12 research outputs found

    New directional bat algorithm for continuous optimization problems

    Get PDF
    Bat algorithm (BA) is a recent optimization algorithm based on swarm intelligence and inspiration from the echolocation behavior of bats. One of the issues in the standard bat algorithm is the premature convergence that can occur due to the low exploration ability of the algorithm under some conditions. To overcome this deficiency, directional echolocation is introduced to the standard bat algorithm to enhance its exploration and exploitation capabilities. In addition to such directional echolocation, three other improvements have been embedded into the standard bat algorithm to enhance its performance. The new proposed approach, namely the directional Bat Algorithm (dBA), has been then tested using several standard and non-standard benchmarks from the CEC’2005 benchmark suite. The performance of dBA has been compared with ten other algorithms and BA variants using non-parametric statistical tests. The statistical test results show the superiority of the directional bat algorithm

    3D shape optimisation of a low-pressure turbine stage

    Full text link
    The possibility of reducing the flow losses in low-pressure turbine stage has been investigated in an iterative process using a novel hybrid optimisation algorithm. Values of the maximised objective function that is isentropic efficiency are found from 3D RANS computation of the flowpath geometry, which was being changed during the optimisation process. To secure the global flow conditions, the constraints have been imposed on the mass flow rate and reaction. Among the optimised parameters are stator and rotor twist angles, stator sweep and lean, both straight and compound. Blade profiles remained unchanged during the optimisation. A new hybrid stochastic-deterministic algorithm was used for the optimisation of the flowpath. In the proposed algorithm, the bat algorithm was combined with the direct search method of Nelder-Mead in order to refine the best obtained solution from the standard bat algorithm. The method was tested on a wide variety of well-known test functions. Also, the results of the optimisation of the other stochastic and deterministic methods were compared and discussed. The optimisation gives new 3D-stage designs with increased efficiency comparing to the original design.This work was supported by The National Science Centre, Grant No. 2015/17/N/ST8/01782

    A Lévy Flight Based BAT Optimization Algorithm for Block-based Image Compression

    Get PDF
    Many metaheuristics have been adopted to solve the codebook generation problem in image processing. In this paper, the Bat algorithm is combined by the Lévy flight distribution to find out the global optimum codebook. The Lévy flight distribution is combined by the local search procedure. Therefore most of the time the bat concentrate on the local area for specific food while it rarely flies to the different parts of the field for better food opportunities. This process strongly guides the bat on the global minimum way and offers better food, then the bat flies to that direction. Consequently, if a bat is captured by a local minimum point accidentally, the Lévy flight step provides a chance to escape from it easily. Numerical results suggest that the proposed Lévy flight based Bat algorithm is better than the classical ones and provides the global optimum codebook for image compression

    Chaotic Election Algorithm

    Get PDF
    A novel Chaotic Election Algorithm (CEA) is presented for numerical function optimization. CEA is a powerful enhancement of election algorithm. The election algorithm is a socio-politically inspired strategy that mimics the behavior of candidates and voters in presidential election process. In election algorithm, individuals are organized as electoral parties. Advertising campaign forms the basis of the algorithm in which individuals interact or compete with one other using three operators: positive advertisement, negative advertisement and coalition. Advertising campaign hopefully causes the individuals converge to the global optimum point in solution space. However, election algorithm suffers from a fundamental challenge: gets stuck at local optima due to the inability of advertising campaign in searching solution space. CEA enhances the election algorithm through modifying party formation step, introducing chaotic positive advertisement and migration operator. By chaotic positive advertisement, CEA exploits the entire solution space, which increases the probability of obtaining global optimum point. By migration, CEA increases the diversity of the population and prevents early convergence of the individuals. The proposed CEA algorithm is tested on 28 well-known standard boundary-constrained test functions, and the results are verified by a comparative study with several well-known meta-heuristics. The results demonstrate that CEA is able to provide significant improvement over canonical election algorithm and other comparable algorithms

    自然に学ぶ知的アルゴリズムによる最適化及び予測問題に関する研究

    Get PDF
    富山大学・富理工博甲第147号・劉燕婷・2018/09/28富山大学201

    Maximum Power Point Tracking for Photovoltaic Systems Under Partial Shading Conditions Using Bat Algorithm

    Get PDF
    The vibrant, noiseless, and low-maintenance characteristics of photovoltaic (PV) systems make them one of the fast-growing technologies in the modern era. This on-demand source of energy suffers from low-output efficiency compared with other alternatives. Given that PV systems must be installed in outdoor spaces, their efficiency is significantly affected by the inevitable complication called partial shading (PS). Partial shading occurs when different sections of the solar array are subjected to different levels of solar irradiance, which then leads to a multiple-peak function in the output characteristics of the system. Conventional tracking techniques, along with some nascent/novel approaches used for the tracking maximum power point (MPP), are unsatisfactory when subjected to PS, eventually leading to the reduced efficiency of the PV system. This study aims at investigating the use of the bat algorithm (BA), a nature-inspired metaheuristic algorithm for MPP tracking (MPPT) subjected to PS conditions. A brief explanation of the behavior of the PV system under the PS condition and the advantages of using BA for estimating the MPPT of the PV system under PS condition is discussed. The deployment of the BA for the MPPT in PV systems is then explained in detail highlighting the simulation results which verifies whether the proposed method is faster, more efficient, sustainable and more reliable than conventional and other soft computing-based methods. Three testing conditions are considered in the simulation, and the results indicate that the proposed technique has high efficiency and reliability even when subjected to an acute shading condition

    An enhanced binary bat and Markov clustering algorithms to improve event detection for heterogeneous news text documents

    Get PDF
    Event Detection (ED) works on identifying events from various types of data. Building an ED model for news text documents greatly helps decision-makers in various disciplines in improving their strategies. However, identifying and summarizing events from such data is a non-trivial task due to the large volume of published heterogeneous news text documents. Such documents create a high-dimensional feature space that influences the overall performance of the baseline methods in ED model. To address such a problem, this research presents an enhanced ED model that includes improved methods for the crucial phases of the ED model such as Feature Selection (FS), ED, and summarization. This work focuses on the FS problem by automatically detecting events through a novel wrapper FS method based on Adapted Binary Bat Algorithm (ABBA) and Adapted Markov Clustering Algorithm (AMCL), termed ABBA-AMCL. These adaptive techniques were developed to overcome the premature convergence in BBA and fast convergence rate in MCL. Furthermore, this study proposes four summarizing methods to generate informative summaries. The enhanced ED model was tested on 10 benchmark datasets and 2 Facebook news datasets. The effectiveness of ABBA-AMCL was compared to 8 FS methods based on meta-heuristic algorithms and 6 graph-based ED methods. The empirical and statistical results proved that ABBAAMCL surpassed other methods on most datasets. The key representative features demonstrated that ABBA-AMCL method successfully detects real-world events from Facebook news datasets with 0.96 Precision and 1 Recall for dataset 11, while for dataset 12, the Precision is 1 and Recall is 0.76. To conclude, the novel ABBA-AMCL presented in this research has successfully bridged the research gap and resolved the curse of high dimensionality feature space for heterogeneous news text documents. Hence, the enhanced ED model can organize news documents into distinct events and provide policymakers with valuable information for decision making
    corecore