11,128 research outputs found

    Structural characterization of intrinsically disordered proteins by NMR spectroscopy.

    Get PDF
    Recent advances in NMR methodology and techniques allow the structural investigation of biomolecules of increasing size with atomic resolution. NMR spectroscopy is especially well-suited for the study of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) which are in general highly flexible and do not have a well-defined secondary or tertiary structure under functional conditions. In the last decade, the important role of IDPs in many essential cellular processes has become more evident as the lack of a stable tertiary structure of many protagonists in signal transduction, transcription regulation and cell-cycle regulation has been discovered. The growing demand for structural data of IDPs required the development and adaption of methods such as 13C-direct detected experiments, paramagnetic relaxation enhancements (PREs) or residual dipolar couplings (RDCs) for the study of 'unstructured' molecules in vitro and in-cell. The information obtained by NMR can be processed with novel computational tools to generate conformational ensembles that visualize the conformations IDPs sample under functional conditions. Here, we address NMR experiments and strategies that enable the generation of detailed structural models of IDPs

    Insights into the structure and dynamics of lysyl oxidase propeptide, a flexible protein with numerous partners

    Get PDF
    Lysyl oxidase (LOX) catalyzes the oxidative deamination of lysine and hydroxylysine residues in collagens and elastin, which is the first step of the cross-linking of these extracellular matrix proteins. It is secreted as a proenzyme activated by bone morphogenetic protein-1, which releases the LOX catalytic domain and its bioactive N-terminal propeptide. We characterized the recombinant human propeptide by circular dichroism, dynamic light scattering, and small-angle X-ray scattering (SAXS), and showed that it is elongated, monomeric, disordered and flexible (Dmax: 11.7 nm, Rg: 3.7 nm). We generated 3D models of the propeptide by coarse-grained molecular dynamics simulations restrained by SAXS data, which were used for docking experiments. Furthermore, we have identified 17 new binding partners of the propeptide by label-free assays. They include four glycosaminoglycans (hyaluronan, chondroitin, dermatan and heparan sulfate), collagen I, cross-linking and proteolytic enzymes (lysyl oxidase-like 2, transglutaminase-2, matrix metalloproteinase-2), a proteoglycan (fibromodulin), one growth factor (Epidermal Growth Factor, EGF), and one membrane protein (tumor endothelial marker-8). This suggests new roles for the propeptide in EGF signaling pathway

    The denatured state of N-PGK is compact and predominantly disordered

    Get PDF
    The Organisation of the structure present in the chemically denatured N-terminal domain of phosphoglycerate kinase (N-PGK) has been determined by paramagnetic relaxation enhancements (PREs) to define the conformational landscape accessible to the domain. Below 2.0 M guanidine hydrochloride (GuHCl), a species of N-PGK (denoted I-b) is detected, distinct from those previously characterised by kinetic experiments [folded (F), kinetic intermediate (I-k) and denatured (D)]. The transition to I-b is never completed at equilibrium, because F predominates below 1.0 M GuHCl. Therefore, the ability of PREs to report on transient or low population species has been exploited to characterise I-b. Five single cysteine variants of N-PGK were labelled with the nitroxide electron spin-label MTSL [(1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3-methyl)methanesulfonate] and the denaturant dependences of the relaxation properties of the amide NMR signals between 1.2 and 3.6 M GuHCl were determined. Significant PREs for I-b were obtained, but these were distributed almost uniformly throughout the sequence. Furthermore, the PREs indicate that no specific short tertiary contacts persist. The data indicate a collapsed state with no coherent three-dimensional structure, but with a restricted radius beyond which the protein chain rarely reaches. The NMR characteristics Of I-b indicate that it forms from the fully denatured state within 100 mu s, and therefore a rapid collapse is the initial stage of folding of N-PGK from its chemically denatured state. By extrapolation, I-b is the predominant form of the denatured state under native conditions, and the non-specifically collapsed structure implies that many non-native contacts and chain reversals form early in protein folding and must be broken prior to attaining the native state topology. (C) 2008 Elsevier Ltd. All rights reserved

    Structural analysis of intrinsically disordered proteins: computer atomistic simulation

    Get PDF
    Intrinsically disordered proteins (IDPs) are biomolecules that do not have a definite 3D structure; their role in the biochemical network of a cell relates to their ability to switch rapidly among different secondary and tertiary structures. For this reason, applying a simulation computer program to their structural study turns out to be problematic, as their dynamical simulation cannot start from a known list of atomistic positions, as is the case for globular proteins that do crystallize and that one can analyse by X-ray spectroscopy to determine their structure. We have established a method to perform a computer simulation of these proteins, apt to gather statistically significant data on their transient structures. The only required input to start the procedure is the primary sequence of the disordered domains of the protein, and the 3D structure of the ordered domains, if any. For a fully disordered protein the method is as follows: (a) The first step is the creation of a multi-rod-like configuration of the molecule, derived from its primary sequence. This structure evolves dynamically in vacuo or in an implicit model of solvent, until its gyration radius - or any other measure of the overall configuration of the molecule - reaches the experimental average value; at this point, one may follow two different paths. (b1) If the study focuses on transient secondary structures of the molecule, one puts the structure obtained at the end of the first step in a box containing solvent molecules in explicit implementation, and a standard molecular dynamics simulation follows. (b2) If the study focuses on the tertiary structure of the molecule, a larger sampling of the phase space is required, with the molecule moving in very large and diverse regions of the phase space. To this end, the structure of the IDP is let evolve dynamically in an implicit solvent using metadynamics, an algorithm that keeps track of the regions of the phase space already sampled, and forces the system to wander in further regions of the phase space. (c) One can increase the accuracy of the statistical information gathered in both cases by fitting, where available, experimental data of the protein. In this step one extracts an ensemble of ’best’ conformers from the pool of all configurations produced in the simulated dynamics. One derives this ensemble by means of an ensemble optimization method, implementing a genetic algorithm. We have applied this procedure to the simulation of tau, one of the largest fully disordered proteins, which is involved in the development of Alzheimer’s disease and of other neurodegenerative diseases. We have combined the results of our simulation with small-angle X-ray scattering experimental data to extract from the dynamics an optimized ensemble of most probable conformers of tau. The method can be easily adapted to IDPs entailing ordered domains

    The C Terminus of the Ribosomal-Associated Protein LrtA Is an Intrinsically Disordered Oligomer

    Get PDF
    The 191-residue-long LrtA protein of Synechocystis sp. PCC 6803 is involved in post-stress survival and in stabilizing 70S ribosomal particles. It belongs to the hibernating promoting factor (HPF) family, intervening in protein synthesis. The protein consists of two domains: The N-terminal region (N-LrtA, residues 1-101), which is common to all the members of the HPF, and seems to be well-folded; and the C-terminal region (C-LrtA, residues 102-191), which is hypothesized to be disordered. In this work, we studied the conformational preferences of isolated C-LrtA in solution. The protein was disordered, as shown by computational modelling, 1D-H-1 NMR, steady-state far-UV circular dichroism (CD) and chemical and thermal denaturations followed by fluorescence and far-UV CD. Moreover, at physiological conditions, as indicated by several biochemical and hydrodynamic techniques, isolated C-LrtA intervened in a self-association equilibrium, involving several oligomerization reactions. Thus, C-LrtA was an oligomeric disordered protein.This research was funded by Spanish Ministry of Economy and Competitiveness [CTQ2015-64445-R (to J.L.N.) and MAT2015-63704-P (to A.A.), with Fondo Social Europeo (ESF)], and by the Basque Government [IT-654-13 (to A.A.)

    In-cell NMR characterization of the secondary structure populations of a disordered conformation of α-Synuclein within E. coli cells

    Get PDF
    α-Synuclein is a small protein strongly implicated in the pathogenesis of Parkinson’s disease and related neurodegenerative disorders. We report here the use of in-cell NMR spectroscopy to observe directly the structure and dynamics of this protein within E. coli cells. To improve the accuracy in the measurement of backbone chemical shifts within crowded in-cell NMR spectra, we have developed a deconvolution method to reduce inhomogeneous line broadening within cellular samples. The resulting chemical shift values were then used to evaluate the distribution of secondary structure populations which, in the absence of stable tertiary contacts, are a most effective way to describe the conformational fluctuations of disordered proteins. The results indicate that, at least within the bacterial cytosol, α-synuclein populates a highly dynamic state that, despite the highly crowded environment, has the same characteristics as the disordered monomeric form observed in aqueous solution
    • …
    corecore