16,759 research outputs found

    Nonparametric Bayes Modeling of Populations of Networks

    Full text link
    Replicated network data are increasingly available in many research fields. In connectomic applications, inter-connections among brain regions are collected for each patient under study, motivating statistical models which can flexibly characterize the probabilistic generative mechanism underlying these network-valued data. Available models for a single network are not designed specifically for inference on the entire probability mass function of a network-valued random variable and therefore lack flexibility in characterizing the distribution of relevant topological structures. We propose a flexible Bayesian nonparametric approach for modeling the population distribution of network-valued data. The joint distribution of the edges is defined via a mixture model which reduces dimensionality and efficiently incorporates network information within each mixture component by leveraging latent space representations. The formulation leads to an efficient Gibbs sampler and provides simple and coherent strategies for inference and goodness-of-fit assessments. We provide theoretical results on the flexibility of our model and illustrate improved performance --- compared to state-of-the-art models --- in simulations and application to human brain networks

    Can co-location be used as a proxy for face-to-face contacts?

    Get PDF
    Technological advances have led to a strong increase in the number of data collection efforts aimed at measuring co-presence of individuals at different spatial resolutions. It is however unclear how much co-presence data can inform us on actual face-to-face contacts, of particular interest to study the structure of a population in social groups or for use in data-driven models of information or epidemic spreading processes. Here, we address this issue by leveraging data sets containing high resolution face-to-face contacts as well as a coarser spatial localisation of individuals, both temporally resolved, in various contexts. The co-presence and the face-to-face contact temporal networks share a number of structural and statistical features, but the former is (by definition) much denser than the latter. We thus consider several down-sampling methods that generate surrogate contact networks from the co-presence signal and compare them with the real face-to-face data. We show that these surrogate networks reproduce some features of the real data but are only partially able to identify the most central nodes of the face-to-face network. We then address the issue of using such down-sampled co-presence data in data-driven simulations of epidemic processes, and in identifying efficient containment strategies. We show that the performance of the various sampling methods strongly varies depending on context. We discuss the consequences of our results with respect to data collection strategies and methodologies

    An Independent Component Analysis Based Tool for Exploring Functional Connections in the Brain

    Get PDF
    This thesis describes the use of independent component analysis (ICA) as a measure of voxel similarity, which allows the user to find and view statistically independent maps of correlated voxel activity. The tool developed in this work uses a specialized clustering technique, designed to find and characterize clusters of activated voxels, to compare the independent component spatial maps across patients. This same method is also used to compare SPM results across patients

    Data on face-to-face contacts in an office building suggests a low-cost vaccination strategy based on community linkers

    Full text link
    Empirical data on contacts between individuals in social contexts play an important role in providing information for models describing human behavior and how epidemics spread in populations. Here, we analyze data on face-to-face contacts collected in an office building. The statistical properties of contacts are similar to other social situations, but important differences are observed in the contact network structure. In particular, the contact network is strongly shaped by the organization of the offices in departments, which has consequences in the design of accurate agent-based models of epidemic spread. We consider the contact network as a potential substrate for infectious disease spread and show that its sparsity tends to prevent outbreaks of rapidly spreading epidemics. Moreover, we define three typical behaviors according to the fraction ff of links each individual shares outside its own department: residents, wanderers and linkers. Linkers (f∼50%f\sim 50\%) act as bridges in the network and have large betweenness centralities. Thus, a vaccination strategy targeting linkers efficiently prevents large outbreaks. As such a behavior may be spotted a priori in the offices' organization or from surveys, without the full knowledge of the time-resolved contact network, this result may help the design of efficient, low-cost vaccination or social-distancing strategies

    Comparing and modeling land use organization in cities

    Get PDF
    The advent of geolocated ICT technologies opens the possibility of exploring how people use space in cities, bringing an important new tool for urban scientists and planners, especially for regions where data is scarce or not available. Here we apply a functional network approach to determine land use patterns from mobile phone records. The versatility of the method allows us to run a systematic comparison between Spanish cities of various sizes. The method detects four major land use types that correspond to different temporal patterns. The proportion of these types, their spatial organization and scaling show a strong similarity between all cities that breaks down at a very local scale, where land use mixing is specific to each urban area. Finally, we introduce a model inspired by Schelling's segregation, able to explain and reproduce these results with simple interaction rules between different land uses.Comment: 9 pages, 6 figures + Supplementary informatio

    Characterization of complex networks: A survey of measurements

    Full text link
    Each complex network (or class of networks) presents specific topological features which characterize its connectivity and highly influence the dynamics of processes executed on the network. The analysis, discrimination, and synthesis of complex networks therefore rely on the use of measurements capable of expressing the most relevant topological features. This article presents a survey of such measurements. It includes general considerations about complex network characterization, a brief review of the principal models, and the presentation of the main existing measurements. Important related issues covered in this work comprise the representation of the evolution of complex networks in terms of trajectories in several measurement spaces, the analysis of the correlations between some of the most traditional measurements, perturbation analysis, as well as the use of multivariate statistics for feature selection and network classification. Depending on the network and the analysis task one has in mind, a specific set of features may be chosen. It is hoped that the present survey will help the proper application and interpretation of measurements.Comment: A working manuscript with 78 pages, 32 figures. Suggestions of measurements for inclusion are welcomed by the author

    You are What you Eat (and Drink): Identifying Cultural Boundaries by Analyzing Food & Drink Habits in Foursquare

    Full text link
    Food and drink are two of the most basic needs of human beings. However, as society evolved, food and drink became also a strong cultural aspect, being able to describe strong differences among people. Traditional methods used to analyze cross-cultural differences are mainly based on surveys and, for this reason, they are very difficult to represent a significant statistical sample at a global scale. In this paper, we propose a new methodology to identify cultural boundaries and similarities across populations at different scales based on the analysis of Foursquare check-ins. This approach might be useful not only for economic purposes, but also to support existing and novel marketing and social applications. Our methodology consists of the following steps. First, we map food and drink related check-ins extracted from Foursquare into users' cultural preferences. Second, we identify particular individual preferences, such as the taste for a certain type of food or drink, e.g., pizza or sake, as well as temporal habits, such as the time and day of the week when an individual goes to a restaurant or a bar. Third, we show how to analyze this information to assess the cultural distance between two countries, cities or even areas of a city. Fourth, we apply a simple clustering technique, using this cultural distance measure, to draw cultural boundaries across countries, cities and regions.Comment: 10 pages, 10 figures, 1 table. Proceedings of 8th AAAI Intl. Conf. on Weblogs and Social Media (ICWSM 2014
    • …
    corecore