types
are compared in Figure 1 and discussed below.

Two popular substructure-based fingerprints are the Molecular ACCess Sys-
tem (MACCS) structural keys [23] and the BCI fingerprint [24]. The publicly
available version of MACCS contains 166 structural fragments and the BCI
consists of 1,052 substructures. Both fingerprints are keyed fingerprints with
a one-to-one mapping of each bit position to a structural fragment. Each bit
in the fingerprint then accounts for the presence or absence of the according

substructure.
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Pharmacophore fingerprints also belong to the class of keyed fingerprints. Each
bit in the string encodes one geometrical arrangement of atom types. The
pharmacophore fingerprint of a compound is derived by generating all possi-
ble pharmacophore patterns of the compound. That means, in the first step
atomic features (e.g. hydrogen bond donor or acceptor) are assigned to individ-
ual atoms or groups of atoms. Then, all possible combinations of two to four
atomic features and their inter-feature distances are determined. The Molec-
ular Operating Environment (MOE) [25] contains several different 2D and 3D
pharmacophore fingerprints. For example, the typed graph distance (TGD) and
typed graph triangle (TGT) fingerprints consist of 420 and 1704 bit positions
or pharmacophore patterns, respectively, which can be derived from the 2D
molecular graph. Thereby, TGD encodes the distance of atomic features and
TGT is a three-point pharmacophore encoding feature triangles.

In contrast, combinatorial fingerprints represent another concept as they do not
have a predefined length. For example, the extended-connectivity fingerprints
(ECFPs) |26] encode circular atom environments. Each non-hydrogen atom in
the molecule is assigned to an atom code describing its mass, charge, element
type, valence, and the number of neighboring atoms. Then, a local atom envi-
ronment is created around each atom up to a specific bond depth. The resulting
features are hashed to an integer and the final collection of integers forms the
fingerprint. Hence, the size of ECFPs is dependent on the given compound.
A comparable FP is MOLPRINT2D [27]. It also consists of molecule-specific
atom environments. However, different atom encodings are used and the atom
environments are encoded as strings of varying size.

Although 2D fingerprints have a lower information content than 3D molecular
representations, screening calculations based on 3D descriptors do not princi-
pally perform better than similarity searching using 2D fingerprints [28-30].
Important information about target-ligand interactions are implicitly encoded
in 2D fingerprint representations [31]. In general, 2D fingerprints are simpler
and more robust as they do not require an approximation of the bioactive com-
pound conformation. Therefore, several studies focus on 2D FPs only [20].
Among the 2D FPs, the ECFPs showed the best screening performance in sev-
eral studies [32, 33].
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Similarity coefficients

The similarity between two compounds is typically assessed by a fingerprint
comparison. A similarity measure is used to quantify the compound similarity
by determining the overlap between the fingerprint strings. The most frequently
used similarity measure for binary fingerprints is the Tanimoto (or Jaccard)
coefficient (Tc) [18], that is a function Tc : {0,1}" x {0,1}" — [0, 1]. For two
molecular fingerprints A and B, the Tc is defined as

C

Te(A, B) = 73—

(1)
where a and b are the number of the bits set on in the fingerprints A and B,
respectively, and ¢ corresponds to the number of bits set in both fingerprints.
It follows that the Tc compares the intersection of fingerprint features with the
union of all features present in two compound fingerprints. The Tc values range
from zero to one, where zero corresponds to minimal fingerprint similarity and
one is the maximal similarity.

The Tc can also be applied to non-binary fingerprints. Then, the Tc calculates
the fingerprint overlap by

> i aibi
Tc(A, B) = 1= 2
(4. B) > iy (aF +0F — aby) @)

Here, the fingerprints have the form A = (ay, as, ..., a,) and B = (by, by, ..., by,)
with a length of n. The variables a; and b; represent the ¢th position in the
fingerprints A and B, respectively, and a;b; is their product. The non-binary
Tc has a value range of -0.333 to 1 [18].

Other popular similarity coefficients used in similarity searching include the
Tversky coefficient [34], the Forbes coefficient [35], and the Russel-Rao coeffi-
cient [35].

Search strategies

Although similarity searching can be applied with only one reference compound,

using multiple active compounds usually improves the search performance [36].
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There exist different strategies how to make use of the information provided by
the multiple references. In general, we can distinguish the two categories data
fusion and fingerprint modifications [19].

In the first case, a fusion rule is applied on the similarity values or compound
ranks after multiple search calculations have been performed. The k-nearest
neighbors (KNN) search method [37, 38] is widely applied in combination with
Tc similarity values. In ANN similarity searching, the similarity between all
reference compounds to a database compound is individually calculated. The
final similarity score for the current database molecule is then the averaged
similarity of the £k most similar reference compounds. This value is used for
ranking. For example, in 10NN searching using Tc similarity the database score
is the average of the 10 highest Tc values derived from at least 10 reference com-
pounds. In 1NN search calculations, the maximal similarity yields the database
score.

In contrast, fingerprint modification techniques alter the fingerprint represen-
tation that is used for searching. In the centroid method, multiple reference
compounds are combined by averaging over each bit position in the reference
fingerprints [37]. The generated non-binary fingerprint is then used for screen-
ing calculations. Furthermore, a consensus fingerprint [39] can be constructed
where individual bit positions are set on if the bit frequency in the reference
compounds reaches a predefined threshold. In addition, other “fingerprint en-
gineering” methods have been introduced to improve search performance using

multiple references [40-43].

Support vector machines

Over the last years, machine learning (ML) methods have become increasingly
important to address complex tasks in drug discovery [13]. The general aim
of ML is the derivation of a computational model that learns labels from pat-
terns in data, here in compound data. The models can then be applied for
property predictions and classification of new, previously not considered com-
pounds. Analogous to similarity searching, the models are also used to rank

and /or filter database compounds. Among the different ML methods available,
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support vector machines (SVMs) are one of the most popular techniques. They
have become increasingly popular during the 1990s based on the work of Vap-
nik and Cortes |44]. The basic idea of SVMs is the generation of a hyperplane
in a high-dimensional space to derive a separation of objects from two classes.
Thereby, a key feature of the SVM approach is the attempt to simultaneously
address two conflicting objectives: (i) minimization of errors on training data
and (ii) reduction of model complexity in order to avoid overfitting. The result

balancing these objectives is a model with high generalization potential.

SVM classification and ranking

SVMs are a supervised machine learning method that makes use of annotated
training examples [45-47|. Originally, the SVM approach was developed to
solve binary classification problems. During learning, SVM uses a set of n
training data {x;,4;} (i = 1,...,n) with x; € X (e.g. RY) being a feature
vector representation and y; € {—1,1} the class label (negative or positive) of
the training compound i. The SVM derives a hyperplane H that best separates

positive from negative instances:
H = {x|(w,x) +b=0}, (3)

where (-, ) is a scalar product, w the normal vector of the hyperplane and b a
scalar.

For linearly separable training data, there exist an infinite number of hyper-
planes that correctly classify the data. The optimal hyperplane chosen by the
SVM algorithm is the hyperplane that maximizes the distance from the closest
training instances to the hyperplane (called margin). The optimal, so-called
mazimum margin hyperplane minimizes the “structural risk” of overfitting and
enhances the generalization of the classification model. The distance from the
hyperplane H to the nearest training instances from the positive and negative
class is 1/ ||w|| each. Hence, maximizing the distance 1/ |w|| or, correspond-

ingly, minimizing ||w|| yields the maximum margin hyperplane. The minimiza-

8
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tion problem is a constrained quadratic programming optimization problem and
is formulated as

1
minimize: = ||w]|? (4)
w,b 2

)

subject to: y; ((x;, W) +b) > 1 Vi

The inequality constraints are defined in order to ensure correct classification
of all training examples, which is possible because of the assumed linear sepa-
rability of the training data.

In case the training data are not linearly separable, the minimization problem
has no solution. Then, so-called slack variables & > 0 can be introduced and
a soft-margin separating hyperplane is derived. The slack variables relax the
constraints defined in equation (4) and allow some training data to be located
within the margin or even on the incorrect side of the hyperplane. The value of
the slack variables &; correlates with the degree of mispositioning of the training

compound 7. The minimization problem is reformulated as
minimize: 1 |wl*+C E & (5)
w,b ' 2 - !
7

subject to:  y; ((x;,w)+b) >1—-¢& with & >0 Vi

In this formulation, the constant C' > 0 is introduced to penalize large slack
variables. If C' is small, large &; are allowed and a less complex model is learned
tolerating many errors. However, if C' is large, & has to be small in the mini-
mization and a complex model is learned avoiding large errors. The parameter
C can be considered as a trade-off between the size of the margin and the best
fit of the classifier to the training data.

In order to solve this optimization problem, Lagrange multipliers «; are used

to reformulate the problem from the primal to a dual form:

. . 1
max1am1ze: Lp = Xl: o — 5 Z Q05 YiY; <X1;7 Xj> (6)

,L‘ﬂj

subject to: Zaiyi =0 with 0< o, <C Wi
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Figure 2: SVM classification. In a binary classification problem, the maximum margin
hyperplane H separates two classes (dark and light red dots, respectively). The optimal
hyperplane is shown as a blue solid line. Those data points that determine the hyperplane,
the support vectors, are encircled in blue. They either lie on the edge of the margin (i.e. on
the hyperplanes parallel to H), within the margin, or on the incorrect side of the hyperplane.
Misclassified data points obtain values of the slack variables that correlate with the distance
to the margin, as illustrated by the dotted lines. The figure is adapted from [48].

This optimization problem is convex and hence has a solution that is the global
optimum. Solving the Lagrangian dual formulation results in the normal vector
w = ) . 0,;y;X; with non-negative o;. Those training instances that are asso-
ciated with factors a; greater than zero are the so-called support vectors and
solely determine the position of the hyperplane. These data points lie on the
edge, within the margin or even on the incorrect side of the hyperplane. Hence,
the generation of the hyperplane only depends on some training examples and
not on the dimension of the input space, which allows calculations in a higher
dimensional space. A schematic illustration of an SVM classification problem
is shown in Figure 2.

Once the normal vector w has been calculated, the scalar b can be derived from
any support vector. Then, the final decision function (or separation rule) for

the classification can be formulated as
f(x) =sgn Z Yy (X, X) +b (7)

The signum function sgn determines the sign of the prediction value for a test

instance x. Geometrically, this is the side of the hyperplane onto which the test

10
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example falls. This means that test points (i.e. compounds) with f(x) = 1 are
assigned to the positive class and those with f(x) = —1 to the negative class.
In order to adapt the SVM approach for VS and allow ranking of test com-
pounds, the decision function is transformed into a ranking function. This is
obtained by removing the signum function from the decision function, thus

generating a real value for each test example, i.e.
9(x) =D i (x;,x) +b (8)

Then, test compounds are ranked from the highest to the lowest value. This
corresponds to a ranking from the most distant data point on the positive half

space to the most distant point on the negative half space [49].

SVM for regression

The SVM approach can also be used to generate real values by estimating a
regression function [45, 47, 50]. SVM for regression, also called support vector
regression (SVR), has a methodological basis comparable to SVM classification
seeking for margin maximization. The training instances for SVR are a set of
the form {x;,y;} with x; being a feature representation from input space X and
y; € R a real value for each training data point <. SVR derives a regression
function of the form f(x) = (w,x) + b, mapping training data z; as close as
possible to their real value y; with a maximum deviation of €. Hence, the
SVR approach tolerates errors less than e, but deviations beyond this value
are penalized. Therefore, SVR is also termed e-SVR [50]. Similar to SVM

classification, the optimization problem is formulated as

1 .
minimize: §\|wy|2+c*z<@+gi) (9)

subject to:  y; — (W, x;) —b<e+& Vi
(w,x;) +b—y; <e+& Vi
with €.6 >0

11
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Figure 3: SVM for regression. In SVR, a regression line is fitted to the training data
(shown as red squares). The regression function is shown as a solid blue line. It depends
on those data points that lie on the edge of the e-tube or outside (shown with dotted lines).
These data points are the support vectors and are highlighted by blue circles. All other data
points are fitted with sufficient precision and lie within the tube. The figure is adapted from
[48].

In SVR, two sets of non-negative slack variables are required to account for
positive and negative deviations of the predicted regression value to the true
output value. Again, the constant C' > 0 is used to penalize large slack variables,
i.e. deviations from the so-called e-tube. After solving the optimization problem

using Lagrangian reformulation, the final regression function is defined as

F) =) (ai—a) (xi,x) +b (10)
Those training data points having either o; > 0 or o > 0 are the support
vectors. There are two types of support vectors. In the first case, the support
vectors lie exactly on the boundary of the e-tube. They have either 0 < a; < C
or 0 < af < C and are used to derive the parameter b. The other support
vectors fall outside of the tube and have a; = C or af = C. All other training
data points have both a; = o = 0 and are fitted with sufficient precision [47].

Figure 3 illustrates an exemplary SVR problem.

12
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Figure 4: Kernel trick. On the left, data points from two different classes are shown as
dark and light red points, respectively. A linear separation of the two classes is not possible
in the 2D reference space. However, using a kernel function that implicitly transforms the
data into a higher dimensional space (here, a 3D reference space) enables a linear separation.
The linear decision function in the 3D space corresponds to an ellipse decision boundary in
the input space. The figure is adapted from [48].

Kernel functions

In some cases, a linear separation of training data might not be feasible in
space X. In order to allow nonlinear separation rules, the so-called kernel
trick [51] can be applied to replace the standard scalar product (-, -) by a kernel
function K (-,-). The kernel transfers the calculations of the scalar product into
a higher dimensional space ‘H by a nonlinear transformation ¢ without explicitly
calculating the mapping ® : X — H. The kernel function K : X x X — R
is defined by the scalar product between transformed objects x; and x; € X
as K(x;,x;) = (®(x;), P(x;)). The kernel function can be considered as a
specialized similarity measure between two arbitrary data points. Because the
embedding function ® does not have to be known, only a valid kernel has to be
defined. A valid kernel has to meet two conditions: it must be (i) symmetric,
ie. K(xi,%x;) = K(x;,%;) for all x; € X, and (i) positive semi-definite, i.e.
the kernel (or Gram) matrix K = (K(x;,X;));; is positive semi-definite for
X1,...,X, € X [47, 52, 53]. This requirement is met if for all c € R" c’Kc > 0,
i.e. K has only non-negative eigenvalues. Here, the condition of positive semi-
definiteness guarantees that the optimization problem remains convex.

The kernel trick can be used in SVM classification, ranking and regression.
It replaces the standard scalar product of training and test instances in the
decision function. Then, the linear model in the new space H corresponds to
a nonlinear model in the input space X. The application of the kernel trick is

illustrated in Figure 4.
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Popular kernel functions that are used in SVM calculations include, e.g., the

linear kernel that corresponds to the standard scalar product:
Klinear<xi7 X]) - <Xi7 X]> (11)

The Gaussian kernel, also known as the radial basis function kernel, is defined

as
KGaussian(Xiaxj) = €Xp (_'Y ||XZ - Xj||2) (12)

The Gaussian kernel depends on the choice of the inverse-width parameter
v > 0. Small values of v result in a smooth decision boundary. However, a
large v increases the flexibility of the decision boundary by incorporating more
support vectors raising the risk of overfitting [49, 54].

Finally, the polynomial kernel is given by

Kpolynomial(xi7 Xj) = (<Xi> Xj> + 1>d (13)

In the polynomial kernel, the parameter d € N determines its degree. Thereby,
a kernel with d = 1 is the linear kernel with offset 1. Higher values of d result
in more flexible decision boundaries [54].

A useful property of kernel functions is that new kernel functions can be built
by applying mathematical operations such as multiplication and addition to
original kernels [55]. This also allows the design of kernel functions that can be

applied on different data types.

Kernel functions in drug discovery

There are several kernel functions available that have been designed to operate
on compounds and other bioactivity data. These include compound kernels
that accept different compound representations as input and compare diverse
properties of molecules. Other kernel functions use multiplication of kernels in

order to derive a similarity measure on combined compound-target data.
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Compound kernels

Compounds are typically represented as graphs where atoms are shown as la-
beled vertices and bonds as labeled edges. Several kernel functions have been
created to operate on this graph-structured data (see below). These graph
kernels allow the comparison of compounds for determining their similarity
without ever computing or storing a feature vector representation of the com-
pounds. Gértner et al. [56] and Kashima et al. [57] introduced graph kernels
that measure the overall similarity between two molecular graphs by detecting
and counting common walks of equal label sequences in two labeled graphs.
In the first case, the kernel is based on the direct graph product [56]. The
second kernel belongs to the class of marginalized kernels and uses Markov
random walks on the underlying graph structures [57]. In addition to these
global graph kernels, there are kernels capturing the local similarity between
two graphs [58]. Furthermore, extensions to graph kernels have been introduced
[59]. The first extension is a relabeling of vertices so that the new atom labels
include information about the topological environment. The second extension
covers a modification of the random walk model proposed in [57] in order to
prevent irregular loops along an edge, so-called totters.

Although these extensions aim at reducing the computational expense and im-
proving prediction accuracy, graph kernels still are computationally complex
and require parameter determination. In order to circumvent these limitations,
another direction of kernel design consists of transforming the compound graphs
into vectors using molecular descriptors. Ralaivola et al. [60] introduced several
new kernel functions that are applied on molecular fingerprints or compound
descriptor vectors and are thus computed more efficiently. Among others, the
Tanimoto kernel is mentioned that is defined in accordance with the popular

Tanimoto coefficient (2) as

<Xi7xj>
X, Xi) + (X5, %5) — (X, %)

KTanimom(Xiqu) = < (14)
The Tanimoto kernel is parameter-free. Selecting different compound represen-
tations allows the comparison of different compound properties of interest.

Furthermore, kernel functions have been developed that consider the 3D struc-

ture of compounds. For example, the pharmacophore kernel [61] focuses on
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three-point pharmacophores composed of three atoms, i.e., atom triangles, in
3D space. It can be decomposed into two separate kernels where the first ker-
nel determines the similarity between the atoms and the second kernel assesses
the spatial similarity, i.e., the relative locations of the triangle atoms. The
similarity between two molecules is finally assessed by summing up the pair-
wise similarities between all possible pharmacophores in the compounds. The
pharmacophore kernel was shown to outperform fingerprint representations of
pharmacophores in SVM calculations [61].

Azencott et al. [62] discussed various classes of kernels derived from different
levels of molecular representations ranging from 1D to 4D. Molecules were rep-
resented as SMILES (1D), bond graphs (2D) or by their 3D atom coordinates.
Using the 3D compound structure, additional kernel functions were obtained,
e.g. a 2.5D surface kernel and diverse 3D kernels based on Delaunay tetra-
hedrization, atomic coordinates or pharmacophores. Furthermore, they intro-
duced an additional dimension for kernel functions by averaging over multiple
compound configurations leading to 3.5D and 4D kernels. However, Azencott et
al. overall showed that the 2D kernel functions for feature vectors outperform

kernel functions designed for higher dimensional compound representations [62)].

Target-ligand kernels

In addition to the design of different compound kernels, the properties of ker-
nel functions allow the combination of compound data with target information.
The so-called target-ligand kernel [63, 64] uses a tensor product to separately
determine the similarity between targets and the similarity between compounds.
The target similarity is assessed by defining a target kernel on protein informa-
tion like sequence, structure, or ontology [65]. The similarity between ligands
is separately calculated by a ligand kernel in the chemical reference space. The
target-ligand kernel is used to separate true from false target-ligand pairings
and enables compound classification of any small molecule against multiple tar-
gets in parallel |64, 65].

In another study, the target kernel was designed to account for the similarity
of the binding sites in two proteins [66]. The descriptors used in the binding

site kernel were derived from high-quality X-ray structures of protein-ligand
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complexes. A target-ligand kernel using the binding site kernel to account for

target similarity was able to correctly predict true protein-ligand pairings [66].

Applications of SVMs in VS

Since their introduction, SVMs have been successfully used in a range of VS
tasks. There are studies that only consider the activity against a single target,
but increasing efforts are made in the investigation of multi-target activities.
Furthermore, SVM-based VS can utilize all variants of the SVM methodology.
SVM classification can be used to separate active from inactive compounds.
The SVM ranking approach introduced by Jorissen and Gilson [49] can be ap-
plied to derive a ranking of database compounds with unknown activity. In
addition, SVM regression can be used to predict compound potency. Finally,
different kernel functions are applied and enable decisions about the description
level of bioactivity data, i.e., using compounds alone or in combination with

target information. In the following, a number of applications are discussed.

Detection of active compounds against a single target

One of the first reported screening studies using SVMs was the recovery of
dihydrofolate reductase inhibitors [67|. Burbidge et al. demonstrated that
SVM-based compound classification outperformed other ML algorithms. In the
following, several studies reported the recovery of active compounds against one
target of interest including kinases [68], acetylcholinesterase (AChE) [69], or cy-
tochrome P450 (CYP450) [70].

Other studies emphasized the methodological aspect in predicting active com-
pounds and tested their approaches against a range of targets in benchmark
calculations. For example, SVM modeling has been used for active learning in
a screening study [71]. SVM models were iteratively improved based on the
compound predictions from the previous iteration step. SVMs were shown to
be able to identify structurally diverse compounds having similar activities [49,
72| and outperformed other fingerprint-based methods [49]. In a comparison

of similarity searching and SVM ranking, SVM showed superior performance

17



Introduction

when using the same fingerprints as descriptors even when only small training
sets were available [73]. Furthermore, a recent study demonstrated good VS
performance of linear SVM (i.e. utilizing the linear kernel function) when using
high-dimensional, sparsely set fingerprints.

Other studies report the usage of SVMs to derive quantitative structure—-activity
relationship (QSAR) models that predict compound activity from structure.
For example, Sun et al. [74] built a QSAR model based on 2D molecular
descriptors to predict phospholipidosis (PLD) activities. The QSAR model in-
troduced by Chen et al. [75] used compound R-group signatures resulting in
a more accurate model than the standard Free-Wilson model without losing
interpretability.

As discussed above, using the target-ligand kernel enables the inclusion of target
information in SVM calculations and further extends the spectrum of available
methods in VS. Jacob et al. [64] showed that incorporating additional targets
by the target-ligand kernel improves the prediction of single-target activities.
Wang et al. [76] proposed to further extend the information content of com-
pound and target data and add drug pharmacological and therapeutic effects
to describe drug-target interactions. The fusion of these multiple sources into a
kernel function increased prediction accuracy of the SVM classifier. The inte-
gration of target and ligand information can also be obtained by the design of
a target-ligand vector (i.e. no special kernel function is necessary) [77]. SVM
calculations using a target-ligand vector combining small molecule descriptors
and target sequence information recovered novel active compounds against four
different targets |77].

Orphan screening

In the context of VS, one important subfield is the so-called orphan screening.
Here, no active ligands against a target of interest are known and additional
information about related targets and their active compounds have to be con-
sidered in the screening calculations. Wassermann et al. [65] used the target-
ligand kernel and combined many different protein kernels comparing protein
sequence, structure, or ontology information with ligand similarity to predict

new compounds active against orphan targets. Systematic search calculations
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showed that the different combinations of target and ligand information did
not notably improve performance compared to the standard ligand kernel. The
search performance was dominated by the similarity to active compounds of
closely related targets to the orphan target [65].

Additionally, SVM linear combination (LC) was introduced for orphan screen-
ing [78]. In SVM LC, hyperplanes are generated for each target with a set of
known ligands available. The hyperplanes are then linearly combined in order
to derive a combined hyperplane for the orphan target. The linear factors for
the individual hyperplanes reflect the sequence similarity of each target to the
orphan target. The final SVM LC model was demonstrated to successfully pre-
dict ligands for orphan targets with high accuracy [78§].

Multi-target activity predictions

When considering compound activity against multiple targets two essentially
opposing goals can be distinguished. Some studies aim at the recovery of com-
pounds having a specific selectivity against one target over others. Other studies
focus on the identification of promiscuous ligands binding multiple targets and
predict whole compound profiles.

In a search for target-selective compounds, Wassermann et al. [79] designed
different multi-class SVM ranking strategies. The aim was to “purify” the fi-
nal selection set of a screening experiment and separate selective from non-
selective compounds. Hereby, the ranking strategies “preference”, “two-step”
and “one-versus-all” outperformed the standard SVM ranking approach. An-
other approach to determine compound selectivity is the multi-label approach
“cross-training with SVMs” (ct-SVM) [80]. In this case, a single model was con-
structed that integrates binary classifiers for individual targets and combines
the output values of each classifier to a final compound label. Furthermore, the
sequential application of three models with increasingly strict activity levels
was applied in order to quantify the activity of test compounds.

The combination of several single-target models can also be used to derive pro-
files consisting of compound activities against a range of targets. Kawai et
al. [81] predicted compound profiles against 100 targets by the sequential ap-
plication of individual binary SVM classifiers. Additionally, Sato et al. [82]
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created a functional profile for marketed drugs containing 125 different molec-
ular functions. The functional profiling was used to detect multifunctionality

and adverse effects of small molecules.

Source information: this section follows the text of a recent SVM review from

our group [48].

Limitations and challenges of similarity-based pre-

diction methods

LBVS methods have proven to be powerful tools to recover active compounds.
However, using only ligand information is often difficult. Besides, the SPP un-
derlying the similarity based approaches has intrinsic limitations, hence com-
plicating the screening calculations and often resulting in failures.

First of all, similarity-based methods depend on how molecular similarity is
defined, and this is mainly influenced by the molecular representation chosen.
Problems arise if the molecular representation used for screening does not en-
code the features that are important for the specific activity of interest. In this
case, the prediction methods detect similar compounds but probably not those
having the desired bioactivity [83]. Furthermore, there is no general rule stat-
ing which molecular representation should be used. Instead, preferred search
parameters usually depend on the activity data considered [84].

Yet, the main reason for failures to predict active compounds is attributed to
the presence of activity cliffs [85]. The term activity cliff is used for compound
pairs or groups of compounds that have a high structural similarity but show
large differences in their potencies. Biologically, this means that a small struc-
tural modification changes ligand properties like volume or charge distribution
so that a compound cannot bind the target properly anymore and is inac-
tive. This discontinuity in the structure-activity relationship (SAR) of small
molecules is frequently observed [86]. However, similarity methods based on the
SPP cannot account for SAR discontinuity [19, 87|. As the structural changes
are small, they have only slight influences on a molecular representation such

as a fingerprint. A similarity method will therefore recover compounds forming

20



Benchmark calculations

an activity cliff, which will lead to incorrect predictions.

Furthermore, one is generally not interested in those compounds at the top
positions of the ranking, i.e., the most similar compounds, but in structurally
diverse compounds having similar activity. This is called scaffold hopping [88|.
2D fingerprints have often been questioned to be able to detect structurally
diverse active compounds, but several studies have proven the opposite [10, 32,
89]. However, it is often not clear where in the ranking these scaffold hops
occur, as they depend on the method chosen and the search parameters used
[19, 32]|.

Additionally, all LBVS methods assume that the investigated ligands have the
same mode of action. However, active compounds may interact with the same
target differently. Two compounds may bind to the active site of the target but
occupy different parts of the binding site, or may act on an allosteric site of
the target protein [87]. As a consequence, compounds having different binding
patterns interact differently with the target and no similarity assumptions for

other compounds can be made.

Benchmark calculations

VS methods can be applied prospectively or retrospectively. In prospective VS,
candidate compounds are selected after the screening calculations and then
experimentally evaluated in order to identify new hit compounds [90]. Alterna-
tively, for method evaluation, many VS calculations are performed retrospec-
tively using benchmark settings [13].

Benchmark calculations require a set of active compounds (i.e., an activity
class) and a database containing decoy compounds that are assumed to be in-
active. The activity class is assembled from the literature or from databases
containing compounds with potency annotations against targets. The decoy
compounds are typically randomly selected from a repository like ZINC |91,
92]. The active compounds are split into a reference and a test set. The test
set is combined with the database of decoys in order to generate a screening
database with “hidden” actives. Then, a VS method (e.g., similarity searching)

is applied to the reference set and the screening database. The performance of
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the VS approach is measured based on the predictions made for the active test
compounds.

There are several statistics available that measure the retrieval of active test
compounds. The recall rate (or recovery rate) determines the fraction of iden-
tified active compounds at a specific selection set size of the ranking. The hit
rate determines the fraction of active test compounds in the selection set. The
receiver operating characteristic (ROC) analyzes a compound ranking by plot-
ting the correctly classified actives (true positive rate or sensitivity) against the
misclassified actives (false positive rate or 1-specificity). Additionally, the area
under the ROC curve (AUC) is used as a performance measure [93]. The AUC
value has a range of zero to one, where 0.5 corresponds to a random ranking
and values above are preferred. The AUC statistic is recommended to be used
in benchmark calculations [94].

However, it is also recognized that the performance is often influenced by the
topology of the benchmark data sets [94-97]. Data sets that are affected by
“artificial enrichment” and/or “analogue bias” produce artificially high recall
statistics [87, 97, 98]. Analogue bias exists when the active compounds are too
similar to each other considering simple properties. Artificial enrichment results
from actives being too dissimilar to the decoy compounds. For example, in a
standard benchmark setting, active compounds are often chemically optimized
and hence more complex than the decoys. Simple descriptors like molecular
weight or atom count would already enrich actives in the top ranking positions
and the general search performance might be overestimated [19]. Therefore,

benchmark data sets have been designed to reduce these effects [96, 97].

Public compound repositories

In addition to the benchmark sets available, compounds for LBVS applica-
tion are typically assembled from public compound repositories. Important
databases include BindingDB [99, 100, ChEMBL [101]|, PubChem [102-104],
and ZINC [91, 92|, which are discussed in more detail in the following.
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BindingDB

BindingDB was developed at the University of Maryland and is probably the
first public target-ligand database that was accessible via web in 2000 [99, 100,
105]. It contains small molecules together with their activity measurements and
target annotations. Binding affinities against a defined protein target are mainly
defined by quantitative data like the inhibition dissociation constant (K;) or the
half maximal inhibitory concentration (ICsq) [100]. The main source of target-
ligand data is the literature. Additionally, the database includes high-quality
data from ChEMBL and PubChem [105].

ChEMBL

Like BindingDB, ChEMBL is an annotated and public database containing
activity information for small drug-like bioactive compounds [101, 105]. It is
maintained by the European Bioinformatics Institute (EBI), an outpost of the
European Molecular Biology Laboratory (EMBL). In addition to binding data
and target annotations, ChEMBL provides further information about the com-
pounds like functional information and ADMET properties [101]. ChEMBL
contains many bioactivity records against G protein-coupled receptors (GPCRs)
and kinases. The main source of bioactivity data are scientific publications in
the field of medicinal chemistry that are manually extracted and curated. Fur-
thermore, a subset of PubChem assays is integrated into ChEMBL [101, 105].

PubChem

PubChem is an open database administrated by the US National Institutes of
Health (NTH) with the aim to collect bioactivity test data for small molecules
and RNA interference (RNAi) reagents [102-105]. PubChem incorporates Bind-
ingDB and ChEMBL. It is organized into three related databases: Compounds,
Substances and BioAssays. The PubChem BioAssay database contains screen-
ing data of chemical structures [103, 104]. These screening data are structured
into three different types of records: Summary, Primary, and Confirmatory.

The overview of an experiment is provided by the Summary record. The Pri-
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mary record contains compounds and their annotations as active and inactive
derived by a primary screening experiment at a single concentration. The Con-
firmatory record reports on confirmatory screening assays that reevaluate the
actives from a primary screen and investigate multi-concentration dose-response

behavior [105].

ZINC

Finally, ZINC is a large repository containing over 20 million non-annotated
molecules derived from chemical vendors. For each compound, ZINC provides
generated 3D models for VS calculations [91, 92]. The ZINC database is main-
tained by the Department of Pharmaceutical Chemistry at the University of
California San Francisco (UCSF). ZINC is often used as a screening database

in VS applications.

Data from these compound repositories have been used throughout this thesis.
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Thesis outline

The analysis and extension of similarity-based search methods using 2D finger-
prints are the objectives of this thesis. For this purpose, search methods utiliz-
ing fingerprints are studied in detail. In addition, computational approaches are
designed for applications in LBVS that are not addressed by standard methods.
The thesis consists of six individual chapters and is structured as follows.
Chapter 1 presents a large-scale similarity search analysis of ChEMBL com-
pound data sets. Similarity searching using 2D fingerprints is applied to a wide
range of pharmaceutical targets in order to estimate the performance range of
2D fingerprints.

In Chapter 2, 2D fingerprint-based similarity searching is analyzed to identify
the mechanism by which fingerprints detect structurally diverse compounds.
Therefor, fingerprints are systematically reduced and the recall performance of
reduced and unmodified fingerprints is compared.

Chapter 3 reports the application of 2D fingerprints in SVM-based search cal-
culations. A variant of the SVM methodology, SVM linear combination, is
used to investigate a multi-class prediction problem involving compounds hav-
ing closely related and overlapping activity profiles.

Chapter 4 describes the adaption of SVM linear combination and the design of
a kernel function with the objective to incorporate compound potency in LBVS.
The results of the potency-directed VS calculations applied on HTS data sets
are presented.

In Chapter 5, kernel functions are introduced for the comparison of pairs of
compounds. These kernels capture different structural elements of compound
pairs and are used to predict activity cliffs in compound data sets, a principal
limitation for which similarity-based search methods cannot account for.

Chapter 6 investigates the influence of the negative training set on compound

35



Thesis outline

recall of SVM-based VS. Compounds of different origin are used as negative
training instances and their effect on the search performance is analyzed. Ad-
ditionally, search calculations are performed in diverse background databases
to determine their impact.

Finally, the major findings of the thesis project are summarized and general

conclusions are presented.
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Chapter 1

Large-scale similarity search
profiling of ChEMBL compound

data sets

Introduction

Similarity searching is often performed using 2D fingerprints as molecular repre-
sentation. In this study, we generate a large-scale similarity search profile of the
ChEMBL database using two popular, conceptually different 2D fingerprints.
Search calculations are performed on well-defined ChEMBL activity classes ap-
plying three different kNN search strategies and the fingerprints MACCS and
ECFP4. The two fingerprints represent opposite levels of resolution and com-
plexity and allow the derivation of a performance range of 2D fingerprint-based

similarity search calculations.
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ABSTRACT: A large-scale similarity search investigation has been carried
out on 266 well-defined compound activity classes extracted from the
ChEMBL database. The analysis was performed using two widely applied
two-dimensional (2D) fingerprints that mark opposite ends of the current
performance spectrum of these types of fingerprints, i.e., MACCS structural
keys and the extended connectivity fingerprint with bond diameter four
(ECFP4). For each fingerprint, three nearest neighbor search strategies
were applied. On the basis of these search calculations, a similarity search
profile of the ChEMBL database was generated. Overall, the fingerprint
search campaign was surprisingly successful. In 203 of 266 test cases
(~76%), a compound recovery rate of at least 50% was observed with at
least the better performing fingerprint and one search strategy. The
similarity search profile also revealed several general trends. For example,

Recovery Rate

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
Index

fingerprint searching was often characterized by an early enrichment of active compounds in database selection sets. In addition,
compound activity classes have been categorized according to different similarity search performance levels, which helps to put the
results of benchmark calculations into perspective. Therefore, a compendium of activity classes falling into different search
performance categories is provided. On the basis of our large-scale investigation, the performance range of state-of-the-art 2D

fingerprinting has been delineated for compound data sets directed against a wide spectrum of pharmaceutical targets.

B INTRODUCTION

Molecular fingerprints are usually defined as bit string repre-
sentations of molecular structure and properties and have for
more than two decades been utilized in chemical similarity
searching and virtual screening for new active compounds.' >
Fingerprints can be classified into 2D and 3D molecular repre-
sentations, dependent on molecular graph- or conformation-
derived features that are utilized for their design."* Regardless of
specific design criteria, fingerprint search calculations involve the
comparisons of fingerprints calculated for reference and database
compounds and the quantitative comparison of fingerprint (bit
string) overlap as a measure of molecular similarity." Accord-
ingly, fingerprint searching is an intrinsically simple similarity
method, especially when 2D fingerprints are used that only
require the molecular graph as input. Various fingerprint
engineering” © and similarity search strategies’ ® have been
introduced to further improve fingerprint performance and/or
tune fingerprints for compound class-specific search calculations.
Despite their conceptual simplicity, 2D fingerprints have been
shown to display significant scaffold hoppin% 3potential in bench-
mark trials'®'" and practical applications.'”

Virtual screening tools including 2D fingerprints are typically
evaluated in retrospective benchmark investi§ations on activity
classes taken from compound databases."* '® Popular source
databases include, for example, the MDDR,"” which is, however,

A2 ACS Publications ©2011 American Chemical Society

1831

license-restricted similar to other commercial database products
and, hence, not generally available. Therefore, carefully designed
data sets that are made gublicly available'>"® are highly relevant
for method evaluation'”"? as well as public domain compound
repositories,”® > especially those that collect compound activity
and optimization data from medicinal chemistry literature or
patent sources.”">* These compound databases provide a sound
basis for the generation of compound data sets that can be freely
shared for method comparison.

Here we have carried out an unconventional fingerprint
similarity search investigation on public domain compound data.
Rather than comparing the search performance of 2D finger-
prints on a limited number of selected activity classes, which is
typically done,'”">' we have extracted all compound data sets
from ChEMBL® that were suitable for fingerprint test calcula-
tions in order to generate a similarity search profile of this database.
ChEMBL currently is the largest publicly available repository of
curated compound activity data taken from medicinal chemistry
sources. Furthermore, rather than evaluating different finger-
prints on ChEMBL data sets to compare details of their relative
search performance, we selected two 2D fingerprints that repre-
sent the current performance spectrum of these search tools.

Received:  May S, 2011
Published: July 05, 2011
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Figure 1. Similarity search profile. Average recovery rates (selection set size equal to the number of ADCs) of a representative subset of 20 activity
classes (number 120—139 in Supporting Information Table S1) are reported in a histogram representation for MACCS (black) and ECFP4 (red).
Positive standard deviations are displayed as error bars. The index on the x-axis reports the consecutively numbered activity classes. Search strategy:

(a) INN, (b) SNN, (c) 10NN.
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As a well-established fingerprint that marks the basic per-
formance level of conventional 2D fingerprints, we selected
MACCS™ as the prototype of a “low resolution” structural
fragment dictionary fingerprint (consisting of 166 predefined
structural keys). The MACCS design goes back to the roots of
2D fingerprinting and is often used as a standard to put the
performance of different fingerprints into perspective.'”'®
Furthermore, we selected ECFP4 as a representative of a popular
“high resolution” class of extended connectivity fingerprints>*

Table 1. Average Recovery Rates”

ECFP4 MACCS
INN SNN 10NN INN SNN 10NN
average 63.6 589 552 45.3 37.2 317
st dev 74 8.6 82 7.2 8.4 7.6

“ Average recovery rates (in percent) and standard deviations (st dev)
are reported over all ChEMBL activity classes and search trials.

that currently probably represent the top performance level
among 2D fingerprints of different design.'”'" These com-
binatorial fingerprints systematically monitor circular atom
environments up to a given bond diameter in test com-
pounds and assemble these structural features in a molecule-
specific manner, rather than based on predefined dictionaries.
Hence, MACCS and ECFP4 can be used as markers to represent
the current spectrum of 2D fingerprint search performance,
which enables the generation of a similarity search profile of a
large database and also makes it possible to characterize indivi-
dual compound activity classes according to the degree of
difficulty they represent for 2D fingerprint searching. Impor-
tantly, we did not aim to generate individual activity classes with
predefined molecular properties for benchmarking or, alterna-
tively, to carry out a standard fingerprint comparison. Rather, the
focal points of this study have been to mark the boundaries of 2D
similarity search performance on a large scale and, in addition,
provide some guidance for the evaluation of similarity search
calculations on well-curated publicly available compound classes.
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Figure 2. Early enrichment characteristics. Average recovery rates of a representative subset of 20 activity classes (numbers 120—139 in Supporting
Information Table S1) are reported for selection set sizes of one or two times the number of ADCs per activity class. The index reports the consecutively
numbered activity classes. Fingerprints and search strategies: (a) ECFP4/1NN, (b) MACCS/1NN.
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Table 2. Activity Class Yielding Highest Fingerprint Search Performance”

ECFP4 MACCS

no. target ID target name INN 10NN INN 10NN
256 101174 pituitary adenylate cyclase-activating polypeptide type I receptor 100.0 100.0 100.0 100.0
264 101395 IgG receptor FcRn large subunit pS1 100.0 99.2 100.0 100.0
83 10102 S-lipoxygenase activating protein 100.0 100.0 94.7 95.8
180 10144 bone morphogenetic protein 1 97.2 972 84.0 88.6
251 12909 ileal bile acid transporter 90.4 91.9 89.5 81.5
253 20130 inhibitor of apoptosis protein 3 90.3 90.1 86.0 86.6
169 275 retinoid X receptor alpha 92.5 94.9 79.2 84.0
228 11061 motilin receptor 94.3 90.7 83.3 82.0
173 10056 DNA-dependent protein kinase 88.8 93.5 81.6 84.5
231 11096 sodium/hydrogen exchanger 1 779 89.7 88.5 912
214 10845 phospholipase D1 90.4 90.6 81.1 84.3
246 11758 glucagon-like peptide receptor 95.8 80.3 87.7 78.4
189 11402 furin 91.3 81.1 91.0 76.7
31 12725 matriptase 91.4 83.6 87.9 76.0
262 101219 secreted frizzled-related protein 1 99.1 100.0 67.1 72.0
119 176 Purinergic receptor P2Y12 89.2 86.3 814 79.7
175 10087 deoxycytidine kinase 95.9 91.8 854 63.1
247 100098 serine/threonine-protein kinase WEE1 95.2 96.6 65.9 71.7
74 10624 serotonin Sa (S-HTSa) receptor 84.3 91.4 72.5 79.1
133 12659 prostanoid DP receptor 92.8 88.5 72.8 70.9
203 10582 cytosolic phospholipase A2 9S.1 89.5 76.2 62.9
261 100862 metastin receptor 93.9 84.6 75.5 66.1
90 117 somatostatin receptor 2 874 86.4 71.1 73.8
6 4 voltage-gated T-type calcium channel alpha-1H subunit 86.5 80.4 74.6 76.3
216 1163S protein kinase C alpha 79.9 85.3 72.5 72.0
235 11242 Focal adhesion kinase 1 91.9 92.3 63.5 61.9
48 34 fibronectin receptor beta 932 90.3 68.0 56.9
212 100077 cell division cycle 7-related protein kinase 89.1 89.5 60.8 68.4
33 193 coagulation factor IX 85.6 86.0 60.9 74.7
102 80 FK506-binding protein 1A 91.0 85.6 71.0 59.0

“The top 30 activity classes yielding the highest overall search performance are reported and ranked according to decreasing average recovery rate
(ie., top-down) of ECFP4 (1NN and 10NN) and MACCS (1NN and 10NN) calculations for selection sets equal to the number of ADCs. For each
activity class, the ChEMBL target ID and target name are provided and average recovery rates are reported (in percent).

The results of our large-scale fingerprint search investigation on
ChEMBL are reported herein.

B METHODS AND MATERIALS

Compound Data Sets. From ChEMBL, version 9,>* activity
classes were systematically extracted that contained at least 50
compounds active against human target proteins at high con-
fidence level (ChEMBL level 9) for direct (D) interactions (i.e.,
9/D**) with at least 10 uM potency. On the basis of these
selection criteria, a total of 266 activity classes were obtained that
contained between 50 and 1793 compounds, with on average ~239
compounds per class, as reported in Table S1 of the Supporting
Information. These activity classes consist of designated enzyme
or transporter inhibitors or receptor antagonists (with the
exception of one class designated as ligands). When reporting
activity classes herein, we refer to the target name, as given in
ChEMBL.

Fingerprints and Search Strategies. For both MACCS*
and ECFP4,%* three k-nearest neighbor (kNN) search strategies7

for multiple reference compounds were applied, i.e., INN, 5NN,
and 10NN. The Tanimoto coefficient (Tc)" was calculated as the
similarity measure. In INN calculations, a database compound is
compared to all k reference compounds and the highest Tc value
is utilized as the final similarity value for the database compound.
In SNN and 10NN calculations, the top S and top 10 Tc values
are averaged, respectively, to yield the final similarity value for a
database compound.

Similarity Searching. From each activity class, 100 reference
sets of 10 compounds each were randomly selected and used for
individual MACCS and ECFP4 search trials. In each case, all
remaining active compounds were added as active database
compounds (ADCs) to a background database containing one
million molecules randomly selected from ZINC.*® The choice
of 10 reference compounds meant that the 10NN search strategy
equally took similarity contributions from all reference com-
pounds into account when calculating the similarity score for a
database molecule. Initially, rather than using database selection
sets of constant size, activity class-specific selection sets were
utilized of a size equal to the number of ADCs. For each activity

1834 dx.doi.org/10.1021/ci200199u |J. Chem. Inf. Model. 2011, 51, 1831-1839
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Table 3. Activity Classes Yielding Lowest Fingerprint Search Performance®

no. target ID target name
N 165 HERG
37 10193 carbonic anhydrase I
24 15 carbonic anhydrase II
96 11489 11-beta-hydroxysteroid dehydrogenase 1
67 121 serotonin transporter
62 72 dopamine D2 receptor
104 259 cannabinoid CB2 receptor
22 10188 MAP kinase p38 alpha
70 108 serotonin 2¢ (S-HT2c) receptor
34 12952 carbonic anhydrase IX
36 93 acetylcholinesterase
20 10980 vascular endothelial growth factor receptor 2
73 19905 melanin-concentrating hormone receptor 1
66 107 serotonin 2a (S-HT2a) receptor
103 87 cannabinoid CB1 receptor
91 17045 cytochrome P450 3A4
89 11140 dipeptidyl peptidase IV
117 114 adenosine Al receptor
68 90 dopamine D4 receptor
255 100166 kinesin-like protein 1
26 13001 matrix metalloproteinase-2
92 104 monoamine oxidase B
40 65 cytochrome P450 19A1
SS 61 muscarinic acetylcholine receptor M1
99 10280 histamine H3 receptor
53 S1 serotonin la (S-HT1a) receptor
77 100 norepinephrine transporter
185 10260 vanilloid receptor
76 52 alpha-2a adrenergic receptor
153 11365 cytochrome P450 2D6

ECFP4 MACCS
INN 10NN INN 10NN
21.1 9.9 13.6 L5
17.6 11.3 174 6.2
17.6 14.3 15.8 7.0
25.1 16.8 152 2.8
26.5 17.5 14.7 5.5
27.0 19.2 13.0 7.3
30.0 17.8 15.9 4.9
29.5 194 16.1 4.2
30.7 19.8 18.7 5.4
27.8 215 19.9 8.0
33.3 229 17.7 4.8
38.5 232 16.7 3.5
29.0 19.6 16.9 14.6
35.2 20.2 209 4.6
31.8 31.3 14.9 9.9
39.5 23.7 23.2 4.7
36.9 273 17.8 9.5
319 26.9 21.1 12.6
33.4 20.6 24.3 14.2
404 28.4 19.0 6.9
33.1 27.6 24.9 9.4
38.5 24.8 21.5 10.6
31.8 30.1 21.3 12.4
38.1 274 25.9 6.5
36.6 29.5 20.3 122
34.8 27.0 24.8 12.8
412 28.8 25.9 5.6
40.0 31.1 20.8 10.7
40.5 28.3 28.0 6.8
42.0 24.6 28.8 8.7

“The bottom 30 activity classes yielding the lowest overall search performance are reported and ranked according to increasing average recovery rate
(i.e., bottom-up) of ECFP4 (1NN and 10NN) and MACCS (1NN and 10NN) calculations for selection sets equal to the number of ADCs. For each
activity class, the ChEMBL target ID and target name are provided and average recovery rates are reported (in percent).

class, compound recovery rates (RRs) were then calculated by
determining the ratio of active compounds contained in each
class-specific selection set over all available ADCs. For example, if
an activity class contained 200 compounds, 190 ADCs were
available. If a search trial recovered 95 of these active compounds
within a selection set of 190 database compounds (equal to the
number of ADCs), the recovery rate would be 50%. Individual
RRs were then averaged over all 100 trials for each activity class.
Receiver operating characteristic (ROC) curves’® and ROC area
under the curve (AUC) values®® were also calculated for averaged
search trials. The initial use of ADC-based selection sets ensured
that selection set sizes were balanced with respect to the size of an
activity class and that in each case, a perfect similarity search
outcome with 100% recovery rate (and 100% search specificity of
the calculations) was principally possible. Subsequently, larger selec-
tion sets of two to three times the number of ADCs (e.g, 380 or
570 compounds for the example given above) were also considered.
Finally, average RRs were also calculated for all classes for a
constant database selection set size equal to the largest number of
ADCs among all activity classes, ie., 1783 compounds, which
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corresponded to ~0.18% of the screening database. MACCS and
ECFP4 were generated using the Molecular Operating Environ-
ment”” and Pipeline Pilot,*® respectively, and all search calcula-
tions were carried out with in-house generated Java scripts.

B RESULTS AND DISCUSSION

Similarity Search Profile. All 266 activity classes extracted
from ChEMBL were subjected to systematic fingerprint search
calculations in order to generate a similarity search profile of the
database. From each class, 100 compound reference sets were
randomly selected and for each combination of a fingerprint and
a search strategy, 100 independent search trials were carried out
in order to obtain statistically relevant data, which amounted to a
total of ~160000 search trials with multiple reference com-
pounds. Figure S1 of the Supporting Information reports the
resulting similarity search profiles for the three alternative nearest
neighbor search strategies, and Figure 1 shows three representa-
tive profile subsets (for 20 activity classes, 120—139). In addi-
tion, Supporting Information Table S1 also reports 1NN recall
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Figure 3. Similarity search profile for large database selection sets. For
MACCS (black) and ECFP4 (red), recovery rates averaged over all
three search strategies and for a constant database selection set size of
1783 molecules (see text) are plotted for all 266 activity classes. Index
reports the consecutively numbered activity classes according to Sup-
porting Information Table S1.

rates for each class. The profiles revealed the anticipated differences
in global search performance between ECFP4 and MACCS.
With only two exceptions, ECFP achieved consistently higher
recovery rates (RRs). Furthermore, the profiles also illustrated
the general compound class-dependence of fingerprint/similar-
ity search calculations, with in part significantly varying RRs for
each fingerprint. Importantly, however, the profiles revealed a
perhaps unexpected success rate of 2D fingerprint searching
on this large array of activity classes. In 203 of 266 test cases
(~76%), an RR of at least 50% was obtained with at least the
better performing fingerprint and at least one of the three
different search strategies. It should be noted that these RRs
were achieved for generally small selection set sizes equal to the
number of ADCs for each class. For all search calculations, the
average RR was 59.2% for ECFP4 and 38.1% for MACCS, which
delineates a global performance range between approximately
40% and 60% compound recall achieved by a low-resolution
(MACCS) and a high-resolution (ECFP4) 2D fingerprint. Given
the large-scale character of these search calculations, these findings
provide a realistic expectation value for 2D fingerprint searching
on diverse compound classes.

Similarity Search Strategies. The 1NN, SNN, and 10NN search
strategies take contributions of reference compounds in different ways
into account (see Methods and Materials). Because 1NN calculations
only consider the match between a database molecule and the most
similar reference compound, this strategy displays the tendency to
select database molecules that are very similar to individual reference
compounds. By contrast, because 10NN calculations take contribu-
tions of 10 reference compounds equally into account, this strategy
shows a greater tendency to select database molecules that structurally
differ from individual reference compounds. In Figure S2 of the
Supporting Information, search profiles are compared for the INN,
SNN, and 10NN search strategies, and Table 1 reports the average
RRs and standard deviations for each combination of a strategy and
fingerprint. For both fingerprints, we observed that the global search
performance decreased with increasing numbers of reference com-
pound contributions (ie., from INN over SNN to 10NN), with an

overall decline of ~8% for ECFP4 and 13% for MACCS. For all
search calculations, standard deviations of ~7% or 8% were observed,
which reflected the (limited) influence of reference set composition
on the search results. Thus, we found that 1NN was the globally
preferred nearest neighbor search strategy, yielding an average RR of
63.6% and 45.3% for ECFP4 and MACCS, respectively. Although
the differences between individual search strategies were not very
large, maximally on the order of 10%, selecting database molecules
that were most similar to individual reference compounds globally
produced highest RRs on the ChEMBL activity classes. These
findings were consistent with the notion that compound data sets
from medicinal chemistry typically contain different series of analogs,
which are often easier to detect when applying the 1NN rather than
other kNN search strategies.

Enrichment Behavior. We also studied the enrichment
characteristics in database selection sets of increasing size. Figure
S3 of the Supporting Information shows similarity search profiles
for the original selection set sizes and selection sets that were
doubled in size, and Figure 2 shows representative profile subsets
for 20 activity classes and two fingerprint/search strategy com-
binations. Profile subsets for the remaining four fingerprint/
strategy combinations are shown in Figure S4 of the Supporting
Information. For both fingerprints, we consistently observed
only slight increases in RRs of a few percent when selection sets
were doubled or tripled in size (data not shown). Thus, these
fingerprint search calculations were generally characterized by an
early enrichment of active compounds in database selection sets.
This meant that correctly identified active compounds often
appeared at relatively high positions in the Tc-based similarity
rankings. These finding were also consistent with the observation
that active compounds were preferentially detected by matching
the most similar reference compound (INN), which typically
yields higher similarity values than Tc average calculations and
hence increases the probability of higher ranking positions.
Figure SS of the Supporting Information shows representative
ROC curves for ECFP4 and MACCS INN calculations at different
levels of search performance and ROC AUC values for all activity
classes are reported in Table S2 of the Supporting Information.

Prioritization of Activity Classes. Our low/high resolution
fingerprint similarity search strategy also made it possible to
categorize activity classes according to their relevance for finger-
print benchmarking. We first identified particularly “easy” and
“difficult” classes for 2D fingerprinting. In Table 2, the top 30
classes with overall highest search performance are reported. For
ECFP4, the search performance was consistently very high in
these cases, at or above the 90% levels, for both INN and 10NN
calculations. For MACCS, RRs of close to or above 80% were
also observed for 16 classes and all remaining RRs were above
60%. For the first three classes, almost perfect search results were
obtained for both ECFP4 and MACCS. Taken together, the
activity classes listed in Table 2 consistently yielded high to very
high search performance for our prototypic low- and high-
resolution 2D fingerprints. Thus, these classes are not suitable
for fingerprint benchmarking because they yield RRs that go
much beyond the typical performance range of 2D fingerprints,
even for relatively small database selection sets. Importantly, the
classes in Table 2 include a number of popular targets, for
example, phospholipases, serine proteases, protein kinases, pur-
inergic receptors, and other G protein coupled receptors that
might often be attractive for benchmark trials. However, the
uncritical choice of such data sets would provide artificially good
results for fingerprint methods.
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Table 4. Activity Classes Preferred for Evaluating 2D Fingerprints®

average RR

no. target ID target name BMS cpds per CSK ECFP4 MACCS
4 11359 phosphodiesterase 4D 60 3.30 784 47.5
8 28 thymidylate synthase 44 4.29 723 49.4
9 11536 ghrelin receptor 228 3.52 63.0 34.1
10 8 tyrosine-protein kinase ABL 64 4.47 64.5 40.5
12 10434 tyrosine-protein kinase SRC 229 3.48 58.7 3LS
13 12670 tyrosine-protein kinase receptor FLT3 49 3.30 65.7 45.7
14 20014 serine/threonine-protein kinase Aurora-A 66 3.65 69.7 46.8
16 234 insulin-like growth factor I receptor 124 4.09 76.9 518
21 12261 c-Jun N-terminal kinase 1 S1 5.94 78.7 433
35 12209 carbonic anhydrase XII 60 3.40 61.0 382
42 25 glucocorticoid receptor 169 441 55.6 319
44 36 progesterone receptor 99 5.79 67.9 362
52 43 beta-2 adrenergic receptor 88 2.11 69.2 482
54 219 muscarinic acetylcholine receptor M3 140 2.60 61.2 40.8
57 130 dopamine D3 receptor 214 3.23 57.5 33.0
59 105 serotonin 1d (S-HT1d) receptor 45 1.81 66.1 36.7
81 11336 neuropeptide Y receptor type S 182 6.33 63.3 40.8
86 20174 G protein-coupled receptor 44 132 521 66.3 40.1
95 126 cyclooxygenase-2 117 5.92 56.0 327
98 11225 renin 183 5.34 68.8 316
105 12252 beta-secretase 1 246 3.31 61.7 37.3
112 11682 glycine transporter 1 66 3.95 78.3 531
113 134 vasopressin V1a receptor 110 2.54 72.0 46.5
115 116 oxytocin receptor SS 4.03 73.7 412
120 11265 somatostatin receptor § 67 2.50 73.0 50.0
121 10475 neuropeptide Y receptor type 1 66 4.70 62.8 36.9
129 12679 CSa anaphylatoxin chemotactic receptor 67 3.54 78.6 42.7
140 10579 C—C chemokine receptor type 4 87 2.73 65.9 44.5
142 11575 C—C chemokine receptor type 2 178 6.11 712 43.5
143 18061 sodium channel protein type IX alpha subunit S8 5.26 78.8 55.3
146 237 leukotriene A4 hydrolase 87 3.20 76.4 S1.3
147 276 phosphodiesterase 4A 38 2.61 733 46.7
148 11534 cathepsin S 298 3.61 59.6 32.9
152 10198 voltage-gated potassium channel subunit Kv1.5 97 3.94 67.0 33.6
163 10498 cathepsin L 67 3.29 65.7 40.2
168 12911 cytochrome P450 2C9 31 2.27 63.6 33.8
171 12968 orexin receptor 2 43 4.55 74.3 47.6
181 100579 nicotinic acid receptor 1 80 4.47 74.6 46.9
186 100126 serine/threonine-protein kinase B-raf 73 2.94 71.8 38.7
195 10378 cathepsin B 56 2.56 61.4 41.3
196 10417 P2X purinoceptor 7 69 3.26 70.9 36.1
210 10752 inhibitor of nuclear factor kappa B kinase beta subunit 46 3.81 70.8 40.1
211 10773 interleukin-8 receptor B 76 6.85 69.0 47.1
213 11631 sphingosine 1-phosphate receptor Edg-1 S1 3.59 76.3 52.6
220 10927 urotensin II receptor 74 3.00 754 46.4
230 11085 melatonin receptor 1B 52 3.61 78.4 56.2
234 11442 liver glycogen phosphorylase 104 5.10 79.3 50.0
238 11279 metabotropic glutamate receptor 1 84 4.37 72.6 46.7
241 11488 estradiol 17-beta-dehydrogenase 3 39 5.30 76.3 48.4
250 12840 macrophage colony stimulating factor receptor 59 5.57 74.3 40.9

“ Listed are 50 activity classes that met our selection criteria for benchmarking relevance (as described in the text). These classes are ordered by their
consecutive numbers. Average RRs over all search strategies are reported (in percent) for ECFP4 and MACCS and a database selection set size of 1783
compounds (see text for details). For each class, the total number of Bemis and Murcko scaffolds (BMS)*® and the compound-to-carbon skeleton
(CSK)*° ratio (cpds per CSK) are reported.
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In Table 3, we report the opposite end of the similarity search
spectrum. Here the 30 activity classes with lowest search
performance are listed. For ECFP4, these classes mostly resulted
in RRs of ~20% to ~30%. For MACCS, many 10NN RRs were
lower than 10% or even 5%, but INN RRs were still close to or
above 20% in many instances. Therefore, fingerprint searching
on none of these classes could per se be considered a failure.
However, given their overall low search performance, the 2D
fingerprints clearly approached their detection limits in these
cases that also included a number of popular enzyme and G
protein coupled receptor targets. Hence, these activity classes
might be more appropriate for the evaluation of similarity
methods that employ more elaborate molecular representations
or utilize 3D information.

In virtual screening benchmark calculations, compound recall
is typically evaluated on the basis of larger selection set sizes than
the variably balanced selection set sizes that we utilized for our
analysis up to this point. Often, 0.1—1% of the screening/back-
ground database are selected for recovery rate analysis. Therefore,
we also calculated average RRs over all search strategies for a
selection set of constant size, i.e., the largest individual selection
set utilized in our study, which contained 1783 compounds
corresponding to ~0.18% of our background database. On average,
this constant selection set corresponded to an approximately
6-fold increase in selection set size for the ChEMBL activity
classes. The resulting similarity search profile for all 266 classes is
displayed in Figure 3. As expected, for this comparably large
selection set, average RRs were higher than originally observed,
with 71.9% and 52.7% for ECFP4 and MACCS, respectively
(again with standard deviations of ~8%). However, the increase
relative to the originally observed RRs was also limited with
approximately 11% for ECFP4 and 14% for MACCS, consistent
with the generally observed early enrichment characteristics.

On the basis of these results, we then prioritized activity classes
that were considered particularly suitable for benchmarking of
2D fingerprints. Therefore, in light of the observed search perfor-
mance range for our fingerprint prototypes, we selected activity
classes that minimally yielded more than 30% compound recall
for MACCS (thus ensuring a meaningful base performance) and
maximally less than 80% recall for ECFP4 (thus leaving room for
further improvements) and that differed by more than 20% in
relative search performance (thus reflecting the overall perfor-
mance range). On the basis of these selection criteria, we identified a
total of 50 activity classes that we would assign a high priority for
the evaluation and comparison of alternative 2D fingerprints. As
reported in Table 4, these classes covered a variety of different
target families including a number of prominent therapeutic
targets and were generally characterized by the presence of large
numbers of distinct scaffolds and low compound-to-carbon skeleton
ratios (i.e., structural heterogeneity). These activity classes can
also be obtained via the following URL (please, see the “Down-
loads” section): http://www lifescienceinformatics.uni-bonn.de.

B CONCLUSIONS

Here we have reported a large-scale similarity search investi-
gation to systematically analyze compound activity classes ex-
tracted from the ChEMBL database, a major public domain
repository of compounds originating from medicinal chemistry
sources. For similarity search profiling of ChEMBL, we selected
two prototypic 2D fingerprints that represent markers for current
performance levels of popular fingerprints. On the basis of

systematic search calculations, we also determined the global
performance range defined by these fingerprints covering com-
pound data sets directed against the spectrum of current pharma-
ceutical targets. Overall, the search results were rather encouraging,
more so than we anticipated, indicating that many activity classes
can be well treated using 2D fingerprints, despite their relative
simplicity. Other general trends emerged concerning preferred
search strategies and early enrichment characteristics of active
compounds that corroborated earlier findings. Furthermore, by
comparing the search performance of our low- and high-resolu-
tion fingerprint standards, we have identified activity classes that
were unsuitable for 2D fingerprint evaluation, because they
yielded artificially high search performance, and other classes
that represented rather difficult test cases where 2D fingerprints
approached their limits. We also prioritized 50 activity classes as
particularly useful for 2D fingerprint evaluation in light of the
search characteristics we observed. Taken together, these find-
ings should also aid in the design of meaningful benchmark
investigations.

B ASSOCIATED CONTENT

©® Supporting Information. Supplementary Table S1 list-
ing all activity classes extracted from the ChEMBL database and
reports recovery rates for each class, Supplementary Table S2
reporting ROC AUC values, and Supplementary Figures S1—S5
showing similarity search profiles, comparisons of similarity
search strategies, enrichment characteristics for all activity
classes, enrichment characteristics for activity class subsets, and
exemplary ROC curves for activity classes at different similarity
search performance levels, respectively. This information is
available free of charge via the Internet at http://pubs.acs.org.
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Chapter 1

Summary

A large-scale similarity search analysis of compound activity classes from the
ChEMBL database was presented. The search investigation showed that 2D
fingerprints are effective molecular representations for similarity searching de-
spite their simplicity. Most of the active compounds have been recovered at
small database selection set sizes revealing general early enrichment potential.
The large-scale character of the study and the fingerprints used enabled us to
define a performance range of 2D fingerprints in search calculations on phar-
maceutical targets. In addition, activity classes have been grouped depending
on how difficult they are for standard 2D fingerprint searching.

The supporting information of this publication can be found under the following
URL: http://dx.doi.org/10.1021/ci200199u.

Next, we further analyze similarity searching and focus on the mechanistical
aspect of 2D fingerprint searching. The aim of the follow-up study is to deter-
mine on a large-scale how fingerprints recover active compounds, even if they

have only little similarity to the reference compounds.
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Chapter 2

How do 2D fingerprints detect
structurally diverse active
compounds? Revealing compound
subset-specific fingerprint features

through systematic selection

Introduction

In the previous study, it was shown that similarity searching using 2D finger-
prints yields high search performance. This study follows up on the analysis of
2D fingerprint searching and determines how 2D fingerprints work mechanisti-
cally. Key focus of this study is the identification of the mechanism by which 2D
fingerprints facilitate scaffold hopping. Therefore, two different feature selec-
tion methods, namely Kullback-Leibler divergence and gain ratio, are applied
to systematically reduce two different atom environment fingerprints that are
used to search compound activity classes of different structural diversity. The
recall of reduced and unmodified fingerprints is analyzed and fingerprint fea-
tures are identified that are responsible for the recovery of distinct subsets of

active compounds.
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ABSTRACT: In independent studies it has previously been demonstrated that two-
dimensional (2D) fingerprints have scaffold hopping ability in virtual screening, although
these descriptors primarily emphasize structural and/or topological resemblance of
reference and database compounds. However, the mechanism by which such fingerprints
enrich structurally diverse molecules in database selection sets is currently little understood.
In order to address this question, similarity search calculations on 120 compound activity
classes of varying structural diversity were carried out using atom environment fingerprints.

GR
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Two feature selection methods, Kullback—Leibler divergence and gain ratio analysis, were

applied to systematically reduce these fingerprints and generate alternative versions for searching. Gain ratio is a feature selection
method from information theory that has thus far not been considered in fingerprint analysis. However, it is shown here to be an
effective fingerprint feature selection approach. Following comparative feature selection and similarity searching, the compound
recall characteristics of original and reduced fingerprint versions were analyzed in detail. Small sets of fingerprint features were found
to distinguish subsets of active compounds from other database molecules. The compound recall of fingerprint similarity searching
often resulted from a cumulative detection of distinct compound subsets by different fingerprint features, which provided a rationale

for the scaffold hopping potential of these 2D fingerprints.

B INTRODUCTION

Molecular fingerprints have for long been used for chemical
similarity searching."” These descriptors typically consist of bit
string representations of structural features or other molecular
properties. Fingerprint representations calculated from molecu-
lar graphs, thus termed two-dimensional (2D) fingerprints, were
among the early descriptors for similarity searching." Original 2D
fingerprint designs, such as structural keys,” were based on
fragment dictionaries. In such fingerprints, each bit accounts
for the presence or the absence of a predefined substructure in a
compound. In addition to dictionary-based fingerprints, the
introduction of topological 2D fingerprints that assemble con-
nectivity pathways through molecules and represent them in a
hashed format* has been another milestone event in this field. To
this date, most—but not all—available 2D fingerprints account
for structural and/or topological features.”®

In similarity searching, the overlap between fingerprints of
reference and database compounds is quantified as a measure of
molecular similarity," and database compounds are ranked in the
order of decreasing fingerprint similarity to reference molecule-
(s) such that the structurally most similar compounds are highest
on the list. As is generally the case with structural descriptors, 2D
fingerprints do not capture biological activity information, and
hence there is no well-defined relationship between (calculated)
ﬁngergrint similarity and (observed) biological activity simi-
larity.>® Of course, because fingerprints detect compounds that

A2 ACS Publications ©2011 American Chemical Society

are structurally most similar to active reference molecules, these
compounds have a certain probability to exhibit a similar activity.
However, as structural similarity decreases between reference
and ranked database compounds, calculated similarity and
activity similarity are not related to each other, and it is generally
difficult to select active compounds.®

Nevertheless, 2D fingerprints have a history of successful
applications in virtual screening for novel active compounds.>>°
Here the identification of structurally highly similar or analogous
compounds, which one can easily accomplish using fingerprints,
is much less interesting than the search for structurally diverse
molecules having similar activity, a challenge often referred to as
scaffold hopping.”® However, although the scaffold hopping
ability of relatively simple structural descriptors, such as 2D
fingerprints, has often been questioned, it has clearly been
demonstrated that 2D fingerprints are capable of enriching
structurally diverse active compounds in small database selection
sets, both in benchmark trials”'® and prospective virtual screen-
ing applications.""'> Methodological foundations for the rather
surprising virtual screening potential of 2D fingerprints have,
however, largely remained unclear.

The virtual screening performance of 2D fingerprints has been
much improved over the years through the introduction of search
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strategies for multiple reference compounds'®~'® and various new
fingerprint designs.*'® Currently, fingerprints that capture atom
environment information, such as Molprint2D'”'® and especially
extended connectivity fingerprints (ECEPs)," often produce the
highest compound recall in comparative benchmark trials. "¢
These types of fingerprints also capture topological information,
similar to (yet algorithmically distinct from) the prototypic atom
pathway fingerprints." ECFPs systematically determine circular
atom environments up to a given bond diameter in compounds
and assemble these structural/topological features in a molecule-
specific manner.'® Feature arrays resulting from different com-
pounds are then also quantitatively compared on the basis of
Tanimoto similarity' or other standard similarity metrics.

Furthermore, the virtual screening performance of 2D finger-
prints has also been increased through the introduction of finger-
print engineering strategies that modify fingerprint formats in
specific ways, for example, by eliminating fingerprint bits
(features) that are not critical for detecting a specific biological
activity (fingerprint reduction)’® or by combining the most
important bit segments from fingerprints of different design
(fingerprint hybridization).** Such modifications convert generally
applicable fingerprints into compound class-specific versions with
increased class-specific recall performance.*'® Such fingerprint
engineering techniques have revealed that individual bit positions
influence the outcome of similarity search calculations in different
ways, depending on the compound classes under investigation.é’lé

Fingerprint reduction techniques depend on the application of
feature ranking and selection methods that make it possible to
evaluate the importance of individual bits (features) for detecting
compounds belonging to a given activity class. For finger-
print reduction, Kullback—Leibler (KL) divergence analysis**
from information theory® has been originally applied*® and has
thus far been a method of choice.'®

In this study, we have carried out comparative feature selection
analysis for atom environment fingerprints and a large number of
activity classes to revisit the scaffold hopping potential of 2D
fingerprints and address the question why such fingerprints are
capable of recognizing active compounds having little structural and
topological resemblance to reference molecules. We have compared
KL divergence with gain ratio (GR)>* analysis, another informa-
tion—theoretic approach, for activity classes of varying degrees of
structural diversity and monitored compound recall characteristics
of systematically reduced fingerprints. On the basis of this analysis,
we have found that for structurally diverse activity classes, small
numbers of fingerprint features are responsible for distinguishing
different subsets of active compounds from the background data-
base, resulting in a cumulative detection of such compound subsets.
Taken together, these findings suggest a plausible mechanism for
scaffold hopping by state-of-the-art 2D fingerprints.

B METHODS AND MATERIALS

Fingerprints. For our analysis, two atom environment finger-
prints were selected, Mollprin‘c2D17’18 and an ECFP with bond
diameter four (ECFP4)."” These 2D fingerprints have often
yielded high compound recall rates in comparative fingerprint
benchmark investigations and are considered state-of-the-art.'®
Molprint2D was calculated using public domain software tools'”
and ECFP4 using Pipeline Pilot.”®

Activity Classes. A total of 120 activity classes, each contain-
ing at least 200 compounds active against human targets, was
extracted from BindingDB.>® Selected compounds were required

to be rule-of-five compliant, have at least 1 4M potency (K; or
ICs, values), and consist of atom types compatible with the
calculation of the Molprint2D fingerprint.'” Although fingerprint
search calculations do not take potency information into ac-
count, the potency threshold was applied to avoid the inclusion
of very weakly or borderline active compounds in similarity
searching. Atom typing and rule-of-five calculations were carried
out using Pipeline Pilot.

The relative structural diversity of activity classes was assessed
by determining the number of Bemis—Murcko scaffolds (BMS)*’
and corresz];onding carbon skeletons (CSK), also referred to as cyclic
skeletons,””*® per class and by calculating the average ratio of
compounds per BMS and CSK. BMS consist of all rings and linker
fragments between rings after removal of R-groups from compounds.
They are further reduced to CSK by setting all bond orders to one
and by converting all heteroatoms to carbon.

Feature Ranking Methods. For fingerprint feature ranking,
KL divergence® and GR analysis®* were carried out. Both
methods determine the ability of individual fingerprint bits/
features to differentiate between active and background database
(inactive) compounds. In the following, the terms bit and feature
are synonymously used.

The KL divergence measures the difference between two value
distributions p(x) and q(x). When p(x) describes the probability
of a value (0 or 1) of bit x in active and q(x) the probability of a
value of this bit in inactive compounds, the KL divergence D is

defined as

= x) lo ‘ZM
D(p(x)llq(x)) = ;p( )1 8 (x)

Hence, bit positions can be ranked on the basis of D to assign
high priority to bits that are preferentially set on in active
compounds. KL divergence calculations have thus far been
applied for the identification of bit settings that are characteristic
of activity classes and fingerprint reduction.***"

Furthermore, GRis a statistical feature ranking approach that is
based on normalized mutual information®® (MI). MI measures the
amount of information a variable X contributes to the values of
another variable Y. Given the definition that X describes the value
of a fingerprint bit (0 or 1) and Y the activity states (active or
inactive), MI determines how much information about the correct
activity state of test compounds is specified by a bit:

MI(X;Y) = H(Y)—H(Y[X)
o X o P(x:y)
= J;yp( ,y) 1 gzp(x)p(y)

where H is the information entropy, p(x) and p(y) are the
probability functions of X and Y, and p(x,y) the joint probability
function. Thus, MI represents the difference between the entropy
of the activity states and the entropy of the activity states under the
condition that the value of a specific bit is known. GR is then
obtained by dividing MI by the overall entropy of this bit:

GR(X;Y) = %
_ %) o p(xy)

(
; Y p(x) log, p(x)
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For a given activity class, bits are ranked on the basis of their KL or
GR values, which reflect the ability of each individual bit to
distinguish between active and database compounds. For example,
if a bit would occur in all active but no database compounds, then
this ability would be maximal.

Reduced Fingerprints. For each activity class, reduced Mol-
print2D and ECFP4 fingerprints were generated on the basis of
the KL and GR feature rankings by incrementally extending sets
of highly ranked bits. Bit probability distributions within active
and database compounds were derived on the basis of the active
reference set and the database (without active compounds),
respectively. In order to adjust probabilities of zero, which would
lead to nondefined KL divergence and GR calculations, an
m-estimate correction was applied by adding a (hypothetical)
fingerprint reflecting the average fingerprint bit settings of the
database compounds to the fingerprints of each reference set
(and an equivalent correction was applied to the database). In
addition, prior to feature ranking, bits were removed that only
occurred in very few databases but no active compounds because
their calculated feature weights were negligible.

Following feature ranking, reduced fingerprints were gener-
ated as follows, beginning with the smallest possible versions:
The top five bits were added one-by-one, hence generating five
minimal fingerprint versions consisting of only one to five bits.
Then, bits from rank 6 to 20 were added in S-bit increments,
hence generating three further extended fingerprint versions.
Furthermore, bit positions ranked from 21 to 100 were added in
10-bit increments, bits ranked from 101 to 200 in 20-bit, bits
ranked from 201 to 500 in 50-bit, and bit positions ranked from
501 to 1000 in 100-bit increments. Thus, in the design of reduced
fingerprints, the most highly ranked bits were utilized on an
individual basis, and bit positions of decreasing significance were
considered in increments of increasing size. For each activity class
and original fingerprint, 32 reduced fingerprint versions were
generated. Thus, in total, 7680 reduced fingerprints were in-
vestigated, in addition to the unmodified Molprint2D and
ECFP4 fingerprints.

Fingerprint Similarity Searching. From each activity class,
100 different subsets of 20 compounds each were randomly
selected as reference sets for 100 independent similarity search
trials. In each case, the remaining active compounds were added
as potential hits to a background database consisting of 1.44
million compounds randomly selected from ZINC.*” As a search
strategy, 10 nearest neighbor (10NN) calculations*'* were
carried out. Following this strategy, each database compound is
compared to each individual reference molecule by calculating
pairwise Tanimoto similarity,' and the final similarity score
of a database compound is obtained by averaging the 10 highest
individual similarity values. Compound recall rates were deter-
mined for a selection set of 5000 database compounds (i.e.,
~0.35% of the background database). This selection set size was
chosen because several of the activity classes contained more
than 1000 compounds. Because of the differences in activity class
size, there were different probabilities for the random enrichment
of active compounds in database selection sets. However, since
we did not compare search results across different activity classes
but analyzed the performance of unmodified and reduced
fingerprints on individual activity classes, differences in random
enrichment probabilities across different classes did not need to
be considered in the context of our analysis. Importantly, for
ranking of active compounds, we applied a pessimistic ranking
strategy such that all background database compounds were

included in the ranking prior to the last recovered active
compound within a selection set. This means that compounds
having the same similarity value were not given the same but
subsequent ranks. Otherwise, the top 5000 ranks might yield
more than 5000 compounds, which would bias the search results.

Given the number of different fingerprint versions and refer-
ence sets for each activity class, a total of 792 000 similarity search
trials were carried out for our analysis.

B RESULTS AND DISCUSSION

Study Objective. We have been interested in exploring the
question of how compound recall characteristics of fingerprint
search calculations might be rationalized, with a particular focus
on scaffold hopping ability. In order to generate a substantial
body of primary similarity search data for further analysis, we
have initially carried out systematic fingerprint search calcula-
tions on 120 different activity classes using 2 state-of-the-art 2D
fingerprints. To obtain statistically meaningful results, 100
different reference sets per activity class were utilized. On the
basis of these data, compound recall characteristics have then
been explored in detail. We have systematically applied and
compared feature selection methods to identify fingerprint
features that were responsible for the recall of different com-
pound classes. In this context, we have then focused on the
question why 2D fingerprints that emphasize structural/topolo-
gical resemblance have the potential to enrich structural diverse
active compounds in database selection sets. In the following, we
describe the composition of data sets used for our analysis,
present the results of large-scale fingerprint searching, discuss the
findings of comparative feature selection, compare the search
performance of unmodified and reduced fingerprint representa-
tions, and attempt to rationalize the scaffold hopping potential of
the 2D fingerprints studied here.

Composition of Data Sets. The composition of the 120
activity classes utilized for systematic fingerprint similarity
searching is reported in Table S1 of the Supporting Information.
In the text, activity classes are referred to by numbers given in
Table S1, Supporting Information. These compound data sets
contained between 200 and 1425 different enzyme inhibitors or
receptor ligands with varying degrees of intraclass structural
diversity, reflected by differences in BMS and CSK distributions
and compound-to-BMS and -CSK ratios, as also reported in
Table S1, Supporting Information. For our analysis, we distin-
guish between structurally more homogeneous and heteroge-
neous (diverse) compound classes. Therefore, compound-to-
scaffold ratios were determined to estimate intraclass structural
diversity. This approach was considered more robust than, for
example, the calculation of average compound similarity values.
For example, if a data set would consist of a few topologically
distinct scaffolds, each of which would be represented by a larger
number of analogs, then average pairwise similarity values might
be relatively low, although intraclass structural diversity would be
limited in this case. However, the compound-to-scaffold ratio
would be rather high, which would better account for limited
intraclass diversity. In our set of activity classes reported in Table
S1, Supporting Information, structural homogeneous classes are
characterized by the presence of comparably small numbers of
BMS and CSK and large compound-to-BMS and -CSK ratios,
with about 5—10 or more compounds per CSK. For activity
classes of increasing structural diversity, the compound-to-CSK
ratio is decreasing to about 2—3 compounds per CSK.
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Table 1. Average Recovery Rates for ECFP4”

=]
© ® 9 L AW o~ P

—
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unmodified GR KL
RR RR no. bits RR no. bits
45.5 69.3 120 45.3 800
50.8 754 140 53.8 700
37.6 61.1 140 37.6 700
49.4 65.0 140 46.9 700
96.6 98.7 600 98.5 60
S1.8 67.2 120 50.6 800
52.4 67.7 120 50.3 800
819 84.1 90 79.9 700
72.1 84.6 80 71.4 350
60.1 60.5 700 59.6 700
74.2 74.0 700 73.6 700
51.6 66.0 120 50.8 700
71.7 76.6 160 69.7 800
93.8 95.8 120 94.4 700
68.0 67.0 140 65.6 700
584 77.7 120 64.0 140
86.9 87.5 600 87.9 700
93.3 97.3 80 95.8 40
48.1 61.0 140 45.1 900
58.2 66.1 120 55.4 800
58.2 62.4 700 60.9 700
49.5 55.6 700 53.7 700
65.9 70.0 600 67.9 700
79.6 92.8 80 80.2 60
64.2 87.9 140 67.1 700
62.5 88.5 120 70.7 120
73.6 91.1 120 81.9 80
67.6 80.3 120 68.1 700
72.4 80.4 100 73.2 700
85.2 85.9 140 85.0 600
52.5 65.6 140 54.7 800
44.0 64.8 140 50.3 800
79.1 92.6 120 82.3 90
76.3 76.3 700 76.7 700
72.9 74.7 800 74.3 800
87.7 93.1 70 88.0 350
71.6 92.0 160 78.5 40
78.2 82.2 100 78.7 600
38.6 42.5 120 40.0 700
34.6 35.7 700 36.3 700
30.0 344 120 34.0 700
53.0 64.7 120 49.2 700
71.3 72.1 140 71.0 600
85.1 85.1 90 83.0 800
69.6 71.2 60 65.1 600
79.5 78.4 800 78.1 700
79.3 78.0 800 77.6 700
55.6 77.8 120 65.5 700
77.0 83.8 120 76.2 700
532 80.7 200 58.0 800
85.4 85.4 90 84.0 600
63.8 75.1 120 62.2 600

Table 1. Continued
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no.

S3
54
SS
56
57
S8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
10S

unmodified GR KL
RR RR no. bits RR no. bits
87.0 92.2 160 87.0 700
27.7 39.3 160 29.4 800
48.6 63.0 100 48.5 700
64.7 934 70 85.2 15
75.0 81.9 100 72.7 700
822 92.0 90 80.2 700
85.6 89.9 600 90.0 600
88.2 90.8 250 89.9 600
81.2 84.1 90 82.5 80
64.8 77.1 180 68.3 800
61.3 81.7 120 60.3 140
82.9 84.5 600 84.9 600
36.9 54.7 120 432 600
64.2 93.8 140 85.5 10
67.9 83.5 140 71.4 700
53.8 82.3 160 67.4 3
73.7 90.2 100 782 10
56.3 86.5 140 76.8 1
394 56.0 120 41.4 800
78.5 81.0 90 74.0 800
71.6 752 90 66.4 800
66.2 70.6 90 62.7 700
78.4 93.5 60 82.8 40
66.9 82.3 90 69.1 350
66.3 71.3 180 69.3 800
45.7 64.7 140 44.7 800
50.6 67.6 160 48.4 800
69.7 79.3 120 67.8 800
84.5 93.9 120 85.4 N
49.6 64.4 120 46.0 700
558.7 82.4 100 58.0 600
72.8 80.5 140 72.4 800
61.4 79.1 140 61.0 800
50.9 70.1 160 48.0 700
62.5 76.2 70 57.5 700
42.7 68.8 120 43.4 S0
80.1 88.0 60 80.5 700
63.0 71.1 120 612 800
67.0 82.0 140 65.3 700
64.1 82.9 100 64.9 700
69.2 76.0 160 67.5 800
71.3 82.1 160 75.5 800
77.0 88.8 80 77.0 30
94.1 95.4 60 93.5 140
37.1 48.0 140 39.0 800
759 76.0 80 75.5 700
76.8 80.4 90 76.6 700
289 45.9 120 30.5 800
52.8 68.1 120 46.3 700
33.8 53.5 120 34.7 700
65.0 70.0 120 66.7 700
41.1 44.4 100 40.1 800
39.2 61.7 140 38.8 800
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Table 1. Continued

unmodified GR KL
no. RR RR no. bits RR no. bits
106 35.6 40.2 120 339 800
107 85.9 87.2 80 85.0 600
108 41.9 73.1 160 54.0 160
109 85.2 87.0 700 86.5 700
110 77.3 84.4 100 77.5 700
111 80.3 90.4 100 87.3 600
112 78.5 97.5 120 9L5 20
113 55.2 68.6 120 56.3 200
114 58.5 68.0 140 59.2 800
118 64.8 73.6 80 63.7 700
116 73.1 72.5 450 72.4 600
117 81.0 91.7 80 89.6 40
118 64.7 62.9 500 64.0 700
119 59.4 67.3 140 58.8 700
120 27.8 45.6 140 29.8 450

“ Average recovery rates (RR) over 100 independent trials are reported
for full-length (unmodified) ECFP4 and the best-performing reduced
fingerprints derived by GR and KL divergence. The length of each
reduced fingerprint (no. bits) is specified. Recovery rates are calculated
for a database selection size of 5000 compounds.

Large-Scale Similarity Searching. We first compared the
overall search performance of unmodified ECFP4 and Mol-
print2D. Average recall rates over 120 activity classes were
63.0% and 64.5% for Molprint2D and ECFP4, respectively.
ECFP4 produced higher recall rates for 70 classes and Mol-
print2D for 47 classes (with equal performance in three cases).
Hence, both fingerprints reached comparable performance le-
vels, but ECFP4 produced overall slightly better results. All
search results for ECFP4 and Molprint2D are provided in Table 1
and Table S2 of the Supporting Information, respectively. In
addition, histogram representations of recall rates according to
Table 1 are provided in Figure 1a and b for 10 activity classes with
the highest and lowest increase in recall, respectively, as a
consequence of GR feature selection.

Global Effects of Feature Selection. Both Molprint2D and
ECFP4 are combinatorial fingerprints that can, in principle, yield
exceedingly large feature numbers (although this is typically not
the case for small organic compounds). For feature selection
studies, we considered the top 1000 features on the basis of GR
and KL divergence ranking. We generally observed that reduced
fingerprints, often of only small size, met or exceeded the search
performance of unmodified ECFP4 and Molprint2D, as reported
in Table 1 and Table S2 of the Supporting Information. How-
ever, there were notable global differences between the two
alternative feature selection approaches. On average, the best-
performing reduced fingerprints selected on the basis of KL
divergence consisted of 252 and 578 bits for Molprint2D and
ECFP4, respectively. For GR selection, the corresponding num-
bers were 182 bits for Molprint2D and 196 bits for ECFP4. Thus,
the best-performing reduced fingerprints generated on the basis
of GR contained fewer features than those generated on the basis
of KL divergence. Furthermore, for Molprint2D and ECFP4, the
best KL divergence-based fingerprints produced average recall
rates of 65.3% and 65.9%, respectively, which slightly increased
the recall rates of the full-length fingerprints (63.0% and 64.5%,

respectively). However, GR-based reduced fingerprints achieved
average recall rates of 74.3% and 75.4% for Molprint2D and
ECFP4, respectively. Thus, the top-performing GR-based fin-
gerprints consisted of fewer than 200 features and further
increased the average recall rates of the unmodified fingerprints
by approximately 10%. Given these differences observed in
feature selection, we compared KL divergence and GR ap-
proaches in more detail.

Comparison of Feature Probabilities. Next we studied the
probabilities of top-ranked bits selected by KL divergence and
GR to occur in active and database compounds. For this purpose,
many individual search trials on our activity classes were analyzed
(averages over different references sets leading to different bit
selections would not be meaningful to calculate). In Figure 2, the
corresponding probabilities of the 100 top-ranked KL divergence
and GR bits of ECFP4 are compared for two different activity
classes. These results are representative of many comparisons we
carried out and reflect a clear general trend we observed. It
should be noted that the probabilities in Figure 2 are reported on
a logarithmic scale. Because of the large number of database
compounds, the probabilities of bit settings in the database might
become very small. In Figure 2a, the probability histogram for the
GR selection of ECFP4 features for a reference set of activity class
no. 24 is shown, and in Figure 2b, the corresponding histogram
for the KL divergence selection is shown. In Figure 2a, the top 25
bits in the GR-based histogram have a decreasing probability of
occurrence in active compounds but no probability of occurrence
in database compounds. Over the remaining bit positions, the
active probability remains high, and the database probability
slightly increases. Thus, the GR-based bit ranking reflects strong
emphasis on probability differences between active and database
compounds. By contrast, the corresponding KL divergence-
based bit ranking in Figure 2b reveals a less systematic profile.
In this case, bit positions are also highly ranked that have a
detectable probability to occur in database compounds. In these
cases, however, the active probabilities are very high. Other bit
positions with lower active probability but no database prob-
ability occur at intermediate ranks. This profile phenotype can be
rationalized on the basis of the KL divergence formula presented
in the Methods and Materials Section. Thus, KL divergence
calculations not only emphasize probability differences but also
the magnitude of the active probability, ultimately leading to a
selection compromise. Equivalent observations concerning the
GR- and KL divergence-based probability histograms are made in
Figure 2c and d, respectively, for a reference set of activity class 22
(that is structurally more homogeneous than class 24).

Hence, there were significant differences between the GR and
KL divergence feature selections, which also applied to the actual
features that were prioritized. We generally observed that the
overlap between GR- and KL divergence-based rankings con-
siderably varied for different activity classes. This is illustrated in
Table 2 where the average GR versus KL divergence overlap of
features selected for the 100 individual reference sets of activity
classes 22 and 24 is reported. For the 20 most significant bits, the
overlap was only small for class 22 but large for class 24. Taking
bits 30—100 into account, the overlap is ultimately increasing
to ~89% and ~84%. Thus, most significant differences were
observed for top-ranked bit positions.

Considering the differences between the GR- and KL diver-
gence-based histograms in Figure 2, we conclude that GR
provides a more stable feature selection approach for fingerprint
reduction. This is the case because GR yields bit rankings that
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a)

Average recovery rates
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Figure 1. Average recovery rates for ECFP4. Shown are 10 activity classes with the highest (a) and lowest (b) increase in recovery rates as a consequence
of GR feature selection. Also shown are the corresponding recovery rates for unmodified fingerprints and KL-based selection.

predominantly reflect probability differences between active and
database compounds and are more intuitive than KL divergence
rankings. This conclusion is also consistent with the overall
better search performance we observed for fingerprints reduced
on the basis of GR compared to KL divergence and their smaller
size, as discussed above. However, on the basis of KL divergence
analysis, reduced fingerprints, in part, with significantly increased
search performance compared to the original fingerprints have
also been generated in a number of cases,””*" thus demonstrating
its feature selection potential. In addition, KL divergence analysis
is generally less dependent on background database composition
than GR because it emphasizes the magnitude of active prob-
abilities, which should also be taken into account in cases where
background databases are relatively small.

Compound Recall Characteristics. We next analyzed recov-
ery rates for reduced fingerprints consisting of up to 1000 bit
positions. For each activity class, averages were calculated for all
100 reference sets. Representative examples are shown in

Figure 3. We generally observed that recovery rates peaked at
relatively small feature numbers and then decreased and/or
remained constant as feature numbers increased. The recovery
rate profiles were overall comparable for both ECFP4 and
Molprint2D, although details differed in many cases. For both
fingerprints, a notable difference between GR and KL divergence
selection was also observed at the level of recall curves. GR-based
feature selection often led to a sharper increase in recall
performance, resulting in a clear peak followed by a reduction
in recovery rates for further increasing feature numbers. Then the
recovery rates essentially remained constant. These recall char-
acteristics were frequently also observed for KL divergence
selection but were generally less obvious. Figure 3a—h illustrates
these effects. The number of features required to reach the top
search performance was often found to differ between structu-
rally diverse and homogeneous activity classes. In Figure 3a,
ECFP4 search results are shown for activity class 1 (with a
compound-to-CSK ratio of 3.36), and in Figure 3c, ECFP4
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a) Probabilities of top-ranked bits using GR
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Figure 2. Probabilities of top-ranked bits. For two exemplary activity classes of different structural diversity (no. 24, diverse; no. 22, homogeneous) and an individual
reference set, the probabilities of the 100 top-ranked bits to occur in active (pActive) and database compounds (pDB) are reported for different feature selection
methods. Probabilities (without m-estimate correction) are plotted on a logarithmic scale. () 24/GR, (b) 24/KL divergence, (c) 22/GR, (d) 22/KL divergence.
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Table 2. Overlap of Bits Between GR and KL Divergence”

overlap
no. bits no. 22 no. 24
1 0.0 100.0
2 2.5 90.0
3 6.7 84.0
4 7.5 79.3
S 7.2 754
10 20.8 61.4
15 27.7 51.8
20 38.5 49.8
30 533 53.3
40 70.9 58.2
S0 76.8 60.6
60 80.8 70.4
70 82.7 75.9
80 86.7 78.3
90 88.3 80.5
100 88.8 84.1

“ For two exemplary activity classes of different structural diversity (24,
diverse; 22, homogeneous), the average overlap (in %) between features
in reduced fingerprints of different size (no. bits) selected by GR and KL
divergence is reported. The average overlap was calculated for 100
independent search trials with different reference sets, and in each case,
the 100 top-ranked bit positions were compared.

results are shown for activity class 54 (ratio 2.13). Here GR-based
reduced ECFP4 representations consisting of 120 bits for class 1
and 160 bits for class 54 reached a clear performance peak. In
Figure 3e and f, corresponding ECFP4 search profiles are shown
for activity class 30 (ratio 10.33) and class 75 (ratio 7.17),
respectively. These structurally more homogeneous activity
classes yielded higher compound recovery rates than the more
diverse classes 1 and 54; class 30 required 140 ECFP4 features to
reach the top performance and class 75 only 60 features.

Taken together, despite the fingerprint, selection method, and
activity class dependent differences we observed, three general
conclusions could be drawn for both fingerprints and GR
selection from the findings discussed above. First, reduced
fingerprints, rather than unmodified versions, generally produced
highest recall rates. Second, structurally diverse activity classes
often—but not always—required more features to reach top
performance than structurally more homogeneous classes. Third,
in all instances, the recall curves revealed a nearly linear increase
in recovery rates over increasing bit numbers until the top search
performance was reached. Depending on the activity classes, the
slope of these pseudolinear curve intervals often differed, as
illustrated in Figure 3.

Recovery of Activity Class Subsets. In order to further
rationalize the observations discussed above, we analyzed the
number of active database compounds (correctly identified hits)
and other database molecules that were detected by reduced
fingerprints of increasing size of up to 100 bits, beginning with
the smallest representations containing the most highly ranked
features. In Table 3, three representative examples are shown for
ECFP4 features and GR selection. In Table 3a, activity class 1
(compound-to-CSK ratio 3.36) contained 554 compounds and
yielded a recovery rate of 45.5% with full-length ECFP4 and
69.3% with the best reduced fingerprint. In Table 3b, class 24

(ratio 3.82) consisted of 294 compounds and produced an
ECFP4 recovery rate of 79.6% and of 92.8% for the best reduced
version. In Table 3c, class 36 (ratio 7.06) contained 374
compounds and yielded a recovery rate of 87.7% for ECFP4
and 93.1% for the best reduced fingerprint. Hence, these activity
classes had different composition and displayed partly different
recall characteristics. As reported in Table 3a—c, a varying
number of the most highly ranked fingerprint features consis-
tently detected a significant number of the active compounds,
without selecting any other database molecules. For activity class
1, 24, and 36, the top 40, 20, and 10 bits exclusively recognized
206, 211, and 104 active compounds, respectively. Hence, the
exclusive recognition of active compounds by small feature sets
significantly contributed to the overall compound recall. As also
revealed in Table 3, the inclusion of additional bits resulted in
further detection of active compounds accompanied by a steady
and, in part, dramatic increase in the number of other database
molecules that were detected, corresponding to a substantial loss
of the specificity of the search calculations. From these observa-
tions, one can infer that the generally observed gain in search
performance through fingerprint reduction can largely be attrib-
uted to the elimination of fingerprint features that predominantly
increase the background noise of the calculations (i.e., preferen-
tially detect other database compounds).

Moreover, Table 3 reveals another trend that is highly relevant
for our analysis. The most important fingerprint features were
specific for subsets of active compounds. For example, in
Table 3a, the first bit detected 4S5 active compounds, the second
80 other compounds, the third another 38 previously unrecog-
nized actives, and so on. There was a steady increase in active
compounds up to a size of 100 bits. Starting with 50 bits, database
molecules were beginning to be retrieved. In the presence of 100
bits, the number of detected active compounds approximately
doubled compared to 40 bits (when still no database compounds
were detected), but 2090 other database molecules were also
selected. In Table 3b, bit 1 detected 80 compounds, bit 2 selected
40 more, bit 3 did not add more active compounds, but bit 4
detected 37 additional ones, which then remained essentially
unchanged for up to 15 bits, until the inclusion of the next 5 bits
led to the detection of another 53 active compounds, still without
retrieval of other database molecules. Beginning with 30 bits,
other database molecules were detected, and the increments of
newly recognized active compound became smaller. Corre-
sponding effects also occurred for the structurally more homo-
geneous activity class in Table 3c, although there was overall less
variation in the number of active compounds detected by
increasing numbers of bits, with the exception of notable
increases in active compounds within the range of 10—30 bits,
where other database compounds were also selected.

Figure 4 illustrates some of the results discussed above. Shown
are five structurally diverse hits that were recognized by the top
three fingerprint bits according to Table 3a. Each of these
compounds contains only one of the atom environments en-
coded by these three bits, i.e., it responds to only one of the three
top-ranked bits. The corresponding substructures are mapped on
the hits. The comparison reveals that a substructure match
provided by a single fingerprint feature has been sufficient in
these instances to facilitate a scaffold hop. With only the first
three fingerprint bits, a total of 163 active compounds were
retrieved that yielded 35 distinct CSKs.

Taken together, on the basis of GR selection, compound
subset detection by bit subsets was consistently observed for
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Figure 3. Recovery rates for reduced fingerprints. For four exemplary activity classes of different structural diversity (no. 1 and 54, diverse; no. 30 and 75,
homogeneous), average recovery rates are reported for reduced fingerprint representations with increasing number of bits selected by GR or KL
divergence. (a) 1/ECFP4, (b) 1/Molprint2D, (c) S4/ECFP4, (d) 54/Molprint2D, (e) 30/ECFP4, (f) 30/Molprint2D, (g) 75/ECFP4, and (h) 75/

Molprint2D.
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Table 3. Detection of Activity Class Subsets” Table 3. Continued
GR GR
no. bits no. ADC no. DC e no- ADC no. DC
100 306 104
(a) Activity Class 1 “For representative activity classes, the numbers of detected active
1 45 0 database compounds (no. ADC) and other database compounds (no.
5 125 0 DC) retrieved prior to the last recovered active are reported for varying
numbers of ECFP4 features (no. bits) selected by GR. In each case, the
3 163 0 results are shown for an individual reference set: (a) 1, diverse; (b) 24,
4 176 0 diverse; and (c) 36, homogeneous.
S 176 0
10 176 0
15 184 0
20 187 0
30 206 0
40 206 0
NY 212 9
60 243 38
70 293 132
80 308 379
90 352 860
100 425 2090
(b) Activity Class 24
1 80 0
2 120 0
3 120 0
4 157 0 Figure 4. Structurally diverse hits. Shown are five exemplary hits
S 157 0 detected with the top three fingerprint bits selected by GR, as reported
10 157 0 in Table 3a, that represent scaffold hops. In the fingerprint of each of
15 158 0 these compounds, only one of the three bits was set on, and the
20 S11 0 corresponding structural features are mapped on the hits (red).
30 226 15
40 228 151 reduced ECFP4 and Molprint2D fingerprints. On the basis of KL
50 241 589 divergence selection, similar subsets effects were also found, in
60 261 790 particular for structurally diverse activity classes but much less so
70 268 1936 for structurally homogeneous classes. Representative examples
30 271 4557 for KL divergence selection are provided in Table S3 of the
%0 256 4503 Supporting Information. For structurally homogeneous activity
100 243 1017 classes, KL divergence selection often yielded top-ranked bits
that were not specific for active compounds but also detected
o other database molecules, different from many structurally
() Activity Class 36 . . . "
diverse classes. By contrast, GR always yielded bit positions that
! 86 0 were specific for active compounds.
2 87 0 Scaffold Hopping Potential Revisited. The incremental
3 87 0 recognition of different subsets of active compounds by small
4 90 0 fingerprint feature sets observed in our analysis, especially for
5 90 0 structurally diverse activity classes, provided a rationale for the
10 104 0 scaffold hopping potential of the investigated fingerprints. On
15 110 3 the basis of our findings, the overall recovery rates of active

20 158 52 compounds achieved by these 2D fingerprints largely resulted
from the cumulative detection of distinct subsets of active

30 319 177
40 310 236 compounds by different fingerprint features. Typically, small
numbers of key features specifically selected active compounds
S0 319 383 . . iy
over other database molecules. Often, single bit positions were
60 319 1648 responsible for the detection of relatively large compound
70 319 4240 subsets. Other less specific bits also retrieved additional subsets
80 306 109 of active compounds and also rapidly increased the number of
90 306 104 other database molecules. Thus, identifying those bit positions
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that were most important for recognizing different activity classes
and analyzing their contribution to the recovery of active
compounds revealed a plausible mechanism for scaffold hopping
using the 2D fingerprints studied here.

B CONCLUDING REMARKS

In this study, we have investigated in detail the compound
recall characteristics of state-of-the-art 2D fingerprints. Begin-
ning with a large-scale fingerprint search campaign, feature
selection methods were applied to systematically reduce original
fingerprint and identify the most important fingerprints bits/
features for each activity class. Fingerprint reduction generally
improved compound recovery rates, consistent with earlier
findings. In many instances, small numbers of bits were sufficient
to yield the highest search performance. In addition, our results
indicated that fingerprint reduction mostly improved compound
recall by omitting features that predominantly recognized other
database compounds (and thus reduced the specificity of the
search calculations). By comparing GR- and KL divergence-
based fingerprint feature selection, we identified different char-
acteristics of these approaches, assigning overall higher confi-
dence to GR-based bit rankings. On the basis of feature selection,
we observed, in particular, for structurally diverse activity classes,
that small numbers of highly ranked fingerprint features (often
individual bits) distinguished subsets of active compounds from
other database molecules. Additional features also recognized
distinct compound subsets but were not specific for active
compounds. These cumulative subset contributions to com-
pound recovery rationalized the scaffold hopping potential of
2D atom environment fingerprints and revealed a mechanism for
the recognition of structurally diverse hits. It is anticipated that
the feature selection approaches introduced herein will be useful
for additional mechanistic studies on fingerprints of different
design and for further fingerprint engineering applications.
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(s ) Supporting Information. Tables S1, S2, and S3 report
the composition of compound activity classes, average recovery
rates for Molprint2D, and activity class subset detection on the
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free of charge via the Internet at http://pubs.acs.org.
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Chapter 2

Summary

Two feature selection methods from information theory have been used to sys-
tematically reduce atom environment fingerprints. The search calculations re-
vealed an improved search performance for reduced fingerprints over unmodi-
fied versions due to the elimination of fingerprint features that mainly detected
database compounds. Those atom environments that were most relevant for
the recovery of active compounds were specific for distinct subsets of the com-
pound activity classes. Individual features were responsible for the detection
of different active scaffolds and combinations of these features resulted in a cu-
mulative recall of structurally diverse active compounds.

The supporting information of this publication can be obtained via the following
URL: http://dx.doi.org/10.1021/ci200275m.

This and the previous study have shown that 2D fingerprints are well suited
for VS tasks despite their relative simplicity. In the following, the fingerprint
representation is used as a descriptor for another similarity-based search method
in order to address a complex multi-class prediction task involving compounds
with different activity profiles. The SVM methodology is applied to recover

compounds with specific activities against combinations of targets.
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Chapter 3

Prediction of compounds with
closely related activity profiles
using weighted support vector

machine linear combinations

Introduction

The general aim of VS is the recovery of compounds having a specific bioactiv-
ity. However, many compounds are active against multiple targets in addition
to the one of interest. Standard SVM-based ranking does not consider these
multiple activities. Therefore, we apply a variant of the SVM methodology in
order to treat compounds having activities against different combinations of
targets. Weighted SVM linear combination is used to recover compounds with
specific single- or dual-target activities. The use of positive and negative linear
weighting factors results in the prioritization and deprioritization of compounds

with desired and undesired activity profiles, respectively.
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ABSTRACT: Using support vector machine (SVM) ranking, a complex multi-class
prediction task has been investigated involving sets of compounds that were active
against related targets and represented all possible combinations of single-, dual-, and
triple-target activities. Standard SVM models were not capable of differentiating 4
compounds with overlapping yet distinct activity profiles. To address this problem,
we designed differentially weighted SVM linear combinations that were found to
preferentially detect compounds with desired activity profiles and deprioritize others.
Hence, combining independently derived SVM models using negative and positive
linear weighting factors balanced relative contributions from individual reference sets
and successfully distinguished between compounds with overlapping activity profiles.

B INTRODUCTION

Predicting biological activities of small molecules from chemical
structure is one of the major focal points of the chemoinformatics field.
For this purpose, a plethora of computational methodologies have
been introduced. In recent years, machine learning approaches have
become increasingly popular for activity predictions, especially
Bayesian classifiers' * and support vector machines (SVMs)> ™
These supervised learning methods have typically been used for binary
dlassification and prediction of class labels of compounds (e.g,, active vs
inactive) focusing on different compound activity classes.”"*”

Given the increasing interest in chemogenomics,"”'" these
machine learning approaches have also been considered for complex
activity predictions. In chemogenomics, the systematic analysis of
compound-target annotations and the study of multi-target activities
of small molecules take center stage. Accordingly, machine learning
approaches have been used for applications such as computational
proﬁlin§ of compounds against arrays of classifiers for individual
targets,* prediction of ligand—receptor pairings,"*'* or searching
for target-selective compounds."® For selectivity predictions, SVM
modeling was carried out to distinguish target-selective compounds
from others that were active against multiple members of a given
target family and also from inactive compounds.

In machine learning terms, the chemogenomics-oriented
applications outlined above translate into multi-class prediction
problems. For multi-class modeling, SVM-based compound
ranking schemes,'>' rather than pairwise binary classifications,
are particularly suitable. In general, multi-class predictions,ls’17
require the combination or sequential consideration of different
SVM models. As an approach for model combination, SVM
linear combination has previously been introduced,'® which was
originally applied to the prediction of ligands for orphan
targets,"® another chemogenomics application.

In our current study, we have investigated SVM modeling
for another multi-class prediction problem involving com-
pounds with overlapping activities against related targets.

v ACS Publications © 2013 American Chemical Society
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This application was found to be challenging for SVM ranking.
Furthermore, a standard (unweighted) linear combination
was not applicable in this case. Given the difficulties observed
in distinguishing between compounds with in part over-
lapping activities using individual SVM models, we have
combined independently derived models in differentially
weighted SVM linear combination using positive and negative
factors. The application of this strategy led to the preferential
detection of compounds with desired activity profiles.

B MATERIALS AND METHODS

Basic SVM Theory. As a supervised machine learning
technique, SVMs?® are primarily used for binary object classification
and ranking. For learning, “positive” and “negative” training data
(e.g, active and inactive compounds) are projected into a feature
(descriptor) space y. By solving a convex quadratic optimization
problem, a hyperplane H is derived that best separates objects with
different class labels. During the optimization, the trade-off
parameter C is adjusted to balance errors due to misclassification of
training data and the generalization of the classification. The
separating hyperplane H is defined by the normal weight vector w
and a bias b

H = {xl{w, x) + b = 0}, with (-, -) being a scalar product

Test data are mapped into the same feature space y and
classified depending on which side of the generated hyperplane
they fall. For SVM-based ranking compounds are sorted on the
basis of the signed distance from the hyperplane (from the
positive to the negative half-space):'® g(x) = (wx).

For training data that are nonlinearly separable in the feature
space y, which is usually the case, the so-called Kernel trick' 2 is

applied. For this purpose, kernel functions are utilized that replace an
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explicit projection of the data into a high-dimensional feature space H
where linear separation might be possible. Therefore, kernel functions
K(-,") replace the standard scalar product.

Weighted SVM Linear Combination. The SVM linear
combination (LC) was introduced as an extension of standard
SVM classification to enable the prediction of ligands that are
active against different targets.'® In SVM LC, a hyperplane
is generated for each individual target t; under consideration
using known active compounds of # as positive and inactive
compounds as negative training data. The normal vectors of all
hyperplanes are then linearly combined into a single vector

n
Weombined — Z f;“’z
i=1

where W pineq i the single combined normal vector, n the
number of original hyperplanes, and f; and w; are the individual
linear factors and normal vectors of each hyperplane,
respectively. Herein, the LC approach is extended through the
use of positive and negative linear factors. Test compounds are
then ranked using a global ranking function

g(X) = I<(vvcombined’ X)

Factors can be applied to adjust the relative contributions of
individual weight vectors to the linear combination. Such
weighting factors were previously applied to an SVM linear
combination in similarity search calculations taking potency
information of reference compounds into account.” In this case,
SVM models derived for reference compounds at different
potency levels were linearly combined, and their potency values
were used as weighting factors.”!

For the multi-class prediction task addressed in our current analysis,
we introduce a modification of the weighted SVM LC approach that
uses negative linear factors, as illustrated in Figure 1. The use of

learned hyperplane learned hyperplane learned hyperplane

for target T1 for for target T3
(]
= 8 = 0 m
m, B -
= ]
L] L]
* L] * L]

Wy

Weombined = 1xWq + (=1)xw;, + (-1)xwy

combined
hyperplane

e

Figure 1. Weighted SVM linear combination. Normal weight vectors are
derived from SVM calculations for sets of compounds active against
three different targets. Weight vectors are linearly combined to yield a
single vector used for global ranking. Positive and negative factors are
applied to individual weight vectors to adjust their relative contributions
to class label prediction or ranking.

negative factors effectively inverts the contributions of positive and
negative training data for individual models during linear combination,
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a strategy that has not yet been considered in SVM modeling, This
modification deprioritizes compounds with undesired activity relative
to confirmed inactive compounds and compounds with desired
activity. Balancing SVM LC through the application of positive as well
as negative weighting factors is shown herein to effectively distinguish
between compounds with different activity profiles.

In order to consistently prioritize or deprioritize compounds
with given activity profiles, weighting factors of 1, 2, —1, and —2
were systematically varied. Single-target SVM classifiers were
built as a control for each individual activity.

Compound Data Sets. Compound data sets with single-,
dual, and triple-target activities have been assembled from
PubChem™ confirmatory bioassays for three cytochrome P450
isoforms and three different dehydrogenases. The first set of three
assays identified compounds active against cytochrome P450 2C19
(CYP2C19; assay id (AID) 899), cytochrome P450 2D6 (CYP2D6;
AID 891), and cytochrome P450 3A4 (CYP3A4; AID 884). The
second set of three assays contained inhibitors of aldehyde
dehydrogenase 1 (ALDH1A1; AID 1030), hydroxyacyl-coenzyme
A dehydrogenase type II (HADH2; AID 886), and 15-hydroxy-
prostaglandin dehydrogenase (HPGD; AID 894). From all assays
confirmed active and inactive compounds were extracted and
compared. Compounds with confirmed single-, dual-, and triple-
target annotations were identified as well as compounds inactive
against all targets. For cytochrome P450s, a total of 1906 active
compounds with different target profiles were obtained and 2901
inactive compounds. For the dehydrogenases, 5085 active and
39,355 inactive compounds were obtained. The composition of the
two data sets is reported in Figure 2.

Cytochrome P450

Dehydrogenases

Figure 2. Active compounds. For inhibitors of three cytochrome P450
isoforms (data set 1) and three different dehydrogenases (data set 2),
the number of compounds with single and multiple target annotations is
reported in a Venn diagram.

Calculations. Comg)ounds were represented using the extended-
connectivity fingerprint™ with bond diameter 4 (ECFP4) calculated
using the Molecular Operating Environment.* For comgound
comparison during SVM calculations, the Tanimoto kernel™ was
applied.

In calculations searching for compounds with single-target
annotations, compounds with the desired activity were used as
positive training data and confirmed inactive compounds as negative
data. In calculations searching for compounds with dual-target
annotations, compounds with the desired dual-target activity were
used as positive training data and confirmed inactive compounds as
negative data. To assess search performance, SVM ranking was carried
out using target-specific models and their weighted linear combination.

For training, 500 inactive compounds were used in each case as
inactive training data. In order to use size-balanced compound sets for
the generation of hyperplanes for linear combination, the number of
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positive training compounds was set to half of the smallest available test sets were carried out. In each case, test data consisted of all
single- or dual-target compound subset for each series of search active compounds with different activity profiles plus all
calculations. confirmed inactive compounds not used for training. Active
For each search calculation, 100 different trials with and inactive compounds used for training were never included
randomly assembled positive and negative training data and in test sets.
A
CYP2C19

CYP2C19, CYP2D6, CYP3A4 CYP2C19 CYP2C19, CYP2D6, CYP3A4 CYP2C19, CYP2D6, CYP3A4 CYP2C19, CYP2D6, CYP3A4
1,11 1,-1,1 2,-1,1 1,-2,-2
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Figure 3. continued
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B

ALDH1A1

ALDH1A1, HADH2, HPGD ALDH1A1 ALDH1A1, HADH2, HPGD ALDH1A1, HADH2, HPGD ALDH1A1, HADH2, HPGD
1 -1, - 2,-1,-1 1,-2, -
HADH2

ALDH1A1, HADH2, HPGD HADH2 ALDH1A1, HADH2, HPGD ALDH1A1, HADH2, HPGD ALDH1A1, HADH2, HPGD
11 -1,1, -1 -1,2,-1 -2,1, -

0.9

ALDH1A1, HADH2, HPGD HPGD ALDH1A1, HADH2, HPGD ALDH1A1, HADH2, HPGD ALDH1A1, HADH2, HPGD
1,1,1 -1,-1,1 -1, -1, -2,-2,
Il ALDH1A1 B HADH2 HPGD
Bl ALDH1A1_HADH2 Bl ALDH1A1_HPGD HADH2_HPGD

B ALDH1A1_HADH2_HPGD

Figure 3. Searching compounds with single-target activities. ROC_AUC values are reported for compounds active against all possible target
combinations in search calculations for compounds with single-target activities. (A) cytochrome P450s, (B) dehydrogenases. Dual- and triple-target
combinations are indicated by underscores (e.g,, CYP2C19_CYP2D6). Individual targets and target combinations are color-coded as in Figure 2. Search
results are reported for standard SVM LC, SVM training using compounds active against the designated target, and differently weighted SVM LCs. In
each case, color-coded arrows indicate the desired search result. In addition, standard deviations over 100 independent search trials are reported above
each bar.
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Search performance was measured using the area under the
receiver operating characteristic curve (ROC_AUC)*® averaged
over all 100 trials.

SVM calculations were performed using SVM'™" 26 a freely
available SVM implementation. SVM parameters were suggested
SVM's™ default settings. SVM LC calculations were carried out
using in-house generated Perl scripts.

B RESULTS AND DISCUSSION

Compounds with Overlapping Activity Profiles. The
compound data sets analyzed herein were assembled to
investigate a multi-class prediction problem that we considered
rather challenging: differentiating between compounds with
related and overlapping activity profiles. The cytochrome P450
(CYP) and dehydrogenase data sets contained compounds with
all possible combinations of single-, dual-, and triple-target
activities, as illustrated in Figure 2. Because many compounds
shared activities against individual targets in different combina-
tions, this classification problem was anticipated to be difficult to
solve using conventional SVM strategies.

Confirmed Inactive Compounds. With these data sets, we
also addressed a potential caveat for machine learning in
chemoinformatics that is often pointed out: usually randomly
chosen sets of database compounds assumed to be inactive are
used as negative training examples. By contrast, by assembling
our data sets from PubChem confirmatory bioassays, we were
able to obtain sets of confirmed inactive compounds for training
against all possible activity combinations, hence providing a
sound basis for model building. Our data sets containing all active
and inactive compounds are made freely available via http://
www.lifescienceinformatics.uni-bonn.de/downloads.

Single-Target Classifiers vs SVM Linear Combination. It
should be stressed that SVM models built for individual activities,
i.e., single-target classifiers, are conceptually distinct from SVM
LC models. An SVM LC represents a model for multi-class
predictions that integrates individual classifiers (and is as such
distinct from them) and weights their relative contributions prior
to predicting test data (but not posthoc). Hence, there is no
retrospective fitting of individual classifiers comprising an SVM
LC. Weighting factors and their combinations must be
systematically explored, as discussed in the following.

Searching for Compounds with Single-Target Activity.
We first generated SVM models on the basis of reference
compounds that were active against individual targets to search
for compounds with single-target activity. Using these models,
compounds with all activity combinations were ranked and
ROC_AUC values calculated for all compound categories. The
results for compounds active against CYP isoforms and
dehydrogenases are reported in Figure 3A andB (second bar
charts from the left), respectively. For all three CYP targets, the
recall of compounds with desired single-target activity was met
or exceeded by compounds with activity against other targets or
target combinations. Equivalent observations were made for
dehydrogenase target HADH2, while for targets ALDHI1A1 and
HPGD at least slightly higher recall of specifically active
compounds was observed. Overall, however, single-target SVM
models failed to yield a clear separation in recall between
compounds with the desired single-target activity and other
activity profiles. Figure 3 also shows that single-target models
produced comparably high recall of active compounds in most
cases, with ROC_AUC values of ~0.7 to ~0.8, but failed to
discriminate between compounds with different activity profiles.
In addition, the standard SVM LC of single-target models
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(with factor setting “1,1,1” in Figure 3) preferentially detected
compounds with triple- or dual-target activity. Differences in
recall performance were small in all cases.

On the basis of these findings, we then investigated
combinations of negative and positive factors for SVM linear
combination, as rationalized in the Methods section. We first
used a factor setting of “1,—1,—1” to deprioritize compounds
with undesired single-target activities compared to the desired
activity. Because undesired single-target activities were a part of
all activity combinations, this factor setting was also anticipated
to deprioritize compounds with dual- and triple-target activity.
The results of weighted SVM LC calculations using positive and
negative factors are reported in Figure 3 and confirmed the utility
of this strategy. For all CYP targets, the recall of compounds with
correct target activity was retained or only slightly reduced,
whereas the recall of all other categories of compounds was
significantly reduced, frequently to ROC_AUC values close to or
below 0.5 (corresponding to random selection), as shown in
Figure 3A. For compounds active against two dehydrogenases
(ALDH1A1 and HPGD), equivalent observations were made. By
contrast, in the case of HADH?2, the recall of two dual- and the
triple-target combinations remained comparable to compounds
with the desired single-target activity, and no separation was
observed (Figure 3B).

We then tested additional weighting factor combinations. For
factor setting “2,—1,—1”, which put additional weight on positive
training examples with desired activity, a further increase in recall
was generally observed for the desired compounds as expected,
while the recall rates for other compound categories essentially
remained constants for two of three CYP and two of three
dehydrogenase targets. In the remaining two cases (CYP3A4 and
HADH2), the recall for compounds with dual- and triple-target
activities increased relative to the recall of desired compounds,
which notably reduced the separation.

In addition, for factor setting “1,—2,—2”, which more strongly
deprioritized compounds with undesired activity, a significant
reduction of recall of compounds with desired single-target
activity (and in part other activity combinations) was observed,
very likely because too much weight was put on negative training
examples, hence rendering these calculations overall less
sensitive to active compounds.

Among the differently weighted SVM LCs including negative
factors, the factor settings “1,—1,—1” and “2,—1,—1” yielded a
clear separation in recall between compounds with desired
single-target activity and compounds with other activity profiles
for four of six targets, whereas standard SVM calculations
consistently failed to do so, despite reaching overall high recall
performance on active compounds.

For calculations using SVM models trained on compounds
with single-target activity, the recall of compounds with desired
single-target activity varied between 0.68 for CYP2C19 and 0.82
for target CYP2D6. For standard SVM LC, the recall of
compounds with desired single-target activity varied between
0.57 for CYP2C19 and 0.7 for HPGD. In differentially weighted
SVM LCs, recall of the single-target activities ranged from 0.62
for CYP2C19 to 0.77 for CYP2D6.

As a consequence of SVM LC weighting, recall of undesired
targets and target combination was reduced to values between
0.18 (CYP2D6_CYP3A4 compounds in single-target CYP2C19
calculation using factor “1,—1,—1”) and 0.69 (CYP2D6_CYP3A4
compounds in single-target CYP2D6 calculation with factor “2,—1,
—17), with the majority of compound categories falling to
ROC_AUC value below 0.5 (random selection).
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Searching for Compounds with Dual-Target Activity.
We next searched for compounds with dual-target activity. In
these calculations, compounds with desired dual-activity were
used as reference compounds for the generation of individual
SVM models or SVM LCs. The linear combination strategy was

adjusted accordingly. In this case, only two models were
combined including the SVM model trained on the basis of the
desired dual-target activity and the model derived for compounds
with single-target activity against the third (undesired) target.
This linear combination scheme enabled a meaningful application of

A

CYP2C19_CYP2D6

CYP2C19_CYP2D6, CYP3A4 CYP2C19_CYP2D6 CYP2C19_CYP2D6, CYP3A4 CYP2C19_CYP2D6, CYP3A4 CYP2C19_CYP2D6, CYP3A4

1 -1 -

CYP2C19_CYP3A4

CYP2C19_CYP3A4, CYP2D6 CYP2C19_CYP3A4 CYP2C19_CYP3A4, CYP2D6 CYP2C19_CYP3A4, CYP2D6 CYP2C19_CYP3A4, CYP2D6

-1 2,1 1, -

CYP2D6_CYP3A4

CYP2D6_CYP3A4, CYP2C19 CYP2D6_CYP3A4 CYP2D6_CYP3A4, CYP2C19 CYP2D6_CYP3A4, CYP2C19 CYP2D6_CYP3A4, CYP2C19
1.1

1 2,1 s

Il cypP2c19 [l cyP2D6
CYP2C19_CYP3A4 CYP2D6_CYP3A4
CYP2C19_CYP2D6_CYP3A4

B cYP2c19 CYP2D6

Figure 4. continued
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B ALDH1A1_HADH2
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,- - 1, -
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B ALDH1A1_HADH2 B ALDH1A1_HPGD HADH2_HPGD
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Figure 4. Searching compounds with dual-target activities. ROC_AUC values are reported for compounds active against all possible target
combinations in search calculations for compounds with dual-target activities. (A) cytochrome P450s, (B) dehydrogenases. The presentation is
according to Figure 3. Search results are reported for standard SVM LC, SVM training using compounds active against the designated target
combination, and differently weighted SVM LCs.

negative and positive weighting factors. The search results for CYP Results obtained for SVM models generated for compounds
isoforms and dehydrogenases are reported in Figure 4A and B, with the desired dual-target activity and the standard SVM
respectively. LC essentially paralleled the observations discussed above.
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Figure S. Recall differences for compounds with single-target activities. Differences between ROC_AUC values are reported for single-target
calculations (Figure 3) and differently weighted SVM LCs relative to the standard (unweighted) LC calculation. (A) cytochrome P450s, (B)
dehydrogenases. Boxplots are shown for four different types of targets or target combinations: desired single targets (STs, i.e., monitoring calculations
for all three individual targets), other single-target activities (STA; blue), dual-target activities (DTA; red), and triple-target activity (TTA; gray).

The recall was high for many compound categories and no
notable separation was observed. In addition, in this case, recall
was high for compounds with triple-target activity in most
calculations, as one would expect. Thus, standard SVM
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calculations also failed here to distinguish between compounds
with different activity profiles.

When SVM LCs were tested with factor settings of “1,—1”, which
deprioritized compounds with activity against the undesired target,
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Figure 6. Recall differences for compounds with dual-target activities. Differences between ROC_AUC values are reported for dual-target calculations
(Figure 4) and differently weighted SVM LCs relative to the standard LC calculation. (A) cytochrome P450s, (B) dehydrogenases. Boxplots are shown
for four different types of targets or target combinations: desired dual-target combination (DTs, i.e., all calculations for the desired dual target
combinations), STA, DTA, and TTA. Abbreviations and colors are used according to Figure S.

and with setting “2,—1”, which prioritized compounds with desired
dual-target activity and deprioritized compounds with activity against
the undesired target, a comparable improvement in recall separation

was observed for four of six target combinations, except CYP2D6_
CYP3A4 (Figure 4A) and HADH2_HPGD (Figure 4B). However,
recall of compounds with activity against individual targets of the
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desired combination and/or the triple-target combination remained
high in most instances. Hence, a partial separation was observed in
these cases, different from the calculations focusing on single-target
activities discussed above. This was not unexpected given the dual-
target nature of the desired activity profiles.

Furthermore, the application of factor setting “1,—2”, which
strongly deprioritized compounds active against the undesired
target, led to a general reduction in recall, similar to the findings
discussed for single-target activities under equivalent SVM LC
weighting conditions because the influence of negative training
examples was further emphasized in these cases.

Taken together, the results of search calculations obtained for
compounds with dual-target activities indicated that deprioritiza-
tion of the undesired target using weighting factor “—1” led to a
preferred recall separation.

For standard SVM LC, the recall of compounds with desired
dual-target activity varied between 0.63 for the CYP2C19_
CYP2D6 and 0.83 for the CYP2C19 CYP3A4 combination.
Because of SVM LC weighting, recall of undesired targets or
target combinations including the undesired target was reduced
to values between 0.16 (CYP2D6 compounds in calculations for
CYP2C19_CYP3A4 using factor “1,—1”) and 0.86 (for the triple-
target set of all CYP isoforms in calculations for CYP2D6_CYP3A4
with factor “2,—1).

Recall Differences. The recall trends and separation effects
discussed above are further quantified for single-target and dual-
target calculations in Figures S and 6, respectively. As a reference
point for all comparisons, standard SVM LC recall was used. In
search calculations for compounds with single-target activities,
median ROC_AUC value differences in recall between
compounds with desired activity and other activity profiles
were within 0.2 for SVM models trained on compounds with
single target activity for both CYP (Figure SA) and dehydroge-
nase targets (Figure SB). In both cases, SVM LCs with negative
weighting factors increased the recall separation to median
ROC_AUC value differences of ~0.3 to ~0.6, depending on the
model and compound category. In search calculations for
compounds with dual-target activities, maximal median
ROC_AUC value separations of ~0.15 and ~0.1 were observed
for CYP (Figure 6A) and dehydrogenase targets (Figure 6B),
respectively, when SVM models trained on compounds with
dual-target activities were utilized. For weighted SVM LCs, the
median recall for compounds with single-target activity was very
similar to recall for compounds with activity against the desired
target combination (due to the influence of shared targets), but
the separation relative to compounds with other dual-target or
triple-target activity was increased to median values of ~0.2 to ~0.4
for CYP and ~0.05 to ~0.2 for dehydrogenase targets. For
individual compound sets, much larger recall separations were also
observed in the latter case, as shown in Figure 6B.

B CONCLUSIONS

In this study, we have investigated a multi-class prediction task
involving compounds with activity against different combina-
tions of targets. Given the overlap in activity profiles between
these compounds, we anticipated that it might be difficult to
address this task. Initially, individual SVM models were trained
for all compound categories. Searching for compounds with
desired single- or dual-target activity in the presence of confirmed
inactive compounds using standard SVM calculations confirmed
our expectations. SVM-based compound ranking was found to
produce reasonable to high compound recall for different compound
categories but essentially failed to distinguish compounds with
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desired activity from compounds with other activity profiles.
Therefore, we designed an SVM linear combination strategy that
involved weighting of different models using positive and negative
factors. The combination of models and use of positive and negative
weighting factors made it possible to prioritize and deprioritize
compounds with desired and undesired activity profiles, respectively.
Differentially weighted SVM LC calculations yielded in part
significant recall separation effects. Especially for compounds with
desired single-target activity, the weighted SVM LC approach
consistently reduced the recall of compounds with different activity
profiles while essentially retaining the recall of compounds with
desired target activity. Hence, the SVM LC weighting strategy
introduced herein to investigate a complex activity prediction task
should also be of interest for other multi-class SVM applications.
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Chapter 3

Summary

SVM calculations were performed on compound data sets with single-, dual-
and triple-target activities. Standard SVM-based compound ranking was shown
to result in a high recall of active compounds, but failed to distinguish com-
pounds having different activity profiles. However, differently weighted SVM
linear combinations derived clear separations in the recall of compounds hav-
ing related and overlapping target activity annotations. The combination of
individual SVM models using positive and negative linear factors into a single
multi-class prediction model essentially retained the recall of compounds with
desired activities and simultaneously reduced the detection of those having

other activity profiles.

In this study, the SVM search calculations were influenced by the composition
of the compound data sets used for training, without considering activity ex-
plicitly as a search parameter. In the following study, compound activity is con-
sidered directly and incorporated into the SVM method through the design of
a potency-oriented SVM linear combination approach and a structure-activity

kernel.
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Chapter 4

Potency-directed similarity
searching using support vector

machines

Introduction

Several different similarity-based methods exist to identify novel active com-
pounds. However, similarity searching and machine learning methods usually
do not consider compound potency as a search parameter. Here, we introduce
two SVM approaches that incorporate potency information as a parameter in
order to direct search calculations towards the preferential detection of highly
potent compounds. A structure-activity kernel function and a potency-oriented
SVM linear combination are designed that take potency annotations of refer-
ence compounds into account. On public high-throughput screening sets, these
approaches show an enrichment of highly potent compounds at the top positions

of database rankings.
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Support vector machine modeling has become
increasingly popular in chemoinformatics.
Recently, several advanced support vector
machine applications have been reported includ-
ing, among others, multitask learning for ligand-
target prediction. Here, we introduce another
support vector machine approach to add com-
pound potency information to similarity searching
and enrich database selection sets with potent
hits. For this purpose, we introduce a structure-
activity kernel function and a potency-oriented
support vector machine linear combination
approach. Using fingerprint descriptors, potency-
directed support vector machine searching has
been successfully applied to four high-throughput
screening data sets, and different support vector
machine strategies have been compared. For
potency-balanced compound reference sets,
potency-directed support vector machine search-
ing meets or exceeds recall rates of standard sup-
port vector machine calculations but detects
many more potent hits.
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Support vector machine (SVM) learning is currently widely applied
in chemoinformatics for a variety of applications including com-
pound database searching (1,2). In addition to SVM, there are many
ligand similarity-based methods that are utilized to mine databases
for novel active compounds (1,2). However, with the exception of
QSAR models (3), these approaches typically do not consider com-
pound potency as search information (2). Thus far, it has only rarely
been attempted to incorporate potency information into search algo-
rithms (4), although the ability to direct search calculations toward
the recognition of potent hits would certainly be attractive for prac-
tical applications.
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Support vector machine is a supervised machine learning methodol-
ogy for object classification and class label prediction (5,6). In the
training phase, learning sets with different class labels are pro-
jected into feature space, and a hyperplane is constructed in this
reference space to best separate objects belonging to different
classes. These linear models are then applied for predictions, for
example, of active compounds contained in screening databases.
For SVM learning, kernel functions (7,8) are applied to project
objects into reference spaces of increasing dimensionality to solve
classification problems through hyperplane construction that are
non-linear in lower dimensional spaces.

In chemoinformatics and compound screening, SVM has steadily
gained in popularity over the past few years, in particular, because
of its generally high classification performance (1). Here, SVM
learning has originally been applied to build predictive models for
binary classification of active and inactive compounds (9,10). In
addition, further advanced SVM strategies have recently been
introduced. For example, SVM has been adapted for similarity-
based ranking of molecular databases (11-13) and multitask
learning applied, for example, to predict ligands for orphan targets
(14-16). Furthermore, SVM strategies have been developed to build
SAR models from multiple assays (17) and perform multi-class label
predictions, for example, for target fishing (18) or selectivity profil-
ing (12,19,20). To predict selectivity toward human adenosine
receptors (hARs), a recent study (20) used a multi-label approach
(termed ct-SVM) to construct a single model integrating binary
classifiers for four different hARs subtypes. Furthermore, three
models based on increasingly strict criteria for threshold activity
(i.e., K; threshold values of 500, 250, and 100 nm) were applied
sequentially to quantify the biological affinity of test compounds.
This analysis demonstrated that SVM-based classification provides
an interesting alternative to traditional regression-based QSAR
modeling. This study aimed at the annotation of test compounds
with predefined potency ranges. It currently represents the only
non-QSAR SVM-based classification of different biological activity
levels.

In this study, we present SVM strategies for potency-directed simi-
larity searching. For this purpose, a new structure—activity kernel
function is introduced, and potency-oriented SVM linear combina-
tions (LCs) are constructed. In contrast to standard SVM learning
based on binary class labels (active or inactive), these SVM tech-
niques distinguish between highly, intermediately, or weakly active
compounds by incarporating categorized potency labels of reference
molecules into training. In test calculations on different public
domain screening data sets, a preferential enrichment of top-ranked



positions with highly potent hits has been observed for potency-
directed SVM searching compared to conventional SVM ranking.

Materials and Methods

Data sets

The four confirmatory high-throughput screening (HTS) assays used
in this study have been extracted from PubChem® and include inhi-
bition assays for enzyme targets hydroxyacyl-coenzyme A dehydro-
genase type Il [assay id (AID) 886], 15-human lipoxygenase (AID
887), 15-hydroxyprostaglandin dehydrogenase (AID 894), and alde-
hyde dehydrogenase 1 (AID 1030). Their composition is summarized
in Table 1. Compound potencies are reported as half-maximal inhibi-
tory concentrations (ICsq values). After standardization of structural
representations using the Molecular Operating Environment®, com-
pounds with incomplete or ambiguous activity annotations or with
fewer than five non-hydrogen atoms were removed from these data
sets. Then, a 2D unique version of each compound set was gener-
ated, i.e., of molecules having the same 2D molecular graph (i.e.,
the same 2D structure), only the one with highest potency was
retained. Statistics for the so-prepared compound data sets are
reported in Table 1.

It should be emphasized that active compounds in all four data sets
covered wide potency ranges of more than three orders of magni-
tude. Furthermore, in each data set, there were many more weakly
than highly potent compounds (Table 1). Thus, for potency-directed
similarity searching, these data sets provided challenging test
cases.

For each data set, potency intervals were defined to divide active
compounds into four potency categories, termed C7-C4, with
potency values decreasing from C1 to C4. For each category, the
negative decadic logarithm of the potency value of its lower

Table 1: Data sets

Potency-Directed Support Vector Machines

potency threshold was calculated and used as its annotation, pAct,
as also reported in Table 1.

Support vector machine search strategies

Standard SVM

As a supervised learning technique, SYM utilizes training sets for
model building. For training objects projected into feature spaces, a
linear decision function is built that divides the objects into two
classes. Mathematical details are provided as Appendix S1. In the
case of linearly inseparable training classes, the scalar product cal-
culated to construct the hyperplane (see Appendix S1) is generally
replaced by a kernel function to project compounds into a higher
dimensional space where a linear separation might be possible.
Test compounds are then ranked according to their distance from
the separating hyperplane (11). Thus, compounds are ranked from
the most distant object on the positive half-space to the most dis-
tant object on the negative half-space.

For standard SVM calculations, compound training sets of different
composition were used. First, active compounds from all potency cat-
egories were pooled to provide the positive training class, and a ran-
domly selected subset of inactive molecules was used as the
negative training class, as shown in Figure 1A on the left. This SVM
strategy is referred to as SVMpooled. Furthermore, for control calcu-
lations, reference sets exclusively containing highly potent com-
pounds were also utilized, as illustrated in Figure 1A on the right.

Linear combination

The SVM LC strategy was originally introduced by Geppert et al.
(15) in the context of ligand predictions for orphan targets and is
adapted herein for potency-directed SVM searching. Therefore, for
each potency category, a hyperplane is constructed using known

AID Target # Active # Inactive Potency categories pAct Cat # Mol # Ref
886 Hydroxyacyl-coenzyme A dehydrogenase type Il 2409 68 845 10-100 nm 7 C1 20 5
100 nv—=1 M 6 C2 128 32
1-10 um 5 C3 803 200
10-100 um 4 C4 1458 364
887 15-human lipoxygenase 998 70 822 2-200 nm 6.7 C1 16 5
200 nv=2 um 5.7 C2 93 29
2-20 um 47 C3 m 222
20-200 pm 37 C4 178 55
894 15-hydroxy-prostaglandin dehydrogenase 6318 139 805 1-100 nm 7 C1 12 5
100 nM=1 m 6 C2 115 47
1-10 um 5 C3 1452 605
10-100 um 4 C4 4739 1974
1030 Aldehyde dehydrogenase 1 15 817 197 666 10-100 nm 7 C1 138 5
100 nvM=1 pm 6 C2 946 34
1-10 um 5 C3 6091 220
10-100 pm 4 C4 8642 313

AID, assay id.

For four confirmatory high-throughput screening data sets, the numbers of active (# active) and inactive (# inactive) compounds are reported. For each data set,
the ranges of the four potency categories (cat) C1-C4 into which active compounds were divided and the potency threshold values pAct are given. Furthermore,
the numbers of molecules per potency category (# mol) and reference compounds (# ref) taken from each category are reported.

Chem Biol Drug Des 2011; 77: 30-38
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active ligands of this category as positive training objects and ran-
domly selected inactive compounds as negative examples. To obtain
a ranking function, the individual hyperplanes are linearly combined
to yield a single hyperplane. The weights given to individual hyper-
planes in the LC increase with the potency of the active training
molecules (for further details, see Appendix S1). Analogous to
SVMpooled, test compounds are then ranked based on their signed
distance to the combined hyperplane. This strategy is termed
LCsimple. To further increase weights on highly active compounds,
the LCsquared strategy is introduced that utilizes the square prod-
uct of the linear factor used in LCsimple as the potency category-
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SVM linear combination, weight
vectors are first generated for
each potency category. The weight
vectors are then linearly combined
to a final weight vector used for
compound ranking. (C) In SVM
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separate true potency category—

: feature vector pairings from false
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vector pairs is divided into two
independent tasks such that the
structural similarity and activity
similarity of two compounds are
first separately determined and
then combined.

specific weight for the LC (Appendix S1). The SVM LC approach is
exemplarily illustrated for the combination of two potency catego-
ries with arbitrarily chosen linear factors in Figure 1B.

Structure-activity kernel

We also introduce a structure—activity kernel (SAK) that is concep-
tually related to kernels for the comparison of different target—
ligand pairs (14,15). To calculate the scalar products for target—
ligand pairs during SVM optimization and ranking, the target-ligand
kernel was defined as the product of two separate kernels for a
target pair and a ligand pair. Here, we represent each compound as

Chem Biol Drug Des 2011; 77: 30-38



a potency category—feature vector pair (a; x,). Accordingly, the com-
parison of two compounds is divided into a separate assessment of
their activity similarity and their structural similarity by two differ-
ent kernel functions Kieivity and Kgirucwre that are then combined to
build the SAK:

K((a/’a X,‘) (ak7 X/()) = Kaclivity(a/» ak) X Kstructure (X,’, xk)

In analogy to SVM LC (see Appendix S1), the activity kernel is
defined as

Kactivity(aiy ak) = max (a/) — min (aj) +1- |a/ - ak|
J=1...n j=1..n
for the approach SAKsimple

or as
2
Kactiviey (a7, @) = (_max () — min (a)+1—|a — ak|)
j=1..n Jj=1...n

for the approach SAKsquared.

The design principle of SAK is illustrated in Figure 1C. The hyper-
plane is, in this case, designed to separate true compound finger-
print—potency pairings from false pairings. For SVM training,
positive training objects (true pairings) were obtained by combining
the fingerprint representation of each active compound with its
potency category threshold value and negative training examples
(false pairings) by randomly selecting inactive compounds and com-
bining their fingerprint representations with all possible potency
category threshold values. For the classification of molecules with
unknown activity (i.e., active versus inactive) or potency, test com-
pounds were assigned the highest potency category cign. Then, the
hyperplane was utilized to assess the probability of true or false
assignments. A ranking of test compounds was then generated by
determining the signed distance from the pairs (cygn, %) to the
hyperplane H derived in structure—activity reference space.

Test calculations

The performance of the alternative SVM ranking strategies was
evaluated in search calculations on the four PubChem HTS data
sets. Compounds were represented by MACCS structural keys® or
the ECFP4 fingerprint® (21). To compare fingerprint representations,
the Tanimoto kernel (22) was utilized. For test calculations, refer-
ence compound sets were assembled to reflect the potency distri-
bution in each data set. Accordingly, five compounds belonging to
the highest potency category were randomly selected in each case,
and reference compounds of the other categories were chosen such
that the reference-to-test molecule ratio was approximately the
same for all potency categories, as reported in Table 1. Control cal-
culations were carried out with reference sets containing only
highly potent compounds. For all assays and SVM strategies, 1000
inactive compounds were taken as negative training examples. All
remaining molecules from each data set were utilized as the
screening database. For each combination of a search strategy and
fingerprint, 10 different trials with randomly assembled reference
and test sets were carried out. As a measure of performance,
recovery rates (RR: number of correctly identified active molecules
divided by their total number) were calculated for database selec-
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tion sets of increasing size and averaged over the 10 independent
trials per target.

All calculations were carried out using SYM"" (23), a freely avail-
able SVM implementation.® Calculation parameters were suggested
SVM"" default settings to ensure reproducibility of the calcula-
tions. Perl scripts were applied to calculate SVM LCs.

Results

With our study, we aimed at investigating whether compound
potency could be incorporated as a search parameter into SVM-
based similarity searching to direct the calculations toward the
identification of potent hits.

HTS data and reference compounds

High-throughput screening data were selected for benchmark calcu-
lations to provide a practically relevant search scenario. Two types
of compound reference sets were assembled for our analysis includ-
ing 'potency-balanced' reference sets that mirrored the potency dis-
tribution of each data set, as reported in Table 1, and also
reference sets only consisting of compounds falling into the potency
ranges C1 (7Cat) or C1 and C2 (2Cat). These biased reference sets
were used to evaluate whether potent reference compounds would
lead to the preferential detection of potent hits.

Advanced SVM strategies

We have compared standard SVM calculations with two potency-
directed SVM techniques including a structure—activity kernel taking
reference compound potency differences directly into account and,
in addition, the LC of different SVM hyperplanes derived for refer-
ence compounds falling into different potency ranges. Both the SAK
and LC strategies were also tested with 'squared’ weights, i.e., by
further emphasizing the contributions of potent reference com-
pounds. In the following, SAK and LC are also referred to as
advanced SVM strategies.

Search performance

We first compared alternative SVM strategies for potency-bal-
anced reference sets. The results for the ECFP4 and MACCS fin-
gerprints are reported in Figures 2 and S1, respectively. In these
figures, compound recall of all active compounds (regardless of
their potency) and of the most potent compounds (categories CT,
C2) is separately monitored. Compound recall was generally higher
for ECFP4 than for MACCS. Overall, the average recovery rates of
all active compounds were comparable for standard SVM and
advanced SVM strategies. However, in all cases, SAK and LC cal-
culations were found to retrieve a higher percentage of highly
potent compounds than standard SVM calculations. Although
search results for SAK and LC were very similar, some underlying
trends and characteristics of the individual methods were
detected. Independent of the fingerprint representation, SAK usu-
ally identified more active compounds belonging to the highest
potency category than LC. Because the overall compound recall
was comparable for all advanced strategies using the ECFP4 fin-
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Figure 2: Cumulative recall curves for potency-balanced reference sets. For each bioassay, cumulative recall curves are shown for all
active compounds and the highest potency categories (C1 and C2) and different support vector machine strategies using the ECFP4 fingerprint.

Recall curves represent the average of 10 independent trials using
pounds spanning the entire potency range in a data set.

gerprint, SAK was considered as the preferred strategy for this
fingerprint. However, for the MACCS fingerprint, overall compound
recall was consistently higher for LC than for SAK such that there
was no clear advantage of one over the other method. Further-
more, the search results for simple and squared weights were
also comparable. However, the use of simple weights often led to
slightly higher recovery rates for all active compounds, whereas
squared weights favored the recovery of highly potent molecules.

34

different reference sets. Potency-balanced reference sets consist of com-

In Figures 3 and S2, average recovery rates are reported for a con-
stant selection set size of 1000 database compounds. Depending on
the HTS data set, recovery rates for all active compounds ranged
from ~3% to ~20%. For potent (C1, C2) compounds, higher recov-
ery rates were observed ranging, on average, from ~10% to
~60%. Here, it should be taken into account that many more
weakly than highly potent compounds were available in each data
set. The comparison of the recall rates of alternative SVM strate-
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Figure 3: Support vector machine performance for database selection sets of constant size. Recovery rates are shown for the ECFP4 fin-
gerprint, potency-balanced reference sets, and database selection sets of 1000 database compounds. The results are averaged over 10 inde-

pendent trials per data set.

gies for selection sets of 1000 database compounds further illus-
trated that SAK and LC calculations consistently detected more
potent compounds than standard SVM calculations (‘Pooled’). Thus,
potency-directed SVM searching reached the recall performance of
standard SVM classification but led to the desired preferential
detection of hits having higher potency.

Control calculations

We next carried out standard SVM calculations on reference sets
exclusively consisting of potent compounds. The results were then
compared to standard SVM and SAK calculations for potency-
balanced reference sets. These control calculations were carried
out to determine to what extent the potency of reference com-
pounds determined the outcome of the search calculations relative
to advanced SVM strategies. The results for the ECFP4 and MACCS
fingerprints are reported in Figures 4 and S3, respectively. It can be
seen that standard SVM using only the five most potent reference
compounds as positive training examples (strategy 1Cat) produced
recovery rates of potent compounds that were significantly lower
compared to advanced strategies, which was especially obvious for
the recall of potent compounds belonging to category C2. In most
cases, even standard SVM using potency-balanced reference sets
recognized more C2 compounds. Of course, the C1 reference set
was the smallest of all and hence contained the least information
about active molecules. Accordingly, when adding reference com-
pounds falling into potency category C2 to the positive training
class (strategy 2Cat), recovery rates of potent compounds increased
and were found to be overall comparable to advanced strategies (or
even slightly better in case of the MACCS fingerprint). Thus, the
exclusive use of highly potent reference compounds in standard
SVM calculations also led to the preferential detection of potent
screening hits. However, there was a price to pay, because in this
case, the recovery rates of all active compounds were substantially
reduced for standard SVM calculations. Thus, overall, much better

Chem Biol Drug Des 2011; 77: 30-38

recall rates of active compounds were obtained for balanced refer-
ence sets where potency-directed SVM searching provided a clear
enrichment of potent screening hits.

Discussion

In ligand similarity-based database searching, one typically attempts
to distinguish active from inactive compounds but rarely considers
compound potency information to further refine the search calcula-
tions. This sets conventional similarity searching apart from QSAR
approaches. However, the inclusion of available potency information
would certainly be meaningful for practical similarity search applica-
tions. For many similarity-based search methods, the incorporation
of potency as a search parameter is a difficult problem. However,
in the context of SVM learning, the use of kernel functions and
their combination provides a basis for the design and implementa-
tion of a multi-parametric search approach. Support vector machine
LC learns separate hyperplanes for training sets of different activity
ranges and then combines them by associating a potency-depen-
dent weighting scheme. By contrast, the SAK approach introduced
herein compares compound pairs simultaneously in activity and
structure space by evaluating structural similarity on the basis of
whole-molecule fingerprint descriptors and multiplying it with an
assessment of activity similarity for pairs of ligands. Using balanced
(unbiased) compound reference sets, both advanced SVM tech-
niques met the active compound-recall performance of conventional
SVM calculations but achieved a clear enrichment of potent hits. In
addition, we demonstrated that reference sets hiased toward com-
pounds having high potency also led to an enrichment of potent
hits in standard SVM calculations, but only at the cost of recall per-
formance.

These findings have a number of implications for practical SVM
database search applications. We deliberately performed our analy-
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Figure 4: Cumulative recall curves for potency-balanced and highly potent reference compounds. For each bioassay, recall curves are
shown for all active compounds and the two highest potency categories (C1 and C2). Compound recall is monitored for different support
vector machine (SVM) strategies using the ECFP4 fingerprint averaged over 10 independent trials. The following strategies are compared:
standard SVM with reference compounds from potency category 1 ('1Cat’), 1 and 2 ('2Cat'), and all categories (‘Pooled') and SVM structure—
activity kernel (SAK). SAKsimple is shown for sets 886 and 894, SAKsquared for sets 887 and 1030.

sis on HTS data to eliminate the influence of molecular complexity
effects (24) on the search results. In typical screening libraries, hits
with different potency usually have comparable molecular weight
and topological complexity because they are not (yet) chemically
optimized with respect to a specific biological activity. This avoids
complications that are often associated with benchmark calculations

36

and also practical applications. In typical benchmark settings, highly
optimized and potent compounds are usually added to screening
databases consisting of lower complexity compounds, which gener-
ally yields artificially high recall rates (1), because highly complex
reference and active database compounds are relatively easy to dis-
tinguish from screening molecules having lower complexity. How-

Chem Biol Drug Des 2011; 77: 30-38



ever, the situation is completely different when highly complex ref-
erence compounds are utilized to search for hits having average
screening database complexity, which has been shown to provide
the by far most difficult practical search scenario for fingerprint-
based methods (25). These considerations would suggest to better
focus on screening hits as reference compounds, even if many of
them might only be weakly potent (24). For SYM learning, we now
introduce techniques that take relative compound potency into
account and are particularly well suited for this task. Selecting a
spectrum of available screening hits for learning, the SVM SAK and
LC techniques would be expected to detect many active compounds
and direct the search toward potent hits, if available in a screening
database. Because potency-directed SVM searching ultimately
detects active compounds on the basis of a (weighted) 'struc-
ture/potency similarity compromise’, such calculations should be
particularly promising if reference compounds and potential hits
would originate from the same screening collection (where many
active compounds might have similar chemical properties). For
example, this would make the application of these methods attrac-
tive in the context of sequential screening (26) where initial screen-
ing HTS hits from a fraction of the database are used as reference
compounds for search calculations to prioritize another subset of
the database (with a putative enrichment of additional hits) for the
next round of experimental screening.

Conclusions

In conclusion, herein, we have introduced and evaluated SVM-based
techniques for potency-directed similarity searching, for which alter-
native methods currently are not available. Potency-directed SVM
searching further extends the current spectrum of advanced SVM
approaches for different chemoinformatics applications. Both the
SVM LC and structure—activity kernel showed a notable enrichment
of potent compounds relative to standard SVM ranking. Different
from SAK, the LC approach requires the availability of distinct learn-
ing sets with sufficient numbers of compounds at different potency
levels, which might often be difficult to obtain for practical applica-
tions. However, even if only very small numbers of highly potent
compounds are available, the application of SAK is still feasible. One
of the attractive features of potency-directed LC and SAK calcula-
tions is that high recall rates of active compounds are obtained and
that the searches are not strongly focused on the exclusive recogni-
tion of highly potent compounds. This provides a meaningful compro-
mise between the recall of active compounds and the enrichment of
potent hits relative to standard SVM ranking schemes.
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Chapter 4

Summary

Two SVM-based approaches have been introduced that incorporate compound
potency information for potency-directed LBVS. The structure-activity kernel
is designed to compare compounds by separately assessing structural similarity
and the similarity of the activity annotations of the ligands. In the potency-
oriented SVM linear combination, hyperplanes were derived for compounds
from different potency categories and then combined using linear factors re-
flecting the potency level. Both approaches have been applied to potency-
balanced data sets and compared to standard SVM-based compound ranking.
The potency-directed SVM approaches were found to meet or exceed the active
compound recall performance of standard SVM calculations and furthermore
showed a clear early enrichment of potent compounds.

The supporting information of this publication can be obtained via the following
URL: http://dx.doi.org/10.1111/j.1747-0285.2010.01059.x.

The idea of designing new kernel functions to account for specific data types
and addressing questions in VS is adapted in the following study. Here, kernel
functions are designed that compare compound pairs in order to predict activity

cliffs, a problem not considered by standard similarity-based search methods.
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Chapter 5

Prediction of activity cliffs using

support vector machines

Introduction

Similarity-based search methods cannot account for discontinuous SARs. It
is therefore of high interest to identify those pairs of structurally similar com-
pounds in a data set that have large differences in their potency. In the following
study, newly designed kernel functions are introduced that enable comparisons
of compound pairs with the objective to predict activity cliffs. Additionally,
a substructure representation is designed to encode substructural differences
between molecule pairs. SVM calculations using the new kernel functions and
substructure representation are applied to predict activity cliffs in several com-

pound data sets.
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ABSTRACT: Activity cliffs are formed by pairs of structurally similar
compounds that act against the same target but display a significant
difference in potency. Such activity cliffs are the most prominent features ||
of activity landscapes of compound data sets and a primary focal point of
structure—activity relationship (SAR) analysis. The search for activity
cliffs in various compound sets has been the topic of a number of
previous investigations. So far, activity cliff analysis has concentrated on
data mining for activity cliffs and on their graphical representation and
has thus been descriptive in nature. By contrast, approaches for activity
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cliff prediction are currently not available. We have derived support

vector machine (SVM) models to successfully predict activity cliffs. A key aspect of the approach has been the design of new
kernels to enable SVM classification on the basis of molecule pairs, rather than individual compounds. In test calculations on
different data sets, activity cliffs have been accurately predicted using specifically designed structural representations and kernel

functions.

1. INTRODUCTION

In medicinal chemistry and chemoinformatics, the study of
activity cliffs has experienced increasing interest in recent
years." Activity cliffs are generally defined as pairs or groups of
chemically similar compounds with large potency differences
(ie, usually at least 2 orders of rrlagnitude).l’2 In chemo-
informatics, the exploration of activity cliffs is a topic of interest
because qualifying compound pairs can be identified through
mining of compound data sets, hence enabling large-scale SAR
analysis.3 In medicinal chemistry, activity cliffs and their
structural neighborhoods are considered a prime source of
SAR information, given that small chemical differences lead to
large bioactivity effects.’ In traditional medicinal chemistry,
activity cliffs are often analyzed in individual compound series.
However, they are also systematically explored. For example, in
independent studies, activity cliffs were systematically identified
and characterized in different data sets.>”® In these
investigations, cliffs were often defined and represented in
rather different ways. Furthermore, activity cliff distributions in
current bioactive compounds have been determined through
systematic data mining.” Moreover, many compound data sets
have also been searched for higher-order activity cliff
arrangements such as activity ridges® and coordinated cliffs.”
Taken together, these investigations were primarily focused on
compound data mining for and visualization of activity cliffs, as
mentioned above. Clearly, activity cliff analyses available at
present are descriptive in nature, as an integral part of large-
scale SAR exploration.® By contrast, no attempts have thus far
been reported to develop computational models for activity cliff
prediction. Here, we present a first step in this direction.
Support vector machine (SVM)'® models have been developed

W ACS Publications © 2012 American Chemical Society
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to screen compound data sets and predict activity cliffs. In the
following, the derivation and evaluation of these models and
the underlying methodology are described in detail.

2. ACTIVITY CLIFF REPRESENTATION AND DATA
SETS

2.1. Compound Pairs. For any study of activity cliffs, a
molecular representation must be selected that provides a basis
for pairwise compound similarity assessment. For our analysis,
we have applied the concept of matched molecular pairs
(MMPs)"' to represent activity cliffs, following the recent
introduction of MMP-based cliffs."> An MMP is defined as a
pair of compounds that differ only at a single site, ie, a
substructure such as a ring or an R group. Hence, two
compounds forming an MMP share a common core and are
distinguished by a molecular transformation, i.e,, the exchange
of a pair of substructures, which converts one compound into
the other. The exchange of a substructure can also induce
changes in physicochemical properties such as, for example,
lipophilicity, charge, or hydrogen bond potential. Compared to
other similarity measures, an advantage of the MMP formalism
in the context of activity cliff analysis is that the structural
difference between compounds in a pair is well-defined and
limited to a single substructure. This represents a clearly
defined and chemically intuitive criterion for cliff formation that
does not rely on calculated similarity values. Furthermore, this
approach is consistent with the basic idea of the activity cliff
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Figure 1. MMP comparison. Two MMPs are compared. On the basis of compound potency differences, MMP 1 is an MMP-nonCliff, whereas MMP
2 represents an MMP-cliff. In the upper panels, transformation substructures are shown in red. In the lower panels, the MMPs are divided into the
common core (blue background) and the molecular transformation (gray background). Substructures originating from the compounds with higher
and lower potency are highlighted (red and green background, respectively).

concept that compounds must be similar; ie. structural
differences must be limited.

MMPs were derived using an in-house Java implementation
of the Hussain and Rea algorithm.13 MMP generation was
restricted to molecular transformations of terminal groups; i.e.,
only single bond cuts were considered. Furthermore, the
maximal size of exchanged substructures was restricted to 13
heavy atoms, and the maximal size difference was limited to
eight heavy atoms.'> Furthermore, we concentrated on the
smallest of all possible transformations to define a given MMP.
Consequently, MMP core structures consisted of coherent
fragments, for which other molecular representations could be
calculated, and typically small substituents. For model building,
as described below, MMPs were either represented as pairs of
complete compounds or, alternatively, only by the trans-
formations defining them.

In the following, we use the term ‘substructures’ to refer to
fragments exchanged during a transformation and ‘core
structure’ to refer to the common core of MMPs.

2.2. Compound Data Sets. Nine compound data sets were
extracted from BindingDB.M’15 The data sets were selected
because they yielded large numbers of MMP-cliffs that were
exclusively formed by compounds with at least 10 M potency
on the basis of K; measurements. If several K; values were
available for a compound, the geometric mean was calculated as
the final potency annotation. For fingerprint calculations, only
compounds in which all atoms were assigned to Sybyl atom
types were considered.'® These atom types were used to enable
calculations with a combinatorial feature fingerprint, as
described below. Additionally, an MMP was omitted from the
calculations if a chosen molecular representation (see below)
did not unambiguously specify the underlying transformation.
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For each data set, the resulting MMPs were divided into
MMPs forming activity cliffs (MMP-cliffs), MMP-nonCliffs,
and other MMPs based on the following potency difference
criteria: To qualify as an MMP-cliff, compounds forming the
pair were required to have a potency difference of at least 2
orders of magnitude. To control the potential influence of
potency boundary effects on activity cliff prediction, the
potency difference of compounds forming an MMP-nonCliff
was limited to at most 1 order of magnitude. Accordingly,
MMPs with compounds having a potency difference between 1
and 2 orders of magnitude were not further considered for
SVM modeling and were assigned to the class of ‘other MMPs’.

The partition of an MMP into its common core and
transformation is illustrated in Figure 1 for two exemplary
MMPs forming an MMP-cliff and MMP-nonCliff, respectively.
Compound sets and MMP statistics are reported in Table 1.
The top five data sets in Table 1 contained the largest number
of MMP-cliffs. These data sets were relatively unbalanced
because the ratio of MMP-nonCliffs to MMP-cliffs varied
between 6 and 21. Because data sets of unbalanced composition
typically present a difficult scenario of SVM modeling,'”'® we
also selected four more balanced data sets (ranks six to nine in
Table 1). In these cases, the MMP-nonCliff/ MMP-cliff ratio
was less than 4.

3. SUPPORT VECTOR MACHINE MODELING

3.1. Motivation and Strategy. SVMs'® are supervised
machine learning algorithms for binary object classification and
ranking. The prediction of activity cliffs requires the
comparison of compound pairs instead of individual com-
pounds, which presents an off-the-beaten path scenario for
machine learning and classification methods. For SVM

dx.doi.org/10.1021/ci300306a | J. Chem. Inf. Model. 2012, 52, 2354—2365
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Table 1. Data Sets”

no. of no. of no. of
target no.of no.of MMP- MMP- other
target name code cpds  MMPs  dliffs  nonCliffs MMPs
factor Xa fxa 2202 14493 1161 10108 3224
melanocortin mcr4 1159 13053 449 9618 2986
receptor 4
kappa opioid kor 1645 10104 649 7190 2265
receptor
thrombin thr 2037 9585 1103 6390 2092
adenosine a3 aa3 1862 9575 681 6752 2142
receptor
calpain 2 cal2 121 1206 387 718 101
cathepsin b catb 150 681 120 451 110
dipeptidyl dpp8 44 602 141 421 40
peptidase 8
janus kinase 2 jak2 S8 366 109 186 71

“For each of the nine compound sets, the target name, a target code
(abbreviation), the number of compounds (cpds), and the number of
MMPs are reported. MMPs are divided into the number of compound
pairs forming activity cliffs (MMP-cliffs), no activity cliffs (MMP-
nonCliffs), and other MMPs, following the potency difference-based
definition detailed in the Methods section. The data sets are sorted by
decreasing numbers of MMPs.

modeling, kernel functions can be designed to account for
specific relationships between objects and facilitate classification
on the basis of these relationships. Our focus on the SVM
approach for activity cliff prediction was largely motivated by
the design of new kernel functions to facilitate comparisons of
compound pairs, as illustrated in Figure 2. Our approach to
facilitate compound pair-based predictions included, as a basis,
the generation of training sets of MMP-cliffs and MMP-
nonCliffs. In addition, an integral part of our approach was to
attempt a systematic analysis of structural differences between

Figure 2. Activity cliff prediction using SVMs. The schematic figure
illustrates the principal idea of SVM-based activity cliff prediction. In
this case, the basic classification unit is a compound pair, different from
standard compound classification tasks. Compound pairs forming
MMP-dliffs (nonfilled circles) and MMP-nonCliffs (black circles) are
separated by a hyperplane. In molecular graphs, transformation
substructures are colored red. For each compound, its pK; value is
reported.
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compounds in cliff and noncliff pairs. The underlying
hypothesis was that there should be structural features among
compounds sharing a specific activity that are responsible for
high and low potency and thus, ultimately, for the formation of
activity cliffs. Although this hypothesis was intuitive, its
potential utility for activity cliff prediction remained to be
evaluated. Methodologically, this was not a trivial task because
it required, first, relating features of compounds forming pairs
to each other and, second, comparing feature differences across
pairs.

3.2. SVM Theory in Brief. SVMs make use of labeled
training data that are mapped into a feature space to build a
linear classification model. A set of n training objects {x;, y;} (i =
1, .., n) are represented by a feature vector x; € y (e.g,, RY) and
an associated class label y; € {—1, 1} corresponding to the
‘negative’ and ‘positive’ classes, respectively. By solving a convex
quadratic optimization problem, a hyperplane H is derived that
best separates positive from negative training data (Figure 2).
During training, the cost parameter C penalizes the
misclassification of training data and achieves a balance between
minimizing the training error and maximizing the generalization
of the classification.

The hyperplane H is defined by the normal weight vector w
and the bias b, so that H = {xl{w,x) + b = 0}, where {(-,-) is a
scalar product. Test data are mapped into the same feature
space y and classified by the linear decision function f(x) =
sgn((x, w) + b), i.e, depending on which side of the hyperplane
they fall. In our calculations, the positive class consisted of the
MMP-cliffs and the negative class of MMP-nonCliffs.

If the training data are not linearly separable in the feature
space , the so-called Kernel trick'® can be applied to replace the
scalar product (-,-) by a kernel function K(,-). Kernel functions
are used to calculate the scalar product of two feature vectors in
a higher dimensional space H without explicitly calculating the
mapping ®:y — H. In the higher dimensional space H, a
linear separation of the training data might be feasible. Kernel
functions are of the form K(u,v) = (®(u), ®(v)), where u and
v are feature vector representations.

3.3. Standard Kernel Functions. The following four
popular kernels are often used in SVM calculations:

Klinear(u! V) = (u, v)

KGaussian(u) V) = eXP(—Jflu - le)
d

Kpolynomial(uJ V) = ((u; V) + 1)

(u, v)
<u1 u) + (Vr V) - <u; V>

KTanimoto(u’ V) =

The linear kernel corresponds to the standard scalar product.
The Gaussian kernel is also known as the radial basis function
kernel and depends on an adjustable parameter y. In the
polynomial kernel, the parameter d determines the degree of
the polynomial function. The Tanimoto kernel®® was
introduced given the popularity of the Tanimoto coefficient
for quantifying compound similarity. On the basis of these
kernels, new kernel functions were designed specifically for
activity cliff prediction, as described in the following.

dx.doi.org/10.1021/ci300306a | J. Chem. Inf. Model. 2012, 52, 2354—2365
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Figure 3. Kernel functions. The design of new kernel functions for SVM-based activity cliff prediction is illustrated. (A) Substructure-difference
kernel. A fingerprint representation is generated for each substructure representing a given transformation. Then, a difference vector is calculated for
the two substructure fingerprints. In kernel calculations, difference vectors for different transformations are compared. (B) Substructure-pair kernel.
Fingerprint representations of substructures representing a transformation are combined to yield substructure pairs. Kernel calculations then
compare the substructure pairs of different transformations. (C) MMP kernel. A fingerprint representation is calculated for the common core of each

MMP. The corresponding transformations are represented by a transformation object that is either the substructure-difference vector or the
substructure-pair representation (according to A and B, respectively). The core structure vector and the transformation object are then combined for

kernel calculations.

4. DESIGN OF KERNEL FUNCTIONS FOR ACTIVITY
CLIFF PREDICTION
4.1. Substructure-Difference Kernel. In order to use
MMPs for SVM calculations, a feature vector representation of
MMPs must be generated. As discussed above, MMPs consist
of a common core structure and two differentiating

substructures (substituents) that constitute the molecular
transformation. We first designed a kernel that utilized only
the transformation to create a single feature vector. The
substituents were classified according to the highly potent
partner in the MMP, termed ‘highly potent substructure’, and
the weakly potent MMP compound, referred to as ‘weakly
potent substructure’ (for MMP-nonCliffs, these potency

2357 dx.doi.org/10.1021/ci300306a | J. Chem. Inf. Model. 2012, 52, 2354—2365
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differences were within an order of magnitude). For both
substructures, a keyed fingerprint of size n was calculated. Then,
a difference fingerprint of size 2n was created that contained as
the first n positions only those features present in the highly but
not weakly potent substructure. If a feature was present in both
substructures, the corresponding bit in the difference finger-
print was set off. The last n positions in the difference
fingerprint contained features present only in the weakly but
not the highly potent substructure. Accordingly, this difference
vector uniquely described the transformation defined by the
substructures on the basis of fingerprint features. The design of
the difference fingerprint and substructure-difference kernel is
illustrated in Figure 3A. Because this compound pair
representation only comprises a single vector, kernel
calculations can be performed as follows:

I<transformation(u’ V) = K(ll, V)

where u and v are the substructure-difference vectors of two
MMPs and K(u,v) might, for example, be the Tanimoto or the
polynomial kernel.

Because substructures were sorted on the basis of potency
relationships between MMP compounds, this process is
referred to as potency-based ordering. This information was
taken into account during the learning and test phase. In
addition, ordering of substructures by size (without considering
potency relationship) was also investigated.

4.2. Substructure-Pair Kernel. Another new kernel
represented a transformation as a pair of substructures. Again,
substructures were classified according to the potency of the
compounds from which they originate, and fingerprint
representations were calculated. However, in this case, a
transformation was represented as the pair (h,w), where h is
the fingerprint vector of the highly potent substructure and w
the feature vector of the weakly potent substructure. Given two
substructure pairs (h,w;) and (hl-,wj), a ‘transformation kernel’
was defined as the product of two separate kernels for the
highly potent and weak potent substructures:

K (hi; Wi): (hjl w])) = I<(hil hj) X K(Wi: “7)

transformation(
Thus, two independent kernels for highly potent and weakly
potent substructures were combined to account for pairwise
transformation similarities. The two kernels could again be
implemented using standard kernel functions. The design of the
substructure-pair kernel is illustrated in Figure 3B.

4.3. MMP Kernel. So far, we only considered molecular
transformations to represent structural changes in MMPs that
potentially lead to the formation of activity cliffs. However, the
common core of an MMP might add further information for
the classification of MMP-cliffs and MMP-nonCliffs because it
defines the structural environment of a transformation. A
potential caveat associated with considering the common core
was that a given core structure might appear in both the
positive and the negative class. This might be the case if a
compound formed an MMP-cliff and an MMP-nonCliff with
different partners. Hence, it was difficult to predict how the
inclusion of the core might influence the classification
calculations.

In order to generate a kernel that contains core information,
an MMP was represented by combining the common core and
the transformation, ie., (ct), where c is the feature vector
representation from the common core and ¢ is a transformation
object that can either be described by the substructure-
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difference vector or the substructure pair. Thus, the MMP
kernel is defined by

KMMP((Ci) ti)(cjr tj)) = Kcore(ci’ cj) X Ktransformation(ti’ tj)

The kernel function for pairs is again separated into
independent kernels for each data type. The design of the
MMP kernel is illustrated in Figure 3C. Because the common
core was represented by a single feature vector, standard kernel
functions could replace the core kernel (see above).

5. CALCULATION SETUP

5.1. Cost Factor. All SVM calculations were carried out
using SVM"" 2! 3 freely available SVM implementation. With
two exceptions, suggested default parameters of SVM"" were
used to render the calculations reproducible. Apart from
adjustable parameters in kernel functions, as specified above, we
only modified the cost factor for the treatment of unbalanced
data sets. SVM calculations on significantly unbalanced data
sets often result in the generation of a hyperplane that is
proximal to under-represented training examples,'”'® here the
positive examples (MMP-cliffs). As a consequence, positive
instances are often predicted at only low rates. The cost factor
defines the ratio of training error costs on the positive class
(C*) to penalties on the negative class (C7):*

i
cost factor = —
C

The default value of the cost factor is 1; i.e., the same penalty is
applied to positive and negative examples. However, increasing
the error cost C, ie., the penalty to predict a false-negative,
repositions the hyperplane farther away from the positive
examples. An often recommended cost-factor adjustment'”!
can be expressed as

NTE

cost factor = ——

PTE

where NTE and PTE are the number of negative and positive
training examples, respectively. Thus, the potential total cost of
false negative errors and the potential total cost of false positive
errors are the same.”

5.2. Statistics. We performed 10-fold cross-validation as a
reasonable compromise between data perturbation and training
data size.”> The MMP-cliff and MMP-nonCLff classes were
randomly partitioned into 10 samples such that the global ratio
between positive and negative training examples was constant.
Nine of 10 samples were utilized for SVM learning and model
building including all positive and negative training examples,
and the remaining sample was used as a test set for prediction.
In systematic classification calculations, each sample was used
once as a test set. Average statistics were calculated over all 10
trials and used for performance evaluation. The following
statistics were calculated:

TP + TN
TP + FN + TN + FP

accuracy = AC =

recall = TPR = L
TP + FN
TN
specificity = TNR = ——
P A TN + FP
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Table 2. Cost-Factor Settings®

cost factor = 1

cost factor = NTE/PTE

target AC TPR TNR P

fxa 9247 32.38 99.38 85.82
mcr4 97.01 35.62 99.88 94.17
kor 92.69 13.56 99.83 86.75
thr 91.69 52.07 98.53 85.93
aa3 9247 25.84 99.19 76.81
cal2 95.65 95.11 95.95 92.83
catb 95.80 81.67 99.56 98.57
dpp8 99.82 99.29 100.00 100.00
jak2 90.33 88.18 91.58 86.24

F score AC TPR TNR P F score
46.89 89.82 72.69 91.79 50.45 59.51
51.34 95.90 78.15 96.72 53.02 63.01
23.08 87.09 66.87 88.92 35.44 46.26
64.64 88.90 81.15 90.23 58.99 68.29
38.51 86.95 71.95 88.46 38.63 50.19
93.86 96.10 97.44 95.40 92.14 94.65
88.67 95.62 88.33 97.56 91.10 89.39
99.63 99.82 99.29 100.00 100.00 99.63
87.01 90.00 92.73 88.42 82.82 87.30

“For each data set, the average accuracy (AC), true positive rate (TPR), true negative rate (TNR), precision (P), and F score are reported (in %) for
SVM calculations with different cost-factor settings. In these calculations, transformations were represented using the substructure-difference vector
generated with MACCS, and the Tanimoto kernel was used as part of the substructure-difference kernel.

TP
TP + FP

where TP, FN, TN, and FP define the number of predicted true
positives, false negatives, true negatives, and false positives,
respectively. TPR and TNR denote the true positive rate and
true negative rate, respectively, and are used in the following to
account for recall and specificity. Because so assessed prediction
accuracy is not a very informative measure when the number of
negative examples is much larger than the number of positive
examples,”* we also calculated the (balanced) F score that
accounts for both precision and recall (and ranges from 0% to
100%):>*

precision = P =

P x TPR
P + TPR

F score =2 X

5.3. Fingerprints. For representing subtructures, two
fragment-type fingerprints were used. The bonded-atom pair
fingerprint (BAP)*® encodes 117 different atom pairs with a
focus on short-range connectivity information. In order to
account for substructures comprising single atoms, we added
three features describing carbon atoms, heteroatoms, and
hydrogens resulting in a final fingerprint consisting of 120
structural descriptors. In addition, the MACCS®® fingerprint
was used that consists of 166 structural keys encoding
substructures with one to 10 non-hydrogen atoms. An
additional feature for a single hydrogen atom was also added
in this case (because it might participate in a transformation).
Furthermore, we evaluated the combination of both finger-
prints (MACCS+BAP), resulting in a descriptor with 284 (117
+ 166 + 1) features (two features added to the BAP fingerprint
correspond to MACCS structural keys).

As a molecular representation of the common core, we used
MACCS and Molprint2D.”” The Molprint2D fingerprint
requires the use of Sybyl atom types and encodes circular
atom environments by fusing each atom in the structure with
its neighboring atoms until a specific bond radius is reached.
Here, we used features with a maximal bond radius of 2.

6. INITIAL TRIALS, COST-FACTOR ADJUSTMENT, AND
SUBSTRUCTURE REPRESENTATION

6.1. Basic Classification Performance. To evaluate the
potential of our SVM-based approach, we first determined the
classification performance in calculations in which substructures
were represented using the substructure-difference vector
generated with MACCS, and the Tanimoto kernel was used
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as part of the substructure-difference kernel. In addition, a
constant cost factor of 1 was applied. The results of these
calculations are reported in Table 2. To present comprehensive
statistics for performance evaluation, we report for all cross-
validated calculations the average accuracy (AC), true positive
(TPR) and true negative (TNR) rates, the precision (P), and
the F score. In the following discussion, most emphasis is put
on TPR, P, and F score values. The results in Table 2 for a cost
factor of 1 mirror overall successful activity cliff predictions,
with notable compound class dependence. In particular, the
(un)balance of positive and negative training examples affected
the calculations. For the first five data sets in Table 2, which
contained many more MMP-nonCliffs than MMP-cliffs,
prediction accuracy was lower than for the remaining more
balanced sets (ie., cal2, catb, dpp8, and jak2), as to be expected
(see above). MMP-nonCliffs were generally predicted with very
high accuracy, leading to TNRs of nearly 100% in all but one
(jak2; 91.6%) case. This also led to an overall accuracy of 90—
100% of the calculations and to a precision of 76—100%.
Significant differences were observed between the rates with
which MMP-cliffs were correctly predicted. Here, TPRs ranged
from 13.6% to 99.3%, leading to F scores between 23.1% and
99.6%. For the unbalanced data sets, TPRs and F scores ranged
from 13.6% to 52.1% and 23.1% to 64.6%, respectively. By
contrast, for the balanced data sets, TPRs and F scores of 81.7—
99.3% and 87.0—99.6% were observed, respectively. Thus, the
results of initial activity cliff predictions were considered
encouraging, at least for balanced data sets, and we thus further
refined the approach, as discussed in the following.

6.2. Cost Factor. We first attempted to address the low
TPRs and resulting F scores observed for unbalanced data sets
in our initial calculations. Therefore, the default cost factor of 1
was replaced by the adjusted cost factor = NTE/PTE, which
introduced a higher penalty on misclassification of positive
training instances, ie., activity cliffs. We repeated cross-
validated SVM calculations under these conditions and
observed a significant increase in TPRs for unbalanced data
sets, as reported in Table 2. For balanced data sets, classification
performance remained essentially unchanged, but for unbal-
anced sets, TPRs and F scores further increased to 66.9—81.2%
and 46.3—68.3%, respectively. A trade-off has been a reduction
in precision because the TNRs were reduced from on average
99.4% to 91.2%, due to the adjusted cost factor. However, this
relatively small reduction in TNRs was clearly overcompen-
sated for by an average TPR increase of 42.3% for unbalanced
sets, yielding reasonably to highly accurate activity cliff

dx.doi.org/10.1021/ci300306a | J. Chem. Inf. Model. 2012, 52, 2354—2365



Journal of Chemical Information and Modeling

Table 3. Comparison of Fingerprints for Substructure Representation®

BAP MACCS MACCS+BAP
target AC TPR TNR P F score AC TPR TNR p F score AC TPR TNR P F score
fxa 83.72 72.18 85.04 35.66 47.73 89.82 72.69 91.79 50.45 59.51 90.11 73.21 92.06 51.50 60.39

mcr4 89.58 7728 90.15 26.90 39.85 95.90 78.15 96.72 53.02 63.01 95.91 7725 96.78 53.26 62.84
kor 79.36 65.33 80.63 23.37 34.39 87.09 66.87 88.92 35.44 46.26 87.31 67.95 89.05 36.19 47.15
thr 85.11 78.61 86.23 49.66 60.84 88.90 81.1S 90.23 58.99 68.29 89.15 81.43 90.49 59.71 68.85
aa3 81.21 68.15 82.52 28.18 39.83 86.95 71.95 88.46 38.63 50.19 86.98 71.37 88.55 38.63 50.04
cal2 92.67 94.87 91.50 86.08 90.16 96.10 97.44 95.40 92.14 94.65 96.11 97.44 95.40 92.23 94.69
catb 93.17 90.83 93.79 80.24 84.91 95.62 88.33 97.56 91.10 89.39 96.15 88.33 98.22 93.38 90.47
dpp8 99.82 99.29 100.00 100.00 99.63 99.82 99.29 100.00 100.00 99.63 99.82 99.29 100.00 100.00 99.63
jak2 82.20 80.82 83.02 74.53 76.97 90.00 92.73 88.42 82.82 87.30 89.67 90.00 89.47 83.74 86.56
“The performance of the BAP, MACCS, and MACCS+BAP fingerprints for substructure representation is compared. Calculation statistics are
reported according to Table 2. The transformations were represented using the substructure-difference vector. The Tanimoto kernel was used as part
of the substructure-difference kernel, and the adjusted cost factor was applied.

Table 4. Comparison of Standard Kernels®

Tanimoto linear
target AC TPR TNR P F score AC TPR TNR P F score
fxa 89.82 72.69 91.79 50.45 59.51 80.70 71.66 81.74 31.14 43.38
mcr4 95.90 78.15 96.72 53.02 63.01 87.30 80.82 87.61 23.44 36.28
kor 87.09 66.87 88.92 35.44 46.26 79.93 67.49 81.06 24.39 35.82
thr 88.90 81.15 90.23 58.99 68.29 84.20 76.97 85.45 47.80 58.93
aa3 86.95 71.95 88.46 38.63 50.19 77.88 75.19 78.16 25.90 38.50
cal2 96.10 97.44 95.40 92.14 94.65 95.30 96.41 94.71 91.06 93.55
catb 95.62 88.33 97.56 91.10 89.39 94.92 85.83 97.33 90.46 87.63
dpp8 99.82 99.29 100.00 100.00 99.63 99.82 99.29 100.00 100.00 99.63
jak2 90.00 92.73 88.42 82.82 87.30 92.33 95.45 90.53 85.94 90.24
Gaussian (y = 1/numFeatures) Gaussian (y = 0.1)
target AC TPR TNR P F score AC TPR TNR P F score
fxa 84.83 71.40 86.37 37.65 49.25 91.19 64.77 94.22 56.37 60.20
mcr4 91.76 82.16 92.20 33.10 47.11 96.26 70.80 97.44 56.89 62.86
kor 83.31 69.19 84.59 28.92 40.77 87.86 62.72 90.13 36.66 46.17
thr 86.73 78.87 88.09 53.37 63.63 89.82 78.71 91.74 62.32 69.51
aa3 80.84 77.10 81.22 29.46 42.57 87.50 68.14 89.46 39.50 49.91
cal2 95.48 96.92 94.71 91.09 93.81 95.56 96.67 94.98 91.47 93.90
catb 94.92 85.83 97.33 90.46 87.63 95.98 85.00 98.89 95.92 89.48
dpp8 99.82 99.29 100.00 100.00 99.63 99.82 99.29 100.00 100.00 99.63
jak2 92.67 95.45 91.05 86.54 90.60 90.33 90.91 90.00 84.50 87.40
polynomial (d = 2) polynomial (d = 3)
target AC TPR TNR P F score AC TPR TNR P F score
fxa 90.67 70.45 93.00 53.74 60.88 92.12 65.20 95.21 61.04 62.97
mer4d 96.03 75.02 97.01 54.04 62.69 97.02 72.13 98.18 65.41 68.39
kor 87.84 65.50 89.86 37.03 47.20 89.35 59.95 92.00 40.60 48.30
thr 90.35 78.97 92.32 64.15 70.74 91.03 74.89 93.82 67.73 71.11
aa3 87.45 70.93 89.11 39.70 50.84 88.69 66.07 90.97 4244 S1.58
cal2 96.11 95.38 96.52 93.81 94.53 95.66 91.52 97.90 96.02 93.55
catb 95.97 82.50 99.56 98.57 89.19 95.62 80.00 99.78 99.17 88.04
dpp8 99.82 99.29 100.00 100.00 99.63 99.82 99.29 100.00 100.00 99.63
jak2 90.27 88.09 91.58 86.46 86.77 88.93 82.64 92.63 87.07 84.42

“The performance of different kernels as part of the substructure-difference kernel is compared. Performance statistics are reported. The Gaussian
kernel was used with two different y values (y = 1/numFeatures and y = 0.1) and the polynomial kernel with two different exponents d (d = 2 and d
= 3). The parameter numFeatures describes the number of features present in the substructure-difference vector. The substructures were represented
using the substructure-difference vector with MACCS, and the adjusted cost factor was applied.

predictions for all nine different data sets (Table 2). structures. Table 3 reports search results for the comparison of
Accordingly, the adjusted cost factor was used in all subsequent the BAP, MACCS, and (MACCS+BAP) fingerprints used for
calculations. the generation of the substructure-difference vector. Calcu-

6.3. Substructure Representation. Next, we compared lations with the BAP substructure-difference vector resulted in
different fingerprint representations of transformation sub- consistently high TPRs but low precision for unbalanced data
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Table S. Comparison of Transformation Kernels®

substructure-difference vector

substructure pairs

target AC TPR TNR P F score AC TPR TNR P F score
fxa 89.82 72.69 91.79 50.45 59.51 91.01 74.85 92.87 54.68 63.17
mcr4 95.90 78.15 96.72 53.02 63.01 96.30 74.14 97.34 56.94 64.16
kor 87.09 66.87 88.92 35.44 46.26 88.00 60.55 90.47 36.73 45.61
thr 88.90 81.15 90.23 58.99 68.29 90.03 82.07 91.41 62.34 70.80
aa3 86.95 71.95 88.46 38.63 50.19 88.83 67.11 91.02 43.23 52.45
cal2 96.10 97.44 95.40 92.14 94.65 96.29 96.41 96.24 93.39 94.81
catb 95.62 88.33 97.56 91.10 89.39 95.44 86.67 97.78 91.63 88.85
dpp8 99.82 99.29 100.00 100.00 99.63 99.82 99.29 100.00 100.00 99.63
jak2 90.00 92.73 88.42 82.82 87.30 91.20 94.45 89.33 84.48 8891

“The performance of the substructure-difference vector is compared to the substructure-pair representation. The substructures were encoded using
MACCS. The Tanimoto kernel was used as part of the two transformation kernels, and the adjusted cost factor was applied.

Table 6. Comparison of Transformation and MMP Kernels®

transformation kernel

MMP kernel (core structure: MACCS)

MMP kernel (core structure: Molprint2D)

target AC TPR TNR P F score AC TPR
fxa 89.82 72.69 91.79 50.45 59.51 94.11 81.30
mcr4 95.90 78.1S 96.72 53.02 63.01 98.02 81.04
kor 87.09 66.87 88.92 35.44 46.26 93.21 72.57
thr 88.90 81.15 90.23 58.99 68.29 93.07 84.41
aa3 86.95 71.95 88.46 38.63 50.19 93.52 74.74
cal2 96.10 97.44 95.40 92.14 94.65 97.55 97.69
catb 95.62 88.33 97.56 91.10 89.39 96.85 90.00
dpp8 99.82 99.29 100.00 100.00 99.63 99.82 99.29
jak2 90.00 92.73 88.42 82.82 87.30 90.67 91.82

TNR P F score AC TPR TNR P F score
95.58 6791 73.95 94.68 82.17 96.11 70.92 76.03
98.81 76.50 78.57 98.35 83.05 99.06 80.82 81.82
95.08 57.38 63.99 94.86 72.58 96.87 67.88 70.04
94.57 7293 7821 93.75 84.05 95.43 76.20 79.85
95.41 62.60 6791 95.12 7445 97.20 7323 73.57
97.49 95.54 96.57 97.64 97.69 97.63 95.79 96.70
98.67 95.24 92.30 97.02 90.83 98.67 95.43 92.76
100.00 100.00 99.63 99.82 99.29 100.00 100.00 99.63
90.00 84.74 87.89 91.00 91.82 90.53 85.55 88.28

“The performance of the transformation kernel is compared to the MMP kernel. The substructure-difference kernel was used as the transformation
kernel. Substructures were represented using the substructure-difference vector with MACCS. The MACCS and Molprint2D fingerprints were
compared as core structure representations in the MMP kernel. The Tanimoto kernel was used as part of the substructure-difference kernel as well as

the MMP kernel, and the adjusted cost factor was applied.

sets, due to a reduction in TNRs, leading to low F scores.
MACCS-based calculations yielded comparably high TPRs but
higher precision and F scores. No further increases in these
rates and scores were observed when the (MACCS+BAP)
combination was used. Consequntly, MACCS was used in
subsequent calculations.

7. KERNEL COMPARISON

Kernel design for the treatment of compound pairs as a basic
classification object has been a key aspect of our approach to
activity cliff prediction. We first compared the performance of
standard kernels that provided a basis for the generation of
substructure and MMP kernels.

7.1. Standard kernels. Table 4 summarizes the results of
SVM calculations using different kernel functions as a
component of the substructure-difference kernel. The use of
the Tanimoto kernel resulted in TPRs that were consistently
above 66% for all targets. In these calculations, the precision
was low for two data sets (kor and aa3). For unbalanced sets, F
scores varied from 46.3% to 68.3%. By contrast, for balanced
sets, F scores were consistently higher than 87%. The linear
kernel essentially paralleled the results of the Tanimoto kernel
for balanced data sets but displayed consistently lower precision
for unbalanced sets. The use of the Gaussian kernel with small y
parameter values (0.0034—0.0065), depending on the number
of features (y = 1/numFeatures) used in the calculations, also
resulted in comparable TPRs but lower precision for
unbalanced sets. For a larger y value of 0.1, increased precision
was observed but TPRs were reduced, yielding F scores

2361

comparable to the Tanimoto kernel. Furthermore, the
polynomial kernel (with d = 2 and d = 3) also produced
rates and scores that were similar to those obtained for the
Tanimoto kernel. Thus, taken together, differences in
prediction performance for different standard kernels were by
and large insignificant. Since the Tanimoto kernel was
parameter-free, it was selected for further calculations.

7.2. Transformation and MMP Kernels. An interesting
initial finding was that promising classification results were
obtained using the Tanimoto substructure-difference kernel
(see section 6.1). This kernel only accounted for differences
between transformation substructures, rather than entire
MMPs. We then compared the substructure-difference and
substructure-pair kernels (based on the Tanimoto kernel).
Calculation requirements for these kernels differed. The
substructure-difference kernel only required one kernel
calculation, but the difference vector must be precalculated.
By contrast, for the substructure-pair kernel, no precalculations
were required, but the kernel calculation must be carried out for
two functions. The results of search calculations using these
alternative transformation-only kernels are reported in Table S.
No clear preference for one or the other kernel was detectable.
Overall, the substructure-pair kernel produced slightly lower
TPRs but slightly higher precision than the substructure-
difference kernel (except for the dpp8 set yielding P = 100% in
both instances), which resulted in similar F scores.

We then included the MMP kernel in the comparison, which
was designed to combine the core structure representation of
an MMP with its substructure-difference vector. For this
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Table 7. Comparison of Potency- and Size-Based Substructure Ordering®

potency-based ordering

size-based ordering

target AC TPR TNR P

fxa 89.82 72.69 91.79 50.45
mcr4 95.90 78.15 96.72 53.02
kor 87.09 66.87 88.92 35.44
thr 88.90 81.15 90.23 58.99
aa3 86.95 71.95 88.46 38.63
cal2 96.10 97.44 95.40 92.14
catb 95.62 88.33 97.56 91.10
dpp8 99.82 99.29 100.00 100.00
jak2 90.00 92.73 88.42 82.82

F score AC TPR TNR P F score
59.51 87.89 68.38 90.13 44.30 53.73
63.01 95.21 70.15 96.38 47.80 56.71
46.26 84.17 62.10 86.16 28.81 39.33
68.29 87.32 77.81 88.97 54.95 64.36
50.19 83.79 68.13 85.37 32.06 43.50
94.65 91.94 93.03 91.36 85.38 88.89
89.39 93.17 85.00 95.33 84.27 83.77
99.63 99.82 99.29 100.00 100.00 99.63
87.30 86.27 87.18 85.79 79.10 82.44

“The performance of potency-based ordering of transformation substructures is compared to size-based ordering. The transformations were
represented using the substructure-difference vector. The Tanimoto kernel was used as part of the substructure-difference kernel, and the adjusted

cost factor was applied.

purpose, the core structure can be represented using different
fingerprints. For substructure representations, fragment finger-
prints such as BAP or MACCS are in principle a preferred
choice, but for core structure representation, other types of
fingerprints might also be used. In Table 6, search results for
the substructure-difference kernel are compared to those
obtained for two versions of the MMP kernel including one
in which the common core was represented using MACCS and
another that utilized Molprint2D instead (i, a topological
atom environment fingerprint). We found that application of
the MMP kernel further improved classification performance.
For both versions of the MMP kernel, an increase in TPRs and
precision was observed compared to the transformation kernel,
leading to higher F scores. For the MMP kernel, TPRs were
very similar for MACCS and Molprint2D, but F scores were
slightly higher for Molprint2D, due to a minor increase in
TNRs. On average, F scores were 82.1% for the MACCS- and
84.3% for the Molprint2D-based MMP kernel. Compared to
the substructure-difference kernel, which yielded TPRs and F
scores of 66.9—99.3% and 46.3—99.6%, respectively, the
Molprint2D-based MMP kernel produced TPRs and F scores
of 72.6—99.3% and 70.0—99.6%, respectively. Improvements
were observed for balanced and unbalanced data sets but were
of larger magnitude for the latter. On average, TPRs slightly
increased from 83.2% (transformation kernel) to 86.2% (MMP
kernel) and F scores (reflecting both recall and precision) from
73.1% to 84.3%. Thus, the incorporation of core structure
contributions of MMP-cliffs and MMP-nonCliffs into the
kernel function further increased the accuracy of activity cliff
predictions.

We also investigated the influence of substructure ordering
on the calculations. In the classification scheme underlying our
analysis, the ordering of transformation substructures in MMPs
was potency-based. As a control, we also evaluated size-based
ordering of substructures. The results for the substructure
difference are presented in Table 7. With the exception of one
set (dpp8; with consistently 100% precision), both TPRs and F
scores decreased for size-based ordering. Comparable trends
were observed when the MMP kernel was used (data not
shown). Hence, potency-based ordering of substructures was
generally preferred, but size-based ordering also yielded
accurate predictions.

8. STRUCTURAL PATTERNS

Given the results of our calculations, we also investigated
whether successful predictions of MMP-cliffs might be
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rationalized in structural terms. Therefore, we analyzed
correctly identified MMP-cliffs and MMP-nonCliffs for the
presence of characteristic transformations and structural
features. In a number of instances, structural patterns were
identified that could be attributed to activity cliff formation. In
the following, representative examples are discussed.

Figure 4A shows a number of transformations leading to the
formation of MMP-cliffs in the dpp8 set. Most MMP-cliffs were
characterized by transformations in which a substructure
containing a carbonyl group was replaced by a substituted
phenyl group. The carbonyl group was predominantly involved
in the formation of amide bonds, but there were also ketone
and ether linkages proximal to the carbonyl group. With one
exception, all of these MMP-cliffs were correctly classified. The
only exception was a structurally very different transformation
observed in an MMP-cliff (shown on a gray background),
which might present an interesting test case for further analysis
of activity clifts among dpp8 inhibitors. Apart from this
exception, the typical MMP-cliff transformation patterns
observed in the dpp8 set resulted in perfect classifications,
independent of chosen kernel functions and SVM calculations
settings.

Figure 4B shows transformations of MMP-cliffs from the cal2
set that were correctly identified or misclassified as MMP-
nonCliffs (gray background). The weakly potent substructures
of correctly classified MMP-cliffs were linear alkyl chains,
oxygen containing (alkyl) substituents, or groups containing
phenyl rings. Replacement of these substructures with nitrogen-
or oxygen-containing substructures or substituted ring systems
caused a strong increase in potency, leading to the formation of
activity cliffs. The transformation of misclassified pairs
exclusively consisted of small nitrogen- and oxygen-containing
substructures. These examples illustrate that clearly defined
structural signatures of activity cliffs were not always obvious in
the cal2 set, making this case a difficult classification problem.
Despite this structural variability, 64.2% of all MMP-cliffs in the
cal2 set displayed similar structural patterns and were correctly
classified. Figure 4C shows examples of MMP-nonCliff
transformations, which further illustrate the presence of
complex transformation—potency relationships. In these cases,
more potent compounds in pairs contained substructures that
were found in weakly potent MMP-cliff compounds shown in
Figure 4B. Consequently, these pairs were correctly classified as
MMP-nonCliffs. Nevertheless, calculations on the cal2 set
yielded accurate predictions using our SVM models, with a
TPR and F score of 97.4% and 94.7%.
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Figure 4. Exemplary MMP transformations. Exemplary MMP-cliff and MMP-nonCliff transformations are shown for different compound data sets
(according to Table 1). Highly potent substructures are positioned on the left or at the top of cells and weakly potent ones on the right or at the
bottom. Correctly classified MMP-cliff transformations are shown on a white background and misclassified transformations on a gray background.
Selected structural features/patterns are colored red (in highly potent substructures) and green (in weakly potent substructures). (A) Data set dpp8/
MMP-dliffs, (B) cal2/MMP-cliffs, (C) cal2/MMP-nonCliffs, (D) jak2/MMP-cliffs.

Figure 4D shows MMP-cliff transformations

from the jak2

different benzyl alcohol derivatives that departed from the

set. Here, replacements of alkyl or phenyl groups with benzyl
alcohol or halogen substituted benzyl alcohol groups often led
to activity cliffs that were correctly detected. Examples of
transformations in misclassified MMP-cliffs included the

exchange of methoxy and sulfonamide groups and of pairs of
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prevalent substructure patterns among MMP-cliffs.

9. CONCLUDING REMARKS

Herein, we have presented a first approach to predict activity
cliffs in compound data sets. From a conceptual and
methodological point of view, the prediction of activity cliffs
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represents a nontrivial task. The underlying assumption is that
structural differences in pairs of similar compounds can be
directly related to potency differences and then compared
across pairs representing cliffs and noncliffs. We have
approached the task of activity cliff prediction using SVM
modeling because the SVM formalism provides the opportunity
to design kernel functions specifically tailored towards this task.
To represent activity cliffs and noncliffs, the concept of MMP-
cliffs is applied that yields a structurally well-defined
representation of activity cliffs on the basis of common core
structures and distinguishing substructure transformations.
Another general difficulty in activity cliff prediction is the
assembly of compound data sets with a balanced composition
of positive (cliffs) and negative (noncliff) training examples,
which typically is an important prerequisite for effective
machine learning. Because activity cliffs are relatively rare
among bioactive compounds, data sets are generally unbal-
anced. We have systematically searched for compound data sets
that contained MMP-cliffs at a relatively high frequency and
determined all MMP-cliffs and MMP-nonCliffs in these sets. A
total of nine data sets were obtained for our analysis that
contained significant numbers of MMP-cliffs. However, all of
these data sets contained many more MMP-nonCliffs than
MMP-cliffs, as expected. For the purpose of our analysis, we
considered data sets balanced if the MMP-nonCliff/ MMP-cliff
ratio was not larger than 4, which was the case for four of our
sets. The remaining five sets were characterized by much larger
ratios and hence considered unbalanced. However, using newly
introduced kernel functions, activity cliffs were predicted with
reasonable to high accuracy on the basis of SVM learning and
classification. During learning, unbalanced training example
distributions were effectively handled by adjusting the cost
factor of the SVM calculations. We designed alternative kernel
functions that only took transformation substructure differences
or transformation and core structure features into account.
Interestingly, overall accurate predictions were already obtained
when transformation kernels were applied, but prediction
accuracy was further improved through the use of MMP kernel
functions that considered transformation and core differences.
However, much structural information relevant for the
formation of activity cliffs was often encoded by trans-
formations, without a critical influence of their specific
structural environment. In our analysis, best predictions were
obtained when cross-validated SVM calculations with adjusted
cost factors were carried out using the Tanimoto kernel-based
MMP kernel with a MACCS substructure-difference vector (on
the basis of potency-based ordering of substructures) and a
Molprint2D representation of common MMP cores. Under
these conditions, average true positive rates and F scores of
86.2% and 84.3%, respectively, were achieved in activity cliff
predictions, with an average precision of 82.9% and accuracy of
95.8% of the calculations. In many instances, it was possible to
rationalize successful predictions of activity cliffs on the basis of
structural features of corresponding transformations. Taken
together, given the results presented herein, we anticipate that
the SVM-based approach to activity cliff prediction should be of
considerable interest in the search for cliffs in large compound
data sets.
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Chapter 5

Summary

SVM classification using kernel functions designed for compound pairs was ap-
plied to predict activity cliffs. The kernel functions compared pairs of com-
pounds on the basis of matched molecular pairs and captured molecular trans-
formations and common core structures. SVM calculations with these kernels
showed high prediction accuracy when applied to compound data sets with dif-
ferent activity cliff content. Thereby, the use of transformations alone already
resulted in accurate predictions indicating that essential information about the
cliffs is encoded by the transformation substructures and that these structural
patterns were recognized in other compound pairs in the data set. The results
were further improved by considering both the transformation and the core
structure through the use of the MMP kernel.

As a supervised machine learning method, SVM calculations are influenced by
the underlying training data. In this study, SVM classification was affected by
different activity cliff content of the data sets. Therefore, we asked the ques-
tion how SVM-based virtual screening is influenced by the data set composition
and size. In the following study, we analyze the compound recall of SVMs un-
der alternative benchmark settings using different negative training examples,

varying background databases, and differently sized training sets.
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Chapter 6

Comparison of confirmed inactive
and randomly selected compounds
as negative training examples in
support vector machine-based

virtual screening

Introduction

The quality of an SVM model directly depends on the quality of the data set
used for learning. This is especially important for virtual screening, where usu-
ally only active compounds are available and confirmed inactive compounds are
rare. Therefore, we analyze how the selection of negative training data influ-
ences the screening performance. SVM modeling is performed using assumed
inactive compounds randomly selected from the ZINC database and confirmed
inactives from PubChem with varying sizes of the training data. The respective
recall of active compounds is evaluated and compared. Additionally, the models

are applied to different background databases.
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ABSTRACT: The choice of negative training data for machine learning is a little
explored issue in chemoinformatics. In this study, the influence of alternative sets of
negative training data and different background databases on support vector machine
(SVM) modeling and virtual screening has been investigated. Target-directed SVM
models have been derived on the basis of differently composed training sets
containing confirmed inactive molecules or randomly selected database compounds
as negative training instances. These models were then applied to search background
databases consisting of biological screening data or randomly assembled compounds
for available hits. Negative training data were found to systematically influence
compound recall in virtual screening. In addition, different background databases
had a strong influence on the search results. Our findings also indicated that typical
benchmark settings lead to an overestimation of SVM-based virtual screening
performance compared to search conditions that are more relevant for practical
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applications.

B INTRODUCTION

For ligand-based virtual screening, selected machine-learning
methodologies are increasingly utilized, given their usually good
performance in predicting active compounds, at least in
benchmark settings."” Methods like Bayesian modeling® ®
and support vector machines (SVMs)” ™" currently are among
the most widely used methodologies for supervised learning to
predict candidate compounds for different targets and to rank
them according to their proposed likelihood of activity. These
machine-learning algorithms rely on already known active
compounds to derive computational models for compound
classification and activity prediction.

The availability of sufficient amounts of relevant training data
is a prerequisite for the applicability of these approaches. If no,
only one, or very few known active compounds are available for
a new target, scientifically sound classification models cannot be
derived. For orphan screening, compound information from
related targets (if available) must be utilized. Hence, knowledge
of active compounds is generally considered the most critical
requirement for model building. Consequently, major databases
such as ChEMBL'? and BindingDB,13 which store active
compounds from medicinal chemistry together with their
activity data, are prime sources of positive training examples for
machine learning.

A general caveat for training set assembly is that confirmed
inactive compounds are often not available for a given target.
Therefore, it is common practice in Bayesian or SVM modeling
to randomly select compounds from databases that are not
annotated with biological activities as negative training

v ACS Publications © 2013 American Chemical Society
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examples and assume that these random selections are inactive
against the target of interest.”'*”'® Scientifically, this represents
an approximation, which is only very little investigated in
chemoinformatics machine-learning applications.

The potential influence of negative training data on the
quality of machine-learning models is just beginning to be
addressed in the chemoinformatics field. In a recent study,
Smusz et al.'” tested alternative selection methods for assumed
inactive training compounds. Using different fingerprints,
machine-learning algorithms, and targets, the authors compared
random and diverse selection of negative training examples
from the ZINC database,'® the Molecular Drug Data Report
(MDDR)," and from compound libraries that were designed
following the principles underlying the Directory of Useful
Decoys (DUD) approach.20 In these benchmark calculations,
overall best compound classification results were achieved with
different methods when negative training compounds were
randomly selected from ZINC.'” This database represents the
largest public collection of compounds from chemical vendor
sources. ZINC compounds, which are typically not biologically
annotated, currently are the most popular source for random
compound selection in machine-learning and ligand-based
virtual screening.

Compounds confirmed to be inactive against a virtual
screening target should generally have highest priority as
negative training data for machine learning. This is the case
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because experimentally confirmed inactive compounds no
longer rely on the assumption of inactivity that needs to be
made for randomly chosen database compounds, which might
or might not be true for individual molecules. Although it is
difficult to obtain confirmed inactive compounds for many
targets, the problem can be addressed by taking biological
screening data into account. For example, confirmatory
screening assays follow up on compounds with an activity
signal in a primary screen (usually at a single concentration),
investigate dose—response behavior, determine ICs, values for
active compounds, and identify false positives. Thus, such
follow-up assays confirm the activity of initial hits and also yield
confirmed inactive compounds. Alternatively, dose—response
behavior and ICsy, titration curves might also be determined in a
primary screen using multiple compound concentrations. In
this case, large numbers of inactive compounds can be directly
obtained.

In this study, we have investigated the influence of different
negative training data and background databases on compound
recall in SVM-based virtual screening. By assembling data sets
from the PubChem Confirmatory Bioassays,”' we were able to
compare the search performance for training data sets
comprising experimentally confirmed active and inactive
compounds and training data sets consisting of experimentally
confirmed active and randomly chosen “inactive” compounds.
In addition, the size and relative composition of training data
sets were varied and SVM-based virtual screening was carried
out using either the biological screening database or ZINC
compounds as a background. The results of these systematic
calculations are reported in the following.

B MATERIALS AND METHODS

Support Vector Machines. SVMs’ are a supervised
machine-learning technique for binary object classification
and ranking. In the training phase, a set of “positive” and
“negative” data are projected into a feature space y. In ligand-
based virtual screening, training objects are known active and
assumed/known inactive compounds that are represented by a
feature vector x; € y. During optimization, a convex quadratic
optimization problem is solved, and a hyperplane H is derived
that best separates the positive and negative training objects
from each other. Maximizing the margin (i.e., distance from the
nearest training examples) and minimizing training errors are
basic requirements to achieve model generalization and high
prediction performance. The hyperplane H is defined by the
normal weight vector w and a bias b, so that H = {xl{wx) + b =
0}, with (-,-) being a scalar product.

Test data, i.e, compounds with unknown activity, are also
mapped into the feature space y. Depending on which side of
the hyperplane the test compounds fall, they are classified
either as positive (active) or negative (inactive). In SVM
ranking, compounds are sorted from the position most distant
to the hyperplane on the positive half-space to the most distant
position on the negative half-space using their score g(x) =
(wx).

In order to allow model building in the case of nonlinearly
separable training data in the feature space y, the so-called
Kernel trick* is applied to replace the standard scalar product
() by a kernel function K(:;). The kernel transfers the
calculation of the scalar product into a higher dimensional
space H, where a linear separation might be feasible, without
explicitly calculating the mapping into . This operation is at
the core of SVM modeling.
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As descriptors for SVM modeling, sets of numerical
descriptors or fingerprints (i.e., bit string representations of
molecular structure and properties) can be used.

Compound Data Sets. Six confirmatory high-throughput
screening (HTS) assays have been extracted from PubChem, as
reported in Table 1. These inhibitor assays were chosen to

Table 1. Compound Data Sets®

#
AID target target code  # actives  inactives

504332 euchromatic histone-lysine ~ EHMT2 30,170 262,493
N-methyltransferase 2

1030 aldehyde dehydrogeanse 1 ALDHI1A1 15,822 143,429

504333  bromodomain adjacent to BAZ2B 15,539 307,386
zinc finger domain 2B

504444  nuclear factor erythroid 2-  Nrf2 7,284 280,339
related factor 2 isoform 2

588855  transforming growth factor ~ SMAD3 4,800 343,727
beta

588591  polymerase eta POLH 4,664 366,364

“Data sets were extracted from PubChem Confirmatory Bioassays. For
each of the six data sets, the PubChem assay id (AID), the target
name, and a target code are given. In addition, the numbers of
confirmed active (# actives) and confirmed inactive compounds (#
inactives) are reported. The data sets are sorted by decreasing numbers
of active compounds.

select targets from diverse families and maximize the number of
confirmed active compounds available for modeling. From all
assays, confirmed active and inactive compounds consisting of
at least five non-hydrogen atoms were extracted. For each data
set, a set of assumed inactive compounds was randomly
selected from ZINC (version 12) that had the same size as the
set of experimentally confirmed inactive compounds.

Training Set Composition and Background Data-
bases. SVM models were built using active training
compounds from PubChem and either confirmed inactive
PubChem compounds (P/P) or assumed inactive compounds
randomly selected from ZINC (P/Z). In each case, training set
sizes were varied to include all possible combinations of 100,
200, 500, or 1000 active and inactive training compounds for a
total of 16 combinations with different proportions of active
and inactive compounds. In each case, the remaining active
compounds according to Table 1 were then added as potential
hits to the background/screening database. Two background
databases were explored in each case. The first database
contained all remaining inactive compounds (not used for
model building) from each PubChem screening set. Thus, the
size of this background database varied in each case according
to Table 1 but always contained hundreds of thousands of
compounds. As the second background database, the same
number of randomly selected ZINC compounds was used in
each case. Combination of the two training set categories (P/P,
P/Z) and the two background databases (P, Z) resulted in four
distinct training/test categories designated as P/P—P, P/P-Z,
P/Z-P, and P/Z-Z. These four training/test categories in
combination with 16 different training set compositions then
gave rise to 64 alternative screening setups.

Calculations and Performance Criteria. Compounds
were represented using the extended-connectivity fingerprint>>
with bond diameter 4 (ECFP4) or MACCS structural keys24
calculated with the Molecular Operating Environment.”® For
SVM model building, the Tanimoto kernel*® was used. With
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Table 2. Average AUC Values and Standard Deviations for ECFP4*

(a)
EHMT2 P/Z-Z P/P-P P/Z-P P/P-Z
# refs AUC SD AUC SD AUC SD AUC SD
100A_100I 0.800 0.011 0.647 0.017 0.641 0.013 0.692 0.042
100A_200I 0.820 0.008 0.666 0.014 0.661 0.009 0.706 0.026
100A_5001 0.840 0.003 0.679 0.006 0.671 0.006 0.708 0.015
100A_1000I 0.846 0.004 0.681 0.007 0.674 0.004 0.702 0.015
200A_100I 0.819 0.008 0.653 0.014 0.655 0.010 0.704 0.029
200A_200I 0.837 0.008 0.682 0.008 0.668 0.014 0.730 0.022
200A_S00I 0.855 0.005 0.706 0.008 0.682 0.007 0.744 0.020
200A_10001 0.865 0.004 0.711 0.009 0.686 0.005 0.740 0.016
SO00A_100I 0.833 0.005 0.676 0.013 0.664 0.009 0.721 0.032
S00A_2001 0.851 0.006 0.702 0.007 0.678 0.010 0.750 0.013
S00A_S001 0.873 0.004 0.728 0.005 0.695 0.006 0.776 0.010
S00A_10001 0.885 0.004 0.743 0.00S 0.70S 0.00S 0.783 0.012
1000A_100I 0.837 0.006 0.679 0.011 0.663 0.009 0.721 0.023
1000A_200I 0.859 0.005 0.708 0.008 0.680 0.009 0.756 0.025
1000A_S00I 0.882 0.002 0.739 0.004 0.702 0.006 0.794 0.018
1000A_10001 0.896 0.002 0.761 0.002 0.713 0.004 0.809 0.008
(B)
ALDHIA1 P/Z-Z P/P-P P/Z-P P/P-Z
# refs AUC SD AUC SD AUC SD AUC SD
100A_1001 0.813 0.009 0.606 0.012 0.619 0.010 0.671 0.031
100A_200I 0.825 0.010 0.623 0.009 0.623 0.009 0.690 0.028
100A_5001 0.844 0.004 0.638 0.008 0.630 0.007 0.686 0.014
100A_1000I 0.847 0.008 0.646 0.011 0.628 0.009 0.689 0.021
200A_100I 0.830 0.008 0.624 0.010 0.631 0.009 0.687 0.027
200A_200I 0.843 0.010 0.645 0.010 0.635 0.010 0.709 0.016
200A_S00I 0.863 0.008 0.669 0.011 0.644 0.007 0.722 0.019
200A_1000I 0.869 0.007 0.674 0.009 0.643 0.008 0.718 0.018
SO00A_100I 0.841 0.005 0.640 0.014 0.642 0.006 0.676 0.032
S00A_2001 0.861 0.004 0.671 0.010 0.653 0.00S 0.718 0.024
S00A_S001 0.884 0.003 0.696 0.007 0.663 0.005 0.755 0.011
S00A_10001 0.893 0.004 0.712 0.005 0.666 0.005 0.760 0.016
1000A_100I 0.850 0.005 0.647 0.009 0.644 0.007 0.702 0.024
1000A_200I 0.872 0.006 0.678 0.008 0.654 0.006 0.730 0.020
1000A_S00I 0.893 0.003 0.708 0.006 0.670 0.005 0.767 0.019
1000A_10001 0.905 0.003 0.732 0.003 0.676 0.007 0.795 0.017
(©
BAZ2B P/Z-Z P/P-P P/Z-P P/P-Z
# refs AUC SD AUC SD AUC SD AUC SD
100A_1001 0.835 0.012 0.711 0.013 0.696 0.011 0.759 0.025
100A_200I 0.849 0.009 0.728 0.013 0.708 0.009 0.771 0.020
100A_5001 0.862 0.008 0.739 0.015 0.709 0.008 0.773 0.020
100A_1000I 0.868 0.007 0.747 0.010 0.708 0.008 0.771 0.015
200A_100I 0.852 0.008 0.724 0.011 0.710 0.006 0.771 0.021
200A_200I 0.867 0.009 0.747 0.011 0.728 0.007 0.790 0.016
200A_S00I 0.880 0.007 0.765 0.005 0.732 0.007 0.798 0.009
200A_1000I 0.890 0.008 0.778 0.008 0.730 0.008 0.801 0.011
SO00A_100I 0.868 0.007 0.732 0.012 0.716 0.012 0.785 0.019
S00A_2001 0.881 0.006 0.766 0.009 0.731 0.010 0.814 0.013
S00A_S001 0.901 0.003 0.794 0.005 0.754 0.003 0.831 0.008
S00A_10001 0911 0.004 0.810 0.006 0.759 0.00S 0.837 0.009
1000A_100I 0.873 0.006 0.751 0.009 0.723 0.012 0.793 0.021
1000A_200I 0.892 0.004 0.782 0.008 0.741 0.008 0.826 0.014
1000A_S00I 0.912 0.002 0.810 0.004 0.764 0.005 0.853 0.007
1000A_10001 0.924 0.001 0.830 0.003 0.775 0.00S 0.863 0.008
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Table 2. continued

(D)
Nif2 P/Z-Z P/P-P P/Z-P P/P-Z
# refs AUC SD AUC SD AUC SD AUC SD
100A_100I 0.776 0.005 0.639 0.013 0.614 0.008 0.666 0.029
100A_200I 0.781 0.008 0.653 0.011 0.609 0.011 0.666 0.020
100A_5001 0.795 0.011 0.669 0.009 0.607 0.013 0.674 0.017
100A_1000I 0.801 0.011 0.673 0.007 0.606 0.012 0.671 0.020
200A_1001 0.800 0.007 0.669 0.014 0.631 0.010 0.696 0.017
200A_200I 0.816 0.007 0.679 0.011 0.636 0.010 0.697 0.019
200A_S00I 0.826 0.008 0.698 0.009 0.633 0.011 0.699 0.017
200A_10001 0.837 0.008 0.706 0.007 0.629 0.009 0.703 0.017
S00A_100I 0.817 0.008 0.689 0.012 0.650 0.010 0.705 0.013
S00A_2001 0.833 0.007 0.714 0.009 0.658 0.011 0.726 0.011
S00A_S001 0.856 0.005 0.740 0.007 0.671 0.007 0.744 0.017
S00A_10001 0.869 0.00S 0.747 0.004 0.671 0.008 0.738 0.010
1000A_100I 0.824 0.006 0.696 0.007 0.656 0.011 0.708 0.014
1000A_200I 0.846 0.003 0.730 0.007 0.669 0.011 0.742 0.019
1000A_S00I 0.868 0.002 0.760 0.008 0.684 0.006 0.770 0.010
1000A_10001 0.885 0.004 0.771 0.003 0.692 0.006 0.770 0.006
(E)
SMAD3 P/Z-Z P/P-P P/Z-P P/P-Z
# refs AUC SD AUC SD AUC SD AUC SD
100A_1001 0.824 0.004 0.711 0.014 0.693 0.008 0.739 0.026
100A_200I 0.839 0.007 0.728 0.013 0.700 0.013 0.752 0.029
100A_5001 0.855 0.006 0.74S 0.015 0.701 0.013 0.756 0.026
100A_1000I 0.859 0.006 0.750 0.009 0.701 0.012 0.754 0.018
200A_100I 0.834 0.008 0.734 0.013 0.704 0.008 0.767 0.018
200A_200I 0.856 0.004 0.753 0.008 0.723 0.007 0.787 0.017
200A_S00I 0.872 0.003 0.773 0.006 0.725 0.004 0.794 0.016
200A_1000I 0.882 0.007 0.783 0.004 0.721 0.009 0.795 0.013
SO00A_100I 0.852 0.005 0.753 0.010 0.718 0.008 0.783 0.019
S00A_2001 0.875 0.006 0.775 0.011 0.738 0.007 0.807 0.014
S00A_S001 0.898 0.003 0.800 0.005 0.759 0.007 0.824 0.012
S00A_10001 0.909 0.004 0.815 0.005 0.759 0.007 0.828 0.012
1000A_100I 0.865 0.006 0.762 0.011 0.728 0.009 0.790 0.016
1000A_200I 0.885 0.004 0.790 0.010 0.747 0.005 0.815 0.014
1000A_S00I 0.908 0.003 0.820 0.006 0.768 0.007 0.847 0.008
1000A_10001I 0.924 0.005 0.836 0.00S 0.780 0.00S 0.857 0.009
(®)
POLH P/Z-7 P/P-P P/Z-P P/P-Z
# refs AUC SD AUC SD AUC SD AUC SD
100A_1001 0.931 0.005 0.830 0.012 0.824 0.006 0.903 0.011
100A_200I 0.937 0.004 0.837 0.011 0.829 0.008 0.906 0.010
100A_5001 0.942 0.007 0.848 0.005 0.828 0.010 0911 0.006
100A_1000I 0.944 0.005 0.848 0.007 0.823 0.009 0.905 0.006
200A_100I 0.938 0.005 0.842 0.008 0.837 0.006 0.910 0.013
200A_200I 0.947 0.003 0.858 0.005 0.848 0.005 0.922 0.008
200A_5001 0.954 0.002 0.866 0.004 0.849 0.004 0.924 0.008
200A_1000I 0.955 0.002 0.869 0.00S 0.843 0.004 0.924 0.006
S00A_1001 0.943 0.004 0.848 0.00S 0.839 0.007 0.913 0.008
S00A_2001 0.954 0.002 0.865 0.004 0.853 0.003 0.927 0.007
S00A_S00I 0.962 0.001 0.881 0.003 0.862 0.004 0.938 0.003
S00A_10001 0.966 0.002 0.887 0.003 0.864 0.004 0.940 0.002
1000A_100I 0.947 0.005 0.853 0.006 0.842 0.008 0.922 0.007
1000A_200I 0.959 0.001 0.869 0.006 0.858 0.003 0.934 0.006
1000A_S00I 0.968 0.002 0.891 0.003 0.870 0.004 0.947 0.004
1000A_10001 0.973 0.002 0.900 0.002 0.874 0.003 0.950 0.004

“For each data set, average AUC values over 10 independent trials and standard deviations (SD) are reported for different numbers of active and
inactive reference compounds (# refs) comprising all possible combinations of 100, 200, 500, and 1000 active (A) and inactive (I) compounds. For
example, “100A_100I” refers to a training set consisting of 100 active and 100 inactive compounds. Training/test categories are abbreviated as
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Table 2. continued

defined in the Materials and Methods section (P/P—P, P/P-Z, P/Z-P, and P/Z-Z). Virtual screening results are reported for all six data sets, and
ECFP4 as the molecular representation: (A) EHMT2, (B) ALDHIAL, (C) BAZ2B, (D) Nrf2, (E) SMAD3, and (F) POLH.

(a)

EHMT2 ALDH1A1

True Positive Rate
0.2 04 06 08

0.0

04 0.6 0.8

02

=3
=]

-
False Positive Rate
P/P-P, 1000 active/inactive Refs.
w= == P/P-P, 100 active/inactive Refs.

s P/Z-Z, 1000 active/inactive Refs.
== == P/Z-Z, 100 activelinactive Refs.

= Random

(b)

EHMT2

ALDH1A1

BAZ2B

True Positive Rate

06 08

04

0.0

False Positive Rate

s P/Z-Z, 1000 active/inactive Refs.
== == P/Z-Z, 100 activelinactive Refs.

P/P-P, 1000 active/inactive Refs.
== == P/P-P, 100 active/inactive Refs.

Random

Figure 1. ROC curves. For all data sets, ROC average curves are shown for P/Z-Z (blue) and P/P—P (red) SVM calculations. In both cases, results
are reported for 100 active and inactive reference compounds (dashed line) and for 1000 active and inactive training compounds (solid line). The

black line represents random search performance. (a) ECFP4, (b) MACCS.

these two molecular representations, a total of 128 virtual
screening constellations were obtained.

In each case, 10 different trials with randomly assembled
positive and negative training and test sets were carried out.
Virtual screening performance was measured using the receiver
operating characteristic (ROC), and the area under the ROC
curve (AUC)* averaged over all 10 trials.

All SVM calculations were carried out using SVM'™?® 3
freely available SVM implementation, and as calculation
parameters, SVM'8"™ default settings were used.

B RESULTS AND DISCUSSION

Study Goal and Design. The major focal point of our
study is the question to what extent the choice of confirmed
inactive molecules versus randomly selected database com-
pounds as negative training examples might influence the
outcome of SVM-based virtual screening calculations. Typically,
the use of negative training data is not much discussed in SVM
modeling and virtual screening applications. In benchmark
calculations, it is common practice to use randomly selected
database compounds, mostly from ZINC, as training
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compounds assumed to be inactive against a target of interest.
This represents an approximation underlying model building,
and it would scientifically be more rigorous to utilize confirmed
inactive compounds for training. To address this issue, we have
carried out systematic SVM calculations for different compound
data sets obtained from PubChem Confirmatory Bioassays by
applying well-defined training/test categories. These categories
represented different combinations of PubChem and/or ZINC
compounds for training and as the background database. This
made it possible to compare SVM search performance for
different training and test settings in detail.

Global Search Performance. Table 2 reports AUC values
(and their standard deviations) for all SVM calculations using
the ECFP4 fingerprint. The corresponding search results for
MACCS structural keys are provided in Table S1 of the
Supporting Information. In addition, in Figure 1A and B, ROC
curves are shown for the smallest and largest training sets of P/
Z-Z and P/P—P calculations for ECFP4 and MACCS,
respectively.

Overall, the SVM-based virtual screening results yielded high
search performance for the best categories, with AUC values of
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~0.8—0.9 or even higher for all compound data sets. Highest
search performance was generally observed for P/Z-Z
calculations, ie., when ZINC compounds were utilized as
negative training examples and as the background database.
Over all data sets, these calculations yielded AUC values that
were on average ~0.1—0.2 higher than for P/P—P calculations,
i.e., when confirmed inactive were used for training and search
calculations were carried out in the PubChem screening
database. These in part significant differences are reflected in
Figure 1. For both fingerprint representations, equivalent trends
were observed (Figure 1). AUC values were generally slightly
higher for ECFP4 than for MACCS.

Training Set Composition. Increasing numbers of
reference compounds generally led to increasing search
performance, as illustrated in Figure 1. Average increases in
AUC values ranged from ~0.04—0.11. In addition, with
increasing numbers of reference compounds, standard devia-
tions of the calculations decreased. However, no notable
changes in AUC values were observed when training sets
having the same size, but inverted composition were compared,
e.g., 200 active and 500 inactive vs 500 active and 200 inactive
compounds. Thus, overall increases in the number of reference
compounds had a stronger influence on SVM performance than
training set permutations.

Category-Dependent Differences in Search Perform-
ance. The different training/test categories we defined
displayed systematic differences in search performance. As a
general trend, search performance over all data sets decreased
in the following order: P/Z-Z > P/P-Z > P/P-P > P/Z-P.
Highest standard deviations were generally observed for P/P-Z
calculations. The observed order indicated that confirmed
active compounds were generally easier to identify on a ZINC
background than in the screening database from which they
originated, regardless of whether the SVM models were trained
with PubChem or ZINC compounds as negative training
instances. The most likely explanation for this finding is that
active and inactive PubChem confirmatory assay compounds
are often more similar to each other than active PubChem and
random ZINC compounds, which are chemically very diverse.
This explanation is also consistent with the observation that P/
Z-Z calculations, which best exploited chemical differences
between compounds gave the overall best search results. These
calculations also produced AUC values that were on average
~0.10—0.21 higher than P/Z-P calculations. Furthermore,
when PubChem compounds were used as negative training
examples, the search performance was even slightly higher on a
ZINC than a PubChem background, with average increases in
AUC values of ~0.01—0.06. Thus, active compounds were
easier to distinguish from ZINC compounds. These findings are
also consistent with a major influence of the background
database on the search results, irrespective of training
conditions, with ZINC compounds yielding consistently best
results.

Practical Implications. The results we obtained indicate
that building predictive SVM models on the basis of actual
screening libraries is more difficult than using combinations of
known active and randomly chosen database compounds,
although the use of confirmed inactive screening compounds as
negative training examples is scientifically more accurate. By
comparing the different screening setups explored, the
background database was found to play a major role for the
success of the virtual screening calculations. Simply put,
confirmed active compounds were easier to distinguish from
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random ZINC selections than from the screening database
from which they originated, indicating that many ZINC
compounds might contain chemical characteristics that
distinguish them from compounds selected for screening
libraries. It should be noted that the P/Z-Z category represents
a typical benchmark setting. In this case, models were derived
from active and random training examples and used to screen a
ZINC background database to with known actives were added.
This setup produced consistently best results. For practical
applications, a more realistic scenario would be to train SVM
models on confirmed active and inactive compounds obtained
from an initial experimental screen and apply these models to
search a larger screening collection. This case exactly
corresponds to our P/P—P category. However, under these
conditions, search performance was consistently lower than for
the P/Z-Z category. These findings indicate that SVM search
performance under typical benchmark conditions is likely
overestimated. In fact, active compounds utilized here were
confirmed screening hits that were not chemically optimized.
Hence, such screening hits differ from many optimized active
compounds that are usually obtained from medicinal chemistry
databases such as ChEMBL and used for benchmarking. Given
their generally higher chemical complexity compared to
screening hits, such active compounds are even easier to
differentiate from random ZINC compounds, which can be
expected to further increase search performance in benchmark
calculations.

B CONCLUSIONS

Herein, we have investigated the question to what extent the
choice of negative training examples influences the outcome of
SVM-based virtual screening. This question is usually only little
considered in SVM modeling. For this purpose, we have
compared a variety of SVM models that were generated on the
basis of confirmed active and inactive compounds from
different PubChem Confirmatory Bioassays with corresponding
models generated from confirmed actives and randomly
selected ZINC compounds. In these calculations, a clear
influence of negative training examples on SVM search
performance was detected. The results of search calculations
using the same numbers of confirmed inactive training
compounds and ZINC molecules assumed to be inactive
systematically differed. In addition, we also observed that
generally highest search performance was achieved when SVM
models were screened on a ZINC background, regardless of
whether the models were trained using inactive PubChem
compounds or ZINC molecules. These findings revealed a
strong influence of the background database on the virtual
screening results. The best SVM models we obtained were
derived from known active compounds and random ZINC
collections and applied on a ZINC background, which
corresponded to typical benchmark conditions.

B ASSOCIATED CONTENT
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Table S1 reports average AUC values and standard deviations
for MACCS structural keys. This material is available free of
charge via the Internet at http://pubs.acs.org.
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Chapter 6

Summary

SVM modeling was performed using negative training data sets of diverse com-
positions and applied to different screening databases. SVM models based
on confirmed inactive compounds from screening experiments were shown to
reduce the prediction performance compared to the use of randomly chosen
database compounds. Increasing the number of training compounds, both ac-
tive and inactive training instances, resulted in improved search performance.
Additionally, SVM calculations were strongly influenced by the background
database. The recall of active compounds was generally higher when the search
was done in ZINC than in the database from the screening experiment. Hence,
the typical benchmark setting with database compounds used both as negative
training data and as background database was shown to yield the best recall
performance.

The supporting information of this publication is available via the following
URL: http://dx.doi.org/10.1021/ci4002712.
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Conclusion

In this thesis, 2D fingerprint methods for LBVS have been investigated. 2D
fingerprints have been analyzed in detail in the context of similarity searching.
Furthermore, SVM-based approaches utilizing 2D fingerprint representations
have been introduced for applications that cannot be carried out using stan-
dard search methods. In addition, benchmark settings in SVM calculations
have been investigated. Major results are summarized in this chapter and con-
clusions are drawn.

Initially, 2D fingerprints were analyzed on a large scale in order to determine
their performance range on a wide spectrum of pharmaceutical targets. For
this purpose, two conceptually different fingerprints, representing opposite lev-
els of resolution, were used in similarity search calculations. The majority of
the calculations yielded good search performances of both fingerprints and were
characterized by an early enrichment of active compounds.

Next, the mechanism by which 2D fingerprints recover structurally diverse ac-
tive compounds was investigated. Two feature selection methods were applied
to systematically reduce fingerprint representations. Similarity searching using
reduced fingerprints revealed individual features that distinguished subsets of
active compounds from database compounds. The assembly of these features
led to a cumulative recall of structurally diverse compounds.

In the following, 2D fingerprints were used in SVM calculations. First, SVM
linear combination was applied to search for compounds active against related
targets. A single multi-class prediction model was obtained by combining in-
dividual SVM models for each target through the use of positive and negative
linear weighting factors. This model was able to recover compounds with de-
sired activities and deprioritize those having other activity profiles.

We then introduced two SVM-based approaches for potency-directed LBVS. A
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Conclusion

potency-oriented SVM linear combination and the structure-activity kernel were
designed that incorporated compound potency information in order to direct
search calculations to the preferential detection of potent hits. The potency-
oriented SVM linear combination and calculations using the structure-activity
kernel retained the recall of active compounds and achieved an enrichment of
potent compounds at high ranking positions.

Kernel functions were also introduced for the comparison of pairs of compounds.
These kernel functions captured structural differences and common elements of
molecule pairs and allowed the prediction of activity cliffs in compound data
sets with high accuracy.

Finally, the impact of differently composed negative training data and back-
ground databases on SVM-based VS was analyzed. Both the negative training
data and the choice of the screening database were shown to strongly influence
the search performance. The calculations revealed that the typical benchmark
setting using assumed inactive database compounds for training and as a back-
ground database produced higher recall than calculations utilizing confirmed
inactives for training.

In conclusion, 2D fingerprints were found to be powerful molecular represen-
tations when searching for novel active compounds. They yielded high per-
formance in search calculations and were able to recover structurally diverse
compounds despite their simplicity. The SVM methodology utilizing the finger-
print representations further extends the spectrum of available LBVS methods.
SVM approaches that incorporate potency information as a search parameter
have been introduced. Furthermore, an intrinsic limitation of similarity-based
prediction methods, i.e. the presence of activity cliffs, was addressed by the
design of appropriate kernel functions. Additionally, the influence of different
benchmark settings was analyzed and revealed an overestimation of the search

performance by typical benchmark conditions.
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