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ABSTRACT 

This thesis is concerned with the secure video transmission over open and wireless 

network channels. This would facilitate adequate interaction in computationally 

constrained applications among trusted entities such as in disaster/conflict zones, secure 

airborne transmission of videos for intelligence/security or surveillance purposes, and 

secure video communication for law enforcing agencies in crime fighting or in proactive 

forensics. Video content is generally too large and vulnerable to eavesdropping when 

transmitted over open network channels so that compression and encryption become 

very essential for storage and/or transmission. In terms of security, wireless channels, 

are more vulnerable than other kinds of mediums to a variety of attacks and 

eavesdropping. Since wireless communication is the main mode in the above 

applications, protecting video transmissions from unauthorized access through such 

network channels is a must. The main and multi-faceted challenges that one faces in 

implementing such a task are related to competing, and to some extent conflicting, 

requirements of a number of standard control factors relating to the constrained 

bandwidth, reasonably high image quality at the receiving end, the execution time, and 

robustness against security attacks. Applying both compression and encryption 

techniques simultaneously is a very tough challenge due to the fact that we need to 

optimize the compression ratio, time complexity, security and the quality 

simultaneously.  

There are different available image/video compression schemes that provide reasonable 

compression while attempting to maintain image quality, such as JPEG, MPEG and 

JPEG2000. The main approach to video compression is based on detecting and 

removing spatial correlation within the video frames as well as temporal correlations 

across the video frames. Temporal correlations are expected to be more evident across 

sequences of frames captured within a short period of time (often a fraction of a 

second). Correlation can be measured in terms of similarity between blocks of pixels. 

Frequency domain transforms such as the Discrete Cosine Transform (DCT) and the 

Discrete Wavelet Transform (DWT) have both been used restructure the frequency 

content (coefficients) to become amenable for efficient detection. JPEG and MPEG use 

DCT while JPEG2000 uses DWT. Removing spatial/temporal correlation encodes only 

one block from each class of equivalent (i.e. similar) blocks and remembering the 

position of all other block within the equivalence class. JPEG2000 compressed images 
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achieve higher image quality than JPEG for the same compression ratios, while DCT 

based coding suffer from noticeable distortion at high compression ratio but when 

applied to any block it is easy to isolate the significant coefficients from the non-

significant ones.  

Efficient video encryption in computationally constrained applications is another 

challenge on its own. It has long been recognised that selective encryption is the only 

viable approach to deal with the overwhelming file size. Selection can be made in the 

spatial or frequency domain. Efficiency of simultaneous compression and encryption is 

a good reason for us to apply selective encryption in the frequency domain.  

In this thesis we develop a hybrid of DWT and DCT for improved image/video 

compression in terms of image quality, compression ratio, bandwidth, and efficiency. 

We shall also investigate other techniques that have similar properties to the DCT in 

terms of representation of significant wavelet coefficients. The statistical properties of 

wavelet transform high frequency sub-bands provide one such approach, and we also 

propose phase sensing as another alternative but very efficient scheme. 

Simultaneous compression and encryption, in our investigations, were aimed at finding 

the best way of applying these two tasks in parallel by selecting some wavelet sub-

bands for encryptions and applying compression on the other sub-bands. Since most 

spatial/temporal correlation appear in the high frequency wavelet sub-bands and the LL 

sub-bands of wavelet transformed images approximate the original images then we 

select the LL-sub-band data for encryption and the non-LL high frequency sub-band 

coefficients for compression. We also follow the common practice of using stream 

ciphers to meet efficiency requirements of real-time transmission. For key stream 

generation we investigated a number of schemes and the ultimate choice will depend on 

robustness to attacks.  

The still image (i.e. RF’s) are compressed with a modified EZW wavelet scheme by 

applying the DCT on the blocks of the wavelet sub-bands, selecting appropriate 

thresholds for determining significance of coefficients, and encrypting the EZW 

thresholds only with a simple 10-bit LFSR cipher This scheme is reasonably efficient in 

terms of processing time, compression ratio, image quality, as well was security 

robustness against statistical and frequency attack. However, many areas for 

improvements were identified as necessary to achieve the objectives of the thesis. 
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Through a process of refinement we developed and tested 3 different secure efficient 

video compression schemes, whereby at each step we improve the performance of the 

scheme in the previous step. Extensive experiments are conducted to test performance 

of the new scheme, at each refined stage, in terms of efficiency, compression ratio, 

image quality, and security robustness. 

Depending on the aspects of compression that needs improvement at each refinement 

step, we replaced the previous block coding scheme with a more appropriate one from 

among the 3 above mentioned schemes (i.e. DCT, Edge sensing and phase sensing) for 

the reference frames or the non-reference ones. In subsequent refinement steps we apply 

encryption to a slightly expanded LL-sub-band using successively more secure stream 

ciphers, but with different approaches to key stream generation. In the first refinement 

step, encryption utilized two LFSRs seeded with three secret keys to scramble the 

significant wavelet LL-coefficients multiple times. In the second approach, the 

encryption algorithm utilises LFSR to scramble the wavelet coefficients of the edges 

extracted from the low frequency sub-band. These edges are mapped from the high 

frequency sub-bands using different threshold. Finally, use a version of the A5 cipher 

combined with chaotic logistic map to encrypt the significant parameters of the LL sub-

band. 

Our empirical results show that the refinement process achieves the ultimate objectives 

of the thesis, i.e. efficient secure video compression scheme that is scalable in terms of 

the frame size at about 100 fps and satisfying the following features; high compression, 

reasonable quality, and resistance to the statistical, frequency and the brute force attack 

with low computational processing. Although image quality fluctuates depending on 

video complexity, in the conclusion we recommend an adaptive implementation of our 

scheme. 

Although this thesis does not deal with transmission tasks but the efficiency achieved in 

terms of video encryption and compression time as well as in compression ratios will be 

sufficient for real-time secure transmission of video using commercially available 

mobile computing devices.    
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 Chapter 1 

Introduction 

In recent years multimedia transmission through wireless channels has grown fast as a 

result of advances in wireless technology and availability of sensors and devices with 

increasing capacity for high resolution imaging. This has contributed to exponential 

increase in bandwidth and storage requirements far beyond the capabilities of existing 

open network channels and storage device. Therefore, data compression becomes 

essential for reducing the resulting heavy and ever increasing burden these requirements 

place on storage or transmission. The choice of the appropriate compression technique 

depends on the domain of application requirements in terms of competing factors such 

as image/video quality, bandwidth availability and efficiency.  Moreover, many 

applications such as military images, video conferences, video telephony, digital TV 

and Internet streaming are transmitted through “unsecured” network channels such as 

the Internet. In such scenarios, video content is vulnerable to access or interception by 

unauthorized parties. Therefore, beside compression there is a need to deploy some 

security mechanism to protect the image/video content during transmission or in 

storage.  

This thesis is concerned with efficient secure video transmission over open networks. 

The amount of uncompressed video data is too large for limited transmission channel. 

Therefore, video compression is an essential to achieve faster communication as 

possible through a limited bit-rate transmission channel. Over the last few decades, 

various methods and techniques for data and image compression have been developed. 

In general data compression algorithms can be categorized in two groups: lossy and 

lossless data compressions.  

The general approach adopted in image./videos compression consist of 3 main steps: 

applying a frequency domain transform; a quantisation scheme which is meant to 

produce a sparse representation of the frequency data; and a coding scheme to map the 

output symbols onto a compact table of digital code words representing the compressed 

image/video. In this thesis we investigate and develop a video compression technique 

that is based on combining two main transforms, DWT and DCT, followed by Vector 

quantization and edge-phase sensing.  
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There are many well established cipher systems that have been developed over the 

years, Moreover; selective encryption technique is also performed to provide security 

when compressing data during transmission or storage. This technique will be shown to 

be fast enough to meet an efficient video streaming in constrained computational power.  

In the first section of this chapter we shall describe general approaches to image and 

video compression. Section  1.2 describes available video and image encryption. Section 

1.3 presents thesis objectives, main approaches, and contributions. Section  1.4 gives 

thesis organisation. Finally, list of publication is presented in section 1.5. 

1.1 Introduction to Image and Video Compression  

Multimedia technologies have been advanced in recent years. Many applications such as 

military images, video conferences, video telephony, digital TV and internet streaming 

are transmitted through network channels. A digital image is composed of a finite 

number of elements known as pixels. In grey scale image, pixels are represented by 

unsigned 8-bits and having values ranging from 0 to 255. Pixels in colour images are 

represented by three colour channels; in Red, Green and Blue (RGB) colour space. Each 

component of RGB required 8-bits in binary representation and thus 24-bits per pixel. 

And there are other colour spaces such as Y CB CR . The Y component is luminance and 

CB CR  represents chrominance components which define the actual colour. 

Generally, the content of Multimedia objects (e.g. image/video) is too large in size with 

high bit rates when produced from uncompressed digital video streams. Accordingly, 

such objects require large storage space, and their transmission over network channels 

requires very high bandwidth. When the data rate is generated by video streams become 

greater than the available network bandwidth, the data transmission process will suffer 

from long delays and possible failure.   

For example, if a digital monochrome video of spatial resolution of 320×240 pixels is to 

be displayed at the standard rate of 25 frames per second (fps), then the corresponding 

bit rate is 320×240 ×25 ×8= 15360000 bits per second (bps). Now assuming the 

availability of a 56000 bps telephone network link , then we need to compress the video 

data by at least 275 times in order to accomplish the data transmission in real-time. 

Real-time is meant that the algorithm will run the video at the rate of the source 

supplying video. It is definitely impossible to transmit such a large volume of data 

(uncompressed video) over bandwidth limited networks used in low constraint devices. 
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The case of coloured images/videos is 3 times more demanding in terms of storage and 

bandwidth.    

Therefore, data compression becomes essential before any video storage or transmission 

because it produces a low bit rates and reduces the time required for sequence video 

frames to be sent over different network channels (Shi and Sun 2008) (Annadurai 2007) 

(David, Motta and Bryant 2007). 

Generally, the range frequencies required to transmit the audio are far narrower than 

that required for image/video transmission. Therefore, the audio also can be compressed 

at high quality using relatively low bit rate (high compression ratio).   

 Still image compression techniques and tools 1.1.1

Generally, compression of digital image/signals aims to faithfully represent digital data 

with fewer bits than necessary without degrading the amount of information conveyed 

by the data. This is possible because data and pixel values in images are not randomly 

dispersed within their spatial domain and include many redundancies.   Compression is 

closely dependent on the amount of data redundancy in the generated image/video data. 

The amount of redundancy in an image has a measurable impact on the amount of 

information the image is conveying. Data compression techniques work by removing 

redundancies as much as possible and producing a compact representation of the data 

with little or no effect on the amount of information conveyed by the data. According to 

the theory of information, the amount of information a data/signal conveys is 

determined by the measure of Entropy which is computed in terms of the probability 

distribution of the symbols occurring in the data. According to the Information Theory, 

any symbol “S” in a signal/data holds an amount of Information (measured in bits) that 

reflects the frequency of its presence within the signal/data. The more a symbol “S” 

occurs in a signal the less its presence adds to the amount of information conveyed by 

the data. Shannon Theory of information models the amount of information a symbol 

“S” holds within a signal by the formula: 

 

 𝐼(𝑆) = log2 (
1

𝑝
) = − log2 𝑝   𝑏𝑖𝑡       

 

1. 1 

 

Where ‘p’ is occurrence probability of “S” in the signal. 

From the above equation 1.1, one can infer that a small value of ‘p’, shows that more 

information the symbol holds and vice-versa. 
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The amount of information for symbol 𝑆𝑖 (𝑖 = 1,2, … 𝑛) is called the Entropy (E), where 

E can be described as below: 

 
𝐸 =  − ∑𝑝𝑖 log2 𝑝𝑖

𝑛

𝑖=1

    𝑏𝑖𝑡 

 

1. 2 

 

Shannon declares that a massage of ‘n’ symbols can be coded to n*E bit. A fixed length 

bit code representation for all symbols is not a realistic approach, but an optimal 

solution means that a minimum bit rate will be required for coding the more frequently 

occurring symbols while larger bit rate can be afforded for low occurring symbols. This 

approach is referred to in the literature as entropy coding. The fundamental concept in 

entropy coding is to assign the shortest code words to the symbols that occur more 

frequently, and the longest code words to those that appear infrequently. Accordingly, 

knowledge of the probability distribution of image spatial domain pixels (or the 

frequency coefficients), is essential for optimal compression. However, achieving 

optimality in this respect may have adverse effect on efficiency, and in many 

applications some loss of information may become necessary.   

The main challenges to compression are the efficiency of detecting and locating the 

secinifacant data, and coding the data in a compact manner that remain within the actual 

constraints of data storage and/or communication bandwidth. In digital images, data 

redundancy may exist in the form of correlation between neighbouring pixels. In fact, 

pixel values are very similar and high correlation in the non-edge smooth regions, 

where differences between neighbouring pixels are generally very small or zero. For 

example, Figure 1.1 shows a histogram of differences in grey value between each pixel 

and its adjacent pixel in the 320x320 Desert image. It can be seen from Figure 1.1 that 

the differences clustered around zero i.e. there is high correlation between adjacent 

pixels in raw image. But neighbouring pixels around significant features differ 

significantly in their values. Hence, image compression could benefit from 

knowledge/detection of the smooth regions as well as the significant regions so that it 

can remove the redundancies in the first while retaining as much information as possible 

in the latter. 
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Figure 1.1 Desert image and its histogram of differences between neighbouring pixels  

Compression algorithms generally exploit statistical information about the frequency 

distribution of symbols/characters of the input data in order to reduce redundancies and 

to create new coding map of the data. Knowledge of the frequency distribution of 

symbols in the original data can be used to represent symbols with variable length bit 

strings and reduced redundancies. For example, in Figure 1.1, one can afford using long 

code words for symbols further away from the 0. There are various coding schemes that 

have been used in compression such as Huffman coding (Yang and Bourbakis 2005), 

Run Length Coding (RLE), Arithmetic coding LZW and etc. For more details see 

(Carreto-Castro, et al. 1993), (Pandur and Thiruvallur 2009) (David, Motta and Bryant 

2007). 

Image/video compression systems usually consist of three main steps: (1) de-correlation 

step which aims to reduce the amount of data redundancy; (2) a quantisation step; and 

(3) entropy encoding step. The de-correlation step is achieved by transformation of the 

uncompressed data from the spatial domain to the frequency domain where 

redundancies can be easily detected and removed. Often this step results in increased 

memory requirements because the output image data are real numbers rather than fixed 

length integer. However, the output data consist of large amount of small values (near 

0) that are redundant. The second quantisation step, results in a small number of 

symbols that approximating the real-number data obtained in step 1. The entropy coding 

results in a coding table, to represent the quantised symbols in code words (bit strings) 

of variable length. The second step (quantisation) may result in loss of information. In 
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many applications certain level of such loss may be tolerated but has an effect on 

compression ratio and image quality. Accordingly, compression can be classified into 

two classes: lossless and lossy.  

Generally compression exploits the statistical information in the image and is a 

reversible process by the decompression procedure. In the lossless case the re-

construction is perfect, and the image quality is preserved. However, lossless 

compression can only achieve low compression ratios. A very simple example of 

lossless compression skips the first two steps and use RLE, commonly used for any type 

of data, and basically replaces any run (sequence of adjacent) pixels of the same grey 

value by giving the pixel value followed by the length of the run. For our purposes we 

shall focus more on Lossy compression but we aim to minimize the amount of loss, and 

achieve acceptable processing time as well as image quality.  

Lossy compression is irreversible, because some information contained in the original 

data will be lost primarily during the quantisation step and the original data cannot be 

recovered exactly. It is typically used for images and sound compression where a little 

bit of loss in resolution is frequently undetectable. Therefore, the decompressed image 

contains degradations relative to the original image. Generally, more compression can 

be achieved at the expense of more distortion. However, there is always a trade-off 

between compression ratio, retrieve data in computational time and quality. The higher 

compression ratio is, the smaller the compressed data size is and the lower the 

bandwidth requirement is but the output will suffer from lower quality. 

There are a variety of transforms that can be used for the de-correlation step, which 

normally project the image spatial domain (considered as a vector in a high-dimensional 

vector space) into another domain where the most significant image features can be 

approximated by a vector in a smaller dimensional subspace. The frequency domain 

transforms of Discrete Cosine Transforms (DCT) and the Discrete Wavelet transforms 

(DWT) are widely accepted for their capacity to re-organise input data in such a way 

that redundant transformed data can be detected easily.  The existing image and video 

compressions tools of JPEG and MPEG are based on DCT while JPEG2000 is based on 

DWT. The DCT transforms the original data from spatial domain to frequency domain, 

while the DWT decompose the original data into different frequency sub-bands (low 

frequency sub-band and high frequency sub-bands). On their own, these transformations 

do not realize any compression, but they de-correlate the original data and compact the 
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significant information in certain frequency coefficients that form a relatively small set 

compared other frequency coefficients.  

For efficiency purposes, the original uncompressed image may be first divided into 

smaller non-overlapping blocks and the transform is applied on each block separately. 

In the case of the DCT, the blocks are usually of size 8x8, but unfortunately this may 

result in blocky effects depending on the compression ratio.  

For an 8x8 image block B =  (bIJ) the DCT transform outputs an 8x8 frequency 

coefficient matrix T(B) so that for each i=1..8 and j=1..8. 

𝑇(𝐵) =

{
 
 

 
 
√
1

𝑛
𝑐𝑜𝑠

(2𝑗 + 1)𝑖𝜋

2𝑛
  , 𝑖 = 0; 𝑗 = 0,1, … . , 𝑛 − 1

√
2

𝑛
𝑐𝑜𝑠

(2𝑗 + 1)𝑖𝜋

2𝑛
  , 𝑖 = 1; 𝑗 = 0,1, … . , 𝑛 − 1

 

All the coefficients of T(B) appear in ascending order of frequency magnitude in zigzag 

manner starting from the top left corner (see chapter 3 for description of DCT based 

image coding). Usually, the lower order coefficients contain significant information 

about a particular block and this information are more important in human perception. 

Therefore, in this thesis we shall be calculating DCT for only the top left triangle part of 

the T(B) block where the energy is locate. This method will reduce the computational 

time of DCT to the half and become more suitable to low constraint applications, see 

Figure 1.2. 

Blockwise

DCT 

transform

Partitioned 

to 8x8 

blocks 

The  top left triangle 

part

Lena image eye

T(B)

 

Figure 1.2 DCT encoding to Lena eye 
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JPEG2000 is DWT based coding method and produces higher quality compressed 

images compared to the earlier JPEG tool. On the other hand, JPEG2000 is still not so 

popular and the commercial options for JPEG2000 are not that great (Acharya and Tsai 

2005) (Vetrivel, Suba and Athisha 2010) (David, Motta and Bryant 2007). The DWT 

decomposes an input image into four sub-bands labelled as LL1, HL1 (V1), LH1 (H1) 

and HH1 (D1) as shown in Figure 1.3 A. Subsequent decompositions are possible in 

many different ways. In the pyramid decomposition scheme, the LL1 (low frequency 

sub-band) is further decomposed into the next level of four sub-bands as shown in 

Figure 1.3 B. The low frequency sub-band (LL) represents an approximation of the 

original image. Therefore, the histogram distributions of LL sub-band is identical to the 

histogram of original image. The non-LL sub-bands (high frequency sub-bands) 

contains image features such as edges and corners. The non-LL sub-bands have 

Laplacian distribution and the significant coefficients (image features) are furthest away 

from the mean of each high frequency sub-band, this property remains valid at all level 

of decomposition as shown in Figure 1.4 (Al-Jawad, Ehlers and Jassim 2006). 

JPEG2000 and many recent compression schemes exploit these properties to gain 

knowledge about the non-smooth regions and increase compression ratio over JPEG 

(Ma 2002) (Ehlers 2008). 

 

 

 

 

 

 

 

 

 

Figure 1.3 Image (Lena) decomposition by DWT, (A) the first level decomposition and (B) 

second level   decomposition 
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Figure 1.4 Histogram for original image (Lena) and for image after decomposed by DWT  

The Standard Deviation (STD) of the non-LL sub-bands can be used to reveal these 

significant coefficients which correspond to edges and corners.  

Having transformed the input image, the second reduction in entropy step of 

compression in each DCT block (or DWT sub-band) is achieved by removing the non-

significant information which is traditionally done by applying a scalar quantization of 

the transformed coefficients. The quantization is based on the human visual system 

which is more perceptive to low frequency information than high frequencies. The 

simplest quantization can be done by dividing the block contents by a quantization 

factor, chosen in terms of the desired compression ratio, and rounding frequency 

coefficients to the nearest integer value. This is an irreversible process because cannot 

recover the lost information by inverse process. In the final step, the quantized 

coefficients are losslessly encoded using entropy encoding such as Run-Length 

Encoding(RLE), Huffman coding and arithmetic coding. Consequently, the entropy of 

quantized data can be represented by a variable bit rate compared with raw image pixel 

values that have fixed size bit representation. The basic idea in entropy coding is to 

assign the shortest bit-string code (known as word) to the symbols that occur more 

frequently, and the longest code words to those that appear infrequently. 

A more advanced quantization technique for image compression is called Vector 

Quantization (VQ). In VQ the image is subdivided into non-overlapping blocks, each 

block is considering a vector called a code vector. The encoder will construct a list 

consisting of all code vectors is called a codebook. Then for each code vector, the closet 
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matched vector is determined and its index in codebook is encoded and transmitted to 

the decoder. At the decoder, the index is decoded and replaces it with the associated 

code vector with the same codebook as at the encoder. This technique will be 

demonstrated in more detail in chapter 4. 

The image decompression procedure is just an inverse of compression process which 

starts by using the code book to recover the quantized values and finally applying the 

inverse of the DCT/DWT frequency transform. The following is a block diagram that 

covers both compression and de-compression. 

 

Original Image 

Reconstructed 

Image

Compressed 

data

Entropy Encoder 

Inverse Transform Entropy Decoder

Compression 

Decompression

Quantization and 

rounding
Image block

De-quantization 

and rounding

Transform

 

Figure 1.5 Block diagram of image compression and decompression 

When compressing RGB colour images, they are first converted to the Y  CB CR . The 

human visual system is more sensitive to the Y component than other two components. 

So that, the Y component can be encoded at low compression ratio and the 

CB CR components may be encoded at high compression ratio. 

In this thesis we focused our investigations primarily on monochrome grey scale 

images/videos. However, we shall test the performance of a multi-channel version of 

our final monochrome coding scheme on colour videos to demonstrate the viability and 

suitability of our proposed scheme for efficient secure coding of colour videos (see 

chapter 7). (Shi and Sun 2008) (Blelloch 2001) (Sayood 2012)  

 Video compression tools and standards 1.1.2

Digital video is a sequence of images, each called a frame. In video sequences there are 

two types of redundancies that could be noticed. The first type is the spatial redundancy 
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(also called the intra-frame redundancy) that exists in each frame i.e. correlation 

between pixels within each frame. The second type is the temporal redundancy which is 

concerned with correlation between successive frames of video that are usually very 

similar. Video compression techniques are therefore based on reducing redundancies in 

both spatial and temporal directions. A common technique for video compression starts 

by encoding the first frame (Intra-frame) using a still image compression procedure. 

Then encoding each successive frame (Inter-frame) by determining the differences 

between the Intra and inter frame and encoding these differences and transmitting the 

differences (motion vector data) rather the whole frame over again. However, this 

approach results in accumulating errors and hence requires frequent corrections. 

There are several methods to determine the motion vector; one such method is block 

based motion compensation which starts by sub-dividing the current frame into uniform 

non overlapping blocks. Then each block is compared with a set of candidate blocks in 

the preceding frame to select the one that best match the current block. However, 

motion estimation is time consuming in video compression process. Several standards 

like MPEG-x, H.26x, (x=1, 2, 3, 4) have been developed over the years and are 

commonly used for video compression. MPEG-x has been designed for storage (DVD) 

and TV broadcast, while H.261, 263 and H.264 are usually optimized for real-time 

video communication. Both standards are motion compensation based in Intra-frame 

coding. 

To expedite motion vector prediction, MPEG separates the video into three types of 

frame: intra-frame (I), Predictive frames (P) and Bidirectional frames (B). The P frames 

are predicted directly from previous I frame. B frames are predicted from both previous 

(I or P) and next frame (I or P) as shown in Figure 1.6. 
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Video 

frames

Encoder

 

Figure 1.6 coding order in MPEG 

The H.263 video compression tool use PB-frame mode for temporal encoding. PB-

mode consists of two frames: P frame predicted from the latest decode frame and B 

frame predicted from both last frame (P or I valid) and the next frame P. The flash video 

codec (flash player) replaces the B frames with D frames. D frames only use the past P 

or I frame for motion vector prediction. The codec D frames achieve less compression 

ratio compared with H.263 but it improves the real-time processing, see Figure 1.7. We 

will describe this topic in more detail in chapter 2. 

JPEG, MPEG-x and H.26x are DCT based image/video coding. However, the image 

based DCT coding suffers from noticeable distortion at high compression ratio (low bit 

rate). In this thesis we shall investigate the use of a hybrid of DWT and DCT for video 

compression to achieve a better performance than DCT based coding in term of quality. 
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Figure 1.7 PB and D frame prediction 

Motion JPEG2000, also known as MJ2, employs only intra-frame. MJ2 compresses 

each frame individually by using JPEG2000 algorithms for still image compression.  

1.2 Image and Video Encryption  

For many organisations that rely in their work on the transmission of digital media 

objects over open network channels, protecting their contents from hackers and 

eavesdroppers has become an essential step in protecting their knowledge asset. Being 

the main and most commonly used security mechanism, encryption techniques are the 

natural scheme to be used to protect video data against security violations in storage and 

in transit. Encryption has been used for centuries for the protection of secrets and a 

wealth of ciphers have been developed within the wider area of information theory. 

Suitability of image/video encryption algorithms is dependent on various factors such as 

security level, computational time and their impact on compression efficiency.  Modern 

data encryption ciphers such as AES, DES, and RSA generally work well on data 

stream input such as audio, video and text. Most of these ciphers work by acting on 

blocks of certain sizes. When dealing with offline secure video streaming, the above 

encryption algorithms can provide strong security, but are not fast enough for video 

streaming due the large size of the data input unless considerable amount of 

computational power are deployed. Stream ciphers are the alternative type of ciphers 



14 
 

that may be provide more efficiency, because they work on small size units of data. 

Examples of such ciphers include the Linear Feedback Shift Register (LFSR). In recent 

years, chaotic maps have been used to create stronger stream ciphers. 

When dealing with both tasks of compression and encryption, the choice of a specific 

cipher is not the only influencing factor. Much consideration has been given to whether 

security necessitates the encryption of the entire compressed data, and whether these 

tasks can be implemented in parallel. Such decisions also have an influence on the 

choice of the appropriate cipher. Note that distorting an image in a way that renders 

recognition of the regions/objects of interest very difficult is akin to securing the image 

content. This idea have led to the concept of selective encryption which works by 

encrypting a small amount of the image data with a difficult to break cipher while using 

simple shuffling, if necessary, on the remainder. For example, encrypting certain 

wavelet sub-band(s) such as the LL-sub-band with a strong cipher may be sufficient to 

secure the image content. Selective encryption is useful for efficiency and will be 

investigated in this thesis. Moreover, the fact that image/video data have certain spatial 

redundancies that have been exploited for compression presents a choice between two 

approaches:  Sequentially Compress and Encrypt (SqCE) or Joint Compression and 

Encryption (JnCE) by interleaving the encryption task with the steps of compression 

(i.e. the de-correlation step, quantisation, and entropy coding). In SqCE compression 

and encryption are done independently, inefficient and in the case of videos it 

complicates the effort of exploiting temporal redundancies across adjacent frames. For 

the JnCE approach, the encryption algorithm can implicitly have access to data at 

various compression processing steps, which is known SqCE compared with the JnCE; 

therefore the JnCE is better than SqCE in low constrained applications.  

In this thesis, we incorporate selective encryption into the JnCE framework and refer to 

this modified approach as Simultaneous Compression and Encryption (SCE) which 

allows the data to be securely exchanged. Figure 1.8 depicts our SCE framework, taking 

into account our use of wavelet transforms as the de-correlation tool.  
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Figure 1.8 simultaneous video compression and encryption Approach 

1.3 Thesis Objectives, Main Approaches, and Contributions  

This project is aimed at meeting a growing demand for secure video transmission as a 

mean of gathering timely reliable awareness of events from unconventional locations 

while availability and affordability of sophisticated computing and communication 

facilities and infrastructure are restricted to the very basic. This is a typical scenario in 

many third world countries and in particular countries that are facing widespread 

international terrorism, organised crime, and internal civil conflicts while their law 

enforcing agencies and armed forces are deprived of material and skilled human 

resources. My research project is meant to utilise commercially available and affordable 

mobile devices that could be incorporated and integrated into its modest computing and 

communication infrastructure, this to facilitate remote intelligence gathering from 

around the country through secure communications with their personal who may be 

equipped with modest handheld devices that are endowed with reasonable cameras. The 

computing power requirements is estimated to be equivalent  to speed computer 

equipped with Intel (R) i5 processer 2.3 GHz and RAM 4 GB.  

In this project the concept of JnCE scheme can be based on the ability to process colour 

videos at a minimum rate of 30 frames per second.  The standard frame size on the 

mobile devices we envisage in this thesis is 256x320 pixels. We will consider larger 

size standard definition video frames in this thesis of 512x512 pixels. Moreover, to 
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further reflect the limited computing and storage capabilities of some participant, we 

shall assume that the handheld devices do not save of videos for offline transmission.  

The developed scheme described in chapter 7 can be used by legitimate armed forces of 

under-developed nations by providing very low cost maintenance of secure 

communication as a cheap alternative of using costly systems such as satellite 

communications and/or early warning aircrafts. In these scenarios there are no 

fundamental reasons why the gathered intelligence videos should be of High Definition 

(HD), but due to our assumption on the constrained devices capabilities we will not 

experiment with HD videos. By no mean this is a shortcoming of the developed 

algorithms but rather a reflection of scares and constrained computational power 

affordable in the above circumstances. Moreover, we plan to widen the scope of our 

research in the future to include such investigations. 

For my sponsor, this project fits into their effort to build capacity in developing 

advanced  and secure digital technology solutions to fit their needs in a volatile region. 

The implementation of a secure video transmission system that can be used with high 

mobility low-cost constrained devices is only one step in their aim, this for achieving 

self-reliance in the development of cost effective enabling digital technology systems to 

maintain and adaptable for use in different applications including civil applications. 

Below is a list of use scenarios that the intended system can be utilised with basic 

modifications if necessary:  

1. In dangerous zones of conflict, the intended system should work inside and on 

the periphery of the theatre of operations for the secure timely online relay of 

video content without saving for later use. However, the encrypted and 

compressed videos would be available for storage at the Command, Control, 

Computers, Communication and Intelligence (4CI) units. 

2. The implementation of the same technology on unmanned aerial vehicle systems 

or fixed CCTVs as a general surveillance activity for information/intelligence 

gathering on possible terrorist and criminal. Such activities provide vital 

information for 4CI units in preparation of necessary tactical plans, or to protect 

vital infrastructure and industrial installations.     

3. The use of the developed solution is by no mean limited to military and security 

purposes. In fact it can provide vital enabling information for civil applications, 
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such as the monitoring of critical instillations like oil pipes, borders, green fields 

for agriculture and environmental purposes, etc. 

Our main approach is based on the SCE version of JnCE framework to achieve 

computational efficiency. It will benefit from the wealth of knowledge achieved over 

the years in existing work on video encryption and compression techniques developed 

according to existing standards including MPEG-x and H.26x. Compression will be 

based on a hybrid of: DWT, DCT, VQ, wavelet based edge detection and phase sensing. 

We aim to achieve lossy compression on the high frequency sub-bands and 

simultaneously applying selective encryption to the low frequency sub-band. We shall 

investigate various ways of dealing with Intra-frame Reference Frame (RF) and the 

Inter- frame as non- Reference Frame (n-RF) to reduce temporal redundancies and we 

shall determine the most suitable RF updating policy to maintain efficiency, high 

quality and to reduce processing time. We shall also benefit from existing knowledge in 

the fields of digital signal processing and data transmission over wireless 

communication system.  In particular we shall study efficient ways of mapping the 

sparse blocks output from the various de-correlation procedures.    

For security objectives, we adopt the selective encryption approach due to its suitability 

for constrained application. Three selective encryption algorithms will be investigated 

in chapter 5, 6 and 7 respectively and applied to different components of wavelet 

coefficients independently of the compression procedures.  We develop and test the 

performance of different stream ciphers, whereby the key stream is generated in 

different ways but analogous to the A5 stream cipher and clocked by chaotic logistic 

map. 

The experimental results show that the proposed algorithms for video compression and 

encryption are having the following features: high compression ratio, acceptable quality, 

resistance to the brute force and statistical attack and low computational processing to 

meet our constrained requirements. 
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1.4 Thesis organisation 

This thesis is organised as follows;  

 

 Chapter 2 gives a literature review of different kinds of image/video 

compression and encryption and recent work on sequential and joint 

compression - encryption techniques for image/video data. 

 Chapter 3 describes the analysis of still image compression and encryption 

based on combining DWT and DCT to improve the compression efficiency 

of EZW. We demonstrate that the DCT reduces the loops scan of EZW 

encoding. On other hand, the computational time of this combined scheme 

is relatively high and has relatively slow processing time. 

 Chapter 4 proposes two approaches to optimize the image compression and 

encryption. The first approach is based on Joint DWT, DCT and 

Compressive Vector quantization (JDWCT-CVQ). The second approach 

(JDWCT-CVQ-Edge) uses the edges detection combined with the JDWCT-

CVQ to improve the image compression-encryption. 

 Chapter 5 discusses the approach of using JDWCT-CVQ for secure video 

compresion.  

 Chapter 6 propose edge sensing to improve the security of the video 

encryption and to optimize the computational performance for video 

compression and encryption that were used in chapter 5. 

 Chapter 7 proposes phase sensing to optimize the video compression 

efficiency of the approach in the previous chapter. Moreover, the chapter 

proposes combined chaotic logistic map with A5 cipher to real-time secure 

video transmission. 

 Chapter 8 presents general conclusions and future work.  
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Chapter 2 

Literature Review 

Over the years, variety image/video compression techniques have been developed to 

meet a number of conditions on compression ratio, image/frame quality and bandwidth. 

Data Encryption, on the other hand, has a long history but video encryptions is more 

recent and require special considerations due to the large size of image/video data and 

the presence of spatial as well as temporal redundancies.   In this chapter we review the 

literature on existing image/video compression and image/video encryption. Section 2.1 

will be devoted for compression, while section 2.2 covers the literature on the combined 

online compression and encryption for image/video. We shall end the chapter by 

describing the various refinement steps we adopted in our investigations that culminated 

in final proposed secure compression of video (SCE) scheme. 

2.1 Image and video compression techniques 

In this section a critical review of existing compression techniques will be conducted 

highlighting the advantages and shortcomings in relation to suitability for these thesis 

objectives. Although this thesis is concerned with secure videos under constrained 

conditions, but the starting point is on image compression techniques which we review 

in section 2.1.1. In section 2.1.2 the video compression standards, JPE2000 and Inter-

frame compression techniques are presented. 

  Image compression  2.1.1

Transform image coding has developed at the early stages as the main theoretical 

framework of image compression and refers to encoding the spatial image pixels into 

compact data representation. It is appropriately used in coding prediction error in 

motion compensated predictive coding of sequence of video frames. 

Usually, the transform image coding works in three steps as shown in Figure 2.1. 

Firstly, the raw image is divided into blocks size 8x8 or 16x16 pixels. Then, each block 

is linearly transformed by orthogonal transformation (orthogonal i.e. the dot product of 

the row with itself is one and with different rows is zero and the same think for 

columns. The inverse of orthogonal is its transpose; the product of the data transformed 
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with the inverse of orthogonal transform reconstructs the original data). The orthogonal 

transform retain the energy in the original image data and faithfully represents the 

significant image information in terms of a basis of few elements of transformed 

vectors, also called atoms, which can be used to recover the significant data of original 

image. The few transformed elements are less correlated compared with raw pixels. 

Subsequently, quantisation converts the non-significant information (high frequency 

confidents) to zero. The quantisation processing is related with image quality 

consideration, if high quality required the quantisation step will be small and vice 

versa(the quantisation will be explain in more detail in chapter 3) . The three functions 

quantisation, truncation and  entropy encoding are called bit allocation as shown in 

Figure 2.1The quantized coefficients(after truncation) are collected by zigzag scan. This 

produces a string (one dimension) of coefficients that starts with non-zero coefficients 

(low frequency coefficients) and ends with many coefficients being zero. A code known 

Run Length Encoding (RLE) is very effective to encoding these scanned coefficients. 

The RLE works by reducing the size of repeating strings, called run, is typically 

encoding into two bytes. The first represents the number of coefficients in the run and 

the second byte is the coefficient value in the run. For instance, a run of 8 zeros 

coefficients will be encoded with two byte (8 and zero)  rather than encoding each zero 

separately. Finally, the entropy encoding will be assigned short bit code word to  

coefficients that occur more frequently and longer bit code word to coefficient that 

occur less often.  (Rao and Yip 2010) (Shi and Sun 2008). 

Raw image 
Block 

division

Linear 

transform 

Bit allocation 

(quantisation, entropy 

encoding) 
 

 Figure 2. 1The block diagram of transform image coding 

The role of the linear coding transform, both in lossless and lossy compression, is to de-

correlate spatial domain of the image. A variety of such transforms are available for this 

task, which project the high-dimensional image spatial domain into another vector 

subspace generated by a small number of base vectors, called atoms, sufficient for 

approximating the most significant image features. Transforms like Singular Value 

Decompositions (SVD) and Principle Component Analysis (PCA) are applicable but not 

practical. The SVD is not efficient because it relies on solving an eigenvalue problem 

obtained from the image itself, while the PCA require solving the eigenvalue problem 

of the covariance matrix of a large training set of images of the same type of content, 
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(see (Kenneth 1996)). In general, the Karhunen-Loeve transforms (KLT), which is 

related to PCA has the best efficiency in term of energy compaction, but its coefficients 

(base coefficients) are not fixed and depend on the data to be compressed, as mention 

above, and calculating these coefficients is slow. Therefore, the discrete frequency 

domain transforms provide an efficient alternative and the most popular transform used 

for image compression is the Discrete Cosine Transform (DCT).  

The DCT is used in two international image/video compression standards, Joint 

Photographic Experts Group (JPEG), and Motion Picture Experts Group (MPEG). It 

transforms the pixels from the spatial domain (correlated data) into frequency domain 

(uncorrelated data) (Cabeen and Gent 1998). In order to achieve better compression, the 

image is subdivided into blocks (of 8x8 pixels), and each block as sum of sinusoidal 

functions (of 2 variables) of varying magnitude and frequency. DCT compact most 

energy in the low frequency coefficients that appear at the top left corner of the output 

block (see page 7, in Chapter 1 for an illustrating example), representing the most 

significant information of the block. As one moves towards the bottom left corner of the 

DCT block the number of high frequency coefficients increases while the human eye 

ability to realize better image quality from their inclusion decreases. Therefore, 

quantising the DCT coefficients simply rounds down to 0 as many as necessary 

coefficients diagonally starting from the bottom right corner while a sensible rounding 

of the rest of coefficients create a relatively small number of symbols to be encoded in 

the final step. In JPEG and MPEG, after quantization, the RLE and Huffman encoding 

are applied to each block, after setting to zero the insignificant coefficients in the 

bottom right region of the DCT output block.  Li and Kuo (Li, Li and Kuo 1996) has 

shown that the coding rate of JPEG will be enhanced by 30% when Huffman coder is 

used and by 5% in Arithmetic coder if the traditional scan is replaced by layer scan, 

these concepts of scan are used in JPEG2000. In chapter 3, we shall revisit this scheme 

with more details. 

Several other lossy image compression algorithms have been developed, over the last 

few years, that use discrete wavelet transforms decomposition rather than the DCT for 

the de-correlation of the spatial domain image pixels. The Embedded Zero Tree 

Wavelet (EZW) (Valens 1999), is the first such scheme. In the EZW, the input image is 

wavelet decomposed, using a given wavelet filter, to multiple levels using the pyramid 

decomposition scheme. This will provide a multi-resolution analysis of the frequency 

domain where at each level of decomposition, the finer details are detected more than 
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the previous at level(s). This forms the bases on the so called “Morton” scan which 

maps the coefficients into a 1-dimensional vector, starting with each LL coefficient, 

followed by its 3 descendent coefficients at the same level (LH. HL, HH), followed by 

the four children at the next higher sub-band, and so on (see figure 3.1 in chapter 3).    

The EZW exploits this zigzag type of coefficient ordering to create a quad tree structure 

by two passes (dominant pass, and subordinate pass. The dominant pass determines the 

significant coefficients by a number of iterations that begin with an initial threshold (Th) 

determined as a number greater than the maximum absolute value in the block and its 

descendants as long as one or more are ≥ TH/2. The coefficients that are ≥ TH/2 are 

declared significant, and removed from the quad-tree. The threshold is halved in each 

iteration and the scanning resumes. The lower the threshold gets the better the image 

quality is maintained. Hence, the iteration stops when all coefficients have been 

removed from the quad-tree or the threshold reached a minimum value that depend on 

the required quality. As a result of dominant pass one of 4 symbols (R (zero tree root)), 

I (Isolated zero), P (positive), N (Negative)) are assigned to each coefficient dependent 

on original sign and its relation to its descendants and ancestors. The second 

subordinate pass assigns binary codes to the coefficients. The various steps of EZW will 

be described in more details in the next chapter.  

The main disadvantage with EZW is the increased computational cost of the iterations 

in the dominant pass. The number of iterations has an impact on the image quality.    

There have been many attempts to improve the performance of EZW. For higher 

compression ratio, the output data of EZW is input to the Huffman encoder (Janaki, 

Tamilarasi and others 2011). The performance was tested with different quantisation 

threshold values, and it was shown that increasing the threshold results in wavelet 

coefficients and descendants become insignificant and thereby improved compression 

ratio and bit per pixel needed. However, the computational cost of Huffman coding is 

relatively high making this modified EZW is inefficient. 

The threshold of quantization value was also noted, by others, to have obvious effect on 

image compression when using EZW scheme. Shingate and Sontakke (Shingate, 

Sontakke and Talbar 2010) investigated the effect of a chosen threshold, when using 

EZW, on various image parameters such as compression ratio, Peak Signal to Noise 

Ratio (PSNR), processing time, and reconstruction time. The results show that small 

thresholds improve the bit per pixel, as well as other image parameters. This is because 
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the dominant and subordinate pass will be used several times which in turn increases 

encoding time. Increasing the threshold has the opposite effect.  

In 1996 Said and Pearlman (Said and Pearlman 1996) made a significant improvement 

on the compression ratio and PSNR of their EZW implementation. Their improved 

version is known as Set Partitioning in Hierarchical Trees (SPIHT). In SPIHT the quad 

tree is divided and partitioned into three lists; list of insignificant set (LIS), list of 

insignificant pixel (LIP) and list of significant pixel (LSP).  Initially LSP is empty. The 

threshold of quantization is measured and compared with LIP to extract the significant 

coefficients (i.e. have magnitude larger than the threshold) to be moved to the LSP and 

their signs are also coded. For each pixel in the LIP, one bit is used to describe its 

significance. If it is not significant, the pixel remains in the LIP and no more bits are 

generated. Similarly, each set of LIS is tested, the insignificant sets remain in the LIS 

and the significant sets are moved to LIP. Finally, each pixel in the LSP is refined with 

one bit. The aforementioned procedure is then repeated for the subsequent resolution. 

The EZW and SPIHT algorithms implement tree structures to detect the significant 

wavelet coefficients.  Jun and Wells (Tian and Jr 1996) proposed a new algorithm 

known as Wavelet Difference Reduction (WDR) to encode direct location of wavelet 

coefficients. It can select a region on compression image to be processed for increased 

resolution WDR present lower bit rate of the significant coefficients indices by reducing 

binary expansion of significant coefficients. WDR based on two principles: the 

Differential Encoding (DE) and Binary Reduction (BR). In DE the difference of indices 

for the significant wavelet coefficients value is taken. Then, BR used to represent the 

binary form of data produced from DE with short binary length by dropping the most 

significant bit for each binary form. 

Recognising the benefits of the EZW for encoding the wavelet coefficient triggered 

interest in using EZW quantization in the DCT domain. An alternative quantization 

strategy for DCT based image compression is described in (Monro and Dickson 1997), 

where the image is partitioned into non-overlapping blocks and DCT is applied to each 

block. The DCT coefficients are then rearranged to form a hierarchical sub-band 

structure, and the zero tree coding algorithms to generate compressed image bit stream. 

The reported results show that the proposed scheme outperforms the EZW and JPEG in 

compression ratio.  
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Furthermore, to benefit from the properties of both DCT and DWT transforms in data 

compression, a combination scheme based on DCT and DWT schemes has been 

presented in (Shrestha and Wahid 2010) and (Benchikh and Corinthios 2011). A hybrid 

DWT-DCT approach was proposed by Shrestha and Wahid in (Shrestha and Wahid 

2010) for image and video compression. This approach starts by breaking the image 

into block size (16x16) and each block is decomposed by DWT. The high frequency 

sub-bands are discarded, the low frequency sub-bands are further decomposed by DWT 

and the high frequency sub-bands are neglected again. This process could continue but 

the authors stopped at level 2. As a result, from each block this methods computes low 

frequency LL2 sub-band to be processed further by the JPEG quantization after 

applying DCT. During decompression, zero values are padded in place of the detail high 

frequency sub-bands. This method is equivalent to applying a low pass filter before 

applying JPEG. Naturally, this would result in high compression ratio and high 

efficiency but the recovered decompressed image is of degraded quality and blurred 

edges as a result of discarding all high frequency sub-bands. It is worth noting that at 

Buckingham, Jinming Ma, developed an efficient WT-based Region Of Interest (ROI) 

image/video compression system (Codec) for telemedicine applications, whereby the 

high frequency coefficients outside the ROI were discarded (not computed) followed by 

a simple quantisation and entropy coding. The system was tested on the then 

constrained computing power PC’s and demonstrated the maintenance of high quality in 

the ROI at the expense of degraded quality outside the ROI, (Ma 2002).    

Benchikh and Corinthios in (Benchikh and Corinthios 2011) proposed another image 

compression technique based on a hybrid DWT and DCT in which the image is 

decomposed by DWT to level three. The DCT is applied on the low frequency sub-band 

at level three. The high frequency DWT sub-bands coefficients are compared with two 

thresholds. The chosen threshold is equal or less than the smallest coefficient in low 

frequency sub-band. The first threshold is chosen from low frequency sub-band of level 

two and compared with high frequency sub-bands of level one. Threshold two is chosen 

from low frequency sub-band of level three and compared with high frequency sub-

bands of level 3. The reasons for threshold selection are not discussed/mentioned in that 

paper.   

Note that it has been established that the high frequency sub-bands of wavelet 

decomposed images have a Laplacian distribution and the significant coefficients are 

the furthest away from their mean (Al-Jawad, Ehlers and Jassim 2006). In fact using, 
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various statistically determined thresholds for the high frequency sub-bands and 

inverting the wavelet transform results in marginal-to-modest loss of image quality. In 

this thesis we shall exploit the Laplace distribution property to turn the high frequency 

wavelet sub-bands into sparse prior to applying DCT as a way of detecting and 

organising the “significant” coefficients that needed for a set level of image quality.   

Visual redundancy in video and images has been considered in video and image 

compression. As mentioned earlier, the human vision system does not respond with 

equal sensitivity to all visual information i.e. some information (redundancy) has less 

significance than other information in human vision system, such as edges or textual 

regions which correspond to high frequency coefficients (Annadurai 2007) (ch.5, 5.4 

psycho-visual redundancies). 

Consequently, several researchers have improved coding efficiency by removing some 

visual redundancies. Liu and et al in (Liu, et al. 2007) utilized edge detection and image 

inpainting for still image compression. Image inpainting is used to recover missing 

regions of image by smoothly propagating information from the surrounding areas. The 

original image is analysed in the encoder. Then some regions of image are intentionally 

removed and some (edge-related) information is extracted from these removed regions 

and an edge map is sent to decoder, the decoder will use the edge map as assistance 

information to guide image inpainting for image restoration. An image coding 

technique, known as edge-based perceptual image coding, is defined in (Niu, et al. 

2012) whereby the encoder extracts the significant edges at very low bit rate from the 

background image to be transmitted, and then the edges region refined by a residual 

coding technique based on edges dilation and sequential scanning in the edge direction. 

The decoder will estimate the trajectories of significant edges based on low bit rate of 

background image. Improved quality of the compressed image comes at the expense of 

higher complexity due to the cost of good edge detection. The Laplacian distribution of 

high frequency sub-band coefficients provide an efficient, though not perfect, edge 

detection procedure that serve the same purpose above but at a lower cost. 

Compressed sensing (CS) is a newly emerging signal sensing/processing technique 

which aims to efficiently acquiring and reconstructing a signal. Basically CS mitigates 

the stringent requirement of the Shannon-Nyquist sampling theory for the necessary 

number of samples needed to reconstruct sparse signals.  In CS, the sparse signal of 

length ‘n’ can be reconstructed from far fewer than ‘n’ measurements via ℓ1-

minimization or other recovery techniques. To some extent, the technique of CS 

http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Signal_%28electronics%29
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attempts to find a way to directly sense the data in compressed form data lower 

sampling rate rather than sampling at high rate and then compressing the sampled data. 

Presently, the CS is lossy compression and requires heavy computations. ( (Goyal, et 

al., 2008), (Gan, 2007), (Deng, et al., 2010)). 

From the previous discussion, one can see that the core objective of removing 

redundancies and correlation in image data depends on using efficient procedures for 

detecting the significant  data (non- zero elements) in transformed image and 

remembering their location  in order to recover the image at the decoder. Our 

investigations will pursue the same objectives by investigating. Among other things, 

new approaches of combining DCT, wavelet transforms, and edge detection. In all these 

cases we need to make sure they can be incorporated into an efficient video 

compression and facilitate selective encryption.  

 Video compression 2.1.2

Video compression can be seen as compression of a sequence of frames (i.e. image 

compression with a temporal component) but it may not be necessary that all frames go 

through the same procedure. Generally, video compression standards employ hybrid 

coding scheme which is based on removing temporal, spatial and entropy redundancies. 

The intra-frame (sometimes called Reference Frame (RF)) compression is used to 

reduce redundancy through pixels within the frame i.e. still image compression method. 

The resulting compressed frame is referred to as the I-frame. The temporal redundancy 

between sequences of frames is removed by identifying the difference between a frame 

and its predecessor frame and encoding these differences, this refers as inter or P 

(Predictive) frame. When a frame is encoded based on both previous and next frames it 

will be referred to as a B (Bidirectional) frame (Rajagopal and Shenbagavalli 2013). 

 Video compression standards 2.1.2.1

There are two formal organizations that describe video coding standards: the 

International Telecommunications Union (ITU-T) and the International Standardization 

Organization/ International Electro-technical Commission (ISO/IEC). The ITU-T video 

coding standards has  recommended  H.26x (likeH.261, H.262, H.263 and H.264) to be 

used for real-time video communication such as videoconference and video telephony 

while the ISO/IEC standards, recommends MPEG-x (such as MPEG-1, MPEG-2 and 
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MPEG-4), to be mainly used for storage (DVD) and broadcast audio and video streams. 

Table2.1 summarizes the applications of each video coding standard (Zeng, et al. 2013) 

(Wiegand, et al. 2003) (Richardson 2011). 

 

Standard 

Organization 

Video coding 

standards 

Typical Range 

Bit rate 

Application 

ITU-T H.261 40 Kbps-2 

Mbps 
ISDN, Video Phones 

ITU-T H.262 1-25 Mbps SD/HD broadcast, DVD ,HDV 

ITU-T H.263 20 Kbps-4 

Mbps 

Video conference, streaming 

internet, video over 3G wireless  

ITU-T H.264 64 Kbps- 25 

Mbps 

Video conference, digital TV 

broadcast, Mobile phone 

camera 

ITU-T H.26L ≤ 64 Kbps Internet application 

ITU-T H.264/AVC, 

VC-1 

20-200Kbps Video conference, Video 

telephony 

ISO/IEC MPEG-1 1.2 Mbps CD-ROM 

ISO/IEC MPEG-2 4-80 Mbps DVD video, HDTV, Blu-ray 

Disk 

ISO/IEC MPEG-3 20-40 Mbps HDTV 

ISO/IEC MPEG-4 24-1024 Kbps Video over 3G wireless 

Table2.1 video coding standard 

We shall now briefly review some of the standards of type H.26x which are used for 

real-time video communication.  

The H.26x 

This refers to a group of video coding standards that have some similarities, as well as 

some distinguishable differences, with MPEG-x standard. Each frame in an MPEG 

image stream is encoded using one of three schemes: I-frame, P-frame and B-frame. 

While in H.261 compression Standard, there are two types of frames: I-frame and P-

frame. P-frames are predicated from previous frame P or I (forward prediction) so that 

the bit rate of H.261 is lower than that of MPEG. 
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The H.263 has been developed as a modification of the H. 261 but with some features 

of MPEG to achieve very low bit rates.  In the H.263 encoding, the P-frame is predicted 

from the last I-frame while the B-frame is predicted from both the last valid frame (P or 

I) and succeeding P-frame as shown in Figure 2.2. This prediction technique is known 

as PB-frame or PB mode, which enhances compression ratio but suffers from latency 

and requires higher processing cost. 

I 
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Figure 2.2 PB Mode 

The H.264 is another video coding standard in the H.26x that is based on the use of 

Hadamard and DCT transforms. It is similar to H.263 in terms of encoding and 

manipulations of the P, I and B-frames. It is designed to improve the motion 

compensation technique of previous coding, to facilitate real-time video communication 

and to provide lower latency as well as better image quality for higher latency. 

(Richardson 2011) (Wiegand, et al. 2003) (Vetrivel, Suba and Athisha 2010) 

(Abomhara, et al. 2010). 

 Flash Video Technology 2.1.2.1.1

The Flash video technology derives from the H.263 standard but modified according to 

the Sorenson’s Spark codec which replaces PB-frames with prediction D frames. A D 

frame is based on previous P or I frame (forward prediction), while PB frames use both 

forward and backward prediction. The D frames do not need to re-sync to the next I 

frame and the video coded streams are sequences of frames like this I-D-P-D-P-D-P. 

Hence, the D frames codec reduces the compression efficiency but achieves real-time 
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processing for video streaming. Therefore, the FLV is used to deliver video and flash 

movies over internet (Sonnati and Sinergia 2004). 

 JPEG2000 and MJ2 2.1.2.2

JPEG image compression is based on the DCT transform for reducing spatial 

redundancies in the input image. When high compression is required too much 

information will be discarded and low quality image is recovered. The JPEG2000 

outperforms JPEG in many ways:  high compression efficiency with bit rate less than 

0.25 Bit per Pixel (BPP) and highly detailed image. It is also able to decompose whole 

image or selected parts of image (region of interest) with maximum quality and 

resolution, multi-resolution representation by exploiting the properties of the wavelet 

transformation. JPEG2000 replaces the transform DCT and Huffman encoder used in 

JPEG by DWT transform and binary arithmetic encoder called MQ-coder. 

The fundamental building blocks of a JPEG 2000 encoder are shown in Figure 2.3. 

These components include pre-processing, DWT, quantization, arithmetic coding and 

bit stream organization. The first step in pre-processing is converting the pixels of input 

image from unsigned to signed values. Then divide the input image into non-

overlapping rectangular tiles of equal size. The tile size can be arbitrary up to and 

include the entire size of the raw image. Choosing smaller tile size will reduce the 

compression efficiency compared to the larger tile size, and if the tile size is too large, it 

requires larger memory buffers for application either by software or hardware. Every 

tile is compressed in four stages: (1) wavelet decompose the tile; (2) individually 

quantize the frequency sub-bands; (3) each sub-band is broken into blocks and these 

blocks are encoded through adaptive binary arithmetic coder (MQ-encoder); (4) output 

bits of encoder by organised in packets with headers that contain all the information 

such as resolution level, quality level, and which parts of code stream is secured. The 

header information is essential in decoding packets. 

Pre-processing
Bit-Stream 

Organization

Adaptive Binary 

ArithmeticCoder 
Quntization

Discrete Wavelet 

Transform 

Original 

Image
Compressed 

Image Data

 

Figure 2.3 JPEG 2000 fundamental building blocks 
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The MQ binary-coder input differs from the arithmetic binary encoding in terms of 

calculating the probability of occurrence of symbols. In arithmetic encoding the 

probability of symbols (0 or 1) is known in advance while in MQ-coder the probability 

of symbols is determined by dynamic decision. The main idea of MQ-coder is to 

classify the input symbol (bit) as more probable symbol (MPS) or less probable symbol 

(LPS), if we assumed that (1) is MPS and the input symbol was (1) so the decision is 

MPS, if symbol does not match with it, symbol is LPS. The LPS probability of the next 

symbol is estimated from probability estimation standard table. 

Motion JPEG2000 (also known as MJ2) is not concerned with inter-frame coding as is 

MPEG. In MJ2 each frame is coded independently using JPEG 2000 for still image 

(Acharya and Tsai 2005) (Impoco 2004) (Miyamoto 2004).  

 Inter-frame Compression Techniques 2.1.2.3

In most applications, the video frames include the same objects over a numbers of 

frames within a short period of time resulting in what is referred to as temporal 

redundancy. Inter-frame compression exploits the similarities between adjacent frames 

to reduce the temporal redundancy between video frames. The simplest inter-frame 

compression technique is frame sub-sampling, where only every other frame is 

transmitted and others are dropped.  This method produces a compression factor of 2, 

and the receiver duplicates each received frame. Another technique is based on 

difference coding in which each frame of video is compared with its previous frame and 

only pixels which change significantly are transmitted. If the number of pixels to be 

transmitted is large, then this compression is infeasible. A third technique is called 

Block Differencing Coding. In this technique the frames are divided into blocks of 

pixels, and each block in the frame is compared to the corresponding block in the 

preceding frame. If the blocks difference is by more than a certain threshold, then this 

block is processed and transmitted. If the frame contains a lot of motion, many pixels 

will change and many mismatched blocks are produced from the encoder. So this 

method is almost impractical when there is a lot of motion. 

In the inter-frame compression, motion compensation prediction is mostly used to 

reduce the temporal redundancy between video frames. This technique divides non-

Reference Frames (n-RF) into blocks (Target Blocks (B)). For each B, the error distance 

(the average of the absolute difference between pixels in B and candidate block in 
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reference frame) is measured between B and the selected candidate blocks in Reference 

Frame (RF) to find the nearest matching block  to B in the search area  ((b+2dx) 

(b+2dy)) of  RF, see Figure 2.4. The position (vector motion) of the matched block 

which obtained from RF is encoded including the position of B and sent to the decoder. 
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Figure 2.4 the search area 

The decoder will recover the matched blocks by copying the block from RF at position 

determined from motion vector information (see chapter 5 for more details). 

The block matching search in the motion compensation is the most time consuming part 

of the inter-frame encoding. Therefore, a lot of research has been done to optimize the 

search methods to find suitable matches for B block with fewer overlapping candidate 

blocks in the search area. Jain and Jain (Jain and Jain 1981) introduced The Quadrant 

Monotonic Search (QMS) method which is a locality–Based search. The principle of 

locality suggests that better matches are expected to be found near other good matches.  

Firstly, QMS measures the distortion between the target block B and sparse blocks C 

within search area which contains overlapping blocks. The distortion value increases 

when we move away from the best matched candidate block with B. The second step 

may predict where the best match is likely to be found in the neighbourhood of the best 

match in the first step. 

The Hierarchical Motion Estimation (HME) is another motion compensation technique 

that attempt to improve efficiency using a multi-level refinement process whereby the 

motion vectors are first coarsely estimated on a sub-sampled picture. To reduce the 

computational burden further and overcome real-time constrains, Urban and Nezan 

(Urban, D forges and Nezan 2012) suggest a parallel implementation of the HME 

technique with motion estimation at pixel level performance by DSP. The results show 

there is a slight decrease in compression ratio. 



33 
 

Acharjee and Chaudhuri describe a new motion vector estimation algorithm which 

defines the motion vector for every pixel rather than blocks. It is assumed that the pixel 

can move around its location, at most, up to three pixels position. This assumption is 

based on the human visual system which has problems with recognizing fast moving 

objects. Consequently, the search area of RF is restricted up to three pixels on all four 

sides of the corresponding pixels of n-RF. Then the difference between the search area 

pixels and the n-RF pixel is computed, if the difference is within the threshold (intensity 

change is insensitive to human vision), the pixel of RF is the best match and the motion 

vector of that pixel is transmitted. Therefore, to get the decision that the pixel has not 

moved, this process will require the maximum number of iterations (= 18424) to get that 

pixel as a zero vector (Acharjee and Chaudhuri 2012). 

H.264/AVC provides high quality encoding and decoding for streaming video frames in 

real-time and HDTV broadcast. There are three kinds of transformation which are used 

in H264/AVC codec; 4x4 integers transform, 4x4 Hadamard transform and 2x2 

Hadamard transform. H264/AVC added 8x8 integers transform into high profile for 

higher resolution video data over High Definition (HD). Chang and Cho described a 

unified transform circuit to perform all inverse transform of; 8x8 and 4x4 integer 

inverse transform, 4x4 and 2x2 Hadamard transform. The proposed circuit exploits the 

similarities between transforms of H.264 decoder to achieve high performance of 

inverse transform (Chang and Cho 2010). 

The High Efficiency Video Coding (HEVC) is a video compression derived from the 

H.264 standard. It has a double data compression ratio compared with H.264/AVC at 

the same quality. The intra-prediction modes of HEVC use a different Coding Tree Unit 

(CTU) size for achieving high coding efficiency. The selection of CTU size is based on 

the Rate Distortion (RD) optimized method. This method causes a high computational 

complexity in the encoder. In order to reduce the encoding time of HEVC, Kim and 

Younhee in (Kim, et al. 2013) proposed a fast intra-prediction method by using the 

difference between the minimum and second minimum of RD cost estimation based on 

the Hadamard transform. The results of this proposal show a 32% reduction in the intra-

prediction compared with HEVC. 

Finally, Zhang and Shunliang described an image/video coding based on combining CS 

theory into DCT to enhance compression efficiency of any algorithm which employed 

DCT coding like JPEG, MPEG and H263.  However, the computational complexity of 

this implementation of CS technique has been shown not to be suitable for video real-
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time transmission (Zhang, et al. 2008). This is an area of potential research that could 

prove to be of great benefits to image/video compression as well as analysis. 

2.2 Image and Video Encryption 

Many data encryption algorithms have been developed and deployed throughout the 

centuries to protect transmitted/stored data and information. Over the last century an 

increasing number of ciphers have been developed to meet for the protection of digital 

data and communications. There are different methods that have been adopted for image 

encryption depending on the domain, format of signal and the expected level of 

security. These methods vary in their complexity and security. Among the most widely 

available and tested ciphers are the DES, AES, RSA and 3DES. High computational 

cost of such block ciphers is a major obstacle for real-time video encryption. Encrypting 

online video streams, of no fixed duration, imposes some restrictions on type of ciphers 

and/or encryption keys. Stream ciphers (e.g. LFSR’s and chaotic map ciphers) rather 

than block ciphers are therefore more appropriate for encrypting video streams and 

GSM signals.  

But, do we need to encrypt the entire image/video data to be assured of the security of 

transmission?  The concept of selective encryption method that has been proposed for 

still image encryption, works by only encrypting selected significant coefficients from 

crucial transformed parts of compressed data (Uhl and Pommer 2005). The coefficients 

that are less important will not undermine the security of the images if not encrypted. 

Consequently, for video encryption, selective encryption is preferable because it reduces 

the encryption time dramatically without compromising security.  

Generally, there are two main approaches for combined image/video compression and 

encryption: Sequential Compression and Encryption (SqCE) and the Joint Compression 

and Encryption (JnCE). We shall review both approaches later but now we review the 

stream ciphers that are suitable for image/video encryption.  

Note that, most of the following sections deal with greyscale image and videos. 

However, when dealing with colour images (e.g. RGB) many researchers have proposed 

encrypting individual colour channels. And we should follow this tradition, although 

exploiting differences in human vision sensitivity to different colours may provide a 

mean of improving efficiency without undermining security. 
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 Stream ciphers 2.2.1

The main and most important component of such ciphers is a random key generator. 

Linear Feedback Shift Register (LFSR) is the simplest method of generating a random 

key stream of any length using an initial fixed length initial secret register, a primitive 

polynomial and an iterative procedure that outputs one bit at a time. The generated bit 

stream is used to encrypt the significant parts of images/video bit stream by XORing. 

 Liner Feedback Shift Register (LFSR) 2.2.1.1

The Liner Feedback Shift Register (LFSR) consists of clocked storage elements (known 

as flip flop) and feedback baths, The LFSR is successively connected flip flop 

configuration with feedback from contains some flip flops output (taps) that XOR 

together and result is feedback into register input as shown in Figure 2.5. 

1k
2k3k

XOR

clock

Flip flop

 

Figure 2. 5 LFSR of degree 3 

The length of register and positions of taps depend on primitive polynomial. For 

instance, if the primitive polynomial was  x3 + x2 + 1 , then the register will be 

composition from   3 ( the highest exponential of  primitive polynomial ) flip flops and 

the positions of taps will be 3 and 2 in register sequence as shown in figure above. 

Usually, there are(2n − 1) possible binary states produces from LFSR until the start set 

(called the seed of LFSR) repeats, where n is the length of LFSR.  

In stream cipher, the LFSR is seeded with random binary seed call the secret key (ki) 

where i=1,2,… n. According to the above primitive polynomial, the k3 will XOR with 

k2 and the result output will be input to LFSR. Therefore, the right content of LFSR is 

shifted one bit to the left. Assume the secret key is k3 = 0, k2 = 1, k1 = 0. The table 

2.2 gives the sequence state of LFSR after clocking. (Paar and Pelzl 2009) 
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Initial state 

Secret key 

 

 

 

 

Table 2. 2 Sequence states of LFSR of degree   

The main drawback of LFSR is its linearity(weakness that the each bit in a LFSR 

sequence is linearly related to the initial state, i.e. the initial state is easy deduced from 

some of the later bits in the LFSR bits sequence ), and is thus vulnerable to algebraic 

and correlation attacks. The A5 stream cipher, which uses 3 LFSR’s of pairwise 

coprime lengths, is used to provide confidentiality in GSM. It solves the linearity 

weakness by applying non-linear clocking to the cryptosystem i.e. the majority function 

(Chen and Gong 2012). Several other approaches have been developed to overcome the 

linearity weakness of LFSR. Horan and Guinee (Horan and Guinee 2006) introduced a 

novel stream cipher, based on five LFSRs; each of them is connected to five dynamic 

feedback polynomials switching block. The clocking rule of five LFSRs is based on 

majority function similar to the one used in the A5 cipher. The changing switch of 

dynamic feedback polynomials block of LFSR is based on minority function i.e. if only 

one LFSR is not clocked by majority function then its dynamic feedback polynomials 

switch is changed. Jolfaei and Mirghadri (Jolfaei and Mirghadri 2010) also proposed 

cryptosystem for image encryption, which is based on nonlinear filter generator to 

disguise the linearity which is produced by an LFSR, with large secret key, which 

produced 607 bit binary sequences filtered by nonlinear function and resilient function.  

Zakaria (Zakaria, Seman and Abdullah 2011) presented two suggestions to improve the 

A5 stream cipher of GSM communication. Firstly, the taps of LFSRs of A5 are changed 

based on a new polynomial. Secondly, two new registers are added to the A5 structure. 

Therefore, the length of the proposed cipher becomes longer than A5 stream cipher, and 

the linear complexity of the modified cipher is increased compared with original A5. 

However, the registers clocking of proposed A5 are still based on majority function.  In 

this thesis, we will improve the clocking rule of A5 based on chaotic logistic map rather 

than majority function. 

clock 𝑘3 𝑘2 𝑘1 

0 0 1 0 

1 1 0 1 

2 0 1 1 

3 1 1 1 

4 1 1 0 

5 1 0 0 

6 0 0 1 

7 0 1 0 
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Recently, Sathishkumar (Sathishkumar, Ramachandran and Bagan 2012) introduced a 

new image encryption using random pixel permutation. The pixels of the original image 

are scrambled using Prime Modulo Multiplicative Linear Congruence Generators 

(PMMLG), and then the index pixels in the image are permuted based on 

pseudorandom numbers which are generated from chaotic map. PMMLG sequence is 

generated from the input initial secret key.  

Chaos theory is another source of random number generation. It has been utilized in 

cryptography and data encryption due to its sensitivity to initial conditions and control 

parameters, i.e. a small change in the input of nonlinear chaos system results in large 

differences in the chaos output (Kocarev and Lian 2011). In fact, chaotic maps have 

been widely used in image/video encryption. Li and Yu in (Li, et al. 2002) described a 

video encryption technique based on multiple digital chaotic systems, called the Chaotic 

Video Encryption Scheme (CVES). CVES is independent of any video compression and 

is used to achieve real-time video encryption. In this approach, a number of chaotic 

maps are used to generate pseudo-random signals to mask the video, and then the 

masked video is permuted based on the chaotic map. 

The key space of chaotic logistic map is not large enough to make brute-force attack 

infeasible. In order to increase key space and the security level of chaotic logistic map 

Chen and Zhang (Chen, Zhang and Zhou 2012) proposed a new image encryption based 

on combining a chaotic logistic map with a sine map. The results show that the 

proposed approach has better chaotic behaviour than traditional chaotic logistic map, 

because the control parameter interval of combined map is larger than the interval of 

traditional chaotic. As a result, this approach will increase the complexity against the 

brute-force attack. In chapter 6 of this thesis, we will be investigating the behaviour of 

the aforementioned combination system and we will adopt it in our proposal to video 

encryption. 

Liansheng and Wang proposed an encryption scheme based on chaotic logistic map, 

where two grayscale images are formed by using two different logistic maps. Firstly, 

one dimensional chaotic map is used to constitute random grayscale image from 

original image. Next, two dimensional logistic map used to convert the randomized 

image into two random grayscale images. Finally, these randomized images are 

combined with original image (Liansheng, et al. 2014). 
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Rohith and Bhat (Rohith, Bhat and Sharma 2014) proposed chaotic key sequence 

generated by sequence of logistic map and sequence of state of LFSR to image 

encryption, where the logistic map is iterated to the size of raw image. Then, the chaotic 

sequence is multiplied by 255 and converted into 8-bits word. Next, the output data of 

LFSR are XORed with binary data of chaotic logistic map to form key sequence. Lastly, 

the binary image pixels are XORed with key space. The computational time of this 

approach is high because it does not use the selective encryption concept.  

For increased security, a cryptosystem for image encryption that uses two chaotic maps 

logistics and Tent map was proposed (Gopalakrishnan, Ramakrishnan and Balakumar 

2014). The Tent map defined as follow: 

yn+1 = {
μ yn                      for  yn  < 1/2

μ(1 −  yn)         for   yn ≥ 1/2
 

Where yn and μ is the initial condition and control parameter respectively. 

 The encryption is performed in three steps; mixing, permutation and diffusion. In 

mixing, the chaotic map will iterate for the size of the plain image and random values of 

logistic map will be XORed with plain image pixel values. The indexes of mixing pixels 

are subsequently permutated using the iteration of Tent map. In the last round, the 

permutated pixels are XORed with random bits generated from both Tent and logistic 

map.  

To secure medical images, Dridi and Bouallegue ( (Dridi, Bouallegue and Mtibaa 

2014)) utilized chaotic Arnold cat map defined as follow: 

[
𝑥𝑛+1
𝑦𝑛+1

] =  [
1             𝑎
 𝑏    𝑎𝑏 + 1

] [
𝑥𝑛
𝑦𝑛

]   𝑚𝑜𝑑 𝑁  

Where N is the number of pixels in one column / row, ‘a’ and ‘b’ are the control 

parameters. In this method, the plain image is sub-divided in two sub-images and then 

these images are sub-divided into blocks.  The DCT, quantisation and RLE are applied 

to each block. Next, the S-box (Substitution-box, the input bits to S-box will transform 

to another output bits based on the lookup table), in the AES cipher, is mixed based on 

Arnold cat map. These S-boxes are used to scrambling values of RLE. 
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 Sequential Compression and Encryption (SqCE) 2.2.2

Encrypting compressed image/video streams is influenced by the adopted compression 

tool and standard.  The format of the compressed image/video files must be taken into 

account, when selecting ciphers.  It is worth noting, that while security of encryption 

depends on destroying any correlation in the input data, the success of compression 

procedures depends on the presence of correlation in the input data.  Therefore, most 

SqCE schemes first compress the image/frame and then encrypt.  

Zhou and Panetta (Zhou, Panetta and Agaian 2009) presented an image encryption 

based on edge information. The basic principle is to separate the original image into two 

images: one includes the edges, and the other image is without edges. Each one of them 

will be encrypted individually using a different encryption method. Finally, the 

encrypted results will be combined to form the encrypted image. This cipher can be 

classified as selective encryption but it is not clear why do they encrypt the non-edge 

image.  

The lightweight encryption technique for video surveillance system proposed in 

(Dufaux and Ebrahimi 2006), performs video analysis module which identifies the 

Region of Interest (ROI). Then the video is compressed for efficient storage and 

transmission. At the same time, scrambling is applied in ROI. The scrambling is 

implemented in the transform domain by pseudo randomly flipping the sign of 

transform coefficients during encoding. This method can be applied to all existing video 

coding standards such as MPEG-4, Motion JPEG200 and H.264.  

 Joint Compression and Encryption (JnCE) 2.2.3

During the last decade, numerous algorithms of image/video compression and 

encryption have been proposed based on JnCE. Pommer and Uhl in (Pommer and Uhl 

2003) proposed an image compression and encryption, whereby compression is based 

on a wavelet packet rather than pyramidal compression schemes in order to provide 

confidentiality, and AES cipher is used to encrypt the header information of the wavelet 

packet. This method of encryption reduces the amount of data to be encrypted, because 

it is based on the small header information only. 

The most obvious approach to JnCE is to only encrypt the coding table.  For example, 

the outcome from the arithmetic entropy coding (AE), or the Huffman tree, can be 
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scrambled. Generally such an approach can also be classified as SqCE as encryption 

comes after the final task in compression is completed. We shall first review few such 

schemes. 

Pande and Zambreno in (Pande, Zambreno and Mohapatra 2011) presented 

simultaneous coding and encryption based on arithmetic coding and Piece-Wise Linear 

Chaotic Maps (PWLCM), known as Chaotic Arithmetic Coding (CAC). The PWLCM 

is simple, has regular invariant density and good correlation function, confusion, and 

determinacy. It is suitable for cryptography and pseudo-random generator. It is defined 

by the iterative formula (Hu, Zhu and Wang 2014): 

𝑥𝑛+1 = 𝐹(𝑥𝑛, 𝑃) =  

{
 
 

 
 

𝑥𝑛
𝑞
                    𝑥𝑛 ∈   [0, 𝑞)

𝑥𝑛 − 𝑞

0.5 − 𝑞
             𝑥𝑛   ∈ [𝑞, 0.5)                

𝐹 (1 − 𝑥𝑛, 𝑞)          𝑥_𝑛   ∈ (0.5,1)                

 

Where xn∈  (0, 1), control parameter 𝑞 ∈  (0, 0.5), and 𝑞 can be served as a secret key.  

The AE involves recursive partitioning of the range [0, 1) in accordance with the 

relative probabilities of the input symbols occurrence. The CAC has the effect of 

scrambling the intervals without making any changes to the width of the interval in 

which the code word must be laid, thereby allowing encryption without losing any 

coding efficiency. This can applied to most compression standards such as JPEG2000, 

MPEG-4/ H.264 AVC and SVC standards (Pande, Zambreno and Mohapatra 2011). 

SubhamastanRao and Ravthic (SubhamastanRao, et al. 2011) has proposed a method to 

shuffle nodes in original Huffman tree. This is efficient and is suitable for any algorithm 

which employs Hoffman coding like JPEG, MPEG and H264. 

Unterweger and Uhl have proposed a more complex JnCE encryption method for JPEG 

compressed images which retains the compression efficiency. The encryption is based 

on three independent scrambling using AES cipher. First, scramble the order of code 

word value (RLE) then toggling value bits of Huffman encoding. Finally, the orders of 

all blocks which use the same Huffman table are scrambled. (Unterweger and Uhl 

2012).  

Wong and Lin in (Wong, Lin and Chen 2010) have proposed a simultaneous 

compression and encryption that rely on iteratively applying a piecewise linear chaotic 

map to generate random key stream to encrypt the arithmetic coding stream. At the 

same time the compressed image stream is encrypted by another pseudorandom key 
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stream generated from another chaotic map. Thus, are achieved in this approach, one 

through encoding and another through masked encoding. The proposal achieved 

compression/encryption speed between 1.2 to 3.4 MB/sec. The authors claim that the 

two level encryption increases compression ratio, is suitable for real-time processing, 

and is applicable for any entropy coding of MPEG-x, H.26x and JPEG. 

The video codec H.264/AVC supports two types of entropy coding. First is the Context 

Adaptive Variable Length Coding (CAVLC) and Context Adaptive Binary Arithmetic 

Coding (CABAC). Shahid and Chaumont (Shahid, Chaumont and Puech 2011) 

proposed an approach for protection of H.264/AVC by selective encryption of CAVLC 

and CABAC for Intra (I) and Inter (P) frames of video. The encryption is performed by 

using AES with cipher feedback mode. For CAVLC, encryption is performed on equal 

length code words from variable length tables. The CABAC encryption is done on equal 

length bit strings. The encryption is performed simultaneously with entropy coding of 

video codec of H.264/AVC. The result shows there was an increase in computation time 

for encoder, less than 0.4% for both CAVLC and CABAC encryption. Therefore, the 

proposal can be used for real-time multimedia streaming over networks. 

Alpha rooting is a function when applied to any image transformed domain increases 

the magnitudes of coefficients (not the phase) and produces a blurred and degraded 

image. Wharton in (Wharton, Panetta and Agaian 2008) use the “inverse” of the Alpha 

rooting function to reduce the magnitudes of and leaving the phase of the DCT 

coefficients for joint encryption/compression of JPEG scheme.  Encryption works by 

reversing the “expected” image enhancement. This encryption is easy to implement but 

it is vulnerable to the statistical attack as shown in the presented histograms of their 

encrypted images. 

Simultaneous fusion of compression and encryption of multiple images was suggested 

in (Jridi and AlFalou 2010). The compression is based on DCT and special filtering, 

followed by two levels of encryption. The first level of encryption is based on grouping 

of DCTs of multiple images in the spectral domain and one of the input images is used 

as encryption key. The second level of encryption is created from the quantization of 

filtered DCT coefficients. The proposed method achieved PSNR as 21.718 on Lena 

image compared to that of JPEG as 20.69 at the very height compression ratio of 98%.  

Generally, video codec H.264/AVC employed for real-time applications, such as video 

conferencing, use multiple optional modes for predicting luminance and chrominance 
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blocks of intra frame mode. Khlif (Khlif, Damak, et al., A very efficient encryption 

scheme for the H.264/AVC CODEC adopted in Intra prediction mode 2014)  proposed 

an encryption scheme to secure H.264/AVC by permuting the optional modes 

prediction using chaotic logistic map. The experimental results show that the histograms 

of encrypted frames are not uniformly distributed indicating weakness against statistical 

attack. 

Another video selective encryption technique, known as Index Chaotic Sequence based 

Selective Encryption of Compressed Video (ICSSECV) is described in (Batham, Yadav 

and Mallik 2014) whereby the indexes of compressed blocks from the (I) and (P) frames 

encoding are permuted before applying the entropy encoding. The random permutation 

is generated using chaotic logistic map. This can be applied to MPEG-x stream. 

Shen and Zhuo (Shen, Zhuo and Zhao 2014) proposed a selective encryption for H.264 

video streams that uses Motion Reference Ratio (MRR) of macroblock of non-

Reference Frame (non-RF). The MRR is the total number of pixels in non-RFs which 

are replaced with pixels in Reference Frame (RF), as motion vector prediction. The 

MRR is divided by the total number T of macroblock pixels and compared with 

Average Value of MRR (AVM) of the RF.  If MRR/T<AVM, then motion vector is 

classified as significant and the sign bits of all non-zero coefficients of significant 

macroblock are encrypted with AES. 

Another selective encryption method for secure H.264 video frames was proposed by 

Khlif (Khlif, Damak, et al., Motion vectors signs encryption for H.264/AVC 2014) by 

changing the sign motion vectors of inter prediction frames (non-RF) only. The decision 

of change the sign depend on binary sequence generated from chaotic logistic map. The 

experimental results of this proposal did not include any security analysis. 

Fadil and Yaakob (Fadil, Yaakob and Ahmad 2014) designed an encryption system for 

secured MPEG-2 video transmission over wireless channels. The proposed encryption 

was based on chaotic logistic map and neural network combined, referred to as the 

Chaotic Neural Network (CNN). It is applied to each motion vector produced from inter 

frame encoding of MPEG-2 algorithm. 

The transcoding is the process of converting a media file format to another. Annop and 

George proposed an approach for a secure video transcoding based on correlation 

preserving sorting algorithm whereby, the RF and the non-RF frames which have a 

correlation coefficient less than a specified threshold are transmitted via secure channel 
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and the sorted video frame which are equal or greater than threshold are given to video 

coder such as MPEG and H.264. The encryption in secure channel preformed in two 

stages. The first stage using block shuffling in DCT domain based on chaotic logistic 

map then randomized arithmetic coding (Anoop, George and Deepthi 2014). 

 Homomorphic Encryption 2.2.4

In recent years, this new class of encryption schemes has been designed primarily to 

protect sensitive information in storage for privacy protection. Although, this is not 

related to our objectives but we include a description of it for completeness of 

discussion.   Homomorphic Encryption (HE) refers to encryption techniques that allow 

computation of certain functions of the encrypted data without the need to decrypt the 

cipher text. It provides data security in many scenarios when users have permission to 

extract some information about encrypted data without decrypting. HE permits specific 

types of computations on encrypted data and the outcome remains encrypted. Therefore, 

in general the HE allows specific mathematical operations to be performed on the 

encrypted data without compromising the encryption. The HE can provide the same 

results as if it has been performed on the original data. (Lu, Varna and Wu 2014) 

(Fontaine and Galand 2007). 

HE is useful, when sensitive images are securely transferred to a remote server such as 

in the case of Cloud Computing. But in order to preform specific computation on the 

encrypted image in the server this will require the image to be decrypted. This makes 

this sensitive image vulnerable to an unauthorised access.  

 Security for JPEG-2000 (JPSEC) 2.2.5

JPSEC is part of JPEG2000 of ISO standards. JPSEC specifies methods of employing 

security to JPEG2000. There are three types of JPSEC security tools: template tools, 

registration authority tools and user defined tools. These tools are used to implement 

security function. The template tools have an identifier that determines which 

cryptographic method is used, such as AES, DES and RSA. The registration tools have 

a registration authority, a unique identification number (ID) that is specified in the 

syntax. The user defined tools are defined by user application. 
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 JPSEC framework 2.2.5.1

 JPSEC system 2.2.5.1.1

JPSEC consists of JPSEC creator (encryption) and consumer (decryption) as shown in 

Figure 2.6. The raw image is encoded by JPEG2000, and JPSEC preforms security 

service by implementing the security tools to produce JPSEC stream. The inverse 

processing will be applied on JPSEC stream to recover the original image. 

 

JPEG2000 Encoder

JPSEC Transcoder

Image
Image

JPEG2000 stream

JPSEC 

security tools

JPSEC creator

JPSEC stream

JPEG2000 

Decoder

JPSEC stream

JPSEC 

insecurity tools

JPSEC 

Consumer

JPEG2000 stream

 

Figure 2.6 The JPSEC creator and consumer 

 JPSEC stream 2.2.5.1.2

The JPSEC stream structure as shown in Figure 2.7 described as follows: 

1. Start of code-stream (SOC). 

2. Header and contents.  

3. Tile size marker (SIZ) to indicate which tiles of image is protected. 

4. Marker segment (SEC). 

5. SEC indicates the JPSEC security tools which are used to secure the image, and it 

contains the Zone of Influence of protection tools (ZOI). The ZOI tool can be used 

to describe which part of encoded image is protected such as resolution level, 

components, and quality layers, region of interest and packet indices. 
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6. Coding style (COD) which contains information related on coding parameters such 

as code-size block. 

7. Quantization default (QCD), contains quantize step size information in the 

JPEG2000 encoder. 

8. Start of tile (SOT). 

9. Start of data (SOD). 

10. Protected image data. 

11. End of code-stream marker (EOC). 

SOC

SOT

QCD

COD

SEC

SIZ

SOD

Protected 

Data

EOC
 

Figure 2.7 The structure of JPSEC stream 

JPSEC tools can be applied to protect the JPEG2000 stream. There are four domains in 

images encoded by JPEG2000 that need to be taken into account when encrypting. 

These domains are: Pixel domain, wavelet coefficients domain, the quantized domain 

and the code stream domain. If the wavelet or quantized domains are where JPSEC is 

being applied, it can either on the sign bit (by inversing the signs or randomizing) or the 

most significant bits. If the code-stream domain is chosen to be applied, it can either be 

applied on both the packet header and body or only on the packet body 

(Apostolopoulos, et al. 2006) (Schelkens, Skodras and Ebrahimi 2009). 

In Engel and Uhl approach, only four least significant bits of byte in packet body data of 

encoded stream are encrypted (Engel, et al and Uhl 2009). Norcen and Uhl described an 

approach for JPEG2000 coded image, in which AES is used to encrypt 20% of packet 

body and packet header data. They evaluated that encryption is sufficient to provide a 

high level of security (Norcen and Uhl 2003) .   
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2.3 An over view of thesis investigations and approach. 

From the above review, we can conclude that some compression techniques have been 

combining the DCT and DWT transforms but in a very limited ways and for limited 

purposes. In this thesis we shall investigate other ways of combining those two de-

correlating transforms in order to efficiently locate and map the significant coefficients 

in high frequency wavelet sub-bands. Also recognising, the importance of significant 

coefficients and edge detection for compression our investigations attempt to use 

knowledge about the statistical distribution of high frequency sub-bands to develop less 

time consuming procedures to locate significant and edge-related coefficients, as well as  

reduce the high frequency sub-bands into a sparse blocks. We shall also borrow and 

adapt the concept of phase modulation widely used in data transmission over wireless 

communication system to develop an innovative scheme of mapping the sparse blocks 

output from the various de-correlation procedures. 

In the next two chapters we focus our investigations on developing and testing the 

performance of still image compression and encryption schemes for use on video 

Reference Frame (RF). Although the outcome can have their merit for use as still image 

compression and encryption, but these were designed specifically for processing 

reference frames of videos. Moreover, for practical reasons relating to our main 

objectives we shall not consider HD images/videos. Moreover, we delay any 

investigations of different size frames and colour videos to the last part of the thesis.  
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Chapter 3 

Analysis of Still image Compression and Encryption 

A raw image contains a massive amount of data, which requires a large storage space 

and a long time for transmitting over network channels that do not have sufficient 

bandwidth. Data compression techniques benefit from several signal/image 

transformations to remove spatial and/or frequency redundancies and hence are used as 

kind of pre-processing prior to encoding and compression. In this chapter we initiate our 

first attempt to combine the DCT and DWT frequency domain transforms for image 

compression. We shall demonstrate how to use the multi-resolution property of the 

DWT’s to develop a very simple selective encryption scheme for still images to 

complement the compression.  

We shall begin by illustrating the image compression based on DWT and DCT in 

section 3.1 and 3.2 respectively. In Section 3.3, we shall describe our proposal for the 

enhancement of the EZW technique by incorporating image compression and 

encryption. 

3.1 Image compression using wavelet transform  

The Wavelet Transform (WT) is a frequency domain transform designed to analyse and 

decompose finite-energy signals at multi-resolutions. WTs differ from the Fourier 

transform in that they provide simultaneous spatial and frequency support. The Discrete 

Wavelet Transform (DWT) is a special case of the WT and provides a compact efficient 

representation of a signal in time and frequency. The DWT is used to decompose a 

signal into frequency sub-bands at different scales. The level 1 wavelet transform of 

images works by first transforming each row, into its low and high frequency sub-

bands, followed by transforming the two resulting sub-bands column-wise. Therefore, 

the wavelet transform of an image partitions it into four different frequency sub-bands, 

namely Low-Low (LL) sub-band, Low-High (LH), High-Low (HL) and High-High 

(HH) sub-band. The output can be decomposed in different ways to subsequent levels. 

The pyramid scheme is the most commonly used decomposition, where at each 

subsequent level only the current level LL sub-band is analysed creating a multi-

resolution frequency analysis of the input image.  At resolution depth of k>1, the 
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pyramidal scheme decomposes an image I into 3k +1 sub-bands, {LLk, LHk, HLk, HHk, 

LHk-1, HLk-1… LH1, HL1}, with LLk being the lowest-pass sub-band, (see Figure 3.1 

below).  

There are large number wavelet filters that are used for a variety of image processing, 

that differ from each other in terms of filter length and according to whether they are 

“orthogonal” or “bi-orthogonal”. Their use for image compression is influenced by 

efficiency consideration as well as effect on image quality (see Jinming Ma, 2002). For 

simplicity of implementation and efficiency purposes, we shall only use the Haar (db1) 

filter for wavelet transformation.  However, in chapter 6 we shall investigate other 

filters and compare performances.    

There are several algorithms for image compression based on wavelet transform, such 

as, Embedded Zero Tree Wavelet (EZW), Set Partitioning in Hierarchical Tree 

(SPIHT), Wavelet Difference Reduction (WDR) and Adapting Scanned Wavelet 

Difference Reduction, in this section the EZW algorithms is described. 

 

Image

LL1 HL1

LH1 HH1

HL1

LH1 HH1

HL2

LH2 HH2

LL2

Level 1 decomposition Level 2 decomposition
a b

DWT DWT

 

Figure 3.1 WT image decomposition :(a) first-level and (b) second-level. 

The EZW algorithmic is progressive encoding scheme to compress an image into a bit-

stream with high accuracy in capturing the most significant features that persist at 

different frequency resolution. EZW exploits an important correlation property between 

the wavelet coefficients of the multi-resolution signal analysis. First of all the wavelet 

coefficients in the LL sub-band are large compared with coefficients in the higher 

frequency sub-bands. Secondly, each coefficient in a low level non-LL sub-band has 

four descendants in the next higher sub-band resolution whose significance are inter-

related to that of the parent, as shown in Figure 3.2a. As shown in figure, X2 /HL2 has 

four descendants X3/HL1,X4/HL1,X7/HL1 and X8/HL1(quad-tree) in the next higher 
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sub-band L1. The zero-tree method, extracts the significant coefficients from this quad-

tree structure for image compression at low bit rate.  

 

Figure 3. 2 (a) the sub-bands of WT for 8x8image (b) the quad-tree for each coefficient HL3 

and X2/HL2 sub-bands. 

Therefore, by Morton scan (see Figure 3.3), the zero-tree is constructed based on the 

relationships between the wavelet coefficients in different sub-bands. The coefficients 

in LL sub-band are called parents and the other coefficients are called children, see 

Figure 3. 2. 

 

 Figure 3.3 Morton scan 

The EZW algorithms encode the coefficients of the zero-tree in descending order, in 

multiple passes, and for every pass a threshold is chosen against all wavelets 

coefficients measured. If coefficient is larger than threshold, it is encoded and removed 
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from the transformed image; otherwise it is left for next pass. In the next scan the 

previous value of threshold is halved.  

The main steps of the EZW algorithms are as follows: 

Step 1: Initialize threshold; choose the initial threshold,𝑇 = 𝑇0 such that all coefficient 

value are less than 𝑇0 and at least one coefficient is equal to or greater than T0/2, and 

calculated by applying this formula 

 𝑇0 = 2⌊𝑙𝑜𝑔2 (𝑚𝑎𝑥(|𝑤|))⌋  
3. 1     

   

Where, w is the wavelet coefficient. 

 

Step 2 Update threshold: let    𝑇𝑘 = 𝑇𝑘−1/2  ;   k=0, 1, 2,..,iiteration  If  k=0 skip this 

step 

Step 3 Dominant pass (Significance pass): Morton Scan through coefficient values 

and m is the scanning index. Test each value w (m) as follows; 

the wavelet coefficient w(m)  is compared with threshold  𝑇𝑘, if it is larger than 𝑇𝑘, it is 

encoded as significance coefficient and assigned quantization value  𝑤𝑄(m) equal to 

value of threshold, and also assigned symbol (p) to significance coefficient if its value 

positive or symbol (n) if its value negative and these significance coefficient are 

removed from transformed image. If the absolute value of coefficient is less than 

threshold 𝑇𝑘 and all its descendants are less than𝑇𝑘, then assign symbol (R) zero-tree 

root, in this case only symbol R is sent to the decoder and the descendants are not 

encoded. If at least one of descendants is larger than threshold 𝑇𝑘 then symbol (I) is 

assigned which means isolated zero, and the descendants will be encoded. 

Step 4 Refinement pass (subordinate pass):  scan through significant values assigned 

in step3 with the higher threshold value 𝑇𝑗, for j < k (if k=1 skip this step). For each 

significance value w (m), do the following  

If |𝑤(𝑚)|  ∈ [ 𝑤𝑄(𝑚), 𝑤𝑄(𝑚) +  𝑇𝑘), then Output bit 0 

Else if  |𝑤(𝑚)|  ∈ [ 𝑤𝑄(𝑚) +  𝑇𝑘 ,  𝑤𝑄(𝑚) + 2𝑇𝑘), then output 1 

Replace value of 𝑤𝑄(𝑚) by 𝑤𝑄(𝑚) + 𝑇𝑘 . 

In refinement pass or known subordinate pass, the significance coefficients which are 

specified in significance pass will be quantized by quantization transform, in which all 

significance coefficients are scanned and (0) bits will be assigned for the coefficients w 

(m) which are located within intervals [wQ(m),wQ(m) + Tk  ), and binary 1 for 
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coefficients that are located within intervals  [𝑤𝑄(𝑚) + 𝑇𝐾, 𝑤𝑄(𝑚) + 2𝑇𝑘). Therefore, 

in each refinement pass the quantization value of significance coefficient is approaching 

to the real value of coefficient, see Figure 3.4. 

Step 5: Loop: Repeat steps 2 through 4. 

The output from each scan is like the following stream: 

𝑇0, P, n, n, n, n, p, p, p, p, R, R, R, R, R, I, I, I, R, R, R, for significance pass 

0, 1, 1, 1, 0, 1, 0, 0, 1 for refinement pass (Rao and Yip 2010)  (Valens 1999) 

 

Figure 3.4 Quantization transforms 

Example 

To illustrate EZW methods, we select a block (X) size (8x8) pixels from Lena image. 

The DWT (Harr, level 3) has been applied to X and the result is W as shown in Figure 

3.5a. The coefficients of W are scanned in order index as shown in Figure 3.5 b. The 

initial threshold  𝑇0 is determined by applying equation 3.1 and the result  𝑇0 = 1024.  

 

1  2  5  6  17  18  21  22  

3  4  7  8  19  20  23  24  

9  10  13  14  25  26  29  30  

11  12  15  16  27  28  31  32  

33  34  37  38  49  50  53  54  

35  36  39  40  51  52  55  56  

41  42  45  46  57  58  61  62  

43  44  47  48  59  60  63  64  
 

  Figure 3.5 (a) a block 8x8 pixels from Lena image that is DWT (b) Three-level scan order A 

B 
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Based on step 3, The W coefficients are scanned and a symbol is assigned for every 

coefficient, if the coefficient is larger than 𝑇0  a ‘p ‘(+) is coded, if the coefficient is 

smaller than −𝑇0  a ‘n ‘ (-) is coded, if the coefficient and its descendants is the root of a 

zero-tree (smaller than threshold) then an R is coded and all descendants are not 

scanned. If the coefficient is smaller than the threshold but it is not the root of a zero-

tree (one of descendants is larger than threshold), then I (isolated zero) is coded. Finally, 

all coefficients that are assigned as significance coefficients (coefficients which are 

assigned p or n) are taken out and processed in subordinate pass (step-4) and their 

locations in the block are filled with zeroes. 

For instance, in the first iteration of EZW, the W(1,1)  coefficient (1341) is greater than 

𝑇0 (1024), therefore only W(1,1)  will be assigned as p and the children: 

W(1,2),W(2,1),W(2,2) (-21, 57, 41) are assigned as R. Thus, the output symbols of first 

dominant pass D1 are p, R R,R. W(1,1)  will be processed in subordinate pass and  

WQ(1,1) =  1024 . As result, W(1,1) will be in the interval [WQ(1,1),WQ(1,1) +

1024) i.e.1341∈ [1024,2048) then 0 is output from first subordinate pass (S1=0), see 

Figure 3.6. This iteration is repeated with update threshold until the exact bitrate 

specified by the user has been reached. It can be seen from Figure 3.6 that all 

descendants of (R) are assigned (×) to indicate they are not scanned. 

 

 Figure 3.6 (a) Iteration 1, threshold = 1024. (b) Iteration 6 threshold = 64 A 

B 
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3.2 Image compression using DCT coding 

The DCT is one of the most commonly used transforms for image compression and it is 

baseline algorithm of the JPEG coding standard.  In this section we will briefly describe 

the image compression based on DCT transformation. 

 The encoding process 3.2.1

The block diagram of image based DCT coding is shown in Figure 3.7. Firstly, the 

image data is partitioned into blocks of 8x8 pixels and the DCT is applied to each block. 

After the DCT is transformed, the transformed blocks are quantized. Finally, the 

quantized blocks are entropy encoded and output as compressed data. 

Partitioned 

to blocks 

8 pixels

8
 p

ix
e
ls

Blockwise

DCT 

transform

Entropy 

encoding
Quantization

Compressed data
 

Figure 3.7 Block diagram of image encoding based DCT coding 

 DCT transform  3.2.2

The image is comprised from pixels and the correlation between neighbouring pixels is 

high. The main work of DCT is de-correlating the neighbouring pixels and 

concentrating the significance information in low frequency region. The two dimensions 

(2-D) DCT of 8x8 blocks are defined as follows: 

  

                      

 Suv = √
1

4
 CuCv∑∑sij

7

j=0

7

i=0

cos
(2i + 1)uπ

16
cos

(2j + 1)vπ

16
   3. 2 

 

 

 

And the inverse DCT (IDCT) 
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 sij = √
1

4
  ∑∑CuCv Suv

7

v=0

7

u=0

cos
(2i + 1)uπ

16
cos

(2j + 1)vπ

16
  3. 3 

 

 CuCv = {
1

√2
 for u, v = 0

1      otherwise
   

 

Where 

sij : is the value of the pixel at position ( i, j) in the block. 

Suv  : is the transformed (u, v) DCT coefficient. 

The transform matrix of DCT (DCTM) is driven from equation 3. 2, we ignore 𝑠𝑖𝑗  and 

varying 𝑢 and the DCTM will show as fellow:  

 

 

 

The values of the DCTM are called cosine basis functions. The rows of these basis 

functions are shown in Figure 3.8. It can be seen that the frequency is increasing as we 

advance down the rows .i.e. the frequency of the DCT coefficients increases as we go 

from top to the bottom. Consequently, the DCT compact the significance coefficients 

(low frequency) in the top left triangle of blocks. This property is exploited in 

quantization processing to achieve lossy compression. 

 

 

 

 

 

 



55 
 

 

 

Figure 3.8 the DCT basis function of 8x8 arrays 
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 Quantization  3.2.3

After the image transformation, the resulting coefficients have a large numbers; 

quantisation is used to reduce the number of required for coefficients representation. 

Small numbers take less space than large ones, so quantization generates compression. 

Therefore, the transformed blocks are quantized by using an 8x8 quantization table. 

Each value in the transformed block is divided by the matching value in the 

quantization table, and the result is rounded to the nearest integer.  For instance, two 

sample quantization tables are shown in Figure 3.9. It can be seen from Figure 3.9 that 

the quantization factor (step size) generally increases as we progress from the top left 

corner to bottom right. As a result, the quantization error will be introduced in the high 

frequency coefficients more than in low frequency coefficients. The decision on the 

relative size of the step sizes is based on how the human visual system will sense these 

errors in the quantized coefficients.  Furthermore, the quantization table will be 

specified by the required quality of decompressed image.  
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3 2 2 3 5 8 10 12 
2 2 3 4 5 12 12 11 
3 3 3 5 8 11 14 11 
3 3 4 6 10 17 16 12 
4 4 7 11 14 22 21 15 
5 7 11 13 16 12 23 18 

10 13 16 17 21 24 24 21 
14 18 19 20 22 20 20 20 

 

80 60 50 80 120 200 255 255 
55 60 70 95 130 255 255 255 
70 65 80 120 200 255 255 255 
70 85 110 145 255 255 255 255 
90 110 185 255 255 255 255 255 

120 175 255 255 255 255 255 255 
245 255 255 255 255 255 255 255 
255 255 255 255 255 255 255 255 

 

Figure 3.9 Quantization tables (A) Low compression high quality (B) high 

compression Low quality 

Thus, the quantization process converts many high frequency coefficients (non-

significance) to zeroes in the quantized blocks. Finally, the quantized blocks are 

scanned by zigzag scan where the low-frequency coefficients are read first and the high-

frequency coefficients last as shown in Figure 3.10. Therefore, the zeroes value data 

will be clustered at the end of data sequence. These redundant zeroes are reduced by the 

run-length-encoding (RLE). The compressed sequence of RLE is encoded by either 

Huffman or arithmetic encoding (entropy encoding) to form the final compressed data. 

A 

B 



58 
 

High-frequency 

coefficients regions  

High-frequency 

coefficients regions  

Low-frequency 

coefficients regions  

Low-frequency 

coefficients regions  

 

Figure 3.10 Zigzag scanning order of quantized DCT coefficients sequence 

3.3 Optimized EZW technique for image compression and 

encryption 

In this section we describe a new method for image compression and encryption based 

on combined EZW and DCT algorithms. Such encoding will improve the compression 

ratio and reduce the encoding time compared with individual EZW algorithm. The 

encryption method is based on determining the crucial parts obtained by the 

compression algorithm and only encrypting these parts.  

 A Combined DCT and EZW image compression scheme  3.3.1

In order to justify the combination of DCT and EZW we shall use the example given in 

section 3.1.The EZW algorithm shows that if the coefficient (parents) and 

corresponding descendants are smaller than the chosen threshold (T), the coefficient is 

coded as zero-tree root (R) and the descendants are not encoded in the current iteration 

and only R will be sent to the decoder. On the other hand, when the coefficient has 

significance descendant (>T), the coefficient and the descendants are encoded. Thus, 

when the value of parents and their descendants are not in decreasing order, the 

compression ratio and encoding time of EZW tend to increased.  
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Now we go back to the example in section 3.1. In iteration 8, the threshold was 𝑇8= 8 

and there were three descendants of parents W(4,1)and W(3,2) are larger than or equal 

to 𝑇8. These descendants are W(6,4), W(7,1) and W(8,1) as shown below. Therefore, there 

were 20 symbols output from significance pass 

 
0 0 0 -6 -3 -3 -5 -5 
0 0 0 6 -7 -6 2 3 
-8 0 3 -2 -6 -4 1 1 

-10 0 -1 6 -3 -2 3 2 
-3 2 0 3 3 -2 3 -5 
3 3 7 9 -1 2 -3 -3 
-8 -2 7 -2 0 -3 -1 -1 
-8 6 0 3 -3 -2 1 2 

 
 

The main disadvantage of the EZW is the number of iterated scanning which could 

reduce the efficiency for many images. On the other hand, in section  3.2.2, the DCT 

transform tends to concentrate significant information in low frequency components. 

Our proposed scheme exploits the well-ordered structure of the DCT coefficients to 

arrange the wavelet coefficients in decreasing order and enhancing the compression 

efficiency of image compression based on EZW algorithm, i.e. we propose to apply the 

DCT on the DWT sub-bands. We call this method a Modified EZW (MEZW). 

  The MEZW Compression scheme 3.3.1.1

 The approach MEZW starts by subdividing the raw image into blocks size (8x8) pixels. 

Each block is then DWT the block and applies the DCT on the transformed coefficients, 

which are then quantized.  The DCT concentrates the low frequency coefficients in the 

top left of block which represents the parents and the high frequency coefficients in the 

right bottom of the block which represents the children. Hence, during all iterations of 

EZW encoding the parents are mostly larger than descendants. This might be improved 

through both compression efficiency and encoding time. Finally the EZW algorithm is 

applied to transformed block, and for further compression we use lossless coding like 

Huffman coding. 

The proposed MEZW compression is described in the following steps: 

1. Partition the input image into blocks size (8x8) pixels. 
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2. Apply DWT and DCT to each block respectively. 

3. Quantize each transformed block by using quantization table. 

4. Apply embedded zero trees encoding to each block. 

5. Apply Huffman encoding to the outputted data from EZW. 

 Figure 3.11 illustrate the block diagram of the MEZW algorithm mentioned above. The 

image is reconstructed by reversing the compression procedure. 
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to blocks 

8 pixels

8
 p

ix
el

s

Blockwise

DCT 

transform

Entropy 

encoding

Quantization

Compressed data

Blockwise

DWT 

transform

Embedded 

zero tree 

encoding 

Raw image

 

Figure 3.11 The Block diagram of proposal compression system 

To illustrate the comparison between our proposal and EZW method, we applied these 

methods on the same block shown in Figure 3.5a.  As illustrated in section 3.2, the data 

produced from encoder are shown in two forms; symbols(R, I, n and p) which are 

produced from dominant pass (D) and binary form which are produced from 

subordinate pass (S). Therefore, we represent each symbol (R, I, n and p) by two bits. 

The results of this experiment are shown in Table 3.1. 

 Method 

Number of iterations 

required 

size of data produced 

from  D 

size of data produced 

from  S 

Encoding 

Time  

EZW 

encoder 
11 448 113 0.112 

MEZW 

encoder 
5 400 91 0.049 

Table 3.1 results of EZW and proposal encoder 

From Table 3.1 it can be shown that the number of iterations required in EZW is 

considerably larger than that needed by MEZW. This algorithm also helps reduce the 

compressed size. In turn, the consumed time of encoding in MEZW is significantly less 

than EZW. These results seem to be a consequence of the applied DCT which organizes 

the wavelet coefficients in descending order. 
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 Experimental results  3.3.1.2

In this section, we compare the performance of MEZW scheme and EZW encoder using 

a reasonable size sample of images. For the experimental work, 30 different images 

have been used for analysis in terms of Compression Ratio (CR), Compressed image 

Quality and consumed time. The size of the tested images was (258x320) pixels and all 

images were first converted to grayscale as shown in Figure 3.12. The proposed scheme 

was implemented using MATLAB V 7.10.0 (R2013a) and achieved on Intel (R) i5 

processer 3.2 GHz and RAM 16 GB. 

In order to evaluate the performance of MEZW scheme in comparison with EZW 

standard, the Peak Signal-to-Noise Ratio (PSNR) is used as quality criterion. PSNR is 

driven from the Mean Square Error (MSE) and defined as: 

 𝑃𝑆𝑁𝑅 = 10 log10
2552

𝑀𝑆𝐸
   3. 4 

   

MSE between the two images X and Y is thus defined as: 

 𝑀𝑆𝐸 =
1

𝑀 × 𝑁
 ∑ ∑(𝑌 − 𝑋)2

𝑁−1

𝑗=0

𝑀−1

𝑖=0

  3. 5 

𝑀 ×𝑁 is the image size. 

Although the MSE is not a perfect criterion for the human vision system it is still 

frequently used as a measure of the quality of recovered image. 
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Images 1 to 5

Images 6 to 10

Images 11 to 15

Images 16 to 20

Images 21 to 25

Images 26 to 30

 

Figure 3.12 Test images  

Figure 3.13, compares the PSNR, CR and coding time achieved by the MEZW and 

EZW technique when applied to these images. It can be seen the PSNR of proposed 

MEZW is generally improved compared to the EZW method. For instance, the PSNR of 

recovered image 2 in MEZW method is less than in EZW. On other hand, the CR of 

image 2 that is achieved in MEZW is better than in EZW as shown in Figure 3.13. 

According to Figure 3.13, the encoding time of MEZW for all tested image is less than 

encoding time of EZW. Generally the results demonstrated that the use of DCT 

combined with DWT tends to improve the CR, quality and consumed time encoded. 

Table 3.2 shows the achieved PSNR, CR, time encoding and bit per pixel (bpp) in 

proposed MEZW and EZW.   
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Table 3.2 Compression results after encoded by MEZW and EZW 

 

 

MEZW method EZW method 

Image PSNR/dB MSE bpp CR Time/Sec PSNR/dB MSE Bpp CR Time/Sec 

1 41.473 4.633 1.190 0.149 26.355 40.256 6.131 2.050 0.256 31.272 

2 40.319 6.043 2.780 0.347 25.759 41.678 4.419 3.120 0.390 32.338 

3 40.042 6.440 2.290 0.286 27.068 36.881 13.336 4.803 0.600 33.273 

4 39.980 6.532 3.219 0.402 28.250 36.793 13.607 6.168 0.771 35.869 

5 39.853 6.727 2.871 0.359 27.706 36.249 15.424 6.361 0.795 36.018 

6 39.906 6.645 2.185 0.273 26.953 36.133 15.842 6.083 0.760 35.519 

7 39.908 6.642 2.524 0.315 26.872 35.761 17.260 4.866 0.608 33.343 

8 39.855 6.724 3.187 0.398 27.936 36.860 13.400 4.115 0.514 32.501 

9 41.114 5.031 2.257 0.282 26.135 36.719 13.841 3.297 0.412 31.555 

10 39.843 6.742 3.159 0.395 27.907 34.261 24.379 7.178 0.897 37.660 

11 39.847 6.735 2.586 0.323 27.728 35.172 19.763 7.193 0.899 37.324 

12 40.114 6.334 2.599 0.325 27.066 35.268 19.334 4.626 0.578 33.085 

13 42.018 4.086 1.725 0.216 25.558 38.364 9.478 4.102 0.513 32.410 

14 39.926 6.614 3.654 0.457 28.667 38.372 9.461 5.571 0.696 36.715 

15 39.906 6.645 2.895 0.362 25.329 37.340 11.997 2.747 0.343 29.375 

16 39.923 6.619 3.209 0.401 28.315 36.231 15.489 6.013 0.752 35.081 

17 40.004 6.497 2.743 0.343 27.765 38.632 8.909 3.613 0.452 31.480 

18 39.869 6.702 2.185 0.273 27.036 35.876 16.805 6.907 0.863 37.599 

19 40.466 5.842 2.946 0.368 27.872 39.688 6.988 3.423 0.428 31.220 

20 39.907 6.644 2.472 0.309 27.364 38.002 10.302 4.034 0.504 33.768 

21 39.916 6.630 1.943 0.243 26.673 37.852 10.663 3.948 0.493 31.728 

22 39.946 6.583 1.367 0.171 26.028 39.894 6.663 3.229 0.404 31.365 

23 39.993 6.514 2.182 0.273 26.689 38.433 9.328 3.615 0.452 32.128 

24 39.832 6.759 2.725 0.341 27.592 35.767 17.232 4.174 0.522 32.372 

25 39.849 6.732 2.978 0.372 28.314 36.883 13.330 4.723 0.590 33.424 

26 39.982 6.530 2.212 0.276 26.956 37.925 10.486 3.421 0.428 30.701 

27 39.875 6.692 2.889 0.361 27.635 37.717 11.000 4.676 0.585 33.373 

28 41.091 5.058 3.902 0.488 28.565 42.517 3.643 3.164 0.396 30.941 

29 39.775 6.849 2.214 0.277 26.925 38.212 9.816 3.377 0.422 31.091 

30 39.855 6.723 2.844 0.356 26.522 35.382 18.832 4.720 0.590 33.458 

Mean 40.146 6.332 2.598 0.325 27.185 37.504 12.572 4.511 0.564 33.266 

STD 0.547 0.697 0.605 0.076 0.894 1.920 4.878 1.373 0.172 2.243 
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Figure 3.13 the comparison results between MEZW and EZW 

 The Encryption Component of the MEZW  3.3.2

As mentioned earlier, the traditional block ciphers are less efficient/suitable than stream 

ciphers for image/video encryption in constrained environment. Moreover, instead of 

whole image encryption, selective encryption is sufficient for image security. In MEZW 

coder, the decoder can infer the wavelet coefficients from initial threshold and the data 

stream output from both dominant and refinement pass. Generally, the initial threshold 

will be sent once for the encoded blocks. Therefore, the initial threshold is exploited in 

the MEZW Encryption (MEZWE) proposal as a crucial link to the compression 

algorithm. Thus only the initial threshold will be encrypted by XOR with ten bits which 

are produced by LFSR as shown in Figure 3.14.  
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This is the simplest and constant time form of selective encryption in MEZWE instead 

of encrypting the coefficients. It has similarity with the encryption proposed by 

(Pommer and Uhl 2003), which only encrypts wavelet packet header.  
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Figure 3.14 The scheme diagram of MEZWE system 

 Experimental Work and Analysis of Results 3.3.2.1

The proposed encryption approach was applied to the same images, tested in section 

3.3.1.2. The effect of the encryption component on the MEZWE compressed and 

encrypted images are analysed using histogram and correlation analysis. 

 Histogram analysis  3.3.2.1.1

Histogram analysis is a statistical analysis which reveals the distribution of image pixel 

values. The attacker may use the histogram analysis to deduce the plain pixels; this kind 

of attack is known as statistical attack. When the histogram of the encrypted image is 

approaching a uniform distribution it increases the complexity of statistical attack and 

reduces its chance of success. Test results show that the histogram of encrypted images 

by MEZWE tends to be uniform, which increases the difficulty of the statistical attacker 

to deduce the pixels values from encrypted image. Figure 3.15 shows some typical 

results. 
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Figure 3.15 Histogram of original and encrypted image 

Usually, after encryption is applied, the pixels values of encryption image tend to be 

change compare to those values in original image.  Such change may be irregular. So, 

the higher change in pixels value, reflect the effective of encryption scheme and hence 

the quality of encryption. Therefore, the quality of encryption may describe in terms of 

the total deviation (changes) in pixel values between the original and encrypted image. 

The Maximum Deviation Measuring Factor (MDMF) is often used to estimate the 

quality of encryption scheme. The MDMF maximizes deviation between the histogram 

of original and that of the ciphered image. Generally, when the histogram of encrypted 

image is different from the histogram of the unencrypted image, the MDMF tend to 

increase. Therefore, when the MDMF is higher value, the ciphered image is deviated 

from the raw image and will increase the complexity analysis of attacker to get 

significant information about original image. 
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The MDMF is measured and proved in (H, Kalash and Farag 2007) (El and Abu 2007). 

The MDMF is measure as follow; 

1. Count the number of pixels of each gray scale value in the range 0 to 255 for 

both original and encrypted image (i.e. calculate the histogram distribution for 

original and ciphered image). 

2. Calculate the absolute difference between the Histogram (HS) of original and 

ciphered image. 

3. The MDMF is given in following equation; 

 𝑀𝐷𝑀𝐹 =
𝐻𝑆0 + 𝐻𝑆255 

2
+∑𝐻𝑆𝑖

254

𝑖=1

 3. 6 
 

Where, 𝐻𝑆𝑖 is absolute difference between the histogram of ‘i’ pixel in original and 

encrypted image, i=1, 2, …254. And 𝐻𝑆0, 𝐻𝑆255 is the absolute difference between the 

histogram of zero and 255 in encrypted and raw image. 

We measured the MDMF between the histogram of Figure 3.15. The MDMF for these 

images was high and equal to (55387, 57652 and 59173) respectively. The high MDMF 

confirm that the ciphered images are deviated from the raw images, and the histogram 

of encrypted image does not provide useful information to statistical attack.  

 Correlation analysis  3.3.2.1.2

The statistical correlation is a measure of the linear relationship between two variables. 

It is another measure to test robustness of image encryption schemes against statistical 

attacks. To demonstrate the correlation between two adjacent pixels in encrypted image, 

the correlation (Cr) between two vertically and horizontally adjacent pixels are 

calculated. A 1000 pairs of pixels are randomly selected in each direction and (Cr) is 

calculated by using the following formula. 

 𝐶𝑟 =
𝑁∑ (𝑥𝑗 × 𝑦𝑗) − ∑ 𝑥𝑗 × ∑ 𝑦𝑗

𝑁
𝑗=1

𝑁
𝑗=1

𝑁
𝑗=1

√(𝑁∑ 𝑥𝑗
2 − (∑ 𝑥𝑗

𝑁
𝑗=1

𝑁
𝑗=1 )2 × (𝑁∑ 𝑦𝑗

2𝑁
𝑗=1 − (∑ 𝑦𝑗

𝑁
𝑗=1 )2)

 3. 7 

 

Where x and y are the value of two adjacent pixels, N is the total number of pixels in the 

image  (Kocarev and Lian 2011). The calculated values are in the real interval [-1,1]. 

The nearer the absolute value is to 1, are the more spatially correlated the pixels. The 

correlation coefficients between neighbouring pixels for unencrypted and encrypted 

images in the horizontal and vertical directions for a number of plaintext images and 

cipher text images are shown in Table 3.3. From the table it can be inferred that there is 
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an imperceptible correlation between adjacent pixels in the encrypted images. In 

contrast, there is a high correlation between adjacent pixels in unencrypted images. 

Therefore, the encryption images are thoroughly uncorrelated with the original images. 

This confirms that the encrypted images are robust against statistical attack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table3.3 The correlation coefficient between two adjacent pixels in original and encrypted 

image.  

 

 

Image 

Original image Encrypted image 

Correlation coefficients Correlation coefficients 

Horizontal Vertical Horizontal Vertical 

Images-1 0.578911 0.9309 -0.00552 -0.0037 

Images-2 -1 -1 -0.00242 -0.0026 

Images-3 -1 -1 -0.00063 -0.0011 

Images-4 -0.9503 -1 -0.00199 -0.0016 

Images-5 -1 -1 -0.00122 -0.0015 

Images-6 -1 -0.9997 -0.01235 -0.0139 

Images-7 0.7646 1 -0.00389 -0.0017 

Images-8 -1 -1 -0.00230 -0.0036 

Images-9 -1 -1 -0.00602 -0.0011 

Images-10 -1 -1 -0.00315 -0.0016 

Images-11 -1 -0.9998 -0.00262 -0.0023 

Images-12 -1 -1 -0.00283 -0.0027 

Images-13 0.800438 0.9826 -0.00663 -0.0022 

Images-14 -1 -1 -0.00134 -0.0013 

Images-15 -1 -1 -0.00275 -0.0018 

Images-16 0.74123 1 -0.00216 -0.0012 

Images-17 -1 0.9083 -0.00341 -0.0009 

Images-18 -0.99924 -0.9990 -0.00533 -0.0017 

Images-19 -0.9990 -1 -0.00266 -0.0009 

Images-20 0.6175 0.7398 -0.00334 -0.0011 

Images-21 -0.9206 -0.9985 -0.00151 -0.0014 

Images-22 -1 -1 -0.00247 -0.0008 

Images-23 0.8081 1 -0.00231 -0.0011 

Images-24 0.89205 0.6231 -0.00213 -0.0012 

Images-25 -1 -1 -0.00209 -0.0011 

Images-26 -0.99995 0.9999 -0.00223 -0.0015 

Images-27 -1 -0.8775 -0.00267 -0.0013 

Images-28 0.6411 0.5487 -0.00359 -0.0012 

Images-29 -0.99965 -1.0001 -0.00214 -0.0015 

Images-30 0.84279 -1.0000 -0.00096 -0.0018 
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 Conclusion 3.3.3

In this chapter, we introduced a hybrid EZW and DCT algorithm for joint image 

compression and encryption. We found that the DCT reduced the number of iterated 

loop scans of the EZW encoding. The experimental results show that the performance of 

MEZW method is significantly better than EZW standalone in consuming time 

processing and compression efficiency. The encryption has been performed during the 

compression using the initial threshold of MEZW scheme encoding as a critical part in 

the compression algorithms and only this part is encrypted using a simple LSFR 

scheme. Security analysis shows that the encryption scheme is secure against the 

statistical and the frequency attacks.   

The proposed MEZW compression and encryption is suitable for secured storage and 

offline secured transmission. On other hand, the computational time of this scheme is 

relatively high and need to be improved in any video streaming process. In the next 

chapter, we shall present two methods to refine this scheme and reduce the 

computational cost of processing even further. The first method is based on Joint DWT, 

DCT and Compressive Vector Quantization (JDWCT-CVQ). The last component 

replaces the EZW. In the second method the compression is based on edges extraction 

and JDWCT-CVQ. This step will form the RF processing in the ultimate secure video 

compression scheme researched for this thesis. 
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Chapter 4 

 Optimizing still Image compression & Encryption 

In the previous chapter, we developed the joint DWT and DCT to improve the EZW 

coding algorithm and to add encryption within the coding process. Although, the 

MEZWE scheme has superior performance on all essential factors, we nevertheless 

found that it is not fast enough for a still images and by implication would not be 

sufficiently helpful in our effort to develop a secure video compression scheme. In this 

chapter, we propose two approaches to optimize the MEZWE image compression and 

encryption scheme. In the MEZWE scheme, no consideration is given to similarities 

between different “transformed” blocks within the image. The first optimisation 

approach is therefore based on incorporating Compressive Vector Quantization (CVQ) 

into Joint DWT and DCT. We shall call this the JDWCT-CVQ method. In a second 

approach, we exploit the statistical properties of DWT to extract the edges and combine 

with JDWCT-CVQ; we call this method the JDWCT-CVQ-Edge method. This second 

approach is designed to spend less effort on the smoother regions than those that include 

significantly higher level of texture and edges.  

In section  4.1 we describe the JDWCT-CVQ method and present experimental results 

on its performance. Section 4.2 describes the JDWCT-CVQ-Edge method together with 

the experimental work and analyses of the results. 

4.1 The JDWCT-CVQ simultaneous compression and 

Encryption 

The image compression, in this algorithm, will only compress the coefficients in the 

wavelet high frequency sub-bands while encryption is applied to the wavelet low 

frequency sub-band coefficients. This should allow both compression and encryption to 

be accomplished simultaneously as shown in Figure 4.1. Compression is based on Joint 

DWT and DCT followed by Compressive Vector Quantization (JDWCT-CVQ), awhile 

the encryption is achieved by scrambling the low frequency sub band based on two 

LFSRs with two different secret keys. Thus the computational time of this method is 

much lower than that achieved by the MEZWE and will be shown later in section 4.1. 

We shall first describe the CVQ system. 
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   Figure 4.1 Parallel Image compression and encryption 

 Compressive Vector quantization (CVQ) 4.1.1

Generally, there are two types of quantization: Scalar Quantization (SQ) and 

Compressive Vector Quantization (CVQ). In SQ, each sample number (pixels, 

coefficient) is quantized individually to reduce the numbers of bits that are required to 

represent an integer number as described in subsection  3.2.3. In CVQ the samples are 

quantized as groups/blocks. 

Figure 4.2 shows the block diagram of the CVQ scheme. Firstly, the image to be 

compressed is partitioned into non-overlapping blocks by raster scan, each block is 

referred to as a vector and these vectors are organised in a list called a codebook. Then, 

we start with the first vector as a reference vector and search will start to find vectors 

that are similar to it among all other ones. Similarity is determined by a matching 

criterion, or a distance function. Here two such functions are defined on pairs of vectors  

B1 = (b11, b12, b13, … , b1n) and B2 = (b21, b22, b23, … , b2n):    

1. The so called supreme distance function: 

 
Dist( B1, B2) = MAXi=1

n (b1i − b2i) 4. 1 

 

2. The Euclidean distance function: 

 Dist( B1, B2) = ∑(b1i − b2i)
2

n

i=1

 
4. 2 

 

The Dist will be compared with a pre-set threshold depending on the required CR and 

image quality factor. Here we assume that B1 is a reference vector. If the  Dist is smaller 

than threshold, the B2 vector is considered to be matched with reference block, 

otherwise it is labelled to be a mismatch vector that would become a new reference 

vector. Similar vectors in the codebook are grouped together and their indices will be 

recorded in the codebook together with reference vector. The reference block and the 
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indices of matched vectors will be sent to the decoder and removed from the codebook. 

This process is repeated until all blocks are labelled. 
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Figure 4.2 Vector quantization coding and decoding 

Consider for instance, 4x4 pixels in Figure 4.3 as an image to be encoded. The image is 

sub-divided into blocks of 2x2 pixels by raster scan, and each block is considered to be 

vector and these vectors will be construct the codebook. The error distance between the 

first vectors B1 and other vectors (B2,B3 and B4) is measured by applying equation 4.1 

and then compared with threshold (TH=30). As result of comparison, B2 and B3 are 

matched with B1. So that the vectors B1, B2 and B3 are removed from a codebook. The 

reference block B1 with indexes of B1, B2 and B3 are sent to the decoder. Finally, B4 

and its index are sent to the decoder, as seen in Figure 4.3. 
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18 

 

𝐷𝑖𝑠𝑡(𝐵1,𝐵4) 103 

 

 

Figure 4.3 example of CVQ encoding 

In case of grayscale images, each pixel is represented by 8 bits, and a 4x4 image is 

represented by (8x16=128) bits. Since there are 4 vectors, each index requires 2 bits in 

binary representation, while each vector contains 4x8=32 bits. Therefore, the output bit 

stream of CVQ encoder is equal to summation of bits that were produced from: B1, 

index of matched block, B4 and B4 index=32+6+32+2=72 bits. 

Consequently, the CR achieved by CVQ compression is equal to (72/128 = 0.56). 

(Sayood 2012) (Richardson 2011) (David, Motta and Bryant 2007). 

 The proposed JDWCT-CVQ scheme  4.1.2

Using the CVQ as a replacement for the scalar quantisation scheme in the scheme 

developed in the last chapter is not the only proposed modification. In the new proposed 

JDWCT-CVQ compression will be confined to the matched blocks in high frequency 

sub-bands of the decomposed image wavelet, while the input to the encryption will be 

applied on the low frequency sub-band coefficients without compression.  

 JDWCT-CVQ Compression scheme 4.1.2.1

Figure 4.4 illustrates the compression component of the JDWCT-CVQ scheme. Certain 

steps of this scheme are inspired by and adopted from JPEG2000. Firstly, image pixels 

are converted from unsigned to signed value by subtraction 128 from each pixel value. 

Then the image is DWT transform. Next, each frequency sub-bands are quantized 

individually by a different step size d, i.e. wavelet coefficient t is mapped to:  
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The signs of coefficients are extracted and wavelet coefficients are converted back into 

unsigned integer values. Each high frequency sub-band is divided into small blocks size 

16x16 coefficients by raster scan as and input to the CVQ procedure (see) Figure 4.4. 

 

q(t) = sgn(t) ⌊
|t|

d
⌋. 

T = 2R−C+i   (1 +
f

211
) 

d =

{
 
 

 
 
T

2i
                          if LL

T

2K−1
       if HL or LH

T

2K−2
                  if HH

 

The step size d is determined by the JPEG200 approach as follows: 

Where  

T: is the base step size. 

R: is the number of bits needed to represent the original intensity. 

C: is the number of bits needed to represent the exponent of wavelet 

coefficients. 

f: is the number of bits needed to represent mantissa of wavelet coefficients. 

i: the level of DWT decomposition 

         Where k: 1, 2, etc. is the levels of wavelet decomposition.  
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Figure 4.4 Block diagram of image compression based on hybrid DWT, DCT and CVQ. 

The level of similarity between vectors should not be very high if we to achieve high 

compression efficiency. Therefore, we exploit the DCT and scalar quantization 

properties to increase the similarities between vectors. Finally, the CVQ method, which 

is described in section  4.1.1, is applied to the codebook and the compressed data is sent 

to the transmitter. Note that the transmitted data only include the mismatched blocks 

and the related index, and reference blocks and the indices of matched blocks.     

 Encryption scheme 4.1.2.2

This scheme uses two LFSR’s for encryption. The low frequency sub-band (LL) of 

DWT decomposed image represents an approximation of the original image, the 

encryption of which is expected to provide sufficient security. To strengthen our 

selective encryption, JDWCT-CVQ scheme encrypts the set 𝐿𝐿𝑛𝑒 formed by the highest 

level low frequency sub-band (𝐿𝐿𝑛) appended by the two rows from 𝐻𝐻𝑛 sub-band, as 

shown in Figure 4.5.  The set 𝐿𝐿𝑛𝑒 is subdivided into blocks of 8x8 coefficients and a 

codebook will is constructed from these blocks. The indices of that codebook are 

permuted by first LFSR1 which is seeded by first secret key, and then return shuffled 

blocks into hierarchical sub-band structure form. The set  𝐿𝐿 𝑛𝐸  and  𝐻𝐻𝑛𝐸 denote the 

𝐿𝐿𝑛  and 𝐻𝐻𝑛  respectively after scrambling. Next, the low frequency sub-band (LL) i.e. 

( 𝐿𝐿 𝑛𝐸 , 𝑉 𝑛,  𝐻 𝑛 and 𝐻𝐻𝑛𝐸) is sub-divided into block 8x8.  In order to increase the key 
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space and encryption complexity a second LFSR with different secret key is used for 

the blocks scrambling of LL sub-band. Finally, the encrypted LL sub-band is sub-

divided into block 16x16 and sent to the decoder. 

 

.    Figure 4.5 Block diagram of the proposed encryption 

 Experimental and analysis results  4.1.3

We evaluated the performance of proposed JDWCT-CVQ for image compression and 

encryption using the same set of still images which are tested in chapter 3. In these 

experiments, MATLAB V 7.10 (R2013a) has been used for scheme implementation on 

the same machine used in chapter 3. 

 Compression analysis 4.1.3.1

We tested the performance of the JDWCT-CVQ scheme on image quality of 

reconstructed images, measured the PSNR and Histogram Intersection (HI) with the 

original image as a reference. The experiments tested the effect of CR and processing 
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time when using different threshold (TH) of CVQ with three levels of wavelet 

decomposition. Recall that we use the Haar filter for wavelet analysis.      

Figure 4.6 below show the performance of the scheme in terms of the evaluation factors 

CR, HI, PSNR and the processing time required for the set of test images compression 

and encryption, when the images were  WT decomposed to level 2 with thresholds in 

range 1 to 30. 
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Figure 4.6 Compression results after WT to level 2 

To determine the effect of decomposition level on the various performance parameters, 

the above experiment setting were applied but images decomposed to level 3. The 

achieved CR, PSNR, HI and the execution time for compression and encryption after 

WT to level 2 and 3 are shown in Figure 4.7. 
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Figure 4.7  The mean and STD of Compression results after WT to level-3 and level-2 

In Figure 4.7 it can be seen that CR is improved the higher the level of decomposition 

and the improvement increases as the threshold increases. But this improvement is at 

the expense of the increased compressing time and lower PSNR and HI when level 3 

decomposition is applied. Increased processing time cannot all be attributed to the cost 

of level 3 decomposition. In order to identify other factors that contribute to this 
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performance we calculate the number of blocks produced from compressing a codebook 

k at constant threshold TH=5 for doth decomposition levels of 2 and 3 using different 

images.  The results are shown Table 4.1. 

From the table, below, it can be seen that the number of blocks that were produced after 

applying JDWCT-CVQ on level 1 and 2 is considerably less than the original number of 

blocks. On other hand, at level 3 of decomposition there was a little difference between 

the number of compressed and codebook blocks. Moreover, the increase in the number 

of mismatched blocks at level 3 requires longer time for CVQ encoding. Thus, the 

proposed JDWCT-CVQ compression method is not yet feasible for relatively fast video 

processing when images are WT decomposed to level 3. Consequently, in this thesis we 

shall apply the compression method on high frequency sub-bands level 1 and 2 only and 

the encryption method will be applied on level 3.   

Image 

Level 1 

Block size=16x16 
Level 2 

Block size=16x16 
Level 3 

Block size=8x8 

No. of blocks after compression 
out of 240 blocks 

No. of blocks after compression 
out of 60 blocks 

No. of blocks after 
compression out of 60 blocks 

1 1 17 50 

2 1 19 36 

3 2 44 60 

4 3 56 60 

5 2 55 60 

6 3 46 60 

7 2 42 60 

8 2 28 58 

9 3 40 52 

10 2 56 60 

11 2 60 60 

12 2 39 60 

13 2 48 56 

14 2 43 54 

15 1 6 30 

16 2 58 60 

17 2 38 57 

18 2 60 60 

19 2 34 48 

20 2 35 44 

21 2 36 47 

22 2 35 47 

23 2 35 48 

24 2 33 46 

25 2 35 48 

26 2 34 48 

27 2 35 49 

28 2 35 49 

29 2 33 45 

30 2 45 60 

Table 4.1: Number of blocks post compression, at decomposition level 1, 2 and 3. 
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Finally, the results of the JDWCT-CVQ scheme are compared below with the 

performance of the MEZW scheme introduced in chapter 3. Table 4.2 shows that better 

quality is achieved by MEZW. The cause of this performance is due to error produced 

from matching criterion that used to quantify the similarity between blocks in CVQ. On 

the other hand, the results show that the JDWCT-CVQ produced better CR as compared 

to MEZW. Moreover, the execution time of JDWCT-CVQ is significantly lower than 

that of MEZW. Therefore, JDWCT-CVQ is significantly better than MEZW in coding 

time, but the price for that is worse quality 

Method MEZW JDWCT-CVQ 

Mean of CR 0.325 0.248 

STD of CR 0.076 0.056 

Mean of PSNR/dB 40.146 30.422 

STD of PSNR 0.547 5.336 

Mean of coding and encryption time/Sec 27.185 0.040 

STD of coding and encryption time 0.894 0.013 

Table 4.2 the comparison results between MEZW and JDWCT-CVQ 

   Encryption analysis 4.1.3.2

The proposed encryption scheme was then tested for robustness to statistical and 

frequency attack. Figure 4.8 shows the test images after encryption indicating how 

infeasible to gain information on images content. Robustness in terms of the histogram, 

correlation and PSNR analysis were tested and in Figure 4.9 we show some examples.  



81 
 

Images 1 to 5

Images 6 to 10

Images 11 to 15

Images 16 to 20

Images 21 to 25

Images 26 to 30

  

Figure 4.8 Encrypted Images 

Figure 4.9 shows the histogram of images 1, 7 and 30 before and after encryption. 

Obviously, the histograms of encrypted images are completely different from the 

original images. Moreover, when the MDMF is computed for these histograms using 

equation 3.6 (chapter 3) as shown in Table 4.3. 
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image 1 7 30 

HSi 57023 49140 41341 

HS0 7815 29018 28359 

HS255 1912 2744 13986 

MDMF 61887 65021 62514 

 Table 4. 3  the MDFM of encryption scheme 

The table shows that the MDMF values are high and hence the scheme is more robust 

against statistical attack. Therefore, inferring the secret key from the ciphered images is 

infeasible for a statistical attack. In addition, the correlation between adjacent horizontal 

and vertical pixels are calculated by equation 3.7, and shown in Table 4.4. The table 

shows that the correlation coefficients in encrypted images tend to be zero. So, 

predicting the relationship between encrypted pixels is again infeasible for the 

frequency attacks. 
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Figure 4.9 Histogram of original and encrypted image 
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Image 

Original image Encrypted image 

Correlation coefficients Correlation coefficients 

Horizontal Vertical Horizontal Vertical 

Images-1 0.578911 0.9309 -0.00552 -0.0037 

Images-2 -1 -1 -0.00242 -0.0026 

Images-3 -1 -1 -0.00063 -0.0011 

Images-4 -0.9503 -1 -0.00199 -0.0016 

Images-5 -1 -1 -0.00122 -0.0015 

Images-6 -1 -0.9997 -0.01235 -0.0139 

Images-7 0.7646 1 -0.00389 -0.0017 

Images-8 -1 -1 -0.00230 -0.0036 

Images-9 -1 -1 -0.00602 -0.0011 

Images-10 -1 -1 -0.00315 -0.0016 

Images-11 -1 -0.9998 -0.00262 -0.0023 

Images-12 -1 -1 -0.00283 -0.0027 

Images-13 0.800438 0.9826 -0.00663 -0.0022 

Images-14 -1 -1 -0.00134 -0.0013 

Images-15 -1 -1 -0.00275 -0.0018 

Images-16 0.74123 1 -0.00216 -0.0012 

Images-17 -1 0.9083 -0.00341 -0.0009 

Images-18 -0.99924 -0.9990 -0.00533 -0.0017 

Images-19 -0.9990 -1 -0.00266 -0.0009 

Images-20 -1 -1 -0.00334 -0.0011 

Images-21 -1 -1 -0.00151 -0.0014 

Images-22 -1 -1 -0.00247 -0.0008 

Images-23 -1 -1 -0.00231 -0.0011 

Images-24 -1 -1 -0.00213 -0.0012 

Images-25 -1 -1 -0.00209 -0.0011 

Images-26 -1 -1 -0.00223 -0.0015 

Images-27 -1 -1 -0.00267 -0.0013 

Images-28 -1 -1 -0.00359 -0.0012 

Images-29 -1 -1 -0.00214 -0.0015 

Images-30 -1 -1 -0.00096 -0.0018 

Table 4.4 Correlation coefficients analysis 

 

The PSNR is widely used as objective image quality metric. Normally, when PSNR > 

30dB, the quality of recovered image is estimated as being of reasonable quality (Huang 

and Sakurai 2011). The PSNR values of encrypted images are shown in Figure 4.10. 

The average of PSNR value for all encrypted images is 6.96 dB which makes it evident 

that the encryption algorithm does successfully scramble and conceal the content in 

original images.  
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Figure 4.10 PSNR of encrypted images 

4.2 JDWCT-CVQ-Edge compression 

Despite the very good results obtained above, our intended secure video compression 

could benefit greatly from a higher still image compression while maintaining quality. 

For this we can exploit the link between the statistical parameters of the Laplacian 

distributions of wavelet coefficients in the high frequency {HL, HH, LH} subbands and 

the horizontal, vertical and diagonal image features and edges (see section 3.1). We 

shall use this fact to detect the significant image features (such as edges and corners) 

from these sub-bands by discarding all insignificant coefficients that are further away 

from the mean coefficients. Next we shall describe the new simultaneous image 

compression and encryption, JDWCT-CVQ-Edge scheme.  Similarly to the JDWCT-

CVQ, compression will be applied on the high frequency sub-bands at level 1 and level 

2.  

 JDWCT-CVQ-Edge scheme 4.2.1

The new proposed JDWCT-CVQ-Edge compression scheme works in steps as follows: 

1. Apply two levels DWT to raw image.  

2. The signs of wavelet coefficients are extracted  and  apply the quantization 

method as mentioned in section  4.1.2.1 

3. Calculate the STD for high frequency sub-bands(V1, H1, D1, V2, H2 andD2) 

4. Measure THR = STD × m. (m is a real number that determine the compression 

ratio (CR) and the quality of recovered image).     
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5. Compare the coefficients of each high frequency sub-band with THR and 

convert the coefficients (non- significant) that less than THR to zero. 

6. Partition the high frequency sub-bands of level 1 and two into blocks size 

(16x16) coefficients. 

7. Apply DCT to the high frequency sub-bands each block and construct a 

codebook.  

8. Apply CVQ as mentioned in section  4.1.1. 

Figure 4.11 summarises the main compression steps mentioned above. The image is 

recovered by inverting compression processing. 
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Figure 4.11 Illustrated steps for image compression scheme 

 Experimental work and analysis of results 4.2.2

As before, various experiments are carried out to demonstrate the benefits of the 

JDWCT-CVQ-Edge image compression scheme. We test the performance of our 

proposed schemes using the test images used in chapter 3, section  3.3.1, and are 
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designed to test the performance of JDWCT-CVQ-Edge method at multiple values 

of THR, where:   THR = STD ×m as mentioned in section 4.2.1 and to show the effect 

of implementing DCT and CVQ on the compression efficiency. The values of THR is 

driven from the well-known statistical rule which states that for a “normal” distribution 

about 68 percent of the values will be within one STD (σ) of the mean, 95 percent lie 

within two STD (2σ) and 99.7 percent within three STD (3σ) (Bluman 1996). In fact 

this is roughly true for any distribution and it is used as a test for normality. Figure 4.12, 

below, illustrate this rule for the Gaussian distribution. Note that all high frequency sub-

bands have a Laplacian distribution which are otherwise called Generalised Gaussian.  

 

Figure 4.12 Illustration of the Empirical Rule 

These statistical properties have been exploited by many researchers (Al-jawad 2009) 

(Ma 2002) for a basic image and video compression without applying other than simple 

quantisation, The first test, we conduct below, illustrates the performance of such  

image compression scheme through edges extraction in the high frequency sub-bands of 

level 1 without using DCT and CVQ method. Figure 4.13 illustrates the block diagram 

of the testing procedure. The quantization method mentioned in section  4.1.2.1 has been 

used in this test. 
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Figure 4.13 Experiment scheme to image compression through edges extraction for level 1 

wavelet decomposition 

Figure 4.14 displays the achieved CR and the quality of compressed high frequency 

sub-bands of level 1 (V1, H1, D1) at threshold (THR) of level 1 when ‘m’ equal to1, 1.5 

and 2. It can be seen that the CR and quality seem to be inversely proportional to the 

THR value, but the PSNR values are less affected by increased threshold. This trend 

apply to all images but the performance is dependent on the amount of texture present in 

the image (compare the CR results for images 1, 2, 17, and 26 that involve relatively 

more texture than the other images). These results allow us to increase the CR, if need 

be, without significant loss of image quality.   



89 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

C
R

Image

Compression Ratio (CR)

THR=STDx1

THR=STDx1.5

THR=STDx2

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

P
S

N
R

/d
B

Image

PSNR

THR=STDx1

THR=STDx1.5

THR=STDx2

 

Figure 4.14 CR and PSNR from level 1 sub-band (V1, H1, and D1). 

To explain the above trend, Figure 4.15 displays the number of significant coefficients 

(i.e. surviving the THR’s filtering) in the non-LL sub-bands at level 1 only. It is clear 

that a large percentage of non- significant coefficients will not survive the filtering 

when THR increases. 
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Figure 4.15 Number of significant coefficients of the sub-bands (V1, H1 D1) for THR=1, 1.5, 2. 

The experiment settings applied in Figure 4.13 were also applied on both high 

frequency sub-bands of level 1 and level 2 with’ m’ equal to 1, 1.5 and 2.  In the first set 

of experiments, only wavelet transforms applied without using DCT or CVQ. The 

charts in Figure 4.16 show the CR and PSNR of compressed high frequency sub-bands 

of level 1 and 2 wavelet decomposition. Thus, the experimental results show again that 

the CR and PSNR are correlated with THR values. And at the same time, the show 

slightly improved CR without loss of quality.     
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Figure 4.16 CR and PSNR of JDWCT-CVQ-Edge encoded images for different thresholds. 

The next set of experiments tested the effect of using joint DCT and CVQ with edges 

detection (JDWCT-CVQ-Edge) on CR and PSNR. Figure 4.17 show the comparison 

between the results (CR and PSNR) of compression based on edges extraction and 

JDWCT-CVQ-Edge. The data from the experiment shows that both CR and PSNR for 

JDWCT-CVQ-Edge method improved as compared with CR and PSNR of edges 

extraction method alone because the DCT compact the signals energy in low frequency 

region, and JDWCT-CVQ-Edge method does not require mapping the significant 

coefficients. As can be seen in Figure 4.17, the quality is proportional with CR.   
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Figure 4.17 represent the comparison results between compression based on hybrid method and 

edges extraction 

The results of this approach are compared with MEZW and JDWCT-CVQ scheme as 

shown in Table 4. 5 The MEZW scheme achieved better quality than other schemes. On 

the other hand, the table shows that JDWCT-CVQ and JDWCT-CVQ-Edge produced 

better CR when compared to MEZW. In addition, the coding time of JDWCT-CVQ and 

JDWCT-CVQ-Edge scheme is significantly lower than that of MEZW. Therefore, we 

are proposing to use JDWCT-CVQ and JDWCT-CVQ-Edge schemes for video 

compression as presented in chapter 5 and 6 respectively.  

Method MEZW JDWCT-CVQ JDWCT-CVQ-Edge 

Mean of CR 0.325 0.248 0.1499 

STD of CR 0.076 0.056 0.0287 

Mean of PSNR/dB 40.146 30.422 25.424 

STD of PSNR 0.547 5.336 5.3255 

Mean of coding time/Sec 27.185 0.040 0.0625 

STD of coding time 0.894 0.013 0.0007 

Table 4. 5 the comparison results between MEZW, JDWCT-CVQ and JDWCT-CVQ-Edge 
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Although, the average image quality in terms of PSNR, but the image quality can be 

improved by adjusting the threshold for controlling the level of significant coefficients 

obtained from the various high frequency sub-bands as well as the threshold that control 

block similarity. Surely, this will results in increasing further the processing time which 

is somewhat worse than the JDWCT-CVQ time. However, for compressing videos this 

could be compensated for by avoiding the use of DCT for non-reference frames.  In fact 

this approach will be investigated in the next chapters. 

4.3 Conclusion  

In this chapter two image compression and encryption schemes have been proposed. 

Compression was applied on high frequency sub-bands and encryption was applied on 

the low frequency sub-bands of image wavelet decomposition. The (JDWCT-CVQ) 

compression works block-by-block by combining DWT, DCT and CVQ. The algorithm 

has a relatively high speed processing time with high compression ratio and reasonable 

quality. We have found that the compression on high frequency sub-band of level 3 is 

ineffective and degrades the quality. The encryption scheme is applied on the low 

frequency sub-bands with extra appended information selected from high frequency 

sub-band by using two LFSRs. Our experimental work demonstrated that the encryption 

method provides a good security against statistical and frequency attack. The proposed 

compression and encryption scheme can be used simultaneously. Therefore, our 

intended video compression method will be implemented on the high frequency sub-

bands of level 1 and 2 and the encryption on the low frequency sub-bands of level 3.    

Moreover, in this section, an image compression through hybrid edges detection, DCT 

and CVQ has been investigated. We have used the statistical properties of the high 

frequency sub-bands of wavelet decomposed images. These statistical properties are 

exploited in image compression to extract the significant coefficients (edges). Our 

experimental work demonstrated that the mapping of these significant coefficients is 

cost effective compression algorithm. The CVQ (JDWCT-CVQ-Edge) was designed a 

block based similarity by combining DWT, edges sensing, and DCT to achieve better 

compression ratios and image quality compared with edges standalone wavelet-based 

compression. Furthermore, we investigated the effect of applying different thresholds, 

which is driven from STD of high frequency sub-bands, to preserve the significant 

coefficients. The results show that the compression ratio and image quality are 

proportional to the threshold value. We also tested the performance of this algorithm 
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without using the DCT and CVQ. The results will be exploited to investigate a version 

of this algorithm without the DCT for compressing non-reference frames. The CVQ 

provides an appropriate mechanism to design a video coding Therefore; in the next 

chapter we shall use the JDWCT-CVQ for video compression and encryption 

simultaneously at low computational cost. 
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Chapter 5 

CVQ for Secured Video compression 

Video and data communication is an essential component in developing a solution to the 

specific application described in Chapter 1, whereby we assume mobility but 

constrained computational power for sensitive video transmission over wireless 

information of limited bandwidth channel. In this chapter we shall describe a new 

technique for video compression and encryption. The compression builds on and 

benefits from the work of the last two chapters on the Joint DWT, DCT and CVQ 

procedures for encoding the reference frame as well as subsequent frames by exploiting 

intra-frame block similarity. The encryption algorithm utilizes two LFSRs seeded with 

three secret keys to scramble the significant wavelet coefficients multiple times. As 

described in the previous chapter, section  4.1.2, the compression will be applied on high 

frequency sub-bands and the encryption is to be applied on LL sub-band of image 

wavelet decomposition at level 3. Both algorithms may be applied simultaneously based 

on wavelet domain. We shall demonstrate experimentally that the proposed algorithms 

have the following features; high compression ratio, acceptable image quality, 

resistance to the statistical and frequency attack, and low computational processing cost.  

In section  5.1, we shall review the most popular video compression techniques. 

Section  5.2 describes the video version (JDWCT- CVQ) scheme for video compression 

and encryption. The experimental results and analysis will be presented and discussed in 

section  5.3. Finally, the conclusion is presented in section  5.4. 

 

5.1 Existing Video coding techniques 

A digital video object is a sequence of images, called frames. Besides the spatial 

redundancy within each single frame in video sequences, successive frames usually are 

very similar and this is known as inter-frames redundancy or temporal redundancy. 

Naturally, existing video compression techniques aim to remove as much as possible 

intra and inter-frame redundancies within the video data subject to the various 

constraints on CR, image quality, bandwidth, and time complexity. Usually, video 

compression starts by compressing the first frame (Intra-frame) using a still image 
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compression method. Then each successive frame (Inter-frame) is compressed by 

identifying the differences between the intra and past frame and encoding only these 

differences (motion vector data) to be transmitted rather than the whole frame again. 

This inter-frame method is known as temporal encoding. The intra frame encoding is 

referred to as the ‘I’ frame or the Reference Frame (RF) and the inter frame encoded 

frames are referred to as the P (for predictive) frame while an inter frame encoded using 

both past and next frames is known as B (Bidirectional) frame. In this thesis, we adopt 

the forward prediction temporal encoding and only I frames (RF) will be used for 

motion vector prediction to help in reducing the video encoding time. 

Figure 5.1 shows an example of video frames encoding, the video contains seven 

frames: I frame is sequence 1, P frame is sequence 4 and 7, and B frame is sequence 2, 

3, 5 and 6.  I frame 1 is encoded individually as reference frame. B-frames 2 and 3 are 

encoded after P-frame 4 is encoded and B-frames 5 and 6 are encoded after encoding P 

frmae-7 which is encoded based on past P frame-4 as shown in Figure 5.1B. This 

process is applied in MPEG compression to construct the P and the B frames based on I 

frame.  This kind of temporal encoding is time consuming and it is applied mainly in off 

line video compression.  

In the flash player (described in chapter 2, section 2.2.2.1.1), the B frames are replaced 

with D frames. The D frames use only the recent I or P frame (forward prediction) for 

motion vector prediction. As a result, the codec D frames achieve less compression ratio 

compared with MPEG but it improves the real-time processing.  
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Figure 5.1 example of video frames encoding (A) display order (B) encoding order 

 

The block based motion compensation process is the most frequently used in the inter-

frame compression. It produces an approximation of an inter frame (B or P frame) by 

reusing data contained in the RF (intra or I or P frame). The inter-frame compression is 

accomplished in three stages. Firstly, the inter-frame is divided into non overlapping 

blocks (target blocks), and then each Target Block (TB) in the inter-frame is compared 

to its counterpart(C) in the RF frame to determine the matching block within the search 

area. Block matching is the most time consuming part of the video encoding process. 

The search area is defined by the maximum displacement parameters dx and dy. If TB is 

a square block with dimension b, the search area will include (b+2dx) (b+2dy) pixels 

and will contain (2dx+1) (2dy+1) overlapping blocks, see Figure 5.2.  Finally, the 

position of the matched block (motion vector) in RF is encoded in place of the TB itself. 

Since fewer bits are required to code motion vector than to code the TB blocks, 

compression is achieved. 

A 

B 
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Figure 5.2 displays corresponding blocks from an inter- frame and RF frame and the search 

area in the RF frame. 

During decompression, the decoder uses the motion vectors to find the matching blocks 

in RF frame (which it has already recovered) and copies the matching blocks from the 

RF frame into the appropriate positions in the approximation of the inter-frame. 

Due to the extensive computation involved in the above two methods (MPEG and Flash 

player) together with the advances in computation power, many video compression 

have been proposed to compress each frame independently by Motion JPEG2000 (MJ2) 

or simple wavelet-based algorithms (Al-jawad 2009) (Ehlers 2008) (Ma 2002). Our 

proposed will have similarity with the MPEG, but we shall use the forward prediction 

rather than both backward and forward prediction. Moreover, we exploited knowledge 

about the spatial and temporal redundancies in terms of statistical parameters of high 

frequency wavelet sub-bands. 

5.2 JDWCT- CVQ scheme for video compression and 

encryption 

In this algorithm, all frames are transformed with the Haar filter and work to reduce 

both spatial redundancies within the blocks of the frames plus the temporal 

redundancies across neighbouring sequences of frames. The other steps of compression 

are only applied on the high frequency sub-bands level 1 and 2, whereas encryption is 

applied on the low frequency sub-band of level 3 (LL3) without compression to achieve 

relatively faster encryption and effective security rather than using LL2 or LL1. 

Therefore, this method of video compression and encryption can be used together, as 
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mentioned in chapter 4, section 4.1, to reduce the computational processing time as 

demonstrated in Figure 5.3. The high frequency sub-bands are sub-divided into non-

overlapping blocks of a certain size and then the DCT is applied to each block. The 

DCT results in rearranging the significant block coefficients and thereby creating more 

redundancies and facilitating their removal at the block level in a very efficient manner. 

Similar blocks, determined by pre-specified thresholds, will be discarded but referenced 

by only one block. This approach improves the compression ratio. The following 

sections explain the compression and the encryption in more details.  
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Figure 5.3 parallel video compression and encryption 

Note that redundancies among high frequency wavelet sub-band blocks are more 

common than among the spatial domain image blocks. In fact, similar blocks in high 

frequency sub-bands do not correspond to similar image blocks. Hence, removing 

redundancies from high frequency sub-bands is more effective than doing the same in 

the spatial domain.   

  The compression algorithm  5.2.1

For each frame in the video sequence, a wavelet transform will be applied to level 3, 

and the coefficients are converted to integer unsigned values. The high frequency sub-

bands of level 1 and 2 will be quantized separately, in the same way as applied in the 

chapter 4, section 4.1.2.1 . To provide a high similarity between blocks of adjacent 

frames we sub-divide the high frequency sub-bands to blocks of 16x16 and apply DCT 

to each block.  
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Based on compressive vector quantization (CVQ) method, described in chapter 4, 

section  4.1.1, each sub-divided block is considered to be a vector and these vectors will 

be used to construct a codebook. After applying CVQ method the compressed codebook 

will be transmitted and contains the mismatched blocks and only one copy of any such 

block with references to the others in its similarity class. This method will be applied to 

the Reference Frame (RF) only. The RF will be sent every 25 frames to enhance the 

video quality, but in some cases one may select RFs more frequently or even adaptively 

depending on network traffic loads. For the nRF frames, the CVQ method will be 

applied but this time the matching criteria will compare the corresponding blocks of the 

RF codebook and the Current Frame (CF) codebook. For example, blocks 1, 2, 3, 4 and 

5 of RF codebook may be matched with their counterpart of the CF codebook while 

blocks 6 and 7 are mismatched with the corresponding blocks of CF codebook. 

Therefore, the matching blocks of the CF are discarded and only the mismatching 

blocks and their pointers are sent to the transmitter as shown in Figure 5. 4. 

The block matching criterion, in this algorithm, is based on a pre-set threshold (THR), 

calculated in terms of the desired compression ratio and the quality factor as we 

displayed in chapter 4, section  4.1.3.1. This will be decided in advance or is left to vary 

adaptively depending on network traffic loads. The distance Dist between the any two 

blocks, B1and B2, is calculated as shown in the equation below:  

 

𝐷𝑖𝑠𝑡(B1, B2) = max (B1 − B2) 5.1 

  

This  𝐷𝑖𝑠𝑡 will be compared with THR to identify the matching block. 

During decompression, the decoder uses the indices of matching blocks to catch the 

matching blocks in the RF codebook which it has already received, and copies the 

matching blocks from RF into the CF codebook positions. Additionally, the decoder 

uses the mismatching blocks and its indices into the CF codebook positions. The frame 

is reconstructed during the inverse DCT, CVQ and DWT. 

. 
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Figure 5. 4 Block diagram of the video compression 

 The encryption algorithm 5.2.2

Considering the linearity weakness of LFSR, here we follow the A5 stream cipher and 

use a number of LFSRs, with three secret keys applied in three rounds on wavelet sub-

bands of level 3. This combination will increase the security level of the used 

encryption method without significantly increasing processing time. This method is 

shown in Figure 5.5. In the first round, the encryption focus will be on the low 
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frequency sub-band of level 3 ( LL3) part padded with extra information added from 

high frequency sub-band  of level 3 (H3). This part will be divided into blocks of 8x8 

and then scrambled using a certain LFSR supported by a secrete key (Key1). All 

scrambled blocks will be put back into their original places. The second round will 

involve the entire level 3 sub-bands by sub-dividing it into 8x8 blocks. In this round all 

level 3 blocks will be scrambled again using a second LFSR with secret key (Key2). 

The final round will use a different block sub-division (16x16) with the initial LFSR set 

to a third secret key (Key3). 

This method will shuffle the significant information located in LL3 in different forms 

and distribute it in the entire level 3. This makes re-shuffling the information of the 

band without knowing the secret key very time consuming, particularly in the case of 

video streaming. 
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Figure 5.5 Illustrates the Encryption scheme 
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5.3 Experimental work and analysis  

In this section, we shall evaluate the performance of the above JDWCT-CVQ video 

compression and encryption scheme, and demonstrate the effect of periodic RF on the 

compression efficiency, quality and the encoding complexity. Then, we shall compare 

the performance of our approach with other algorithms. The simulation of the proposed 

scheme is carried out using MATLAB V 7.10 (R2013a) on the same machine revealed 

in chapter 3. 

The proposed method was applied on 6 different videos of different nature, each 

consisting of 100 frames on average. Few RF frames from these videos are shown in 

Figure 5.6. The frame size of all these videos is (256 x320) pixels. During our 

experiments we converted all frames to grayscales 
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Video-1

Video-4

Video-5

Video-6

Video-2

Video-3

 

Figure 5.6 shows sample frames of videos test 

 The periodicity of reference frames 5.3.1

In this section we shall examine the influence of period of selecting RF on compression 

method. The RF will be sent to the decoder every n frames (n represent the distance 

between two nearest I-frames) as shown in Figure 5.7. We tested the effect of 
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periodicity of RF on compression efficiency and quality of recovered frame at various 

periods of RF.  In this test, the periodicity of RF is chosen as n= 10, 15, 20, 25, 30, 35, 

40, 45 and 50 inter-frames or non-Reference Frame (n-RF). All tests were performed 

using the constant threshold THR1= 2 and THR2= 8 for compressing the high 

frequency sub-bands of level 1 and 2 respectively.  
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Figure 5.7 shows a periodic Reference Frame (RF) in video compression proposed scheme 

The results of these experiments are presented in Figure 5.8 and Figure 5.9. As can be 

seen from Figure 5.8, the Compression Ratio (CR) tends to increase marginally when 

the period n of RF increases perhaps because more temporal mismatching blocks will be 

produced through CVQ processing, especially when the period n exceeds 25 frames. 

This trend is evidently similar for all the tested videos, although there are differences 

between CRs for different videos due to variation in speed of change. Figure 5.9 and 

Table 5.1 show the mean (M) and standard deviation (STD) of PSNR that were 

achieved for different period n. the data of Figures 5.8 and 5.9 shows that there were a 

trade-off between CR and quality . 

From the experimental results it may be estimated that selecting the RF encoding every 

25 frames achieves an effective solution for video compression with a good CR, 

acceptable quality and encoding time which is a suitable for constraint applications. 
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Figure 5.8 the effect of period RF on CR 

 

Table 5.1 The Mean and STD of PSNR for decompression video at different period RF  

 

 

 

 

 

n 
video-1 video-2 video-3 video-4 video-5 video-6 

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD 

10 37.776 1.037 33.772 0.870 35.089 3.274 36.002 1.892 36.577 0.844 31.359 0.976 

15 37.489 1.077 33.772 0.870 35.846 2.962 36.002 1.892 36.588 0.857 31.091 1.275 

20 37.455 1.046 33.789 0.842 36.138 2.901 36.002 1.892 36.662 0.712 31.540 0.921 

25 37.191 1.173 33.789 0.842 35.686 3.294 36.002 1.892 36.612 0.844 31.685 1.041 

30 37.117 1.291 33.772 0.870 35.214 3.142 36.002 1.892 36.657 0.698 31.805 0.962 

35 37.085 1.277 33.789 0.842 35.286 3.679 36.002 1.892 36.540 0.971 31.946 0.643 

40 37.023 1.070 33.789 0.842 36.734 2.415 36.002 1.892 36.662 0.712 31.641 1.050 

45 36.956 1.104 33.772 0.870 36.301 2.748 36.002 1.892 36.682 0.679 31.732 1.145 

50 37.074 1.032 33.789 0.842 35.740 3.209 36.002 1.892 36.682 0.679 32.078 0.577 
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Figure 5.9 the mean and STD of PSNR of tested videos at different RF period 

The results in Figure 5.9 confirm that PSNR values are marginally affected by the value 

of n in the range 10-50. However, for all n values the mean PSNR value is influenced 

by the type of video used. In fact, the lowest PSNR mean is achieved with video 6, 

which contains moving objects and the second lowest PSNR mean is achieved with 

video 2 of earthquake, which involve significant temporal variations. Moreover, from 

Figure 5.8 similar observations can be made about the mean CR values for those two 

videos.  This is also confirmed next.  

 Compression analysis 5.3.2

The achieved compression ratios (CR) of tested videos are shown in Figure 5.10. The 

compression ratio reflects the video complexity. If the video contains complex objects; 

many mismatched blocks will be produced during the compression process. Therefore, 

the compression ratio varies from one video to another.  

In order to show the reconstruction quality, the Peak Signal to Noise Ratio (PSNR) is 

used as quality measurement criterion. All tests were performed using the same 

compression threshold as mentioned in section  5.2.1. Table 5.2 shows the Mean and 

Standard Deviation (STD) of PSNR calculated for each frame of video.   

It can be seen from Figure 5.10 and Table 5.2 that the quality is proportional to the CR. 

For instance, video-6 contains objects moving within frames. Therefore, the CR and 

PSNR are small. In contrast, the objects and camera are moving in video-5, so that the 
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CR and PSNR are relatively high. Since both CR and image quality are dependent on 

the block similarity thresholds and therefore the proposed compression should adapt the 

select these thresholds according to the video complexity.  

 

 

 

 

 

 

 

 

 

Figure 5.10 displays CR for tested video 

. 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2 the Mean and Standard Deviation (STD) of PSNR for decompression and decryption 

video 

Figure 5.11 shows execution time for compression-encryption and decompression-

decryption of 100 frames for each video. The processing time for video-1, including 

compression and encryption, was 0.82 sec while for video- 3 was 0.54 sec. The 

Video Video Complexity STD Mean 

Video-1 VIP men 0.6335 37.7231 

Video-2 Shaky car (earthquake) 0.7835 32.7242 

Video-3 Highway car traffic 0.5136 36.1157 

Video-4 Slow rhinos with a car 1.6364 34.4655 

Video-5 
VIP lane departure 

(highway) 
0.6552 36.8360 

Video-6 Xylophone 0.2940 31.2958 
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processing time difference reflects the complexity of the videos in terms of the temporal 

variation 

 

 

Figure 5.11 illustrates the execution time for video compression-encryption and decompression-

decryption 

The acceptable video streaming assumption is based on the widely agreed fact that the 

human vision system require a frame rate of the supplied videos be 30 frames/sec. In 

this case 100 frames need to be processed in 3.33 seconds. Our achieved record on 

encoding (compression and Encryption) processing time is significantly < 1 second.  

Admittedly, this may be due to the assumed small frame size and we need to establish 

acceptable time processing for larger size video frames. In Chapter 7, we shall 

investigate the performance for larger sizes and for RGB videos.  

The performance of this approach, in terms of CR and PSNR, is also compared with 

other schemes (Shrestha and Wahid 2010)  that proposed a hybrid DWT and DCT for 

biomedical image and video compression. For this comparison we used the same video 

(endoscopic) that has been used when applying our proposed method. The results show 

that our method significantly outperforms their method. Note that Shrestha & Wahid 

method was shown to outperform JPEG and SPIHT schemes by nearly 7% as shown in 

Table 5. 3. Furthermore, the testing videos and endoscopic video are tested in the 
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proposed video compression for constant CR at 97 %, where the average PSNR in our 

method was 30.9 measured for 100 frames as shown in Table 5.4 This improvement in 

our results was because (Shrestha and Wahid 2010) have  discarded all the high-

frequency sub-bands, while in our method we applied the DCT to these sub-bands with 

minimum loss in the quality. 

 

  

Method CR PSNR(dB) 

DWT algorithm 97% 19.84 

DCT algorithm 97% 14.63 

Shrestha & Wahid, 

2010)scheme 
97% 24.24 

Proposal scheme 97.7% 29.979 

Table 5. 3PSNR of reconstructed frame of endoscopic video 

Table 5.4 the mean and STD of PSNR of tested video at constant CR = 97%. 

 

Finally, we shall demonstrate in theory the suitability of this algorithm for transmission 

over a communication channel that uses Wireless Local Area Network (WLAN), is 

802.11b with stream data rate of 5.5 M bit/sec (Goldsmith 2005). The required bit rate 

for this raw video will be calculated as below:  

256x320x8x100 = 65536000 bits 

Video STD Mean 

Video-1 0.3746 33.5896 

Video-2 0.6356 30.5988 

Video-3 0.2683 28.9361 

Video-4 1.3769 31.9616 

Video-5 0.7612 32.5053 

Video-6 0.6419 29.7121 

Endoscopic  0.4774 30.9798 
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The required time to transmit uncompressed 100 frames using the above wireless card, 

is 65536000/5500000 ≈ 12 sec. Based on figures 5.10 and 5.11, the achieved CR and 

the execution time (time needed for encryption and compression) for video-1 was 0.15 

and 0.8 second respectively. Hence, the transmission time for a compressed 100 frames 

of video-1 with this WLAN is equal to 0.15x (65536000/5500000) + 0.8 =2.587 second. 

Thus, 30 fames transmission will require 0.77sec. Furthermore, the mean of the 

encoding and compression ratio of all tested video is 0.659 sec and 0.163 respectively. 

So, the average time of transmission 100 frames is equal to 0.163x (65536000/5500000) 

+ 0.0.659 =1.9422 second i.e. the proposed algorithm will code these videos at the 

source video rate within the assumed constraints of processing time.     

 Encryption analysis 5.3.3

The encryption analysis was performed in three different ways; histogram analysis to 

assess the viability of any statistical attack; correlation analysis to assess the viability of 

frequency attacks, and the PSNR analysis to assess the availability of significant 

information left in the clear. These types of analysis have been used in (Huang and 

Sakurai 2011), (Pareek, Patidar and Sud 2006), and (Sathishkumar, Ramachandran and 

Bagan 2012). 

 Histogram analysis 5.3.3.1

Figure 5.12 and Figure 5.13 shows a frame selected from video 1,3 and 6, the figure 

shows the frame after encryption and decryption and their corresponding histograms.  In 

addition, we calculate the MDMF between the histogram of encrypted and unencrypted 

frames by using the equation 3.6 which is given in chapter 3.  

video 
1 12 25 

𝐻𝑆𝑖 42222 41656 43111 

HS0 30952 30524 29963 

𝐻𝑆255 13468 13749 14066 

MDMF 64432 63793 65126 

 Table5. 5 the MDFM of some encrypted video 

The MDMF for this histogram shows in Table 5.5. The MDMF values showing that the 

ciphered video frames are different from the deciphered frames. As result, the histogram 



112 
 

of the encrypted frame does not provide any information that can be used for any 

statistical attack.  

Video-1

Video-3

 

Figure 5.12  (A1, C1) represents encrypted frame, (B1, D1) represents histogram of 

encrypted frame, (A2, C2) represents decrypted frame, (B2, D2) represents 

histogram of decrypted frame 

 

 

 

 

 

 

A1 A2 

B1 B2 

C1 C2 

D1 D2 
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Video-6

 

Figure 5.13 (A) represents encrypted frame, (B) represents decrypted frame (C)       

represents histogram of encrypted frame, (D) represents histogram of decrypted frame 

 Correlation analysis 5.3.3.2

Correlation is a measure of the relation between two variables. So, if the correlation 

between two variables is close to zero, then predicting their relationship becomes 

difficult. In order to evaluate the correlation between two adjacent pixels, in vertical and 

horizontal direction within the same frame, 1000 pairs of horizontally and vertically 

adjacent pixels are selected randomly from the original and encrypted frames. The 

correlation of the selected coefficients is then calculated by applying equation 3. 7, 

given in chapter 3. Table 5.6 shows that the correlation of the original frame is 1 or 

close to 1. In contrast, the correlation of the encrypted frame is close to 0.  

Table 5.6 the Correlation coefficient of adjacent pixels 

The scattered plots of the correlation of neighbouring pixels in the original and the 

encrypted frames are shown in Figure 5.14. It can be seen that neighbouring pixels in 

A B 

C D 

video Encrypted frame  Original frame 

Correlation coefficient Correlation coefficient 

Horizontal Vertical Horizontal Vertical 

1 -0.0014 - 0.018 -1 -1 

 2 -0.0059 - 0.0052 -1 -1 

3 -0.005 - 0.0011 0.999 0.989 

4 -0.0066 - 0.0012 -1 -1 

5 -0.0061 - 0.00124 -1 -1 

6 -0.0022 - 0.0012 0.998 1 
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the encrypted frame are of low correlation. In contrast, the correlation of neighbouring 

pixels values in the original frame was around 45°diagonal line, which indicates that 

two neighbouring pixels are highly correlated. 

Video-1

Video-3

Video-6

 

Figure 5.14 illustrates the correlation of two adjacent pixels in the encrypted and 

decrypted frames, (A1, C1, E1) represent the correlation test   in horizontal 

direction of the encrypted frame in video 1,3 and 6 respectively, (A2, C2, 

E2)represents correlation test  of encrypted frame in vertical direction,(B1, D1, 

F1) and (B2,D2, F2) represents the correlation  test for decrypted frame in the horizontal and 

vertical direction respectively.  

 

A1 A2 

B1 B2 

C1 C2 

D1 D2 

E1 E2 

F1 F2 
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 PSNR analysis 5.3.3.3

Peak signal to noise ratio is commonly used as the objective measure to assess 

intelligibility of reconstructed image. Generally, when PSNR > 30dB, the quality of 

reconstruction is estimated as acceptable (Huang and Sakurai 2011), the mean and STD 

of PSNR for ciphered frames are shown in Table 5.7. The low PSNR values reflect the 

difficulty in recovering the original frame from the encrypted frame, without knowing 

the secret key of encryption algorithm. 

       

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. 7 the Mean and Standard Deviation (STD) of PSNR for encrypted video 

 Attack complexity analysis 5.3.3.4

In order to evaluate the encryption security level of our approach in terms of attack 

complexity, we computed the number of possible combinations of permutations and 

compared it with AES method with 256 bit keys ≈1077. The total number of possible 

combinations of block permutations constructed from wavelet sub-bands of level is 

3≈ 10161  which is greater than the number of possible permutations of AES, thus 

making a brute force attack on the AES key more efficient than trying to reshuffle the 

scrambled blocks of our proposal encryption (Unterweger and Uhl 2012). 

 

 

 

 

Video STD Mean 

Video-1 0.4075 12.9150 

Video-2 0.4338 14.7446 

Video-3 1.2436 15.1161 

Video-4 2.1767 13.1353 

Video-5 0.3196 13.2366 

Video-6 0.0569 13.2158 
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5.4 Conclusion  

In this chapter, we adapted the still image JDWCT-CVQ simultaneous compression and 

encryption for secure video streaming and tested its performance in terms of a variety of 

compression and security measures. The video compression has been performed using 

block based similarity by combining DWT , DCT and CVQ (JDWCT-CVQ) to achieve 

high compression with an acceptable quality compared with non-block based approach. 

The compression algorithm reduced the computational time for block matching between 

reference frame and current non-reference frame. In addition, the matching criterion of 

our proposal, which is used to quantify the similarity between blocks, is very fast 

because only subtraction operation is included. The selective encryption, based on 

wavelet coefficient scrambling using two LFSRs.  

We have demonstrated that this approach provides a solution for secured video 

streaming with a relatively high speed processing time while maintain reasonably good 

quality and high security level with simple stream cipher encryption. We investigated 

the effect of the periodicity of selecting RF on the compression efficiency, image 

quality and encoding time. The experimental results show that the period RF for every 

25 frames realized high compression efficiency with acceptable quality. The encryption 

analysis includes histogram analysis, correlation analysis and PSNR. The security 

analysis shows that a cipher algorithm is secure from statistical analysis attack and 

frequency analysis attack. 

In the next chapter we shall use JDWCT-CVQ-Edge in video compression and 

encryption to further optimize the computational performance for simultaneous video 

compression and encryption. 
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Chapter 6 

Edges Sensing for Simultaneous Video Compression 

and Encryption 

Applying both compression and encryption techniques on video streaming is one of the 

challenges where speed, quality and the security are paramount. In the last chapter, we 

develop and tested the performance of the video JDWCT- CVQ scheme by expanding 

the use of CVQ for the reduction of the temporal redundancies across sequences of 

frames between successive RFs. Although the scheme succeeded in meeting the 

requirements for video streaming under the strict constrains, and high CR, the video 

quality measures was fluctuating according to the complexity of the video content in 

terms of temporal variation in texture. In chapter 4, section  4.2 we described the 

statistical properties of high frequency sub-bands of DWT and we established that these 

properties provide an easy way of gaining spatial information about significant image 

features (e.g. edges). This was used to develop the JDWCT-CVQ-Edge image 

compression scheme which was shown to yield reasonably high image quality by 

preserving the significant image features including edges. In this chapter, we expand on 

that work and propose a wavelet based dynamic edge sensing in order to encrypt the 

low frequency sub-band edges while compressing the high frequency sub-bands. The 

aim of this work is to improve image quality, maintain high security of encryption and 

to optimize the computational performance for both encryption and compression. Both 

encryption and compression are based on edges detected from the wavelet high 

frequency sub-bands. The DWT provides dynamic edges detection which makes the 

compression ratio dynamic and provides different approach to a selective encryption. 

Compression and encryption are achieved individually on different wavelet sub-bands, 

and thus implemented simultaneously as described in chapter 5, section  5.2.  

The compression algorithm includes two major steps, Reference Frame (RF) encoding 

and non-Reference (n-RF) Frame encoding. As in the last scheme, the compression is 

applied on high frequency sub-band of level 1 and 2. In the previous chapters, we used 

LFSR key stream cipher for encryption, and although this may be satisfactory, their 

main weakness relates to their generation. We modify the encryption algorithm by 

utilising the chaotic logistic map combined with sine map to scramble the wavelet low 

frequency sub-band coefficients corresponding to the edges extracted from the low 
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frequency sub-band. The locations of edges are mapped from the high frequency sub-

bands using different thresholds. In the first two sections, below, we describe the 

chaotic logistic map as well as the sine map, and investigate their combination to 

provide the desired security. In section  6.3, we shall utilize the statistical properties of 

high frequency sub-bands of DWT for video compression and encryption. Section  6.4 

presents the experimental results to test the performance of our proposed method for 

video compression and encryption and we shall compare these results with existing 

approaches used in chapter 5.  

6.1 Chaotic logistic map for pseudo-random number 

generation 

Traditional LFSR generation use fixed length randomly initialised feedback register 

using primitive polynomials over finite fields. The generated stream has relatively short 

length, before repeating itself, which is determined by the length of the initial register, 

Chaotic random number generation overcomes this problem.  

In general, a dynamic system is said to be chaotic if it satisfies the following condition: 

1. Sensitive to initial condition, where any change in the initial value will produce 

unpredictable different paths.  

2. Irregular motion in phase space and  

3. The periodic points are dense in the x  path, where each point in the space is 

randomly approached closely by repeated orbits.  

The logistic map is an recursive polynomial function of degree 2 defined as follows 

 
𝑥𝑛+1 = 𝑟𝑥𝑛(1 − 𝑥𝑛) 6.1 

 

Where r is the control parameter and  n ∈ ℤ+ , if n = 0 ,  x0 is known as initial 

condition. 

The continuous dynamic system of the logistic map is a mapping 𝑓: 𝑥 → 𝑥  from the 

state space to itself; see Figure 6.1, defined as follows: 

 𝑥𝑛+1 = 𝑓(𝑥𝑛) 6.2 
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Figure 6.1 represents the curve of the orbit map 

The logistic map can be represented by using a graphical method called a cobweb 

diagram. The cobweb diagram shows the iterations of control parameter (r) and initial 

condition value ( 𝑥0) of chaotic logistic map. Figure 6.2 show the cobweb of logistic 

map at different initial condition and control parameters. From equation 6.1, Figure 6.1 

and Figure 6.2 it can be shown that any small error in the initial condition ( 𝑥0) or 

control parameter (𝑟) of logistic map will correspond to a large difference in 𝑥𝑛+1 paths. 

Therefore, the logistic map satisfied the chaos conditions and Chaotic Logistic Map 

(CLM) can be used as pseudo random generator by iterate equation 6.1 and used the 

( 𝑥0  , 𝑟 ) as secret keys. This property can be utilized in video encryption as we 

proposed in section  6.3 (Kocarev and Lian 2011) and (Mao and Chen 2005). 
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Figure 6.2 A cobweb diagram of the logistic map, showing chaotic behaviour for various values 

of initial condition (𝒙𝟎 ) and control parameters ( 𝒓 ), 𝒏 is the number of iterations. 
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6.2 Combined sine map and chaotic logistic map  

Existing chaos based encryption techniques are considered to be good for image 

encryption because of their properties: firstly, the chaos system is sensitive to initial 

condition and control parameters as described in section  6.1. It has a clear random 

behaviour and the chaos have aperiodic long-term behaviour in a deterministic system 

that exhibits sensitive dependence on parameters  𝑥0   and 𝑟. 

In order to improve the behaviour of chaotic map, many researchers have suggested a 

combination of two chaotic maps to achieve higher security level of image encryption. 

Sarun and Tanachard (Maksuanpan, Veerawadtanapong and San-Um 2014) presented 

an image encryption scheme based on combined sine and cosine chaotic maps, as 

shown below, to increase the entropy random-bit sources. 

 
𝑥𝑛+1 = cos  (𝑏 𝑥𝑛) + sin(𝑎 𝑥𝑛) 

 

6.3 

Where ‘b’ and ‘a’ are frequencies of cosine and sine function and 𝑥0 is the initial 

condition. Encryption is performed by converting the image pixels into binary form and 

XORed with bit streams produced by iterating equation 6.3. 

A combination of logistic and sine chaotic maps is another scheme that is used for 

image encryption. Chen and co-workers (Chen, Zhang and Zhou 2012) proposed a 

nonlinear combination of Logistic Map (LM) and Sine Map (SMa) in which the control 

parameter r  of LM is driven from SMa as shown below. 

The proposed combined system equation can be defined as shown in the equation 6.4. 

 𝑥𝑛+1 = 𝑟𝑛𝑥𝑛(1 − 𝑥𝑛) 6.4 

The control parameter 𝑟𝑛 is driven from SMa equation as shown in the equation 6.5 

below. 

 𝑟𝑛 = 𝑎. 𝑠𝑖𝑛(𝜋. 𝑟𝑛−1) 6.5 

𝑎 : is the control parameter of SMa. The control parameter of the proposed system will 

be updated using the recurrence equation 6.5.  

We investigated the behaviour of the new combination system and compared it with LM 

and SMa by plotting the bifurcation diagram of these methods as shown in. Figure 6.3 

(A, B and C). The bifurcation diagram describes the common phenomenon that occurs 

in many nonlinear dynamic systems such as vibrated pendulum and switching 
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converter. Figure 6.3 shows the bifurcation structure between r, a and 𝑟𝑛 where r ∈ 

[3.55, 4], 𝑎 ∈ [0.87, 1] and 𝑟𝑛∈ [1.56, 3] respectively. The chaotic region is illustrated 

in coloured region while the non-chaotic is illustrated in white region.  The bifurcation 

diagram of the combined LM & SMa demonstrates that the new algorithm has larger 

key space, higher security level and the output chaotic sequence has a more complicated 

dynamic system compared to the traditional LM and SMa. 

 

Figure 6.3 bifurcation diagram (A) for logistic map, (B) for sin map (C) for combine 

logistic and sin map 

 

A 

B 

C 



123 
 

6.3 The JDWCT-CVQ-Edge secure for video compression 

scheme  

In this section, we follow and modify the approach followed in chapter 5 for designing 

the secure video scheme, we organise both compression and encryption independently 

to be used in parallel as shown in Figure 6.4. Again compression is applied on high 

frequency sub-bands of level 1 and 2 and encryption is applied on the level 2 low 

frequency sub-band. However, the modification made in the compression component of 

the new scheme aims primarily to preserve image quality in the vicinity of the edge 

features. . 

 A revised Video Compression scheme 6.3.1

The compression of intra-frame (RF) is based on JDWCT-CVQ-Edge image 

compression scheme, developed in Chapter 4, which encodes the significant coefficients 

of the high frequency sub-bands that are witnesses to the presence of edge like features. 

The process starts by subdividing the high frequency sub-bands to non-overlapping 

blocks of size 16x16 coefficients and then DCT and Compressive Vector Quantization 

(CVQ) are applied to each block. The revised compression scheme avoids unnecessary 

computation by not applying the DCT on wavelet blocks of the inter frames (n-RF), i.e. 

the CVQ method will be applied for the inter-frame (n-RF) blocks without using DCT. 

The following sections describe the new revised video compression and encryption 

methods. 

 

V1

D1H1

V2

D2H2

LL_2

Encryption

Transmitter

Compression

 

Figure 6.4 The simultaneous compression and encryption scheme 
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This revised video compression scheme is based on JDWCT-CVQ-Edge. The signs of 

wavelet coefficients are determined and the coefficients are converted to integer 

unsigned values. The high frequency sub-bands of level 1 and 2 are quantized 

individually, in the same manner as they were implemented in chapter 4, section   4.1.2.1. 

Thus, the significant coefficients (most likely edges) of high frequency sub-bands are 

determined their Laplace distributions in terms of multiples of the standard deviations. 

The significant coefficients are furthest away from the ‘0’ mean of each high frequency 

sub-band. Hence, we use a threshold of the form (THR = m ∗ STD) where m is a real 

number to filter out non-significant coefficients. The value of m (usually in the range 

0.5-3) is driven from the standard statistic Empirical rule which is demonstrated in 

chapter 4, section  4.2.2. Moreover, in section  4.2.2, we investigated the effect of 

applying different thresholds on the compression success parameters, used to control the 

compression ratio and the quality required, and to sense the amount of significant 

coefficients needed for the compression and the encryption at the same time. The 

filtered-out high frequency coefficients are converted to zeroes (i.e. edge detection). 

Then we sub-divide the high frequency sub-bands into blocks (16x16). To increase the 

similarity between blocks we applied the DCT on each block of RF. see Figure 6.5. 

Recall that the CVQ method defines an equivalence relation on each sub-divided block 

defined by a similarity function Dist (equation 4.1.) and a threshold.  The equivalence 

classes (matched) will be represented by one vector. This method will be applied on the 

RF high frequency sub-band blocks only. Using the conclusions of chapter 5 regarding 

periodicity of RFs, the RF compressed codebooks will be sent every 25 frames to 

enhance the video quality. Note that, the thresholds used in determining the equivalence 

classes of codes are determined from the DCT of the wavelet sub-band blocks. Here, we 

reduce the computational cost of the CVQ, by using the THR values obtained for the RF 

blocks to filter out the non-significant coefficients of the n-RF blocks without applying 

DCT. Therefore, for the n-RFs, the CVQ method will use the THR of the preceding RF, 

and the matching criterion will be applied on the corresponding blocks of the RF 

codebook and the n-RF codebook without applying DCT on the n-RF blocks. 

Decompression is the inverse of the compression processing; the RF is firstly 

decompressed, then based on mismatched blocks the n-RF is decompressed and the 

matched blocks are reproduced from RF.    

.    
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Figure 6.5 diagram illustrates the video compression scheme 

 The   Encryption scheme 6.3.2

Here we adopted the approach of (Pommer and Uhl 2003) by selectively encrypting to 

LL sub-band coefficients corresponding to edge feature detected from the non-LL sub-

bands. The locations of such coefficients correspond to those of significant coefficients 

in the high frequency sub-bands at the same level of decomposition which we already 
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determined for compression. Hence, encryption is strongly linked to compression 

without having an overlap in their input.   

In summary, encryption is applied to the crucial parts of the low frequency sub-band 

(LL2), and this means, our encrypting less than 1/16 of the original image size, because 

our proposed method will not apply the encryption on the entire LL2. The coefficients 

of the LL2 to be encrypted mapped are identified by the significance coefficients from 

the high frequency sub-bands of level 2   (see Figure 6.6). 

These selected coefficients are scrambled within the LL2 using LFSR supported by a 

secret key.  The secret key of LFSR this time is driven from combining chaotic logistic 

map and sine map, which is described in section  6.2, as shown in the equation 6.6 below  

 
𝑥𝑛+1 = 𝑢𝑛. 𝑥𝑛 (1 − 𝑥𝑛 )     6.6 

 

Where 𝑥𝑛 is the initial condition of chaotic logistic map, and 𝑢𝑛 is the control parameter 

which is defined by the following equation  

 𝑢𝑛 = 𝑎. 𝑠𝑖𝑛(𝜋. 𝑢𝑛−1) 6.7 

Where ‘a’ is a real number that controls sine map and ‘n’ is an integer representing the 

iteration index number. The time of iterations is equal to the length of LFSR. Therefore, 

𝑥0 and 𝑢0  will be sent to the decoder and the decoder will estimate the secret key of 

LFSR from 𝑥0 and 𝑢0 for decryption. 

After each iteration, the value of 𝑥𝑛+1 will be shifted by two digits to the right, 

truncated to integer value and converted to binary. The secret key will be updated when 

the RF is changed. We used 𝑥1 and 𝑥2 of previous iteration as the Initial condition 𝑥0 

and control parameter 𝑢0 in subsequent secret key update. Finally, the LL2 will be 

divided into blocks of 16x16 and sent to the transmitter.  
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Figure 6.6 represent Encryption scheme 

6.4 Experimental work and results 

In this section, we present experimental work conducted to test the performance of the 

proposed video compression and encryption based on JDWCT-CVQ-Edge algorithm. 

Then, we compare the performance of our method with proposed approach of previous 

chapter and also with other algorithms.   

The proposed method was applied on the same videos that have been used in chapter 5.  

Each video comprises 100 frames that have size (256 x320) pixels in gray level. The 

proposed scheme demonstrated using MATLAB V 7.10 (R2013a) platform on the same 

computer mentioned in chapter 3. 

 Compression analysis 6.4.1

The compression ratios (CR) achieved for the tested videos are shown in Figure 6.7. 

The variation in the compression ratios reflects the variation in the complexity of the 

videos. If the video contains complex objects; many mismatched blocks will be 

produced during the compression process. The Mean and STD of PSNR values for the 

frame of the videos are shown in Table 6.1. 

Figure 6.7 and Table 6.1 confirms that the quality is proportional to the CR. For 

example, video-6 contains objects moving within frames. As result, the CR and PSNR 

are low compared to the other videos. On other hand, both objects and camera are 

moving in video-5, so that the CR and PSNR are relatively high. 
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Figure 6.7 CR for tested video 

 

 

 

 

 

 

 

 

Table6. 1 The Mean and Standard Deviation (STD) of PSNR for decompression and decryption 

video 

Figure 6.8 shows the execution time for compression-encryption and decompression-

decryption for each video. The processing time for the 100 frames of video-1, including 

compression and encryption, was 0.32 sec, while for video-3 it was 0.38.sec. The time 

difference in video encoding reflects the complexity of each video which result in 

variation in number of mismatched blocks 

Video Video Complexity Mean of PSNR STD of PSNR 

Video-1 VIP men 38.062 0.7480 

Video-2 Shaky car (earthquake) 33.110 0.7931 

Video-3 Highway car traffic 32.504 0.9231 

Video-4 Slow rhinos with a car 34.586 1.7533 

Video-5 VIP lane departure (highway) 35.785 0.7945 

Video-6 Xylophone 31.465 0.2405 

0.08

0.13

0.18

0.23

0.28

0.33

1 2 3 4 5 6

C
R

 

Video 

Compression Ratio (CR) 
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Figure 6.8 The execution time 

In order to compare our results with existing standalone DCT and DWT methods, the 

same video has been used. We have followed the JPEG for DCT algorithm and Set 

Partitioning in Hierarchical Trees (SPIHT) has been used for DWT algorithm. The 

quality of reconstruction frame for constant CR at 97 % achieved by our proposed, 

standalone DCT and DWT is shown in Figure 6.9, from which it may be seen that the 

quality of our method is better than both DCT and SPIHT methods. 

 

Figure 6.9 illustrates PSNR of video frames at constant CR of 97% 

Furthermore, the results of this compression scheme are compared, below, with the 

performance of the JDWCT-CVQ scheme introduced in chapter 5. For simplicity, we 

shall denote the method of Chapter 5 as CH5M, while CH6M will refer to our proposed 

method in this chapter. Table 6.2 shows that except for videos 3 and 5 better quality are 

achieved by CH6M. However, for videos 3 and 5 better CR is achieved by CH6M. The 
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cause of this performance is possibly due to discarding the insignificant coefficients in 

CH6M and the DCT compact the most energy in DC coefficients in CH5M method. On 

the other hand, the execution time of CH6M is significantly lower than that of CH5M. 

Therefore, CH6M is significantly better than CH5M in its time processing, but for some 

videos this is achieved with lower CR and image quality.   

 

Table 6.2 The Mean and Standard Deviation (STD) of PSNR for CH6M and CH5M method 

 Testing the effect of using wavelet different filters 6.4.2

Edge sensing is known, from the literature and the previous work on wavelet 

decomposing used in video compression (Al-jawad 2009) (Ma 2002), to be influenced 

by employing different wavelet filter, and the Haar (i.e. db1) filter is known to perform 

well in detecting sharp edges. Here we complement our experiments in section (6.4.1), 

we tested the effect of using different wavelet filters on the execution time, compression 

ratio, and quality based on PSNR. Figure 6.10 shows that on average, the best CR and 

quality was achieved by “db9” due to the fact that it is the longest filter in the list. In 

fact, the longer the wavelet filter is the smoother coefficients in the wavelet high 

frequency sub-bands, and this has a direct effect on the CR and the quality. On the other 

hands the shortest execution time was achieved when using the shortest wavelet filter, 

i.e. “db1”. The only exception we had is “Video-6” which has a relatively still 

background with limited textures compared with the other videos. Taking into account 

the constrains we are imposing on hardware and communication capability, we 

recommend to use “db1” for video processing as it expected to assure fast 

computational time with acceptable quality.  

.  

Videos 1 2 3 4 5 6 

Mean(PSNR) 
CH6M 38.062 33.11 32.504 34.586 35.785 31.465 

CH5M   37.723 32.724 36.115 34.465 36.836 31.295 

STD(PSNR) 
CH6M 0.748 0.793 0.923 1.753 0.794 0.240 

CH5M   0.633 0.783 0.513 1.636 0.655 0.294 

CR 
CH6M 0.218 0.190 0.160 0.260 0.141 0.292 

CH5M   0.154 0.1497 0.169 0.178 0.209 0.121 

Execution time/Sec 
CH6M 0.319 0.389 0.367 0.400 0.347 0.395 

CH5M   0.814 0.753 0.540 0.586 0.758 0.503 
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Figure 6.10 CR, execution time and PSNR for different wavelet filters 

 Encryption analysis 6.4.3

In this section, we evaluate the performance of our proposed encryption in three security 

analyses. The security analysis will include attack complexity, PSNR and histogram 

analysis. 

 Key-space complexity analysis 6.4.3.1

The cipher key length of AES is 128,192 or 256 bit. Thus the number of possible 

combinations ≈1077 for AES with key length 256 bits (Chown 2002).  

Our proposed encryption is based on scrambling the selected coefficients of low 

frequency sub-band which are mapped from the significant coefficients of the high 

frequency sub-bands. We computed the total number of possible combinations of 

significant coefficients permutations constructed from wavelet sub-bands at level 2 as 

≈1099, which is greater than the corresponding number of the AES.  This make a brute 

force attack on The AES key more feasible than trying to reshuffle the scrambled blocks 

of our proposal encryption (Unterweger and Uhl 2012).  
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 PSNR analysis  6.4.3.2

The PSNR analysis is commonly used as the objective measure to assess intelligibility 

of reconstructed image. Generally, when PSNR > 30dB, the quality of reconstruction is 

estimated as acceptable (Huang and Sakurai 2011). The mean and STD of PSNR for 

ciphered frames are shown in Table 6.3. The frames of tested videos after encryption-

decompression and decompression-decryption are shown in Figure 6.11. 

 

 

 

 

 

 

 

 

 

 

Table 6.3 the Mean and Standard Deviation (STD) of PSNR for encrypted video 

 

Video Mean of PSNR STD of PSNR 

Video-1 11.87107 0.443169 

Video-2 13.29337 0.398935 

Video-3 14.40042 1.282258 

Video-4 12.54111 1.755021 

Video-5 12.92963 0.607405 

Video-6 12.48503 0.176751 
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Video-1

Video-2

Video-3

Video-4

Video-5

Video-6

 

Figure 6.11 shows the encrypted and decrypted frames of tested videos (A) 

encrypted-decompressed frame (B) decrypted-decompressed frame 

Note that for these video examples, encryption of the smooth regions (e.g. the road in 

the video-5) of the image is less successful in concealing them than encrypting the 

textured regions.         

A B 
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 Histogram analysis 6.4.3.3

Figure 6.12 shows the histogram of a frame selected from the tested videos after 

encryption and decryption. The histograms of the encrypted frames are different from 

the histograms of the unencrypted frames and do not reflect the shape of the original 

distribution. In addition, the histograms of encrypted frames are not uniformly 

distributed because the selective encryption is applied only to the frame edges. 

Therefore, the MDMF values as shown in Table 6.4 that obtained from applying 

equation 3.6 which is illustrated in chapter 3. The MDMF is relatively high but it is 

fairly less than MDMF of chapter 5. On other hand, we can make the histogram of the 

encrypted frame more uniform and increase the MDMF by decreasing THR value as we 

investigated in chapter 4, section 4.2.2 but it is at the expensive of computational time. 

The secret key of proposal encryption will change when RF is updated. Therefore, 

deducing the secret key from the permutations is very difficult for a statistical attack. 

Thus our approach will increase the complexity against statistical attack, while the 

decrypted histogram is nearly similar to the original frame histogram.  

video 
1 2 3 4 5 6 

𝐻𝑆𝑖 50335 503015 50076 50632 51605 515655 

𝐻𝑆0 
1132 436 103 744 357 641 

𝐻𝑆255 
637 169 37 1443 2261 308 

MDMF 
51240 50604 50146 51726 52914 516130 

 Table6. 4 the MDFM of encrypted videos 
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Figure 6.12 Histogram of encrypted and decrypted frame selected from tested video 

(A) encrypted frame (B) decrypted frame 

 

 

A B 
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6.5 Conclusion  

In this chapter, a video compression and encryption scheme has been developed that 

modified the one developed in chapter 5, by focusing to preserve quality in regions of 

edges and minimise the cost of encryption but increasing key space size using chaotic 

random generators. This approach has been shown to meet the requirement for video 

compression and encryption with reasonable quality and effective security level of 

encryption. 

The compression algorithm contains two major steps RF and n-RF encoding. The RF 

encoding is achieved by using sequence of operations; DWT, wavelet based edge 

detection, DCT followed by vector quantization. The n-RF will be compressed in terms 

of RF without applying DCT. Therefore, this approach helps significantly to reduce the 

computational time compared with video compression method which has been used in 

chapter 5. For many videos this method marginally improves on compression efficiency 

and quality in comparison to the JDWCT-CVQ compression schemes of chapter 5 (see 

section  6.4.1). However, for some other videos, the earlier compression outperforms the 

current JDWCT-CVQ-edge scheme in terms of CR and PSNR. One can overcome this 

problem by using adaptive THR values which could in turn slightly increase time 

complexity.  

The encryption analysis includes attack complexity, PSNR and histogram analysis. 

Experimental results show that the proposed algorithm has the following features; high 

compression, acceptable quality, and resistance to brute force and statistical attack with 

low computational processing. 

In the next chapter, we shall further refine the JDWCT-CVQ-Edges and the JDWCT-

CVQ schemes for optimized video compression efficiency and security level of 

encryption simultaneously. 

. 
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Chapter 7 

 Edge and Phase Sensing for Secure Video  

Compression 

In chapter 6, we suggested an approach for video compression and encryption based on 

edges sensing. In this chapter, we shall improve the compression efficiency of the edge-

sensing based method while maintaining the quality. The use of thresholds determined 

from RFs blocks for encoding the significant coefficients of mismatched blocks of n-

RFs is the most likely cause of loss of quality in some videos. The new, and final, 

scheme attempts to find an efficient alternative mechanism. For this we investigate the 

use of a new concept, analogous to the concept of phase modulation mostly used for 

transmission of digital signal/data over wireless communication networks. We use the 

term “phase sensing” to refer to this concept to be described in the next section and used 

for optimized encoding of mismatched blocks in n-RFs. To our knowledge, phase 

sensing has not been used for compression. Its use is motivated by the advances in the 

recently emerged compressive sensing paradigm.   

Both compression and encryption will also be based on Joint DWT, DCT, CVQ, Edges 

and on phase sensing (JDWCT-CVQ-Edges-phase sensing). The new scheme will 

include a new encryption scheme based on the A5 cipher for enhanced security of the 

corresponding simultaneous video compression and encryption scheme. The encryption 

algorithm combines the A5 cipher with chaotic logistic map. In section  7.1, we shall 

describe the phase sensing procedure for encoding and decoding square blocks, and in 

section  7.2, we shall describe the A5 cipher to be combined with the chaotic map for 

encryption. In section  7.3, we shall present our approach for video compression and 

encryption. The performance of the JDWCT-CVQ-Edges-phase sensing scheme will be 

tested, in section 7.4 , on video streams with frames of size (512x512), and the bit rate of 

phase sensing will be compared with other encoding methods. We shall establish that 

the developed scheme scales up very well to larger frames. And finally, in section 7.5, 

we shall demonstrate that the AES cryptosystem in selective encryption of video is not 

suitable in time constrain.     
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7.1 Phase Sensing  

In digital communication, Phase Modulation (PM) is commonly used for data 

transmission. In PM, the phase of a carrier signal (the carrier signal is continuous very 

high frequency signal usually used to carry data for transmission over wireless 

communication system) is changed according to the binary input data. Each digital form 

(symbol) is assigned a particular phase on the carrier signal. This technique is known as 

Phase Shift Keying (PSK). The receiver will detect the phase of carrier signal and 

recover the symbol based on phase change in the carrier signal (Schulze and Luders 

2005). This provides a possible way of 1-1 mapping of a sparse block of data so that 

data locations are incorporated into the data values which can be recovered easily i.e. 

discovering the sparsity pattern. We use the phase sensing to increase the video 

compression efficiency of method produced in chapter 6 with retain quality,  the phase 

modulation methods exploited in to map the significant coefficients (edges) extracted 

from high frequency sub-bands. 

Phase-sensing is a method that is widely used in signal processing for detecting very 

small signals in the presence of remarkable noise level and it has not been used in 

compression. It begins by constructing the Sensing Matrix (SM) the size of which is 

application dependent. Based on our intended application into video application for 

mapping the sparse blocks in non RF’s, our SM would be of size 16x16 generated by 

the sinusoidal wave function: 

 

𝑦 = 𝐴 𝑠𝑖𝑛(𝑥𝑡 + 𝜃) 7.1 

 

Where  𝐴 is the amplitude,   𝑎𝑛𝑑  𝑥 = 2𝜋 𝑓 is the radial frequency, and 𝜃 is the phase 

angle. Here we shall set 𝐴 = 1. 

 

Figure 7. 1 The sinusoidal signal 
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We will take a quarter of wavelength to avoid symmetrical results (i.e. inforce 1-1 

mapping) as shown in Figure 7.1 and calculate the entries of SM using the following 

equation: 

 
 

𝑦(𝑛) = sin (𝑎(𝑛)  . 𝑏   )     
7.2 

 

and 0 <  𝑦𝑛 ≤ 1  𝑛  = 1, 2, 3, to the length of the vector, and b=π/2 

 
𝑎(𝑛) = 𝑍. 𝑛   7.3 

 

Z is a real number. Let max  𝑦(𝑛) = 0.98 , and the length vector of matrix (16x16) equal 

to 256. Now substituting equation 7.3 in 7.2 yields:  

 
𝑦𝑛 = sin(𝑍 ∗ 256 ∗ 𝑏) = 0.98 

 
 

 

 ∴ 𝑍 =
𝑠𝑖𝑛−1(0.98)

256 ∗ 𝑏
 ≈ 0.0031 

 

 

So that equation 7.2 becomes  

 

 
𝑦(𝑛) = 𝑠𝑖𝑛 (0.0031 ∗ 𝑛 ∗  𝑏   ) 7.4 

 

Now by iterating the equation 7.4 for  𝑛 = 1, 2, 3, …256, we generated the vector 

 𝑦 = [𝑦(1),  𝑦(2), … 𝑦(256)] and convert y to the SM matrix of size (16x16).  

The SM matrix is used for phase sensing to extract the significant coefficients in an 

input mismatched block B, of an n-RF sub-band, by the 3-step procedure (see Figure 7. 

2):  

1. Calculate the matrix B’ =SM+B.  

2. Discard every entry of B’ that is < 1, and convert the rest to integer values 

simply by multiplying by 100 and taking the integer part. 

3. The output is an integer vector x = [x(1),  x(2), … x(k)] consisting of only the 

nonzero values read column by column.  
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Figure 7. 2 illustrates the mismatched block compression based on phase sensing 

Note that, the entries of the vector y are monotonically increasing in the range 0..1. This 

property is essential for the decoding procedure (recovering the significant original 

entries of the encoded block B). The decoding of mismatched blocks is given as 

follows: 

Firstly, convert the integer number of compressed vector to floating number by dividing 

by 100 and separate the integer part from the fractional part. Secondly, we apply 

equation 7.6 to determine the phase shift of each fractional part. Equation 7.6 is driven 

as explained below.   

 
𝑥(𝑛)     = sin (𝑎(𝑛) ∗

𝜋

2
) 

 

 

𝑥(𝑛)      is the fractional part of n element of the vector. 

 𝑎(𝑛) = 0.0031 ∗ 𝑛       7.5 

 

 
∴  𝑎(𝑛) ∗

𝜋

2
= sin−1(𝑥(𝑛)) 

 

 

 𝑎(𝑛) =  
sin−1(𝑥(𝑛)  )

𝜋
2

⁄      7.6 

 

From equations 7.5 and 7.6 we can determine the value of n as shown below  

 𝑛 =  
sin−1(𝑥(𝑛 )  )
𝜋
2
∗ 0.0031

      7.7 
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Thus, the phase shift and n will map the integer part to recover the significant entries of 

the mismatched blocks. Finally, fill the other entries by 0. 

Example  

In this example, we will illustrate how a phase sensing is used to extract significant 

coefficients from a mismatched block. 

Let B be the mismatched block which has been produced by applying the compression 

JDWCT-CVQ-Edge method described in chapter 6, section  6.3.1. As a result of edges 

detection of this method, the B content can be defined as sparse. For illustration, we will 

consider the size of B as (8x8) as shown below. 

9 5 0 0 150 0 0 13 

4 4 0 6 0 0 0 0 

0 75 0 1 0 11 0 22 

40 0 0 0 8 0 12 0 

0 0 200 0 0 0 0 0 

0 0 0 0 0 70 0 0 

0 4 0 0 0 0 0 0 

55 0 0 0 9 0 0 10 
 

B =

 

SM is created by iterating this equation 7.4 (with Z= 0.0136) for n=1, 2, 3…64. 

 

Then, B is added to SM. Next the coefficients greater than 1 are extracted and all these 

coefficients are shifted two digits to the right, the outcome of this process is represented 

by the vector: 

The bit rate of original block B is equal to 8x64= 512 bit while for y it is equal 

16x20=320 bit. Thus, the phase sensing achieves compression ratio = 0.625 for block B 

while retaining the quality. 

In decoding, we shall generate zeroes matrix (Zr) size (8x8). Then, the y values are 

shifted two digits to the left and integer part is separated, which represents the edges, 

0.02 0.03 0.05 0.06 0.08 0.09 0.11 0.12 

0.14 0.15 0.17 0.18 0.2 0.21 0.23 0.24 

0.26 0.27 0.29 0.3 0.31 0.33 0.34 0.36 

0.37 0.39 0.4 0.41 0.43 0.44 0.45 0.47 

0.48 0.49 0.51 0.52 0.53 0.55 0.56 0.57 

0.58 0.6 0.61 0.62 0.63 0.64 0.66 0.67 

0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 

0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 

 

SM=

 

902 414 4037 5576 503 415 7527 469 20051 618 130 15008 843 980 1133 7064 1245 1312 2236 1083 y =
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from the fractional parts which represent the phase shift. From equation 7.7 (with Z= 

0.0136) n is calculated for each fractional part as shown in Table 7.1.  The n will map 

the edges into Zr to recover the mismatched block B.  According to Table 7.1, the 

element 1 of y = 902 has the significant coefficient 9, which will be in the location n=1 

of the Zr, and the element 2 of y = 414 has significant coefficient 4 in location 9 of the 

Zr, etc. 

 

 

 𝑦𝑛 Edges 
phase 

shift 
n 

902 9 0.02 1 

414 4 0.14 9 

4037 40 0.37 25 

5576 55 0.76 57 

503 5 0.03 2 

415 4 0.15 10 

7527 75 0.27 18 

469 4 0.69 50 

20051 200 0.51 35 

618 6 0.18 12 

130 1 0.3 20 

15008 150 0.08 5 

843 8 0.43 29 

980 9 0.8 61 

1133 11 0.33 22 

7064 70 0.64 46 

1245 12 0.45 31 

1312 13 0.12 8 

2236 22 0.36 24 

1083 10 0.83 64 

Table7. 1 the edges and mapping them in a zeroes matrix 

 

Furthermore, the effect of the SM will not be different if we to select max  𝑦(𝑛) = 0.99 

instead of max 𝑦(𝑛) = 0.98.  in fact equation 7.4 becomes  

 𝑦(𝑛) = 𝑠𝑖𝑛 (0.014224 ∗ 𝑛 ∗  𝑏   )  
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0.02 0.04 0.07 0.09 0.11 0.13 0.16 0.18 

0.2 0.22 0.24 0.26 0.29 0.31 0.33 0.35 

0.37 0.39 0.41 0.43 0.45 0.47 0.49 0.51 

0.53 0.55 0.57 0.59 0.6 0.62 0.64 0.66 

0.67 0.69 0.7 0.72 0.74 0.75 0.77 0.78 

0.79 0.81 0.82 0.83 0.84 0.86 0.87 0.88 

0.89 0.9 0.91 0.92 0.93 0.93 0.94 0.95 

0.96 0.96 0.97 0.97 0.98 0.98 0.99 0.99 
 

SM=

 

This SM is completely different from the SM created in the previous example. 

Therefore, the max  𝑦(𝑛) value can be employed in video encryption method as secret 

key and it will be sent to the decoder, the decoder will use the max  𝑦(𝑛) to generate the 

SM and then map the significance coefficients. 

In this section, we propose an approach to optimize the video compression and 

encryption of chapter 6 method while maintaining quality. In our proposal for this 

improvement, the compression is achieved through JDWCT-CVQ-Edges-phase sensing. 

The compression is applied on high frequency sub-bands of level 1 and 2. Then the 

encryption is applied on the low frequency sub-band of level 3 (LL3). In order to reduce 

the computational cost time, the encryption can be preform simultaneously with 

compression as shown in Figure 7.3. 

Video 

Frames

Encryption

Compression

Transmission 
DWT to level 3

Low frequency sub-band

High frequency sub-bands

 

Figure 7.3 simultaneous video compression and encryption 

7.2 The A5 cipher description 

The main weakness of LFSR ciphers is their linearity, which leads to a relatively easy 

cryptanalysis. A common solution to this linearity weakness of LFSR is to destroy the 

linearity properties of LFSR. A5 is a stream cipher used in GSM to provide secure 

communication during conversation via mobile phones. A5 uses three LFSRs with 
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different taps and length as shown in Figure 7.4. LFSR1 has length 19 bits with four 

taps:  bit 13, 16, 17 and 18, while LFSR2 and LFSR3 have length 22, 23 bits with taps 

21, 20 22 and 21, 20, 7 respectively. The middle bit from each LFSR represents the 

clocking bit, as shown in red colour in Figure 7.4.  When the LFSRs are clocked, their 

taps will be XORed to produce next Least Significant Bit (LSB).    

7 022 21 20

LFSR3

021 20

LFSR2

18 17 16 13 0

LFSR1

10

10

8

Clocking 

unit

Output

 

Figure 7.4 illustrates the A5 structure 

The A5 cipher solves the linearity weakness by applying irregular clocking of the LFSR 

to the cryptosystem. The clocking rule of A5 is based on majority function in which the 

register will be clocked if its middle bit is equal to the majority bit. The majority bit will 

be 1 if two or more middle bits are 1, else it will be zero, Table 7. 2 summarises the 

clocking rule of A5. For example, if the middle bit of LFSR1, LFSR2 and LFSR3 was 

1, 0 and 1 respectively, the majority function will be 1. Thus, only LFSR1 and LFSR3 

will be clocked.  
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Table7. 2 the clocking rule of A5 

Initially, the LFSRs of A5 are initialised to zeroes. Then, a 64 bits secret key (session 

key) is seeded to three LFSRs without applying irregular clock. Next, the LFSRs are 

clocked 22 times (public key), the clocking rule is also ignored in this stage. 

Subsequently, the LFSRs are clocked 100 times based on majority clocking; at this 

stage the A5 output is discarded. Finally, the A5 cipher is clocked by using majority 

clocking to produce 114 bits sequences which are XOR with data voice to produce 

ciphered data. For more details see (Barkan, Biham and Keller 2003), and (Dubrova, 

Teslenko and Tenhunen 2008), 

7.3 JDWCT-CVQ-Edges-phase sensing scheme 

The compression of the JDWCT-CVQ-Edge scheme, developed in chapter 6, utilized 

the statistical properties of high frequency sub-bands to determine the significant 

coefficients (edges) and converted all non-significant coefficients to zeroes and then we 

partitioned the high frequency sub-bands into blocks. Therefore, the blocks contents are 

sparse. For inter-frame (n-RF) encoding, the block based similarity was used to extract 

the mismatched blocks which are then sent to the transmitter. 

To further improve the compression efficiency, the mismatched blocks need to be 

encoded into a short bit-string by a more efficient method than so far used which will 

remember the position of the significant feature. Since the insignificant coefficients are 

negligible these blocks are sparse and hence susceptible to compressive sensing theory. 

The compressed sensing (CS) theory, which asserts that certain signals or image blocks 

Middle Bit (MB) 

Majority 

LFSR clocking 

MB of  

LFSR1(8) 

MB of 

LFSR21(10) 

MB of 

LFSR3(10) 
LFSR1 LFSR2 LFSR3 

0 0 0 0 clock clock clock 

0 0 1 0 clock clock no clock 

0 1 0 0 clock no clock clock 

0 1 1 1 no clock clock clock 

1 0 0 0 no clock clock clock 

1 0 1 1 clock no clock clock 

1 1 0 1 clock clock no clock 

1 1 1 1 clock clock clock 
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can be recovered from fewer samples or measurements than required by the traditional 

Shannon-Nyquist sampling theory if this signal or image has sparse representation. 

Currently, the compressed sensing is still in its early days and focus of research is on 

reducing the number of measurements. So far the very few CS based image 

compression schemes tend to require heavy computations. In addition, the quality of 

recovered image will be reduced because the compressive sensing is lossy compression 

(Bigot, Boyer and Weiss 2013) (Gan 2007). These observations were sufficient for us 

not to pursue the compressed sensing theory at this time but perhaps come back to it in 

the future. Instead we decided to investigate the use the phase sensing procedure, to 

encode the mismatched sparse high frequency sub-band blocks.   

 The video compression scheme 7.3.1

Wavelet transform to level 3 are applied to the sequence of video frames. The high 

frequency sub-bands of level 1 and 2 for RF and n-RF will be processed in the same 

JDWCT-CVQ-Edge method work the threshold is implemented for edges detection. For 

each mismatched block the nonzero coefficients is significantly less than the actual size 

of the blocks, i.e. these blocks are sparse, see Figure 7.5. We apply the phase sensing 

procedure, as described earlier in section  7.1, to encode each mismatched block of n-

RF. This procedure outputs a vector of integers, one for each of the significant 

coefficients; it has a shorter size than that of the block. The way the SM is designed, 

guarantees that the significant coefficients can be recovered and the decoding procedure 

remembers the exact positions of these coefficients. Figure 7.5 summarize the main 

compression steps described above 
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Figure 7.5 represents the process block diagram of the video compression 

  The encryption proposed scheme  7.3.2

Our encryption proposal uses the crucial parts of the low frequency sub-band of level 3 

(LL3), but not on the entire level 3, this means that encryption is applied on only 1/64 of 

the original size. These crucial parts of the low frequency sub-band of level 3 are 

identified at from the high frequency sub-bands of level 3 using the selected thresholds. 

This results in sparse blocks to be mapped onto the edge-sensing matrix which were 

identified. While the decryption will use the same edge-phase sensing matrix to retrieve 
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all the encrypted data, this will cut the computational time for retrieving the edges 

dramatically. 

As described in the section 7.2, the main problem of the LFSR is the presence of the 

linear part in the random number generator algorithms. A5 solves the linear weakness of 

LFSR by using the majority function. However, the majority function is defenceless 

against correlation attack (Chen and Gong 2012). In our proposed scheme, the linearity 

weakness in A5 is reduced significantly by improving the clocking rule using the 

chaotic logistic map rather than the majority function. 

The encryption works using the following steps (see the block diagram in Figure 7.6): 

1- Chose the initial condition 𝑥0 and the control parameter r. Then, iterate the equation 

6.1 to 64 times and truncate the output numbers of titrations to the integer numbers 

and convert them to binary number (mod 2). These bits will seed the A5 registers. 

2- Calculate the STD for high frequency sub-bands of level 3 (V3, H3, D3). 

3- Measure the threshold (THRE=STD× ℝ) where ℝ is real number. As illustrated in 

chapter   4, section   4.2, this THRE will be used to reveal the Significance 

Coefficients (SC) of high frequency sub-bands.    

4- Generate the SM by applying equation 7.4 for n=1, 2…to the size of high frequency 

sub-band, and then adding MS with high frequency sub-bands.  

5- Extract the coefficients greater than THRE; these coefficients represent SC of high 

frequency sub-bands.  

6- Separate the integer part from fractional part for each SC.  

7- Apply equation 7.7 to each fractional part of SC, the output n will be mapped to the 

significance coefficients of low frequency sub-band of level 3(SC-LL3). 

8- Iterate the chaotic logistic map to (𝑆𝑘=100+size of SC-LL3) times and convert the 

output numbers to integer number m (mod 3). The m will be used as clocking rules 

for A5 and to select one bit 𝑥𝑖(𝑚) from each SC-LL3. The LFSRs of A5 will be 

clocked to the size of SC-LL3(𝑆𝑧) 

9- XOR the 𝑥𝑖(𝑚) with output bits stream 𝑘𝑐(𝑖)from modified A5, where  𝑖 = 1,2, … 

𝑆𝑧. 

10- The THRE, which is employed assigning the SC-LL3, is ciphered by chaotic logistic 

map (converted to the binary and XOR with binary representation of chaotic map) 

and sent to the transmitter. The max  y(n) (which is used in SM generation) is 

ciphered also by chaotic map and sent to the transmitter.  
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11- Finally, the encrypted L3 will be separated into blocks of 16x16 and sent to the 

transmitter. Figure 7.6 summarises the main encryption steps mentioned above. 

 

STD of high frequency sub-bands(  V3, D3 &H3)

Level 3(L3)
D3

V3
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LL3
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ℝ:Fractional number
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Figure 7.6 shows the encryption scheme 
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7.4 Experimental results 

Having developed the final refinement in our investigated scheme, the experimental 

work will go beyond testing its performance on the same type of videos used in the 

experiments of the previous chapters. We shall include experiment on gray scale videos 

of larger size frames as well as RGB colour videos. But we start with the experiments 

on the same video size considered previously. All the experiments have been performed 

in MATLAB V 7.10 (R2013a) in the same machine used in chapter 3. 

We first tested the performance of the JDWCT-CVQ-Edge-Phase sensing scheme in 

terms of Compression Ratio (CR), the quality, execution time and the security level. 

The performance will be compared with the scheme introduced in chapter 6 (CH 6M) 

and other algorithms. Here we expanded the set of videos to include 32 different 

grayscale videos, each containing 100 frames of size (256x320) pixels. Sample frames 

from test videos are shown Figure 7.7. 
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Video 1-5

Video 6-10

Video 11-15

Video 16-20

Video 21-25

Video 26-30

 

Figure 7.7 represent sample frames from test videos 

 Analysis of compression result  7.4.1

Figure 7.8 shows the achieved Compression Ratio (CR) for each tested video. These 

results in indicate that the CR is somewhat dependent on video complexity. If image 

objects mostly remain stationary within the video frames, then very few mismatched 

blocks will be produced during the video encoding processing. On the other hand, if 

there is a lot of motion or if the camera itself is moving then many mismatched blocks 

will be shaped through the video encoding. Therefore, Figure 7.8 shows that the CR 

varies from one video to another. 
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. 

Figure 7. 8 shows the achieved CR for tested video 

We will now demonstrate the effect of JDWCT-CVQ-Edges-phase sensing on the video 

decompression quality represented by PSNR. All tests were performed using the same 

compression threshold THR which has been described in chapter 4, section 4.2. Figure 

7.9 shows the Mean and Standard Deviation (STD) of PSNR calculated for each frame 

of each video. 

 

Figure 7. 9 the mean and STD of PSNR for decompression and decryption videos 

It can be seen from Figure 7.8 and Figure 7.9 that the relation between quality and CR 

depends on the nature of the videos. For instance, videos16 and 17 contain objects 

moving within frames. Therefore, the CR is small and PSNR is high. In contrast, the 

objects and camera are moving in videos 4 and 13, so the CR and PSNR are relatively 

high. 
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We now attempt to establish that the JDWCT-CVQ-Edges-phase sensing scheme is 

indeed a good refinement of the previous ones by comparing its performance with that 

of the previous JDWCT-CVQ-Edge scheme, using the same test videos and thresholds 

THR have been used here again. Figure 7.10 shows the bit rate of mismatched blocks 

during video compressing through JDWCT-CVQ-Edge and JDWCT-CVQ-Edges-phase 

sensing. The results show that the JDWCT-CVQ-Edges-phase sensing produced lower 

bit rate and better CR as compared to JDWCT-CVQ-Edge as shown in Figure 7.10 and 

Figure 7.11. The lower bit-rate is the way the phase sensing matrices compactly 

represent their sparse blocks compared to the way JDWCT-CVQ-Edge do. 

 

 

 

 

Figure 7.10 shows the bit rate comparison 
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Figure 7.11 CR comparison 

Figure 7.12 shows the execution time for compression-encryption encoding and 

decoding frames for each video (excluding Input Output (IO) operations). The results 

show that the execution time is proportional with CR, when the CR is relatively small; 

this means that there were a few mismatched blocks. Hence, the phase sensing and 

encryption processing time will be reduced. For example, the processing time for video-

1, including compression and encryption, was 0.75 sec and it has CR= 0.13, while for 

video-20 it was 1.63.sec with CR=0.25. Usually, the processing time difference reflects 

the complexity of each video. 

Figure 7.12 shows execution time 

The results of JDWCT-CVQ-Edges-phase sensing are also compared, below, with 

standalone DCT and DWT algorithms; using the same videos above. For a DCT-based 
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scheme we are using the JPEG and we use the SPIHT as the DWT-based scheme.  We 

used the Central Limit Theorem (CLT) to calculate the mean and STD for all test videos 

for each algorithm. The results show that JDWCT-CVQ-Edges-phase sensing tends to 

outperform the other two algorithms with better quality for CR of 97%, where the 

average PSNR in JDWCT-CVQ-Edges-phase sensing was 31.52 dB measured for 100 

frames to each video, as shown in Table 7.3, Figure 7.13 and Figure 7.14. This is due to 

fact that JDWCT-CVQ-Edges-phase sensing preserves the significant coefficients 

(image feature) and phase sensing improves the compression efficiency while retain the 

quality level.  .   

Table7. 3 shows the mean and STD of PSNR and CR  

 

 

Figure 7.13 PSNR for different video frames at constant CR of 97% 
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Video-1

Video-10

Video-17

Video-27

  

  Figure 7.14 sample of recovered frame by three different methods (A) JDWCT-

CVQ-Edges-phase sensing (B) DCT based(C) SPIHT 

Moreover, phase sensing procedure has been compared with Run Length Encoding 

(RLE) followed by Huffman encoding. The RLE followed by Huffman encoding is 

commonly used in the final step of MPEG-x and H.26x (x=1, 2, 3…etc.) as lossless 

compression. The comparison is done on mismatched blocks. The result of comparison 

is shown in Figure 7.15. As can be seen in the Figure 7.15 that the phase sensing 

achieved CR much better as compared to RLE and Huffman encoding, because the RLE 

is not efficient with data have not many runs. Therefore, the result shows that the RLE 

causes an overhead affecting the compression efficiency as shown in Figure 7.15 

A B C 



157 
 

Figure 7.15 Comparison between phase sensing and RLE followed by Huffman encoding 

Performance of the scheme for larger size Videos 

Here we conduct experiments to address the following important question:   

How scalable is JDWCT-CVQ-Edges-phase sensing scheme? 

We selected a new set of 10 different test videos of frames that have size greater than 

those tested before. The frame size of these videos is 512x512 pixels in greyscale.  

Sample frames from these videos are shown in Figure 7.16. 

 

Video 1-5

Video 6-10

 

Figure 7.16 represents sample frames size 512x512 pixels from test videos 
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All tests were performed using the same compression threshold THR which has been 

described in chapter 6, section  6.3.1.  Results of the tests are shown in Figure 7.17. The 

results show that the proposed method achieved reasonable quality and high CR 

compared with original size, where the average of PSNR was 35.27dB measured for all 

videos. Moreover, the results of this compression scheme were compared, below, with 

the performance of JDWCT-CVQ-Edges-phase sensing when applied on same videos of 

frames that have same size before i.e.256x320. Table 7.4 shows that the better CR and 

quality are achieved by large size for all tested videos.   

Scalability means that ratio of execution time should be comparable to the ratio of the 

sizes. Calculating the ratio of the two tested sizes yields a ratio of 3.2= 

512x512/256x320. The average execution time of 100 frames for each video in the 

bigger size is (1.232135 sec) which compares very well with (2.90404 = 3.2x 0.907512) 

as shown in Table 7.4. In fact, we can see that our scheme scales up very well. 

 

Mean Frame size 512x512 pixels Frame size 256x320 pixels 

CR 0.16203 0.179632 

Time encoding and  

encryption/Sec 
1.232135 0.907512 

Time decoding  

and decryption /sec 
0.64222 0.559365 

PSNR/dB 35.27815 33.36175 

STD 1.38369 1.103231 

Table7.4 the comparison results between coding frame size 512x512 and 256x320 pixels 
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Figure 7.17 illustrates the results of test videos with frame size 512x512 pixels 

 Performance of the scheme for RGB Colour Videos 7.4.1.1

Generally, the compression of coloured image components of Red, Green and Blue 

(RGB) are de-correlated by colour transform and each transformed component is 

compressed individually by image compression algorithm such as JPEG, JPEG2000, 

etc. Mostly RGB colour space is transformed to  YCb Cr colour space. The Y component 

is the luminance and the two other components (Cb Cr) are the chrominance 

components (Kim and Cho 2014)  

Although the coloured videos are not required in the project application, but we are 

including this test for future development in case it is needed. Therefore, we will apply 

our latest decoder JDWCT-CVQ-Edges-phase sensing on 10 different colours videos as 

shown in Figure7.18 to test the effect of using colours on our system performance and 

based on the achieved frame rate and performance. We have tested 100 frames for each 

used video, the frame size of all these videos is 512x512x3 pixels. During our 

experiment, we converted all frames from RGB to YCb Cr components.  
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Video 1-5

Video 6-10

 

Figure7. 18 represents sample frames size 512x512x3 pixels from test videos 

As results of the colour transform, we found that the STD of high frequency sub-bands 

of the wavelet decomposition became very small and close to zero. Therefore, the 

significant coefficients (image features) clustered around the zero. Thus, this fact result 

in increasing the block similarities and decreasing the time consumed for vector 

quantisation and improved the CR as well as the quality compared with the grayscale 

videos as shown in Figure 7.19.   
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Figure7.19 illustrates the results of test videos with frame size 512x512x3 pixels 
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The same experiment applied above was applied on another set of coloured videos with 

frame size of 240x320x3 pixels as shown in Figure 7.20. We considered this size 

because of its usability in all devices having limited processing speed, capacity, display 

screen size with limited bandwidth (Zacharovas, Nikolskij and Kuchin 2010). Figure 

7.21 shows the Mean, STD of PSNR and coding time calculated for each frame from 

each video. 

Video 1-5

Video 6-10

 

 Figure 7. 20 represents sample frames size 240x320x3 pixels from test videos 
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 Figure 7. 21 illustrates the results of test videos with frame size 240x320x3 pixels 
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Based on the above two experiments we noted that the frame rate used in the 

512x512x3 frame size is 41 frames per second, and for the videos with 240x320x3 

frame size we achieved 43 frame per second. We have to mention that the complexity of 

the second set of videos is higher than the first set of videos and yet the achievable 

frame rate is quite accepted for video streaming. 

Moreover, another set of experiments have been conducted using two different 

computers with different speed and performance. The first computer is of a Relatively 

High Speed Computer (RHSC) with Intel (R) i5 processer, 3.2 GHz, and 16GB of 

RAM. The other computer is an Average Speed Computer (ASC) with Intel (R) i5 

processer, 2.3 GHz, and 4GB of RAM, as shown in tables 7.5 and 7.6. The experimental 

results show that the average frame rate in grayscale video with frame size (256x320) 

pixels was 112 f/sec and 77 f/sec for RHSC and AVC respectively. On the other hand, 

the frame rate is decreased in the colour video scale for frame size (512x512 x3) and 

(240x32ox3) in both computers. We can conclude from the last set of experimental 

results (tables 7.5 and 7.6), that the processing time for video coding is acceptable in the 

two used computers and could easily achieves the objective of our application  
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Video 

RHSC AVC 

Coding 

time /sec 

Decoding 

time /sec 

Coding 

time /sec 

Decoding 

time /sec 

1 0.755045 0.447827 1.816173 0.801604 

2 0.972067 0.443612 1.390215 0.791459 

3 0.726813 0.449341 1.059577 0.796856 

4 1.122783 0.450273 1.556734 0.79632 

5 0.807869 0.44652 1.162966 0.794285 

6 1.053916 0.451404 1.464663 0.794288 

7 0.788029 0.464097 1.135136 0.798829 

8 0.946053 0.462329 1.327097 0.807558 

9 0.796388 0.469806 1.171387 0.801574 

10 0.771155 0.451623 1.136642 0.791636 

11 0.862889 0.463106 1.221628 0.801015 

12 1.125925 0.449307 1.574576 0.793076 

13 1.08213 0.46624 1.503654 0.791649 

14 0.694558 0.452013 1.011301 0.787387 

15 0.739404 0.455246 1.072948 0.789281 

16 0.660204 0.453337 0.969383 0.788356 

17 0.686888 0.455791 0.989321 0.790681 

18 0.972905 0.451753 1.432699 0.788573 

19 0.879606 0.455812 1.253283 0.790373 

20 1.635308 0.468902 2.348013 0.787822 

21 0.792828 0.45473 1.131932 0.790698 

22 0.768583 0.458019 1.117677 0.810847 

23 0.906007 0.461466 1.305536 0.801741 

24 0.860312 0.461253 1.247472 0.793469 

25 0.871813 0.460227 1.225979 0.791966 

26 1.299187 0.471439 1.816337 0.788248 

27 0.724506 0.471511 1.06825 0.798087 

28 1.043221 0.467192 1.473943 0.791052 

29 0.581063 0.48466 0.891178 0.796913 

30 0.727277 0.465686 1.056734 0.787279 

Average 0.888491 0.458817 1.297748 0.794431 

Frame 

rate/Sec 112.5504 217.9516 77.05658 125.8763 

Table 7. 5 shows the execution time by two different computers for coding 100 frames from 30 

different videos with size (256x320) pixels in grayscale 
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Video 

Frame size 512x512x3 pixels Frame size 240x320x3 pixels 

RHSC AVC RHSC AVC 

Coding 

time/sec 

Decoding 

time /sec 

Coding 

time/sec 

Decoding 

time /sec 

Coding 

time/sec 

Decoding 

time /sec 

Coding 

time/sec 

Decoding 

time /sec 

1 2.420 1.520 5.233 2.621 1.874 1.591 4.034 2.229 

2 2.385 1.536 4.272 2.533 2.599 2.232 4.081 3.061 

3 2.497 1.529 4.718 2.545 2.164 1.538 2.659 2.065 

4 2.392 1.529 4.077 2.539 1.793 1.392 3.369 1.817 

5 2.437 1.525 4.458 2.527 2.389 1.801 2.935 2.338 

6 2.056 1.535 3.389 2.574 2.204 1.908 2.790 2.081 

7 2.328 1.535 3.896 2.563 1.999 1.680 2.932 2.131 

8 2.669 1.539 4.736 2.608 3.727 3.389 4.809 3.881 

9 2.369 1.516 4.658 2.537 2.314 1.687 2.941 2.022 

10 2.804 1.571 5.539 2.637 2.244 1.883 2.795 2.216 

Average 2.436 1.534 4.498 2.568 2.331 1.910 3.334 2.384 

Frame 

rate/Sec 
41.057 65.204 22.234 38.934 42.905 52.351 29.990 41.945 

Table 7. 6 shows the execution time by two different computers for coding 100 frames of 10 

different coloured videos 

 Security analysis 7.4.2

In this section we evaluate the performance of our encryption method using four 

different kinds of analysis: histogram, key space, correlation and PSNR analysis to 

assess statistical attack, brute-force attack, frequency attack and the availability of the 

significant information left in encrypted image respectively. 

 Histogram analysis 7.4.2.1

The histogram of an image is illustrated by how the pixels of an image are distributed 

by charting the numbers of pixels intensity values. The attacker can use the histogram to 

realize the secret key or plain pixel. (Mao and Chen 2005). 

The experimental results of histogram analysis for video encryption using the proposed 

algorithm are presented in Figure 7.22. The figure shows that the frames which are 

selected from video 1, 12, and 25 after encryption and decryption and their 

corresponding histograms. The histograms of the encrypted frames are fairly uniform 

and different from the histograms of unencrypted frames. Moreover, we compute the 

MDMF for these histograms by using equation 3.6 which is presented in chapter 3 as 

shown in Table 7.7.  
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video 
1 12 25 

𝐻𝑆𝑖 32168 42189 51285 

𝐻𝑆0 28837 16643 4684 

𝐻𝑆255 28225 21555 15183 

MDMF 60699 61288 61219 

 Table7.7 the MDFM of some encrypted videos 

The MDMF shows that the histograms of ciphered frames are differed from original 

frames. Thus our approach does not provide any information that can be used for any 

statistical attack, and the decrypted histogram is nearly similar to the original frame 

histogram. 

 Key space analysis  7.4.2.2

The key space analysis is a set of different keys that can be used to generate the 

encryption /decryption key. Therefore, the key size should be large enough to make 

brute-force attack infeasible. The key space should be more than   1030 in order to avoid 

exhaustive research attack (Sathishkumar, Ramachandran and Bagan 2012).  Our 

proposal uses several chaotic logistic maps: firstly to generate the secret key, secondly 

for clocking the A5 cipher, thirdly to choose a bit from significance low frequency sub 

bands, fourthly for threshold encryption and finally a map for max y(n) encryption is 

used in SM generation. The secret keys used in the proposed encryption are initial 

condition (𝑥0) and control parameter (𝑟) of chaotic logistic map, both are real numbers. 

The number of possible values of  x0 is 1015  as well as 𝑟. As a result, the key space is 

10120 which is greater than the number of possible permutations of AES, thus 

preventing a brute force attack on the AES key more efficiently than trying to decrypt 

the encrypted video of our proposal encryption (Unterweger and Uhl 2012). 
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Video-12

Video-1

Video-25

 

Figure 7.22 the histogram of encrypted and decrypted frame (A) encrypted frame (B) 

decrypted frame(C) the histogram of encrypted frame (D) the histogram of decrypted 

frame 

A B 

C D 
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 Correlation coefficients analysis 7.4.2.3

The Correlation Coefficient (CC), described in chapter 3, determines the degree of 

similarity between two variables. If the two variables are completely different, the CC 

between them will be very low or close to zero. On other hand, the CC becomes large or 

close to 1 or -1 when there is a relation between variables. To determine the CC 

between two adjacent pixels, in vertical and horizontal direction, within the same frame, 

1000 pairs of two horizontally and vertically adjacent pixels are selected randomly from 

the original and encrypted frame. The correlation of the selected coefficients is 

calculated and shown in Figure 7.23. The figure shows that the CC of the original frame 

is 1 or close to 1. In contrast, the CC of the encrypted frame is close to 0. The result of 

correlation analysis indicates that the original frames and their corresponding encrypted 

frames are completely independent of each other. 

 PSNR analysis 7.4.2.4

PSNR is often used as quality measurement between the original image and 

decompressed image. The PSNR has been defined in chapter 3, section 3.3.1.2, and 

equation 3.4. From this equation it may be inferred that the Mean Square Error (MSE) is 

proportionally inverse to PSNR. Thus, the MSE increases with PSNR decreasing and 

producing more randomness in the recovered image. Generally, when PSNR > 30dB, 

the quality of recovered frames is valued as adequate (Huang and Sakurai 2011). The 

mean and STD of PSNR for encrypted frames by our proposed encryption are shown in    

Figure 7.20.  The result shows that the average PSNR was 8.56 dB for encrypted videos. 
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        Figure 7.23 the correlation coefficient of adjacent pixels in encrypted and original frames 

    Figure 7.24 the mean and STD of PSNR for encrypted and decrypted videos 
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7.5  Selective encryption based on AES  

Selective encryption is desirable in constrained communication, such as real-time 

networking and limited computational power devices, because it reduces the amount of 

data to encrypt and provides effective security; this depends on the selected parts 

identified by our proposed method to encrypt videos. The standard ciphers (AES, Triple 

DES, RSA, etc.) are known to be more secure but have high computational cost not 

suitable for very large files encrypting. But it is reasonable to ask whether these ciphers 

become adequate for selective encryption in video coding.  

Here, we shall compare the time complexity of our encryption scheme with that of the 

traditional AES cipher to encrypt only the significant coefficients ( selective encryption) 

of low frequency sub-band of level 3(LL3). In this experiment, the same test videos and 

threshold (THR) have been used. Results are shown in Figure 7.25. The results clearly 

show that the AES cipher is not efficient for video streaming processing although it has 

been used in selective encryption concepts.  

Figure 7. 25 illustrates the consumed time of selective encryption baser on AES 
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7.6 Conclusion 

In this chapter, another efficient video compression and encryption based on edges-

phase sensing has been developed, implemented and its performance in terms of many 

criteria was tested. This scheme deploys the lossless phase sensing encoding scheme to 

compress the representation of mismatched high frequency sub-band blocks of n-RFs.  

The performance testing covered various compression indicators including CR, PSNR 

and time complexity. Not only this scheme outperformed the earlier schemes, but it has 

been shown to meet stringent video streaming requirements for secured videos with 

different size frames. 

Test results showed that the proposal efficiently compresses large frame sizes and 

achieved better CR and quality compared with small frame size.  In fact, the scheme is 

shown to have excellent scalability characteristics. Moreover, the experimental results 

show that the new scheme performs better than DCT and SPIHT algorithms. In 

addition, when compared the performance of phase sensing with RLE followed by 

Huffman encoding, we found that the compression efficiency encoding based on phase 

sensing outperforms the other two. 

The scheme was also shown to reduce video coding processing, good image quality and 

CR for colour videos of two different sizes even under the stated constrains. The various 

experiments conducted in this chapter, provide evidence to our confidence that modest 

relaxation of the stated constrains, will certainly enable our scheme to deal with much 

higher resolution RGB videos. But we shall deal with that in the future.   

The new modified encryption algorithm is based on identifying the significant 

coefficients of low frequency sub-band of level 3. These coefficients are encrypted by 

XORing with the bits key stream of a modified A5 cipher. The initial seed (64 bits) of 

A5 registers is derived from chaotic logistic map. Moreover, the linearity weakness of 

LFSR stream ciphers has been mitigated using the modified A5 whose majority rule 

clocking rule was changed to a chaotic logistic map rule. The bit streams of the 

modified A5 (k𝑐𝑖) are XORed with selected bits 𝑥𝑖(𝑚) from the significance parts of 

low frequency sub-band LL3. The selected 𝑥𝑖(𝑚) is also based on chaotic logistic map. 

In addition, the threshold value THRE, which is used in allocating the significant 

coefficients of low frequency sub-band (LL3-SC), is ciphered by chaotic logistic map 

and sent to the transmitter. In order to increase the security level of encryption, the 
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control parameter to Sensing Matrix (SM) generation (max y(n)) is also encrypted by 

chaotic logistic map and sending it to the transmitter. 

Finally we have demonstrated that the use of selective encryption based on AES is not- 

efficient for video encryption.  
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Chapter 8 

Conclusion and Future work 

The research project conducted during the preparation of this thesis was aimed at 

investigating the viability of secure video transmission over open and constrained 

communication network channels. These imposed constrains in this thesis may seem 

un-necessary in current time characterised by availability of sophisticated powerful 

computing and communication hardware and infrastructure in the developed world, but 

it is justified due the huge digital gap that separates them from  third world countries 

and in particular post conflict countries with depleted infrastructure and scares 

resources.  This project is primarily are developed for the latter group of countries, 

including my own, who desperately need the technology but cannot afford it.    

The main challenges in such a task are to meet a number of standard criteria relating to 

the constrained bandwidth, reasonably high image quality at the receiving, the execution 

time, and robustness against security attacks. We have developed a number of 

simultaneous compression and encryption schemes that were tested performances at 

each stage in terms of above competing criteria.  

In general, video compression is based on detecting and removing spatial correlation 

within the video frames as well as temporal correlations across the video frames. 

Correlation in this context is measured in terms of similarity between blocks of pixels. 

Temporal correlation is expected to be more evident across sequences of frames 

captured within a short period of time (often a fraction of a second). Frequency domain 

transformation such as DCT and DWT are known for their capability to organise the 

frequency content (coefficients) in such a way that correlation in the frequency domain 

is more amenable for efficient detection.  The length of the period within which the 

temporal correlation is high is an indicator of video complexity. Removing 

spatial/temporal correlation here is based on encoding only one block from each class of 

equivalent (i.e. similar) blocks and remembering the position of all other block within 

the equivalence class. Encoding a block here means finding the most compact 

representation of the block content, which must capture the most significant 

pixels/coefficient. Encoding scheme must allow the recovery of the significant 

coefficient together with the block position. Many encoding schemes are available each 

with their advantages and disadvantages in terms of efficiency, compactness, and the 
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amount of loss of information when decoding. To develop a video compression scheme 

with desired properties we need to make a number of decisions, that have an impact on 

each other, including the choice of the frequency domain transform(s), the size of 

blocks, how to select similarity threshold(s), how to select the period (number of 

frames) over which the temporal correlation are encoded, and what encodings can be 

applied. The success of these choices is dependent on the desired performance in terms 

of improving on some of the above mentioned compression criteria. Many video 

compression schemes have been developed simply by using a still image compression 

scheme on every frame without any consideration of temporal redundancies, i.e. have a 

period n=1 for temporal correlation encoding.   But this approach is not efficient and 

may involve dropping frames. Efficient video compression will use a period n>>1 to 

encode temporal correlated blocks, and such schemes uses a still image compression 

scheme on the first reference frame (RF) in the sequence and encodes the next (n-1) 

non-reference (n-RF) frames using a special encoding scheme that depends on the 

encoded RF and detecting the temporal correlation with each other and/or the RF frame 

before selecting a new RF. The MPEG and H264 schemes all have various 

implementations of video compression with periods n>1, and in this thesis we followed 

the same strategy. Instead of using one frequency transform, efficiency considerations 

was the main reason for investigating the use a combination of DWT and DCT, 

whereby the DCT could only be applied to the non-LL high frequency sub-bands. 

Designing video encryption again is influenced by a number of decisions. For 

image/video encryption, it has long been recognised that the selective encryption is the 

only viable approach to deal with the overwhelming file size. In theory, selection can be 

made in the spatial domain or the frequency domain. Simultaneous compression and 

encryption, is a good reason for opting to apply selective encryption in the frequency 

domain. For secured video streaming, it is necessary to apply encryption and 

compression simultaneously and this would be more efficient if the selected data for 

encryption will be separate from the input data to the compression data. Since the LL 

sub-bands of wavelet transformed images approximate the original images, while the 

non-LL high frequency sub-band coefficients are highly correlated then we decided to 

select the LL-coefficients for encryption. The next decision relates the type of ciphers to 

be adopted. Again, we followed the common practice of using stream cipher to meet the 

efficiency requirements of secured video streaming. Key stream generation is the next 
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decision to make. For that we investigated a number of options and the ultimate choice 

will depend on robustness to attacks.  

We first designed and tested the performance of a hybrid EZW and DCT algorithm for 

simultaneous still image compression and encryption to obtain the most suitable scheme 

for encoding and encryption of the RFs within a secure video transmission over open 

network channels. We established that the application of DCT on the non-LL sub-bands 

has reduced the iterative loop scan of the EZW encoding. The results confirmed that the 

performance of hybrid method is better than the standalone EZW in terms of time 

consumed for coding process and compression efficiency. The encryption was 

performed on the initial threshold of EZW only which was simply XORed with a 10-bit 

stream generated by a simple LFSR. The security analysis shows that the encryption 

scheme is secure against the statistical and frequency attack.  However, the 

computational time of this scheme is perfectly suitable for offline secure video 

transmission but is relatively high to be suitable in real-time scenario. Consequently, 

this method may be used.   

An alternative to this modified EZW image compression and encryption scheme have 

been proposed to improve time complexity, compression ratio and security.  For the first 

two objectives, the new compression procedure is limited to the high frequency wavelet 

sub-bands and exploits the increased chances of similarity between these blocks. The 

security is improved by encrypting on the entire LL sub-band (low frequency sub-bands 

of image wavelet decomposition). The compression is performed block-by-block by 

combining DWT, DCT and Vector Quantization (CVQ). The algorithm has a relatively 

higher speed and higher compression ratio. We found that compression on high 

frequency sub-band of level 3 is ineffective and degrades the quality. Therefore, we 

implement the compression method on high frequency sub-bands of level 1 and 2 and 

the encryption on low frequency sub-bands of level 3. The encryption scheme is 

selectively scrambling the low frequency LL3 sub-band appended with few coefficients 

from the level 3 high frequency sub-bands using two LFSRs. The quality of the 

decompressed and decrypted image however is dependent on the fixed block similarity 

threshold, and loss of quality for some images is more noticeable around edge features. 

To improve the performance of the above algorithm in terms of quality, we investigated 

the use of the well-known statistical properties and parameters of high frequency 

wavelet sub-bands. These properties help fast extraction of the significant coefficients 

(edges). As a result, we proposed a block based similarity by combining DWT, edges 
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sensing, DCT and CVQ to achieve better compression and quality compared with edges 

standalone compression. We investigated the effect of applying variable thresholds, 

driven from STD of high frequency sub-bands coefficients, to reveal the significant 

coefficients. The results show that the compression ratio and quality are proportional 

with the threshold value. The variation in quality for different images can be made less 

apparent by using adaptive thresholds obtained from different multiples of the STD.  

Having developed a suitable still image compression and encryption scheme for use on 

video RFs, from chapter 5 onwards we then focused on furthering our development of a 

simultaneous video compression and encryption based on hybrid DWT, DCT and vector 

quantization. The video compression has been performed using block based similarity 

by combining DWT and DCT to achieve high compression with an acceptable quality 

compared with non-block based approach. The compression algorithm reduced the 

computational time for block matching between reference frame and current frame. In 

addition, the matching criterion of this approach, which is used to quantify the similarity 

between blocks, is very fast because only subtraction operation is included. The 

encryption algorithm utilised two LFSRs seeded with three secret keys to scramble the 

significant wavelet coefficients multiple times. The encryption analysis includes 

histogram analysis, correlation analysis and PSNR. The security analysis shows that a 

cipher algorithm is secure against statistical analysis attack and frequency analysis 

attack. In addition, we examined the effect of the period Reference Frame (RF) on the 

compression efficiency, quality and encoding time. The experimental results show that 

the period RF for every 25 frames realised high compression efficiency with acceptable 

quality. 

The video quality of the above scheme decoder was unfortunately fluctuating according 

to the complexity of the video content in terms of temporal variation in texture. In 

chapter 6, we refined this scheme in two ways. Firstly, the n-RF were compressed in 

terms of RF to reduce temporal correlation but replaced the DCT with the statistically 

determined thresholds for edge sensing as described in chapter 4. Secondly, the 

selective encryption algorithm scrambles the wavelet coefficients of the edges extracted 

from the low frequency sub-band, and we used the chaotic logistic map combined with 

sine map to generate LFSR secret key. The experimental results show that this proposed 

algorithm has the following features: high compression, acceptable quality, and 

resistance to the brute force and statistical attack with low computational processing.   
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A close consideration of the performance of the compression procedure of last two 

video scheme shows that the frame quality, compression ratio, and the time complexity 

is influenced mostly  by the way the procedure that detect and locate the significant 

coefficients in the mismatched blocks which allows the recovery of their sparse version. 

Realising that recovering sparse signals from smaller set of measurements is what the 

new emerging sampling paradigm of compressive sensing was a motivation to search 

for a technique that have the same effect of compressive sensing.  In chapter 7, we 

found that the very efficient phase sensing procedure, commonly used in wireless 

communication applications, provides a tool which is equivalent to compressive sensing 

tools. The final refinement of the video scheme employs the phase sensing scheme for 

the representation of mismatched high frequency sub-band blocks of n-RFs.  The 

performance testing covered various compression indicators including CR, PSNR and 

time complexity. Not only this scheme outperformed the earlier schemes, but it has been 

shown to be highly scalable to videos with large size frames and performs the DCT and 

SPIHT compression schemes.  

We have also demonstrated that new scheme works well for colour videos of large 

sizes, and achieves relatively low time processing, good image quality and CR even 

under the stated constrains. The various experiments reported in chapter 7, indicate that 

modest relaxation of the stated constrains, will certainly enable our scheme to deal with 

much higher resolution RGB videos. Future work will attempt to demonstrate this 

hypothesis and adapt our scheme for real-time simultaneous compression and 

encryption of higher resolution videos including HD.   

The final scheme also strengthen the security of the encryption algorithm, employed in 

chapter 6,  by encrypting the significant coefficients of low frequency sub-band of level 

3 by a new version of the A5 cipher that modifies the clocking rule of A5 using chaotic 

logistic maps.  

The systematic process of refinement we adopted in improving the performance of each 

of the developed secure image/video compression has helped in meeting the 

requirements of all stated success criteria. Although, the results reveal that the level of 

success in terms of image quality and CR fluctuates depending on the level of image 

complexity in terms of image texture and the speed of motion by image objects. 

However, these were the result of using the same period of selecting RF’s as well as 

fixing the similarity thresholds throughout the sequence of frames in a period. This can 

be remedied by making the choice of these factors adaptive in terms of image 
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complexity. In the future, we plan to investigating measures of video complexity and 

develop such adaptive schemes.  

In the future, we shall also  

1. Improve computational time by investigating the use of other than the DCT 

transform such as Hadamard transforms (Aung, Ng and Shwe 2009).  

2. Enhance the compression efficiency by using lossless compression to compress 

the low frequency sub-band including the use of phase sensing instead of DCT 

to compress the LL sub-band of the RF frames prior to encryption. 

3. Develop an FPGA implementation of such adaptive schemes that should remain 

scalable to much higher frame size and resolutions than so far tested in this 

thesis. The performance of such an implementation could be analysed on real 

hardware for use in secure scenarios such as satellite transmission in conflicts 

zones. 

4. Testing and upgrading this system to be used in real-time wireless video 

streaming.   
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