337 research outputs found

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Detecting the Security Level of Various Cryptosystems Using Machine Learning Models

    Get PDF
    With recent advancements in multimedia technologies, the security of digital data has become a critical issue. To overcome the vulnerabilities of current security protocols, researchers tend to focus their efforts on modifying existing protocols. Over the last few decades, though, several proposed encryption algorithms have been proven insecure, leading to major threats against important data. Using the most appropriate encryption algorithm is a very important means of protection against such attacks, but which algorithm is most appropriate in any particular situation will also be dependent on what sort of data is being secured. However, testing potential cryptosystems one by one to find the best option can take up an important processing time. For a fast and accurate selection of appropriate encryption algorithms, we propose a security level detection approach for image encryption algorithms by incorporating a support vector machine (SVM). In this work, we also create a dataset using standard encryption security parameters, such as entropy, contrast, homogeneity, peak signal to noise ratio, mean square error, energy, and correlation. These parameters are taken as features extracted from different cipher images. Dataset labels are divided into three categories based on their security level: strong, acceptable, and weak. To evaluate the performance of our proposed model, we have performed different analyses (f1-score, recall, precision, and accuracy), and our results demonstrate the effectiveness of this SVM-supported system

    Efficient simultaneous encryption and compression of digital videos in computationally constrained applications

    Get PDF
    This thesis is concerned with the secure video transmission over open and wireless network channels. This would facilitate adequate interaction in computationally constrained applications among trusted entities such as in disaster/conflict zones, secure airborne transmission of videos for intelligence/security or surveillance purposes, and secure video communication for law enforcing agencies in crime fighting or in proactive forensics. Video content is generally too large and vulnerable to eavesdropping when transmitted over open network channels so that compression and encryption become very essential for storage and/or transmission. In terms of security, wireless channels, are more vulnerable than other kinds of mediums to a variety of attacks and eavesdropping. Since wireless communication is the main mode in the above applications, protecting video transmissions from unauthorized access through such network channels is a must. The main and multi-faceted challenges that one faces in implementing such a task are related to competing, and to some extent conflicting, requirements of a number of standard control factors relating to the constrained bandwidth, reasonably high image quality at the receiving end, the execution time, and robustness against security attacks. Applying both compression and encryption techniques simultaneously is a very tough challenge due to the fact that we need to optimize the compression ratio, time complexity, security and the quality simultaneously. There are different available image/video compression schemes that provide reasonable compression while attempting to maintain image quality, such as JPEG, MPEG and JPEG2000. The main approach to video compression is based on detecting and removing spatial correlation within the video frames as well as temporal correlations across the video frames. Temporal correlations are expected to be more evident across sequences of frames captured within a short period of time (often a fraction of a second). Correlation can be measured in terms of similarity between blocks of pixels. Frequency domain transforms such as the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform (DWT) have both been used restructure the frequency content (coefficients) to become amenable for efficient detection. JPEG and MPEG use DCT while JPEG2000 uses DWT. Removing spatial/temporal correlation encodes only one block from each class of equivalent (i.e. similar) blocks and remembering the position of all other block within the equivalence class. JPEG2000 compressed images achieve higher image quality than JPEG for the same compression ratios, while DCT based coding suffer from noticeable distortion at high compression ratio but when applied to any block it is easy to isolate the significant coefficients from the non-significant ones. Efficient video encryption in computationally constrained applications is another challenge on its own. It has long been recognised that selective encryption is the only viable approach to deal with the overwhelming file size. Selection can be made in the spatial or frequency domain. Efficiency of simultaneous compression and encryption is a good reason for us to apply selective encryption in the frequency domain. In this thesis we develop a hybrid of DWT and DCT for improved image/video compression in terms of image quality, compression ratio, bandwidth, and efficiency. We shall also investigate other techniques that have similar properties to the DCT in terms of representation of significant wavelet coefficients. The statistical properties of wavelet transform high frequency sub-bands provide one such approach, and we also propose phase sensing as another alternative but very efficient scheme. Simultaneous compression and encryption, in our investigations, were aimed at finding the best way of applying these two tasks in parallel by selecting some wavelet sub-bands for encryptions and applying compression on the other sub-bands. Since most spatial/temporal correlation appear in the high frequency wavelet sub-bands and the LL sub-bands of wavelet transformed images approximate the original images then we select the LL-sub-band data for encryption and the non-LL high frequency sub-band coefficients for compression. We also follow the common practice of using stream ciphers to meet efficiency requirements of real-time transmission. For key stream generation we investigated a number of schemes and the ultimate choice will depend on robustness to attacks. The still image (i.e. RF’s) are compressed with a modified EZW wavelet scheme by applying the DCT on the blocks of the wavelet sub-bands, selecting appropriate thresholds for determining significance of coefficients, and encrypting the EZW thresholds only with a simple 10-bit LFSR cipher This scheme is reasonably efficient in terms of processing time, compression ratio, image quality, as well was security robustness against statistical and frequency attack. However, many areas for improvements were identified as necessary to achieve the objectives of the thesis. Through a process of refinement we developed and tested 3 different secure efficient video compression schemes, whereby at each step we improve the performance of the scheme in the previous step. Extensive experiments are conducted to test performance of the new scheme, at each refined stage, in terms of efficiency, compression ratio, image quality, and security robustness. Depending on the aspects of compression that needs improvement at each refinement step, we replaced the previous block coding scheme with a more appropriate one from among the 3 above mentioned schemes (i.e. DCT, Edge sensing and phase sensing) for the reference frames or the non-reference ones. In subsequent refinement steps we apply encryption to a slightly expanded LL-sub-band using successively more secure stream ciphers, but with different approaches to key stream generation. In the first refinement step, encryption utilized two LFSRs seeded with three secret keys to scramble the significant wavelet LL-coefficients multiple times. In the second approach, the encryption algorithm utilises LFSR to scramble the wavelet coefficients of the edges extracted from the low frequency sub-band. These edges are mapped from the high frequency sub-bands using different threshold. Finally, use a version of the A5 cipher combined with chaotic logistic map to encrypt the significant parameters of the LL sub-band. Our empirical results show that the refinement process achieves the ultimate objectives of the thesis, i.e. efficient secure video compression scheme that is scalable in terms of the frame size at about 100 fps and satisfying the following features; high compression, reasonable quality, and resistance to the statistical, frequency and the brute force attack with low computational processing. Although image quality fluctuates depending on video complexity, in the conclusion we recommend an adaptive implementation of our scheme. Although this thesis does not deal with transmission tasks but the efficiency achieved in terms of video encryption and compression time as well as in compression ratios will be sufficient for real-time secure transmission of video using commercially available mobile computing devices

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    Entropy in Dynamic Systems

    Get PDF
    In order to measure and quantify the complex behavior of real-world systems, either novel mathematical approaches or modifications of classical ones are required to precisely predict, monitor, and control complicated chaotic and stochastic processes. Though the term of entropy comes from Greek and emphasizes its analogy to energy, today, it has wandered to different branches of pure and applied sciences and is understood in a rather rough way, with emphasis placed on the transition from regular to chaotic states, stochastic and deterministic disorder, and uniform and non-uniform distribution or decay of diversity. This collection of papers addresses the notion of entropy in a very broad sense. The presented manuscripts follow from different branches of mathematical/physical sciences, natural/social sciences, and engineering-oriented sciences with emphasis placed on the complexity of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization and anti-synchronization, stability, lumped mass and continuous mechanical systems modeling, novel nonlinear phenomena, and resonances are discussed

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue

    Construction of nonlinear component of block cipher using coset graph

    Get PDF
    In recent times, the research community has shown interest in information security due to the increasing usage of internet-based mobile and web applications. This research presents a novel approach to constructing the nonlinear component or Substitution Box (S-box) of block ciphers by employing coset graphs over the Galois field. Cryptographic techniques are employed to enhance data security and address current security concerns and obstacles with ease. Nonlinear component is a keystone of cryptography that hides the association between plaintext and cipher-text. Cryptographic strength of nonlinear component is directly proportional to the data security provided by the cipher. This research aims to develop a novel approach for construction of dynamic S-boxes or nonlinear components by employing special linear group PSL(2,Z) PSL(2, \mathbb{Z}) over the Galois Field GF(210) GF\left({2}^{10}\right) . The vertices of coset diagram belong to GF(210) GF\left({2}^{10}\right) and can be expressed as powers of α, where α represents the root of an irreducible polynomial p(x)=x10+x3+1 p\left(x\right) = {x}^{10}+{x}^{3}+1 . We constructed several nonlinear components by using GF(210) {GF}^{*}\left({2}^{10}\right) . Furthermore, we have introduced an exceptionally effective algorithm for optimizing nonlinearity, which significantly enhances the cryptographic properties of the nonlinear component. This algorithm leverages advanced techniques to systematically search for and select optimal S-box designs that exhibit improved resistance against various cryptographic attacks

    Exploiting online services to enable anonymous and confidential messaging

    Get PDF
    Mestrado em Cibersegurança na Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Viana do CasteloMessaging services are usually provided within social network platforms and allow these platforms to collect additional information about users, such as what time, for how long, with whom, and where a user communicates. This information enables user identification and is available to the messaging service provider even when communication is encrypted end-to-end. Thus, a gap still exists for alternative messaging services that enable anonymous and confidential communications and that are independent of a specific online service. Online services can still be used to support this messaging service, but in a way that enables users to communicate anonymously and without the knowledge and scrutiny of the online services. In this paper, we propose messaging using steganography and online services to support anonymous and confidential communication. In the proposed messaging service, only the sender and the receiver are aware of the existence of the exchanged data, even if the online services used or other third parties have access to the exchanged secret data containers. This work reviews the viability of using existing online services to support the proposed messaging service. Moreover, a prototype of the proposed message service is implemented and tested using two online services acting as proxies in the exchange of encrypted information disguised within images and links to those images. The obtained results confirm the viability of such a messaging service.Serviços de envio de mensagens instantâneos são normalmente fornecidos por plataformas de rede social e permitem que estas plataformas recolham informações adicionais sobre os utilizadores, como a que horas, por quanto tempo, com quem e onde um utilizador comunica. Esta informação permite a identificação do utilizador e está disponível para o prestador de serviços mesmo quando a comunicação é encriptada de ponta a ponta. Assim, existe ainda uma lacuna para serviços de mensagens alternativos que permitem comunicações anónimas e confidenciais e que são independentes de um serviço online específico. Os serviços online ainda podem ser utilizados para apoiar este serviço de mensagens, mas de uma forma que permite aos utilizadores comunicarem de forma anónima e sem o conhecimento e escrutínio dos serviços online. Neste artigo, propomos mensagens usando esteganografia e serviços online para apoiar comunicações anónimas e confidenciais. No serviço de mensagens proposto, apenas o remetente e o destinatário estão cientes da existência dos dados trocados, mesmo que os serviços online utilizados ou outros terceiros tenham acesso aos contentores de dados secretos trocados. Este trabalho revê a viabilidade de utilizar os serviços online existentes para apoiar o serviço de mensagens proposto. Além disso, um protótipo do serviço de mensagens proposto é implementado e testado usando dois serviços online agindo como proxies na troca de informações encriptadas escondidas dentro de imagens e links para essas imagens. Os resultados obtidos confirmam a viabilidade de tal solução
    corecore