
Escola Superior de Tecnologia e Gestão

EXPLOITING ONLINE SERVICES TO ENABLE

ANONYMOUS AND CONFIDENTIAL

MESSAGING

Pedro Sousa

Pedro Guilherme Alves de Sousa

EXPLOITING ONLINE SERVICES TO ENABLE ANONYMOUS

AND CONFIDENTIAL MESSAGING

Nome do curso de Mestrado

Mestrado em Cibersegurança

Trabalho efetuado sob a supervisão de

Professor António Pinto e Professor Pedro Pinto

Novembro de 2022

C

C

C

C

C

C

�����������
�
�����	������
�������
�
����������
��

Exploiting Online Services to Enable Anonymous

and Confidential Messaging

a master’s thesis authored by

Pedro Guilherme Alves de Sousa

and supervised by

António Alberto dos Santos Pinto

Professor Coordenador, IPP

Pedro Filpe Cruz Pinto

Professor Adjunto, IPVC

This thesis was submitted in partial fulfilment of the requirements for the

Master’s degree in Cybersecurity at the Instituto Politécnico de Viana do CasteloVersão horizontal
(Principal)

Versão vertical

18 of February, 2023

Abstract

Messaging services are usually provided within social network platforms and allow

these platforms to collect additional information about users, such as what time, for how

long, with whom, and where a user communicates. This information enables user iden-

tification and is available to the messaging service provider even when communication

is encrypted end-to-end. Thus, a gap still exists for alternative messaging services that

enable anonymous and confidential communications and that are independent of a specific

online service. Online services can still be used to support this messaging service, but in

a way that enables users to communicate anonymously and without the knowledge and

scrutiny of the online services. In this paper, we propose messaging using steganography

and online services to support anonymous and confidential communication. In the pro-

posed messaging service, only the sender and the receiver are aware of the existence of the

exchanged data, even if the online services used or other third parties have access to the

exchanged secret data containers. This work reviews the viability of using existing online

services to support the proposed messaging service. Moreover, a prototype of the proposed

message service is implemented and tested using two online services acting as proxies in

the exchange of encrypted information disguised within images and links to those images.

The obtained results confirm the viability of such a messaging service.

Keywords: Covert. Anonymous. Communication.

i

Resumo

Serviços de envio de mensagens instantâneos são normalmente fornecidos por plata-

formas de rede social e permitem que estas plataformas recolham informações adicionais

sobre os utilizadores, como a que horas, por quanto tempo, com quem e onde um utili-

zador comunica. Esta informação permite a identificação do utilizador e está dispońıvel

para o prestador de serviços mesmo quando a comunicação é encriptada de ponta a ponta.

Assim, existe ainda uma lacuna para serviços de mensagens alternativos que permitem

comunicações anónimas e confidenciais e que são independentes de um serviço online es-

pećıfico. Os serviços online ainda podem ser utilizados para apoiar este serviço de men-

sagens, mas de uma forma que permite aos utilizadores comunicarem de forma anónima

e sem o conhecimento e escrut́ınio dos serviços online. Neste artigo, propomos mensagens

usando esteganografia e serviços online para apoiar comunicações anónimas e confidenci-

ais. No serviço de mensagens proposto, apenas o remetente e o destinatário estão cientes

da existência dos dados trocados, mesmo que os serviços online utilizados ou outros ter-

ceiros tenham acesso aos contentores de dados secretos trocados. Este trabalho revê a

viabilidade de utilizar os serviços online existentes para apoiar o serviço de mensagens

proposto. Além disso, um protótipo do serviço de mensagens proposto é implementado

e testado usando dois serviços online agindo como proxies na troca de informações en-

criptadas escondidas dentro de imagens e links para essas imagens. Os resultados obtidos

confirmam a viabilidade de tal solução.

Palavras-chave: Encoberto. Anónimo. Comunicação.

ii

Acknowledgements

This thesis is the result of a year of effort and hard work, which could not be achieved

without the help and support of several people, to whom I want to show appreciation.

I would like to express my deepest gratitude to Professor António Pinto and Professor

Pedro Pinto, my supervisors, for all the guidance, knowledge, patience and feedback they

provided me during this year.

I am also thankful to my classmates and colleagues, with special mentions to Silvino,

Pedro and Ricardo, who always showed availability and willingness to help with issues I

found throughout the master’s degree and, by extension, this thesis.

Lastly, I’d like to mention my family - parents, brothers and grandparents, who never

once stopped supporting my choices in life and are always there to help when I make

mistakes - as well as my friends, with special mentions to Eduardo, Bryan, André and

Gustavo, who provided me with endless moral support and always kept my spirits up.

iii

Contents

List of Figures vi

List of Tables vii

List of Listings viii

List of Abbreviations ix

1 Introduction 1

1.1 Problem Statement and Motivation . 2

1.2 Objectives . 3

1.3 Contributions . 3

1.4 Organization . 3

2 Background 5

2.1 Cryptography . 5

2.2 Steganography . 9

3 Related Work 12

3.1 Current Applications . 12

3.2 Research Works . 14

4 Online Services Assessment 18

5 Proposed Solution 23

5.1 Identified requirements . 24

5.2 Specification . 25

iv

5.3 Design . 30

6 Implementation 35

6.1 Main and Screen Manager . 36

6.2 Splash Screen . 38

6.3 Welcome Screen . 38

6.4 Home Screen . 40

6.5 Chat Screen . 43

7 Validation 56

7.1 Functional Validation . 56

7.2 Security Discussion . 61

8 Conclusions 64

References 66

v

List of Figures

2.1 Caeser Cipher . 6

2.2 Data encryption with symmetric key cryptography. 6

2.3 Data encryption with public key cryptography. 8

2.4 LSB and how it affects digital color. 10

2.5 Hiding ”H” in images. 11

4.1 Adopted base images: (a) solid colour; (b) airport; (c) baboon; (d) jellybeans. 21

5.1 Reference scenario. 24

5.2 Entity Relationship Diagram. 26

5.3 Database Diagram. 26

5.4 Use Case Diagram. 27

5.5 Mockups: (a) PIN input (not used); (b) Password input 28

5.6 Mockups: (a) Chatroom creation; (b) Contact creation 29

5.7 Mockups: (a) Chatroom list; (b) Contact list 30

5.8 Mockup - Chatroom. 31

5.9 Sequence diagram of the proposed message service. 34

6.1 File structure. 35

7.1 Runtimes . 58

7.2 Usage - CPU/Memory Usage . 59

vi

List of Tables

3.1 Messaging applications and proposed solution security comparison. 15

4.1 Results of the first test. 20

4.2 Percentage of successfully retrieved messages. 21

7.1 Average runtimes by phase with standard deviation and %. 58

7.2 CPU/MEM system usage. 60

vii

List of Listings

6.1 main.py contents . 36

6.2 screen management.kv contents . 37

6.3 splash.py contents . 38

6.4 welcome.py check file function . 38

6.5 welcome.py press ok function . 39

6.6 home.py update function . 40

6.7 home.py add UI functions . 42

6.8 home.py remove functions . 43

6.9 chat.py update function . 44

6.10 chat.py get messages function . 45

6.11 chat.py download function . 47

6.12 chat.py decrypt function . 50

6.13 chat.py get key function . 51

6.14 chat.py send message function . 51

6.15 chat.py upload function . 53

6.16 chat.py encrypt function . 55

viii

List of Abbreviations

CBC Cipher-Block-Chaining

CCA Chosen-Ciphertext Attack

CPA Chosen-Plaintext Attack

EXIF Exchangeable Image File Format

GDPR General Data Protection Regulation

HMAC Hash-Based Message Authentication Code

HTML HyperText Markup Language

IM Instant Messaging

ISP Internet Service Provider

IV Initialization Vector

JS JavaScript

KDF Key Derivation Function

LSB Least-Significant-Bit

MCyber Master in Cybersecurity

MLS Messaging Layer Security

OTP One Time Pad

ix

PFS Perfect Forward Secrecy

PoC Proof of Concept

SMS Short Message Service

SRG Secure Random Generator

TLS Transport Layer Security

TOR The Onion Router

TTL Time To Live

URL Uniform Resource Locator

UUID Universally Unique Identifier

VPN Virtual Private Network

WN Wireless Network

x

Chapter 1

Introduction

The human being is extremely social - every day we face a requirement to interact with

others, be it for personal, professional or even entertainment matters. With the advances

of the digital age, a focus has been developed in regard to social interactions. One of the

main results of these developments was Instant Messaging (IM) services, allowing users to

keep in touch with family, friends and colleagues if, for example, they’re far away or even

when physical distancing is necessary (COVID-19 pandemic) [22].

That said, in most of these services, the messages exchanged between their users when

these exchanges happen, with whom and even where the users were at the time of sending

the message are collected and may be analyzed, scrutinized and profiled [12].

This thesis presents a viable design solution that offers one-to-one anonymous and

covert messaging by using steganography and a combination of other online services as

proxies for data transfer. Future work entails expanding the design to allow for group

chats.

Short Message Service (SMS) and IM are two choices of digital communication, com-

monly used by billions of people all over the world [37, 34, 65] - these two are similar,

however, SMS often requires a payment while IM, usually, allows users to send messages

for free as long as they have an Internet connection. Another difference is that SMS text

messages, normally, go through the cellular provider, which can be requested through a

warrant, allowing for unauthorized access to personal information.

Certain IM services permit users to participate in conversations with others in real-

time, offering security through end-to-end encryption. However, some IM services, includ-

Page 1 of 72

Chapter 1. Introduction

ing the most popular ones, such as WhatsApp, WeChat, and Facebook Messenger, require

users to connect to a central server, maintained by the company, for authentication, record

keeping and similar. For instance, Facebook Messenger is an IM application that requires

users to connect to servers run by the company Meta. These social media companies

usually have the ability to access all data that goes through their servers which may cause

a breach of trust between the users since companies could reveal or use personal informa-

tion for their own gain. Even if it is the case of an end-to-end encrypted IM service, the

encrypted data still gets routed between users through their servers. There are also IM

applications that are serverless (Ricochet, RetroShare) however these are not as popular.

1.1 Problem Statement and Motivation

Most IM applications require the user to access a central server run by a company.

Any data that goes through the server is accessible to the company. Cases of misuse of

personal information by social network companies, such as the Facebook-Cambridge An-

alytica data scandal [12], have also brought to light some unlawful uses of the personal

information gathered and processed by these platforms. As a way to try to maintain the

users’ trust, many of these applications adopt end-to-end encryption [17] to enable con-

fidential exchanges. Even with end-to-end encryption, it may be possible to identify the

communicating parties through web traffic analysis [25]. The knowledge that someone is

talking to another person is already a breach of privacy and may lead to repercussions

in certain situations, such as whistleblowers disclosing information to journalists. Server-

less applications also have their issues: Ricochet Refresh [47], a peer-to-peer solution, for

example, uses The Onion Router (TOR) to achieve anonymous, untraceable and decen-

tralized communications at the risk of being censored in certain countries which do not

allow TOR [67, 70]. RetroShare, a friend-to-friend structured solution, makes it basically

impossible for the Internet Service Provider (ISP) or a third party to know what is hap-

pening, but the same is not true for users on the inside. Any users that are part of the

circle of ”trusted friends” will be able to see what is happening and even the other user’s

IPs.

Both server-centric and serverless solutions do not offer true anonymity and covert

Page 2 of 72

Chapter 1. Introduction

communications. This thesis will show that this anonymity can be achieved with viability

through a combination of features of both architectures and the usage of steganography.

1.2 Objectives

This project has the objective of presenting and implementing a covert and private

messaging application with a focus on steganography as the main cyber protection factor.

In order to achieve this, the design has certain requirements. Messages should not leave

a noticeable track and the application should encourage anonymity. All messages must

also be encrypted as a safety precaution. Since the main weakness of this solution is the

physical system of the user being accessed by a third party, an authentication process

must be done to confirm that only the owner can see messages. Finally, it is imperative

that all messages are temporary and do not remain on the proxy servers for longer than

necessary.

1.3 Contributions

The contribution of this project is a novel system that focuses on ensuring the user’s

anonymity. This contribution resulted in the following article publication:

1. Sousa, P.; Pinto, A.; Pinto, P. Exploiting Online Services to Enable Anonymous and

Confidential Messaging. Journal of Cybersecurity and Privacy, 2022, 2, 700-713.

https://doi.org/10.3390/jcp2030035

1.4 Organization

This paper is structured as follows. Chapter 2 presents an overview of cryptography,

steganography and other concepts which are required in the context of the proposed so-

lution. Chapter 3 presents related work. Chapter 4 provides an assessment of online

services to be used by the proposed messaging service. Chapter 5 presents the require-

ments, design, and specification of the proposed solution. Chapter 6 presents the details of

implementing the proposed messaging service. Chapter 7 provides results and discussion

Page 3 of 72

https://doi.org/10.3390/jcp2030035

Chapter 1. Introduction

on the security of the concept. Chapter 8 presents the final conclusions and results and

possible points of interest towards future work.

Page 4 of 72

Chapter 2

Background

In order to fully grasp the project developed in this thesis, a few concepts must be

understood beforehand. Both cryptography and steganography are used to achieve the

main objectives of confidentiality and anonymity.

2.1 Cryptography

Cryptography refers to communication techniques focusing on ensuring that informa-

tion is confidential, or in other words, only the sender and the chosen receiver will be able

to know the contents of the message.

Although nowadays cryptography is usually connected to digital communications, it

does not only refer to that. Even before computers, cryptography was used in various

ways. For instance, one of the more known pre-modern age methods of encryption is the

Ceaser Cipher [39], where each letter of the message (plaintext) is shifted a certain amount

of times in the alphabet - so, if someone wrote ”HELLO” with a cypher of 1, the result

would become the cyphertext ”IFMMP”, because the letter I is right after H, F is after E

and so on. For an outsider the cyphertext obtained is incomprehensible, it does not mean

anything and only the sender and the receiver would understand the meaning behind it.

An example of why cryptography was and still is important can be seen during World

War 1 and 2 [21, 9], where it would be common to encrypt messages to ensure that enemy

sentries would not be able to figure out what was being communicated, which could, for

example, be meeting locations or times which would create a perfect setup for ambushes

Page 5 of 72

Chapter 2. Background

A B C D F G I J K M N P Q R S T U V W X Y Z

A B C E F H I J L M O P Q R S T U V W X YZ

HE L O

-1

AB C D E G H J K L N O Q R S T U V W X Y ZB C+1

....

A B C D EF G H I K L N O P R S U V W X Y Z+5

D G K N

F I M P

J M Q T

Figure 2.1: Caeser Cipher

Data decrypted
with secret key

Data encrypted
with secret key

Plaintext Ciphertext Plaintext

Secret Key

Figure 2.2: Data encryption with symmetric key cryptography.

if known by the opposition.

With the advancement of technology and computers, cryptography has also seen a big

jump in complexity. Modern cryptography algorithms rely on mathematical and computa-

tional processing, making them unfeasible to break into, requiring far too many resources

to do so, be it computational resources or even time.

All of the cyphers used up until and during the pre-computer times were symmetric

encryption techniques. This entails the usage of the same secret key that both the sender

and receiver will use. The sender will use it to encrypt the plaintext, while the receiver will

use it to decrypt the ciphertext. Image 2.2 shows a basic presentation of how symmetric

key encryption works.

Page 6 of 72

Chapter 2. Background

Even today, there exist many different symmetric key algorithms that still see use

and are considered secure. Examples are the AES (Advanced Encryption Standard) [16],

the Twofish [51], or the IDEA (International Data Encryption Algorithm) [11]. These

algorithms can either be block cyphers or stream cyphers: The former is focused on

encrypting blocks of data of a certain fixed size, for example, 256 bits (hence the name

block cyphers), and normally outputs encrypted blocks of the same size as the input blocks.

Meanwhile, the latter is focused on encrypting data with unpredictable sizes that can also

come as streams, such as videos.

In order to ensure an environment as safe as possible where only symmetric key algo-

rithms are used, a combination of algorithms is required: an algorithm that generates a

key from passwords/passphrases, such as Argon2 [6, 7], which will be used as the secret key

to encrypt/decrypt the content, removing the weakness of using the password/passphrase

itself as the key; an unpredictable Initialization Vector (IV) should also be generated,

through a secure random number generator for each message, that is used in the next

step; a symmetric key algorithm should be chosen to encrypt data with the secret key

and the generated IV, ensuring that the security infrastructure is less likely to be broken

through analysis and guaranteeing confidentiality; finally, a message authentication algo-

rithm, such as Hash-Based Message Authentication Code (HMAC) [36, 5, 64, 4], should

also be used, to ensure the authenticity and integrity of the message - a hash is created

from the plaintext and secret key and is sent alongside the cyphertext and the IV. When

decrypting the cyphertext, a hash is created again from the decrypted plaintext and secret

key and then compared with the embedded hash - if they are different, then that means

the message has been tampered with in some way [19].

Alternatively to symmetric key algorithms, asymmetric key algorithms (also known

as public key algorithms) make use of multiple keys to encrypt and decrypt data. This

choice can also be used as a way to digitally sign data. Some of the more known public

key algorithms are RSA (Rivest-Shamir-Adleman), ECC (Elliptic-curve Cryptosystems)

and ElGamal [50].

Image 2.3 presents the basic premise behind public key cryptography, where a user

wants to send an encrypted message to another user. Each user has a pair of keys,

one public and one private, generated with a basis on mathematical operations, such as

Page 7 of 72

Chapter 2. Background

Ciphertext decrypted
with Alice's private key

Plaintext encrypted
with Alice's public key

Alice's
Public Key

Alice's
Private Key

"Let's meet
at 3:30!"

Bob Alice

"Let's meet
at 3:30!"

Figure 2.3: Data encryption with public key cryptography.

factorization in prime numbers, that are simple to perform with all necessary information,

but hard to perform without all information. The public key, as the name states, is a key

that can, and should, be shared in cyberspace, while the private key is a key that only

the owner should know. Public keys can be used to encrypt data and only the private key

can decrypt messages encrypted with the public key. So, the sender grabs the public key

of the receiver, encrypts the message and sends it. The receiver gets the encrypted data

and uses its private key to decrypt it.

This is enough to guarantee confidentiality. But how can the receiver be sure that the

person that sent the message is who they are claiming to be? The keys have some extra

functions besides encryption/decryption: the private key can be used to sign digital data

while the public key can be used to verify a digital signature. As such, the sender signs

the message with their own private key and then appends their signature to the message.

This whole package is then encrypted with the receiver’s public key. When the receiver

decrypts it with their private key, they can grab the sender’s public key and verify that,

at the very least, the person that sent the message has access to the private key of the

sender (which means it is very likely that it is the person).

When considering symmetric key cryptography and asymmetric key cryptography, each

approach has its own advantages and disadvantages. Symmetric has the downside of using

Page 8 of 72

Chapter 2. Background

a single key that is shared among all the users, which can eventually lead to it being leaked

and creating a system that offers no protection whatsoever. Asymmetric, does not have

this issue, since all users have different pairs of keys and you would require both the public

and private keys to be able to encrypt and decrypt data.

On the plus side, the symmetric key approach is better on all fronts when considering

sizes: key size is much lower than asymmetric (256 bit vs 2048 bit or higher), encryption

is faster and it is also better than asymmetric at transmitting more data.

A common practice is to use both these approaches together since they complement

each other well: one of symmetric key cryptography’s biggest issues is the act of securely

handing the secret key to another person. Since asymmetric key cryptography takes longer

to be processed and is more focused on transmitting smaller-sized data, it can be used to

give the encrypted symmetric secret key to the receiver in a safe way.

2.2 Steganography

While cryptography can be used to ensure the confidentiality of the message, with some

web-traffic analysis it may be possible to figure out who are the users communicating with.

In general, even if the encrypted messages do not give any information about themselves,

it still arouses suspicion and could even be illegal. Steganography circumvents that issue

by focusing on being covert. Steganography [40, 24, 74, 29] is the science that studies

techniques of hiding data in plain sight - within an ordinary, non-secret file, image, video,

audio, or message. A secret message hidden in a selfie which is then posted on a social

media network is much less likely to arouse suspicion than encrypted data is. Incidentally,

this opens up the possibility of anonymity by itself, because even if the secret message is

found out, as long as it is not related to the user and does not have any metadata that

leads back to the user, their software, or their hardware, the user can just claim that they

found the image online and just wanted to share it.

Images, videos, and audio are good choices for steganography due to their size. The

amount of data that can be hidden through steganography is dependent on the size of the

cover file, the file which will ”host” the secret data. The bigger the file, the more data

that can be hidden and the process is also easier and more secure. A secret message can

Page 9 of 72

Chapter 2. Background

be hidden in an audio file by converting an image or text into sound files and then hiding

it into an unused audio channel in music, for example.

To use steganography with an image file as a cover, the Least-Significant-Bit (LSB)

technique is, nowadays, the more known and used [33, 35]. To understand this technique,

it is required to understand how digital images work. When we are presented with a digital

image, what we see is a combination of pixels, each representing a different colour. Each

pixel will have information on the colour it should represent using three different channels

(red, green, and blue) and eight bits of information for each. Every channel can go from

0, which represents the absence of colour, to 255 which represents the maximum of that

colour. For instance, if a pixel has the value 0 for all three channels, the result colour

would be black. With the value 255 for all channels, the colour it would display would be

white. For 255 on just the red channel and 0 on the green and blue channels, the colour

displayed would be red.

11100010

00001111

00000011

11100011

00001110

00000010

#E20F03 #E30E02

Figure 2.4: LSB and how it affects digital color.

So for each pixel, we have 8 bits representing each colour, however, if we were to change

the last bit of each channel, switching any ”0”s to ”1”s and vice versa, even though the

colour would change, the difference is not detected with the naked eye. Figure 2.4 depicts

this concept.

With that in mind, the amount of bits needed to hide a single letter, when converted

to binary, is 8 bits. If a person were to hide a letter through LSB, they would need 8

bits. So, in order to hide a single letter, three pixels would be altered slightly - the last

Page 10 of 72

Chapter 2. Background

bit of each 8-bit value representing the colour channel for the first and second pixel and

the last bit of the 8-bit value of the red and green colour channel are altered (if needed).

Figure 2.5 depicts a situation where a user wants to hide the letter ”H” (ASCII value 72)

that corresponds to the binary value of 01001000.

11100010

#E20F02

00001111

00000011

11100010

00001111

00000010

#E20F03 #BA72C2

10111010

01110010

11000010

#7AC2B6

01111010

11000010

10110110

#BA73C2

10111010

00001111

00000010

#7AC2B6

01111010

11000010

10110110

(01001000) H

Original
Pixels

Altered
Pixels

Figure 2.5: Hiding ”H” in images.

There is another method of hiding data in images, based on LSB known as YUV [58]

which derives its name from how it hides images - while LSB focuses on hiding data on

images in RGB colour model, YUV hides data on images in YUV colour model.

LSB can also be used in videos [48]. The process is roughly the same considering that

videos are just a combination of frames (still images) being shown one after the other.

Page 11 of 72

Chapter 3

Related Work

This thesis studies and focuses on solutions that enable and provide anonymity and

confidentiality. The presented proposal, which will be described in detail in Chapters 5

and 6, makes use of cryptography and steganography as a way to achieve a decentralized

and ”serverless” anonymous and confidential experience.

3.1 Current Applications

Multiple applications identified as related work were analysed in order to understand

if these provide anonymity and confidentiality, and if so, how they do it. Ultimately,

this analysis helped to understand if the proposed solution is a novel one. If the proposed

solution provides no innovation, because another application already achieves the required

objectives in a similar way, then there is no point in developing it. As such, a comparison

of various messaging applications, marketed as being focused around security was studied

to better gauge in what ways the developed solution would be advantageous over other

applications.

Nowadays, when being suggested [52] a secure messaging application, the likely rec-

ommendation will fall under one of the following: Signal [55], Threema [63], Wire [68], or

Session [53].

Developed by the Signal Foundation, Signal is a cross-platform instant messaging ap-

plication that allows users to communicate, through text messages, audio messages, and

video. It was released on the 29th of July 2014. Signal makes use of XEdDSA and

Page 12 of 72

Chapter 3. Related Work

VXEdDSA [62], as a way to generate an output of differing hashes which can be used

for different functions from a single input which will be used mostly for signature pur-

poses, coupled with X3DH [61], which is the public key cryptography protocol adopted,

in order to achieve a secure status. Their ”Double Rachet” (new keys derived for every

message from a shared secret key) [59] and ”Sesame” (message encryption in asynchronous

settings) [60] algorithms also ensure the maintenance of that security even in the face of

a compromise. Its’ code is also open source, which is a great boost for ensuring proper

security. Even though Signal does not show any major security flaw it does not achieve

total anonymity - each user account is bound to a mobile phone number, required on

registration. This information is sent to Signal’s server, which in turn can link a user’s

cyberspace presence to their real person. As a result, anonymity is not achieved.

Wire [69], another cross-platform instant messaging application, that allows users to

communicate through text messages, audio messages, and video, developed by the software

company Wire Swiss, was first released on the 3rd of December 2014. Adopting a security-

by-design approach, Wire encrypts its’ messages with the Proteus protocol, based on the

Signal protocol developed by Open Whisper Systems and introduced in the TextSecure

application (which would later become Signal), which makes use of 3-DH handshakes,

Curve25519 ECC, AES-256 and HMAC-SHA256, and the aforementioned Double Rachet

algorithm. Like Signal, its’ code is available for any and all to review. That said, although

it achieves confidentiality and authenticity, much like Signal, Wire faces an anonymity

issue in the user registration process, where it requires either an e-mail address and/or

mobile phone number to start using the service. It is impossible to use Wire without some

link or connection to the user’s real person.

Developed by Threema GmbH, Threema [14], first released in December 2012, is an

end-to-end encrypted messaging service, where the messages may have text, audio, and

video format. It uses public-key cryptography, firstly generating a key pair and afterwards

sending the public key to the Threema servers. All messages sent have to go through the

Threema servers but are claimed to be deleted as soon as the message reaches the recipi-

ent. Using the NaCl Network and Cryptography Library for both end-to-end encryption

and transport-level security, Threema uses Curve25519 as key derivation, XSalsa20 as

symmetric encryption and Poly1305-AES for authentication and integrity protection. The

Page 13 of 72

Chapter 3. Related Work

client side is open source however the application’s API and server code are not. Threema

is different from Signal and Wire in the sense that it does in fact offer anonymous com-

munication - it gives the user the choice to input a mobile phone number for recovery

purposes, but it is purely optional, not required at all for using the service. That said,

this application has a big drawback compared to the other two which is that it is a paid

application.

Session [54], another messaging service providing text messages, audio messages, and

video communications, makes use of blockchain technology to provide its own onion-

routing service. When a user sends a message, it is carried through three different nodes

on the network before passing through a listening node and, once again, hopping through

three different nodes. Since each node only has information regarding its adjacent nodes

(i.e., the first node to receive the message only knows the IP of the sender and the second

node - not the recipient’s IP), privacy is ensured. The application relies, for the most part,

on local storage, with the exception being the temporary storage of messages in multiple

nodes, designated a swarm, which get deleted after the messages Time To Live (TTL)

is surpassed, which can happen if the recipient is offline. However, this network requires

nodes. In order for a node to be authorized and accepted to the system, a stake must

be made, requiring the owner of the node to lock a certain monetary value to the node.

Afterwards, the person responsible receives a reward for their node’s usage. On the one

hand, this makes it quite costly for anyone attempting to attack the network; however,

the reward system may also create a conflict of interest between maintaining privacy vs.

abusing this system.

An overview of what each of these applications achieves in terms of security level is

presented in Table 3.1.

3.2 Research Works

Research works in the area of secure messaging may count on specific protocols. Mes-

saging Layer Security (MLS) protocol [3] is a protocol resulting from the combined effort

of multiple researchers, from Cisco, Mozilla, Google, Facebook, Twitter, the University of

Oxford, MIT and INRIA with the main objective of increasing efficiency and security of

Page 14 of 72

Chapter 3. Related Work

Table 3.1: Messaging applications and proposed solution security comparison.

Signal Threema Wire Session
Proposed
Solution

Provides anonymity? No* No* Yes Yes Yes

Data gathered Contact Info
Contact Info,
Diagnostics

Contact Info,
Diagnostics,
Usage Data

None None

Supports self-destructing messages? Yes No Yes Yes Yes

Can be used without a mobile phone? No No Yes Yes Yes

Is a free application? Yes No Yes Yes Yes

Is Open source? Yes No Yes Yes Yes

Is resistant to conflicts of interest? Yes No Yes No Yes

Requires cryptocurrency? No No No Yes No
* A phone number is required to register a new account and data are processed by parent or third-party
companies.

end-to-end encrypted messaging in large groups. In a MLS secured group chat, when a

new user wants to join a group, they first send a Key Package to the creator of the group,

which then provides the public key and authentication information. Once that is done, the

creator of the group also broadcasts two messages to the group, one to announce that a

new user has joined and another to hash the old key to generate a new one. When remov-

ing a user, a similar process occurs - two messages are broadcasted to warn the users that

remain in the group chat that a user has left and another to hash the old key to generate

a new one. It uses a combination of ChaCha20Poly1305 or AES-GCM (depending on the

system) and X25519/X448 curves or FIPS 140-2 compliant curves for Diffie-Hellman key

negotiations.

MLS protocol is not based on steganography, however, steganography can be used as a

way to ensure more secure communications is not a novel idea and has already had various

research works [57, 10, 27, 38].

The research done by the authors of [57], argued that steganography could be used for

message exchange between users in a way that only the sender and receiver were able to

decrypt the message and were the only ones aware that messages were being exchanged. It

used simple steganographic algorithms based on two different methods (LSB and YUV),

plus an extra method that makes use of KLT along with LSB, running on three different

systems: an ARM7-based microcontroller, a multi-core architecture digital signal processor

and a personal computer. This work reached the conclusion that between the different

systems, the personal computer had the worst results, requiring the most time to decode

Page 15 of 72

Chapter 3. Related Work

the message while the multi-core architecture digital signal processor was the best choice.

It was also found that the LSB method had quicker results and the KLT method had

slower results. The authors also comment, as a final conclusion, that execution times are

highly influenced by the size of the host image.

In [10], the authors start by presenting an assessment of various online services and how

they process images, at the time. From the information gathered from that assessment,

the authors propose and analyze two different steganography approaches to hide data:

one through the name of the image based on naming conventions (which depends on

the type of digital camera used); and another by using tags - by using images in a pre-

emptively decided album and a combination of previously decided users it is possible to

hide information. For instance, if an album has 2 pictures and 8 people, it would be

possible to hide 2 bytes of information as a whole by seeing which users were tagged in

each picture. If a user was tagged, then it would represent 1, otherwise, it would represent

0. These proposals allow for message exchanges without the servers being aware, however,

their proposal did not encrypt hidden messages and could present size constraints difficult

to overcome.

Authors of [27] studied the concept of using Facebook as a way to exchange hidden

messages through images. One of their findings was that image compression in Facebook,

due to storage space and bandwidth constraints, generally disrupted steganography. With

that information in mind, the authors decided on what image format to use for stan-

dard test images. The JPEG format was chosen, due to the fact that Facebook converts

uploaded images to JPEGs, and compression towards this format is different from other

formats, such as PNG. From there the resolution of the images was decided: images of

2048xYYYY and 960xZZZ. According to the authors, these resolutions were preferred be-

cause, once again, these were the resolutions preferred by the social network. With the

standard images prepared for testing, a variety of steganography programs and algorithms

were chosen to hide messages. As a whole, the chosen programs and algorithms had a lot

of problems hiding information on images already processed by Facebook with the best

result being the ”JP Hide & Seek” program that had a 50% success rate but even then,

out of that 50%, plaintext was only recoverable out of 5% of the test images and it still

had some characters altered.

Page 16 of 72

Chapter 3. Related Work

In [38], the authors researched ways to bypass steganography disruption due to modi-

fication of the submitted images. The way this is achieved is by first passing the original

image through JPEG compression and then hiding data through steganography and thus

creating a stego-image (image with data embedded through steganography). This stego-

image is studied and from that, a coefficient adjustment scheme is used to create an

intermediate image. This image when going through JPEG compression will result in the

stego-image and as such, compression should not impact the extraction of secret data.

From the analysis of these works, it can be concluded that the topic, despite not being

new, is still under active research. Further, none of these solutions allows user anonymity,

as all require user authentication before using the service. To the best of our knowledge,

there is no solution that allows anonymous and confidential messaging between users

without user authentication or dedicated servers. The design of a novel proposal should

not compromise performance when using different image sizes, all messages processed and

hidden in images should be encrypted beforehand, and the image compression imposed by

using services should be circumvented to maintain the original images.

Page 17 of 72

Chapter 4

Online Services Assessment

Although one of the research works that was studied went into detail in regards to how

different online services processed images, it was done in late 2011, which means that these

same online services will likely work differently nowadays. Since steganography, image

sharing and messages being hidden in said messages are a cornerstone of the proposed

solution, it is very important that there exists an updated understanding of how these

online services process images and confirm whether there is viability in the concept in the

present day. For that purpose, an assessment of current steganography applications and

online content-sharing services was carried out.

In regards to steganography applications, the following four applications were chosen,

due to their availability as free versions and also since they have open source code: Open-

Puff [42], OpenStego [66], StegHide [26], and StegoShare [20]. All applications use, from

what was found, the LSB steganography method to hide data in images, however, some

of the applications offer more functions. For example, OpenPuff has support for multiple

image formats, even lesser used ones, and also provides some extra layers of protection,

including encryption of secret data, scrambling to make it harder for an attacker to know

where data begins or ends, whitening to mix the scrambled data with noise, and finally,

encoding the whitened data through a non-linear function. OpenStego can be used as a

watermark to ensure that no user can claim credit for an image of a second user. StegHide

even gives users the option to hide data in audio formats.

As mentioned before, current online services are known to alter images/photos, in

order to minimize traffic, bandwidth, and storage space needed, after upload. This could

Page 18 of 72

Chapter 4. Online Services Assessment

mean a change in compression, resolution, and metadata which, due to how LSB works,

will likely impact steganography. The chosen online services are divided into two groups:

most popular online services and online services focused on image hosting. In the first

group, Facebook, Twitter, and LinkedIn were tested, meanwhile, for the second group,

Imgur, Flickr, and ImgBox were picked.

This assessment involved two different tests: the first one designed to do a general

check of how images are changed by these online services and the second one designed

with three different goals in mind which are:

1. Determining whether compression algorithms impacted steganography;

2. See how the systems react to images with different characteristics (different resolu-

tions, monochrome);

3. Understand how much data could be hidden

For the first test, a random image with a resolution of 3840×2160 pixels was processed

by the steganography programs chosen to hide a simple message (”mciber2022”) which

generated a stego-image, the carrier image with the secret message hidden in it. After-

wards, this stego-image was uploaded to the selected online services. Once uploaded, the

image was downloaded from the service’s servers and their characteristics were compared

to the original stego-image in order to determine the changes introduced. Finally, the

downloaded stego-image was processed by the steganography programs to verify if any

secret message can be retrieved.

The results of this first test, conducted in September 2021, are presented in Table 4.1.

It was found that Facebook and Instagram both lowered the resolution of the images

down from 3840×2160 to 2048×1152. All the popular online services presented a high

compression rate. The online services focused on image hosting, Imgur and ImgBox,

had more favourable results but were still not viable, as the image indicated that a low-

compression algorithm was used, and as a result, secret data was not retrievable. Flickr

showed no compression whatsoever.

Admittedly, the results of the first test were not too positive. However, this can be

attributed to the chosen image which has a relatively high resolution, which usually means

Page 19 of 72

Chapter 4. Online Services Assessment

Table 4.1: Results of the first test.

Output ImageInput
Stego Image Facebook Linkedin Twitter Imgur Flickr ImgBox

Size 6.72 MB 312 KB 186 KB 546 KB 467 KB 6.72 MB 6.54 MB
Res. 3840 × 2160 2048 × 1152 2048 × 1152 3840 × 2160 3840 × 2160 3840 × 2160 3840 × 2160OpenPuff

Format PNG JPG JPG JPG JPG PNG PNG

Size 7.8 MB 312 KB 186 KB 545 KB 467 KB 7.8 MB 4.49 MB
Res. 3840 × 2160 2048 × 1152 2048 × 1152 3840 × 2160 3840 × 2160 3840 × 2160 3840 × 2160OpenStego

Format PNG JPG JPG JPG JPG PNG PNG

Size 791 KB 277 KB 187 KB 770 KB 749 KB 791 KB 877 KB
Res. 3840 × 2160 1920 × 1080 2048 × 1152 3840 × 2160 3840 × 2160 3840 × 2160 3840 × 2160StegHide

Format JPG JPG JPG JPG JPG JPG JPG

Size 19.2 MB 339 KB 190 KB 647 KB 467 KB 19.2 MB N/A
Res. 3840 × 2160 2048 × 1152 2048 × 1152 3840 × 2160 3840 × 2160 3840 × 2160 N/AStegoShare

Format PNG JPG JPG JPG JPG PNG N/A

that the file size is also higher. Higher sizes mean more storage space, higher traffic, and

bandwidth so it is more likely to suffer higher compression. With that in mind, the second

test was planned out.

The second test, conducted during the months of September and October of 2021,

consisted of two specific text messages of different lengths encrypted with AES-256 and

afterwards hidden by one of the steganography programs, also used in the previous test,

in four base test images of different colours and sizes. The messages hidden are “The

quick brown fox jumps over the lazy dog” and a random 256-character message. As for

the chosen images, presented in Figure 4.1 to use as test images, one is a solid grey colour

image with a resolution of 1920×1080 pixels and the remaining three are images from

Volume 3 of the database of standard test images of the University of Southern California.

In particular, images “4.1.08—Jellybeans” (with a resolution of 256×256 pixels), “4.2.03—

Baboon” (with a resolution of 512×512 pixels), and “5.3.02—Airport” (with a resolution

of 1024×1024 pixels) were selected due to their different resolutions and the need to have

both coloured and grayscale images. Due to limitations with each steganography program,

all images were converted to both PNG and JPEG. A total of 192 images were uploaded,

processed, and analyzed. As a way to verify if the images were altered after being uploaded

to online services, secure hashes (MD5 and SHA) were obtained and compared.

The results obtained from this test were much more favourable and presented the

viability of the concept of using steganography in online services. Although Facebook,

LinkedIn, and Twitter all had a success rate of 0% in retrieving the secret message, the

other services ranged from success rates of 87.5% and 100%. Table 4.2 presents the success

rate for each service and program.

Page 20 of 72

Chapter 4. Online Services Assessment

(a) (b) (c) (d)

Figure 4.1: Adopted base images: (a) solid colour; (b) airport; (c) baboon; (d) jellybeans.

Table 4.2: Percentage of successfully retrieved messages.

Facebook LinkedIn Twitter Imgur Flickr ImgBox

OpenPuff 0% 0% 0% 100% 100% 87.5%

OpenStego 0% 0% 0% 100% 100% 100%

StegHide 0% 0% 0% 100% 100% 0%

StegoShare 0% 0% 0% 100% 100% 100%

In more detail, Facebook, Twitter, and LinkedIn compression algorithms do not ap-

pear to be the same, since the hash values of all images were different. Further, all

images, regardless of resolution, file size or format, were converted into JPG format, and

the resulting file size was smaller. Images having a resolution of 3840×2160 pixels were

reduced to 2048×1152 pixels on Facebook and LinkedIn. The metadata of the image was

also changed. These social network platforms use image compression, directly hampering

steganography. Similar behaviour was assumed to exist in all social network platforms.

Imgur had a 100% success rate when using images with a resolution of 1920×1080

pixels or less. Images with higher resolutions or in PNG format were converted to JPEG

and compressed in such a way that their size became too small to retain the secret message.

However, if the original image was already in JPEG format, the image file changes did not

disrupt the steganography. Further, the secure hash results of the retrieved images were

different from those of the uploaded pictures. After additional analysis, we concluded that

Imgur stripped metadata from all images, resulting in different hash values for the same

images. These conclusions were drawn by extracting the core data of the images and then

comparing the secure hash values of these.

Flickr had a 100% success rate due to the fact that Flickr allows the user to download

the original images without any changes. Even image metadata and resolutions are pre-

served. The secure hash values of the downloaded images confirmed that no modifications

Page 21 of 72

Chapter 4. Online Services Assessment

were made to the uploaded images.

ImgBox was able to retrieve information for all steganography programs except StegHide.

In our testing, StegHide processed only JPEG images, which, in this case, underwent

enough changes to disrupt steganography-based message retrieval.

Page 22 of 72

Chapter 5

Proposed Solution

The main objective of the proposed solution is confidential, anonymous and covert

end-to-end communications between users. For the solution to be considered confiden-

tial, all exchanged messages must be encrypted end-to-end, which means that messages

are encrypted at the sender and only decrypted at the destination. In order for it to

also be considered anonymous, only the participants should know the identity of other

participants. Finally, covert means that all communications and exchange of data must

be hidden. The most suitable way of achieving all of these requirements is by avoiding

dedicated servers and making use of existing online services which do not lock their service

behind user authentication.

The proposed solution makes use of steganography as a way to keep data hidden, which

requires that images, with the message embedded into them, are exchanged between users.

Because of this, an image-sharing online service is required. However this brings up an

issue: how can the users exchange the uploaded image without sending it directly to the

user, possibly compromising the anonymity of the solution? Another online service, in

specific, a collaborative text editor, was chosen as a middle-way to exchange the image

Uniform Resource Locator (URL), which the recipient can recover and use to download

the image.

Therefore, with the tests performed in Chapter 4, the most fitting choice for image-

sharing was considered to be Imgur, mainly because it offers an API with anonymous

upload features. Moreover, for the text-sharing online service, responsible for exchanging

the image URL, Dontpad was deemed a great choice, once again, due to having an easy-

Page 23 of 72

Chapter 5. Proposed Solution

to-use and fast API to write and retrieve data to a document of the user’s choice.

Figure 5.1 presents a reference scenario. The Sender wants to send a message to

the Receiver so they start by using the application which encrypts and hides data in an

image. Afterwards, the image is uploaded to the image-sharing online service (Imgur),

which generates and returns an URL. This URL is written to a document in the text-

sharing online service (Dontpad). From there, the receiver will access the document in

the text-sharing online service and retrieve the URL and download the image. Once

downloaded, the image is processed and the hidden data is revealed. This hidden data is

decrypted and the plaintext is recovered.

Sender

"Let's meet at
3:30 PM!"

Application

Accesses

Image

Returns

ONLINE
SERVICES

Image Host
Service

Text Host
Service

Is uploaded toHides message in

Image with
Secret

Stores

Stores Image URL

Application

"Let's meet at
3:30 PM!"

Receiver

Returns image
URL to

Is downloaded by Is accessed by

Figure 5.1: Reference scenario.

5.1 Identified requirements

The solution requires that certain requirements are followed. It needs to be private,

ensuring that all data is encrypted and that only communicating users should have access

to it. It should also be easily scalable - making it so a new user can start participating in

the system without downtime. The following requirements are also what the application

should achieve:

(R.1) Covert communications between users - Any and all data exchange should

allow for the users to remain anonymous and not leave a noticeable track.

(R.2) Encrypted message exchange - Any and all data should be encrypted to ensure

confidentiality.

Page 24 of 72

Chapter 5. Proposed Solution

(R.3) User authentication - The application should verify that the user accessing it and

using the smartphone is its’ owner, as such, anytime the application is rebooted, it

must ask for a password.

(R.4) Cryptographic key refresh - Cryptographic keys should be refreshed at will by

the users themselves if they wish to do so.

(R.5) Temporary message exchange - Messages should not remain in the servers (the

server hosting the image carrier as well as the server acting as a proxy to exchange

data).

(R.6) Servers must not know users’ identity - The online servers must operate without

requiring user authentication.

(R.7) Settings - Message history - Turn on/off - The user can choose to keep a local

history of their conversations. By default, this option should be turned on.

(R.8) Local DB - Has the message been read? - The application should use local

storage to discern if a message has been read and also if it has notified the text-

sharing service of that fact.

5.2 Specification

Data is stored in four different structures: Local, Contact, Chatroom, and Message.

Local is a structure focused on storing information about the user using the system -

information such as the user’s Universally Unique Identifier (UUID), generated automat-

ically. The contact structure is used to store other users’ information - name and UUID.

Considering that the solution is serverless, this structure is mainly used for the sake of

confirming the origin of messages. In order to send messages, a chatroom must first be

created and accessed. The Chatroom structure holds information about the name given

by the user to the chatroom, the UUID, and salt, both of which can be generated auto-

matically or inserted manually. The message, the last data structure, is responsible for

messages - storing the content, or the message itself, a timestamp of when the message was

sent, the UUID of the user that sent the message, and finally the UUID of the chatroom

Page 25 of 72

Chapter 5. Proposed Solution

the message was sent to. All of these data structures also have a unique identifier, used

only for database operations. The entity-relationship diagram and the database diagram

are depicted in Figures 5.2 and 5.3.

LOCAL

uuid

CONTACT

MESSAGE CHATROOM

id uuid

SENDS

id content

timestamp

SENT TO

id salt

uuid

id

name

sender

chat_uuid

name

keepMessage

Figure 5.2: Entity Relationship Diagram.

Chatroom

id int NOT NULLPK

name varchar NOT NULL

uuid varchar NOT NULL

salt varchar NOT NULL

keepMsg boolean NOT NULL

Contact

id int NOT NULLPK

name varchar NOT NULL

uuid varchar NOT NULL

Message

id int NOT NULLPK

content varchar NOT NULL

timestamp varchar NOT NULL

sender_uuid varchar NOT NULLFK

chatroom_uuid varchar NOT NULLFK

Local

id int NOT NULLPK

uuid varchar NOT NULLFK

Figure 5.3: Database Diagram.

In regards to entities, there are only three participants - one of them human and the

other two online services. The user can register a password to authenticate themselves.

This action, in turn, also involves the creation of a database. Since the solution is server-

less, there is no way to communicate with a central server to confirm the identity of the

user, and as such, the password used to authenticate and log into the application is the

password used to decrypt the database, which is encrypted. Once authenticated, the user

can add new contacts, view information on contacts already added, or delete them. The

Page 26 of 72

Chapter 5. Proposed Solution

user can also add chatrooms (by generating new credentials or by inserting credentials of

a chatroom created by another user). The user can also delete chatrooms and, with it,

the messages linked to that chatroom. Once the user accesses a chatroom, they are able

to send or receive messages. Both these processes involve communication with the other

two entities, an online service to share images and an online service to share text. These

are used to store some data temporarily until the recipient receives it and deletes it from

the services themselves. The use cases of these entities are shown in Figure 5.4.

System Boundary

User

Authentication

Password
Registration

Database
Creation<<include>>

Invalid
Credentials<<exclude>>

Image Sharing
Service

Text Sharing
Service

Create Contact

Delete Contact

Create
Chatroom

Delete
Chatroom

Database
Record Creation

<<include>>

<<include>>

<<inclu
de>>

<<
inc

lud
e>

>

Send
Message

Select Image

Access System
Folders

<<
inc

lud
e>

>

<<exte
nds>

>

Hide Message
in Image

<<include>>

Upload Image

<<include>>

Return Image
URL

<<
ex

te
nd

s>
>

Store Image
URL

<<include>>

Get
Message

Store Image

Recover
Image URL

<<include>>

Download
Image<<include>>

Retrieve
Message from

Image

<<include>>

Figure 5.4: Use Case Diagram.

Page 27 of 72

Chapter 5. Proposed Solution

The application will have a user interface that will follow the requirements and use cases

presented beforehand. Mockups were designed that attempt to make the user experience

the best possible while ensuring that all the functional necessities are achieved.

At first, the initial idea to authenticate users was the usage of a PIN system, wherein

the user would input a PIN code, likely 4 digits to then access the application. However,

this felt very overwhelming alongside the request for a password to decrypt the database,

right afterwards. Not only that, but each chatroom will also require the user to input a

passphrase. Overall it felt unnecessary to have a PIN code, so instead, this screen adopted

a more common method - inserting a password. The application verifies whether the

database already exists and presents different widgets depending on the situation. For

example, if the database does not exist yet, an extra text field is enabled that is used as

a way to confirm the password inserted by the user. If the user inputs a password and it

fails verification, a popup dialogue window appears to warn them. The mockup is shown

in Figure 5.5

1:09

PSST

1 2 3

4 5 6

7 8 9

0

(a)

1:09

PSST

Password

Confirm Password

OK

(b)

Figure 5.5: Mockups: (a) PIN input (not used); (b) Password input

Page 28 of 72

Chapter 5. Proposed Solution

Once the user has inputted the valid password, he gains access to the home menu.

Here he can change between a list of chatrooms and a list of contacts through the bottom

navigation menu. On this screen, the user can add new chatrooms and contacts through

the buttons in the top right. Each of the buttons will make a popup window appear, which

will request input from the user. For the chatroom, the popup will, at first, request only

the name of the chatroom, which is only used to differentiate chatrooms more easily. The

remaining pieces of data are then generated by the application automatically. However,

the user can activate a checkbox, which asks if the chatroom already exists, to manually

input the UUID and salt of the chatroom. For creating contacts, all input must be inserted

manually. Figures 5.6 present these popups.

1:13

Contacts

(name)
(UUID)

(name)
(UUID)

(name)
(UUID)

(name)
(UUID)

(name)
(UUID)

(name)
(UUID)

(name)
(UUID)

Jack
a344c8ce-6307-4670-85a3-e73b58cb8d7d

Groups Contacts

Add Chatroom
Name

Chatroom exists?
UUID

Salt

CANCEL OK

(a)

1:13

Contacts

(name)
(UUID)

(name)
(UUID)

(name)
(UUID)

(name)
(UUID)

(name)
(UUID)

(name)
(UUID)

(name)
(UUID)

Jack
a344c8ce-6307-4670-85a3-e73b58cb8d7d

Groups Contacts

Add Contact
Name

UUID

CANCEL OK

(b)

Figure 5.6: Mockups: (a) Chatroom creation; (b) Contact creation

Once users create chatrooms/contacts, they are shown in the list and can be accessed

by clicking on it or deleted by clicking the trash-can icon shown to the right. The mockups

of these operations are shown in Figure 5.7.

The users can click on chatrooms in the list to open a new screen dedicated to the chat,

Page 29 of 72

Chapter 5. Proposed Solution

1:13

Chatrooms

Groups Contacts

(group name)
(uuid)

(group name)

(group name)

(group name)

(group name)

(group name)

(group name)

Work Group

(uuid)

(uuid)

(uuid)

(uuid)

(uuid)

(uuid)

a344c8ce-6307-4670-85a3-e73b58....

(a)

1:13

Contacts

(name)
(UUID)

(name)
(UUID)

(name)
(UUID)

(name)
(UUID)

(name)
(UUID)

(name)
(UUID)

(name)
(UUID)

Jack
a344c8ce-6307-4670-85a3-e73b58cb8d7d

Groups Contacts

(b)

Figure 5.7: Mockups: (a) Chatroom list; (b) Contact list

to send or receive new messages and view older messages (if the user has not activated the

setting to disable the storage of messages for that chatroom). In this screen, the user can

choose the image that will be used to embed the message through a button that opens a

window to choose the file, a text field to input the message, and finally another button to

send the message. When clicking the send button, the application verifies the input of the

image and message to ensure that it is valid. If the application sends or receives messages

successfully, a new message is added to the scroll view. A mockup of this screen is shown

in Figure 5.8.

5.3 Design

To begin an exchange of messages between users, it is required that they first agree

on a channel identifier, which in this solution makes use of the UUID format, and a salt

to go with it. A passphrase must also be agreed on to use along with the salt and a Key

Page 30 of 72

Chapter 5. Proposed Solution

1:29

Meetup friday at 3:30 PM. Remember
to bring the necessary data to finish

the project.

I don't know if I'll be available then.
Let me think about it.

David still hasn't seen these
messages, the sloth.

Message Send

Alright, I'll be there.

Figure 5.8: Mockup - Chatroom.

Derivation Function (KDF) to create a channel key (Ci) which is shared by both users.

The way the application is programmed, whenever the user accesses a chatroom they are

requested a passphrase while a salt is stored for it. This allows users to refresh the used

key to encrypt/decrypt data, as long as everyone knows what passphrase to use. These

three pieces of information are assumed to be exchanged in a secure manner, preferably

offline, or in person, for the sake of anonymity. All these values are generated for each

conversation using a secure random number generator. The URL of the room, in the text-

sharing online service, dedicated to exchanging the URL of the image with hidden data

is obtained by concatenating the UUID belonging to the chatroom with the text-sharing

online service’s URL. If we assume that Channel 1 has the UUID: UUID1, the chatroom’s

shared online folder in DontPad will be available at: http://dontpad.com/UUID1. This

URL is then used to exchange an image’s URL, with it being deleted as soon as possible

when the recipient has read the secret message.

Afterwards, users can exchange messages. A sequence diagram is depicted in Fig-

ure 5.9. The sender starts by securely deriving a channel key (Ci) from the password and

Page 31 of 72

Chapter 5. Proposed Solution

the salt (Step 1). In Step 2, an initialization vector IVi is generated with a secure random

generator. Afterwards, in Step 3, the key Ci and the IVi are used to encrypt the plain-

text message using symmetric encryption (AES), generating the ciphertext Ei. In Step

4, the sender generates a HMAC Hi from the ciphertext Ei and IVi. The ciphertext Ei,

HMAC Hi, and a nonce are encrypted with the key Ci and then concatenated with IVi

in Step 5 – these shall be referred to as Mi. In Step 6, the secret data Mi is hidden

through steganography, being embedded into an image file Fi, which has had its EXIF

data scrubbed clean, resulting in the stego-image SFi. The sender then, anonymously,

uploads SFi to the image-hosting service (Step 7), obtains its URL (Step 8), and writes

the URL to a folder on the text-hosting service (step 9). Next, the receiver can read the

shared folder on the text-hosting service, obtain the new URL (Step 10), and proceed

to download SFi (Step 11). Then, he/she extracts the embedded data Mi (Step 12) to

retrieve IVi and the encrypted Ei and Hi (Step 13). In Step 14, Ei and Hi are retrieved

after decryption, and afterwards, a new HMAC Higen is generated from the retrieved Ei

and IVi (Step 15). Hi and Higen are compared to ensure the integrity of the message (Step

16). Finally, in Step 17, the plaintext message is retrieved by decrypting Ei with the key

Ci and the initialization vector IVi.

To communicate with the two services chosen, HTTP requests directed to each of

the service’s APIs were sent. For Imgur, the only requirement was to upload an image

anonymously and get the URL of the image in return, when the process was completed.

This was achieved by sending a POST request to the URL https://api.imgur.com/

3/image with a payload of the ”image” data (in base64), the ”type” being base64, a

”name” for the image and a ”title” as well. A client ID is required to use the API

but it does not need to be the user’s real ID. The response data includes a variety of

information, for example, the timestamp of when the image was uploaded, however, the

application only grabs the image URL. For Dontpad, the application requires the ability

to write and read data in a room of the choice of the application. In order to write

data to a room a POST request is sent to the URL https://api.dontpad.com/uuid

(with the uuid being the UUID of the chatroom) with a ”text” payload of the message

that needs to be written. To read data from a room a GET request is sent to the URL:

https://api.dontpad.com/uuid.body.json with a ”lastModified” payload with a value

Page 32 of 72

https://api.imgur.com/3/image
https://api.imgur.com/3/image
https://api.dontpad.com/uuid
https://api.dontpad.com/uuid.body.json

Chapter 5. Proposed Solution

of 0. This will return a JSON string that includes the body text with which the value of

the text currently found in the room is associated.

Encrypting the image URL which is inserted into the Dontpad folder is a possibility

to further increase confidentiality since the users already have a secret key that can be

used, however, one may argue that this comes at the cost of more suspicion compared

with the URL being in plaintext. Since this prototype focuses on anonymous and covert

communications, even if it sacrifices confidentiality, the URL will not be encrypted.

Page 33 of 72

Chapter 5. Proposed Solution

Sender

Sender

Imgur

Imgur

DontPad

DontPad

Receiver

Receiver

Exchange URL of folder

1. Ci=KDF(password,salt)

2. IVi=SRG()

3. Ei=Enc(msg,Ci,IVi)

4. Hi=HMAC(Ei,IVi)

5. Mi=IVi |{Ei,Hi}Ci

6. SFi=Steg(Mi,Fi)

7. Upload image (SFi)

8. Obtain image URL

9. Write image URL

10. Obtain image URL

11. Download image from URL

12. Mi=Reveal(SFi)

13. Retrieve IVi and
encrypted Ei,Hi from
Mi String

14. Ei | Hi = Dec({Ei,Hi}Ci, Ci)

15. Higen = HMAC(Ei,IVi)

16. Verify Hi == Higen

17. msg = Dec(Ei,Ci,IVi)

Figure 5.9: Sequence diagram of the proposed message service.

Page 34 of 72

Chapter 6

Implementation

The application was implemented in Python and makes use of the cross-platform graph-

ical framework Kivy to offer a touch-enabled user interface. KivyMD, a collection of ma-

terial design-compliant widgets for Kivy, was also used. Figure 6.1 shows the structure of

the code. A GitHub repository of this prototype can be found here [56].

assets

db

screens

logo.png

splash.png

transparent.png

db_setup.py

chat.kv

home.kv

screen_management.kv

splash.kv

welcome.kv

chat.py

home.py

imgurAPI.py

main.py

welcome.py

splash.py

Figure 6.1: File structure.

Page 35 of 72

https://doi.org/10.5281/zenodo.7379263

Chapter 6. Implementation

The root folder has multiple python files and a few folders. The ”assets” folder holds

some visual assets used by the program, such as the application’s logo or a still image

used for a splash screen when opening the application. The ”db” folder holds a python file

responsible for the creation and first setup of the local database that will be used by the

application. The ”screens” holds ”.kv” (kivy) files which are files that have information

responsible for the formatting of the user interface. To each ”screen” a python file is

associated. For instance, for the ”home.kv” screen file, there exists a python file named

after it, ”home.py” which holds the functions that the screen has. The ”screen” folder has

an extra ”.kv” file, ”screen management.kv” which, as its’ name says, is responsible for

all operations that involve switching screens such as the act itself of going from one screen

to another and what transition animation to show when that happens.

The next sections will review portions of code fundamental for the application’s func-

tionalities while mostly setting aside the code responsible for the user interface.

6.1 Main and Screen Manager

In the ”main” python file, shown in Listing 6.1, the kivy files are loaded, the application

class is initialized and certain values are setup - the default theme style (which defines

whether the applications run in ”Light” or ”Dark” mode), the primary colour palette as

well as the title of the application. The screen manager is also initialized in line 8 and the

style of transition is chosen as well. After that, in lines 9-14, a list ”screens” is populated

associating to each focal python class the internal screen name, shown in the contents of

the ”screen management.kv” file, presented in Listing 6.2. This ensures that when the

name value is given to a certain variable, the application will move to the right class along

with the screen. Afterwards, each item in the list is added as a widget to the screen

manager object. The main application is run in lines 21-26 - the application will start a

loop that will keep going until the user closes the application.

1 {

2 class MainApp(MDApp) :

3 def bu i ld (s e l f) :

4 s e l f . theme c l s . theme sty l e = ”Dark”

5 s e l f . theme c l s . p r imary pa l e t t e = ”DeepPurple”

Page 36 of 72

Chapter 6. Implementation

6 s e l f . t i t l e = ”PSST”

7

8 sm = ScreenManager (t r a n s i t i o n=S l i d eTran s i t i on ())

9 s c r e en s = [

10 SplashScreen (name=” sp la sh ”) ,

11 WelcomeScreen (name=”welcome”) ,

12 HomeScreen (name=”home”) ,

13 ChatScreen (name=”chat ”)

14]

15 for s c r e en in s c r e en s :

16 sm . add widget (s c r e en)

17

18 return sm

19

20

21 i f name == ” main ” :

22 loop = async io . g e t ev en t l o op ()

23 loop . run unt i l c omp l e t e (

24 MainApp () . async run ()

25)

26 loop . c l o s e ()

27 }

Listing 6.1: main.py contents

1 {

2 <ScreenManagement>:

3 id : ” s c r e en s ”

4 SplashScreen :

5 name : ” sp la sh ”

6 WelcomeScreen :

7 name : ”welcome”

8 HomeScreen :

9 name : ”home”

10 ChatScreen :

11 name : ” chat ”

12 }

Listing 6.2: screen management.kv contents

Page 37 of 72

Chapter 6. Implementation

6.2 Splash Screen

This screen does not have a lot happening - it is the first screen loaded by the appli-

cation and it is used only to show a still image for 5 seconds before transitioning to the

welcome screen, nicknamed ”welcome”, where the user will be able to log in. The contents

of ”splash.py” are shown in Listing 6.3. It is important to note that the ”on enter” func-

tion (line 3) is called whenever the screen is accessed. The variable ”self.manager.current”,

responsible for changing screens, is used in the function ”switch to welcome”. Whenever

the application requires to change screens, the only thing required is to give the ”name”

value, shown in Listing 6.2, to this variable. In this case, since the application’s screen

needs to be redirected to the welcome screen, the value ”welcome” is given to the variable.

1 {

2 class SplashScreen (Screen) :

3 def on ente r (s e l f , ∗ args) :

4 Clock . s chedu l e once (s e l f . switch to welcome , 5)

5

6 def switch to welcome (s e l f) :

7 s e l f . manager . cur rent = ”welcome”

8 }

Listing 6.3: splash.py contents

6.3 Welcome Screen

In the ”welcome” screen the user will be presented with a login form that requests a

password. The application checks if a local database already exists and depending on if

it exists or not it will either display one password input field or two. This piece of code

is presented in Listing 6.4. If the application does not find a local database (line 3), it

will set a local variable to false (line 4), which is used in another function, and the extra

password input field, used to confirm the password input, is made visible to the user.

1 {

2 def c h e c k f i l e (s e l f) :

3 i f not s e l f . path . i s f i l e () :

4 s e l f . f = Fal se

Page 38 of 72

Chapter 6. Implementation

5 s e l f . i d s . wsPasswordConfirm . r equ i r ed = True

6 s e l f . i d s . wsPasswordConfirm . opac i ty = 1

7 s e l f . i d s . wsPasswordConfirm . d i s ab l ed = False

8 else :

9 s e l f . f = True

10 pass

11 }

Listing 6.4: welcome.py check file function

Once the user inputs their password in the password input fields, they have to click

a button to proceed. This button will call the function presented in Listing 6.5. This

function will start by checking the value of the local variable ”f” to know whether a

local database already exists or not. The local database is created with the package

”pysqlitecipher”, a lightweight SQLite wrapper with encryption built in. When creating

a database it receives a plaintext passphrase as input and then hashes it with SHA-512

and creates a secret key through cryptography-fernet’s algorithm. This secret key is then

encrypted through One Time Pad (OTP) with an SHA-256 hash as a key and stored in

the database itself, being decrypted whenever the user logins and starting an instance of

fernet to encrypt all data. The SHA-512 password hash is also stored and can be accessed

through the method ”getVerifier” used in line 4. In line 5, the password which was input

by the user is hashed and it is used in line 6 to verify if the credentials inserted match.

In the case that a database needs to be created another python file, ”db setup.py”,

dedicated to the creation of the database is called. In it, the tables and their columns are

defined and then created after the creation of the database itself. Afterwards, a record is

added to the ”local” table with a generated UUID4 which will be the user’s UUID. The

method ”open message”, used in lines 8, 10, 15, and 17, when called opens a dialogue

popup box with the message received as an argument.

1 {

2 def pre s s ok (s e l f) :

3 i f s e l f . f :

4 x = Sq l i t eC iphe r . g e tV e r i f i e r (dataBasePath=”db/pydatabase . db

” , checkSameThread=False)

5 y = Sq l i t eC iphe r . sha512Convertor (s e l f . i d s . wsPassword . t ex t)

6 i f x == y :

Page 39 of 72

Chapter 6. Implementation

7 s e l f . parent . cur r ent = ”home”

8 s e l f . open message (”Welcome back . ”)

9 else :

10 s e l f . open message (”Password i n c o r r e c t . ”)

11 else :

12 i f s e l f . i d s . wsPassword . t ex t == s e l f . i d s . wsPasswordConfirm .

t ex t :

13 db setup . db c r ea t i on (s e l f . i d s . wsPassword . t ex t)

14 s e l f . parent . cur rent = ”home”

15 s e l f . open message (” Please do not f o r g e t your password .

You w i l l need i t whenever you open t h i s app . ”)

16 else :

17 s e l f . open message (”Passwords do not match . Try again . ”)

18 }

Listing 6.5: welcome.py press ok function

6.4 Home Screen

In the ”home” screen, the user has access to a list of chatrooms and another for

contacts. As soon as the user enters the screen the ”update” method is called. This

method’s code is presented in Listing 6.6. It starts by clearing the scroll list of any

widgets (effectively emptying out the whole chatroom and contact list) and afterwards

getting all data from the ”local” (line 6), ”chatroom” (line 13), and ”contact” (line 16)

tables. The data recovered from the ”local” table, the user’s UUID, is given to the variable

”user uuid” in the ”chat” screen in line 11. The data recovered from the ”chatroom” and

”contact” tables are run through in a loop in lines 18-22, where for each record found a

new widget is added to the list.

1 {

2 def update (s e l f) :

3 s e l f . i d s . chatroomListWidget . c l e a r w i d g e t s ()

4 s e l f . i d s . contactListWidget . c l e a r w i d g e t s ()

5

6 l o c a l L i s t = s e l f . o . getDataFromTable (s e l f . t l o c a l ,

r a i s eConver s i onErro r=True , omitID=False)

Page 40 of 72

Chapter 6. Implementation

7 localUUID = l o c a l L i s t [1] [0] [1]

8

9 s e l f . i d s . currentUserUUID . text = localUUID

10 nex t s c r e en = s e l f . parent . g e t s c r e en (” chat ”)

11 nex t s c r e en . u se r uu id = localUUID

12

13 chatroomList = s e l f . o . getDataFromTable (s e l f . t chatroom ,

ra i s eConver s i onErro r=True , omitID=False)

14 chatroomListData = chatroomList [1]

15

16 con ta c tL i s t = s e l f . o . getDataFromTable (s e l f . t contac t ,

r a i s eConver s i onErro r=True , omitID=False)

17 contactL i s tData = con ta c tL i s t [1]

18

19 for g in chatroomListData :

20 s e l f . u i add chatroom (g [0] , g [1] , g [2] , g [3] , g [4])

21

22 for c in contactL i s tData :

23 s e l f . u i add contac t (c [0] , c [1] , c [2])

24 }

Listing 6.6: home.py update function

It’s important to note that the data received from all tables come in the following

structure: {”C1”,”C2”,...}{{”A1”,”A2”,...},{”B1”,”B2”,...}}. The response will always be

two lists, the first one, containing C1 and C2, reference the table’s column names. The

second list has a list for each record in the table which contains the values for each column.

For instance, for the first record in the table, the value for column C1 is A1, while for the

second record, the value for the same column is B1. The same logic applies for column C2

and so on. That is why in lines 13 and 16 the data in index 1 is grabbed, which is the list

that contains the values, and not the column names.

The method used in lines 20 and 23, are functions used only for the purpose of adding

widgets to the user interface, which in the former, receives the ”ID”, ”name”, ”uuid”,

”salt” and a boolean variable ”keepMsg”, responsible for whether messages are stored or

not, of a group and, in the latter, receives the ”ID”, ”name” and ”uuid” of a contact. The

code of these functions is presented in the Listing 6.7. This function, while adding each

Page 41 of 72

Chapter 6. Implementation

widget, binds various methods to different actions. When the user clicks the widget on the

chatroom list, this will call a method that will redirect the user to the chat screen associated

with the item chosen. When the user clicks the trashcan, found on the right side of each

list item, the functions shown in Listing 6.8 are called and after that, another method,

found in lines 10 and 18, is called (remove widget) which, in this situation, removes that

specific item from the list. The icon widget is added to the list item widget and after that

added to the main list widget.

1 {

2 def ui add chatroom (s e l f , group id , name text , uu id text , s a l t ,

keepMsg) :

3 nItem = TwoLineRightIconListItem (text=name text ,

4 s e condary tex t=uuid text ,)

5 nItem . bind (on r e l e a s e=lambda x : s e l f . g o to cha t (name text ,

uu id text , s a l t , keepMsg))

6 nIcon = IconRightWidget (i con=” trash−can” ,

7 on r e l e a s e=lambda x : s e l f .

remove chatroom (group id , uu id text ,

nItem) ,)

8 nItem . add widget (nIcon)

9

10 s e l f . i d s . chatroomListWidget . add widget (nItem)

11

12 def u i add contac t (s e l f , c ontac t id , name text , uu id t ex t) :

13 nItem = TwoLineRightIconListItem (text=name text ,

14 s e condary tex t=uuid text ,)

15 nIcon = IconRightWidget (i con=” trash−can” ,

16 on r e l e a s e=lambda x : s e l f .

remove contact (contac t id , nItem) ,)

17 nItem . add widget (nIcon)

18

19 s e l f . i d s . contactListWidget . add widget (nItem)

20 }

Listing 6.7: home.py add UI functions

When the user clicks the trash-can icon to delete a chatroom the following functions

are called. When deleting a contact, what happens is that the record is deleted from the

Page 42 of 72

Chapter 6. Implementation

database. However, when deleting a chatroom, the message data linked to that chatroom

is deleted alongside the chatroom record.

1 {

2 def remove chatroom (s e l f , groupID , groupUUID , in s t anc e) :

3 messageList = s e l f . o . getDataFromTable (s e l f . t message ,

r a i s eConver s i onErro r=True , omitID=False)

4 messageListData = messageList [1]

5

6 for m in messageListData :

7 i f m[4] == groupUUID :

8 s e l f . o . de leteDataInTable (s e l f . t message , m[0] , commit=

True , r a i s eE r r o r=True , updateId=False)

9 s e l f . o . de leteDataInTable (s e l f . t chatroom , groupID , commit=True ,

r a i s eE r r o r=True , updateId=False)

10

11 s e l f . i d s . chatroomListWidget . remove widget (i n s t anc e)

12

13 def remove contact (s e l f , contactID , i n s t anc e) :

14 s e l f . o . de leteDataInTable (s e l f . t contac t , contactID , commit=True

, r a i s eE r r o r=True , updateId=False)

15 s e l f . i d s . chatroomListWidget . remove widget (i n s t anc e)

16 }

Listing 6.8: home.py remove functions

6.5 Chat Screen

This screen is where all communications happen - all other screens work with local data

and have no communication whatsoever with other systems. It is also the screen where

encrypting/decrypting and hiding/revealing data happens. Like the previous screen, the

”home” screen, whenever a user enters this screen an ”update” method is called. The

code is shown in Listing 6.9. This method starts by locking the widgets responsible for

sending messages, to first ensure that the user has Internet access. Like the lists in the

”home” screen, every time this screen is loaded, it clears the scroll view, dedicated to

presenting the messages, of any messages. Afterwards, all messages are retrieved from the

Page 43 of 72

Chapter 6. Implementation

database, and for each message that has a ”chat uuid” equal to the current chatroom, a

method to add the message to the scroll view is run. This is merely the part of the script

that presents past messages. The script then checks if the user has input a passphrase,

and if it has not it will run a method that will open a popup window with an input field.

After that, it begins running the method ”start get messages thread” every 60 seconds.

Since there is no central server, there were a lot of difficulties implementing a broadcast

system to notify users that there is a new URL available in the text-sharing service, and

as a result, also a new image available in the image-sharing service. The alternative,

which was chosen, requires running a script in an interval to check whether there are new

messages and if there are, retrieve them. This method will start a new thread and run

the method ”get messages”. Starting a new thread to run this portion of the code is very

important - without running it on a new thread, it will instead run on the main thread,

which is the thread responsible for maintaining the user interface. This will, in turn, cause

all of the graphic components to freeze for as long as the application takes to retrieve the

messages, creating an undesirable user experience. By creating a new thread to run this

code, the main thread does not need to ”stop” working on the user interface.

1 {

2 def update (s e l f) :

3 s e l f . i d s . ga l l e r ybu t ton . d i s ab l ed = True

4 s e l f . i d s . chatbox . d i s ab l ed = True

5 s e l f . i d s . sendbutton . d i s ab l ed = True

6

7 s e l f . i d s . cha t l ayout . c l e a r w i d g e t s ()

8

9 messageList = s e l f . o . getDataFromTable (s e l f . t message ,

r a i s eConver s i onErro r=True , omitID=False)

10 messageListData = messageList [1]

11

12 for m in messageListData :

13 i f m[4] == s e l f . chat uu id :

14 s e l f . m bui lder (m[1] , m[2] , m[3])

15

16 i f s e l f . pwd i s None :

17 s e l f . pwd inser t ()

Page 44 of 72

Chapter 6. Implementation

18

19 s e l f . task = Clock . s c h e du l e i n t e r v a l (s e l f .

s t a r t g e t me s s ag e s th r ead , 60)

20 }

Listing 6.9: chat.py update function

In Listing 6.10 the code of the method that is called in intervals of 60 seconds as well

as the method that starts a new thread to run it is shown. For the former, the script

starts by checking if a passphrase was inserted and if it has not, the script will not go

any further. Another check is made to verify if the system has an Internet connection.

After the checks are successful, all buttons will be disabled to ensure the user cannot

disrupt the process in any way. Afterwards, a key is generated in the ”get key” method,

which is available in Listing 6.13. This key is generated through Argon2, which receives

a passphrase and a salt which is, securely generated when creating the chatroom, being a

32-byte hash-token. After generating the key, the method ”download function”, available

in Listing 6.11 is called to receive a list of plaintexts. A check is made to verify if the

list returned a populated list. If it has not, it stops the method and enables the buttons

again. If the list received is populated, the values of the sender’s UUID, the message

itself, and the timestamp of when it was sent are passed as arguments to the method

”m builder” which will add the message to the scroll view. It is worthy of note that the

method ”m builder” is set to always run in the main thread, even if called from another

thread, since it is responsible for adding messages to the scroll view, or in other words,

updating the user interface, which can not be done from a thread other than the main one.

Finally, the messages are inserted into the ”message” table and the buttons are enabled.

The latter function will only do two things - check if another thread has already been

created (which means the application is already retrieving messages or sending messages

at the moment) and if it has not, start a new thread to run the ”get messages” function.

1 {

2 def get messages (s e l f , arg) :

3 i f s e l f . pwd i s None :

4 return

5

6 net = s e l f . s a f e i n t e r n e t ()

Page 45 of 72

Chapter 6. Implementation

7 i f not net :

8 return

9

10 s e l f . i d s . backbutton . d i s ab l ed = True

11 s e l f . i d s . dotsbutton . d i s ab l ed = True

12 s e l f . i d s . ga l l e r ybu t ton . d i s ab l ed = True

13 s e l f . i d s . chatbox . d i s ab l ed = True

14 s e l f . i d s . sendbutton . d i s ab l ed = True

15

16 c i = s e l f . ge t key (s e l f . pwd , s e l f . s a l t)

17 p l a i n t e x t = s e l f . download funct ion (s e l f . chat uuid , c i)

18

19 i f p l a i n t e x t i s None :

20 s e l f . i d s . backbutton . d i s ab l ed = False

21 s e l f . i d s . dotsbutton . d i s ab l ed = False

22 s e l f . i d s . ga l l e r ybu t ton . d i s ab l ed = False

23 s e l f . i d s . chatbox . d i s ab l ed = False

24 s e l f . i d s . sendbutton . d i s ab l ed = False

25 return

26

27 for p in p l a i n t e x t :

28 text = p . s p l i t (”&#”)

29

30 sender = text [0]

31 content = text [1]

32 timestamp = text [2]

33

34 s e l f . m bui lder (sender , content , timestamp)

35

36 i message = [sender , content , timestamp , s e l f . chat uu id]

37 s e l f . o . i n s e r t In t oTab l e (s e l f . t message , i message , commit=

True)

38

39 s e l f . i d s . backbutton . d i s ab l ed = False

40 s e l f . i d s . dotsbutton . d i s ab l ed = False

41 s e l f . i d s . ga l l e r ybu t ton . d i s ab l ed = False

42 s e l f . i d s . chatbox . d i s ab l ed = False

43 s e l f . i d s . sendbutton . d i s ab l ed = False

Page 46 of 72

Chapter 6. Implementation

44 s e l f . working = None

45

46 def s t a r t g e t me s s a g e s t h r e ad (s e l f , arg) :

47 i f s e l f . working i s None :

48 s e l f . working = True

49 Thread (t a r g e t=s e l f . ge t messages) . s t a r t ()

50 }

Listing 6.10: chat.py get messages function

In the method ”download funtion”, a GET request is sent to the text-sharing service

Dontpad to retrieve the text available in the room at the time. The response is then split

by newlines. After that, for each line, the content of each message is processed and the

sender’s UUID and image’s URL are retrieved. The sender is compared to the current

user and if it is the same UUID, the line is concatenated to a variable ”rewrite” which will

be used later to rewrite the text-sharing service. If the UUIDs do not match the image

URL is accessed and the image is downloaded. After that, the hidden data in the image is

revealed and then the encrypted data is decrypted, shown in Listing 6.12 and the plaintext

is appended to a list, which will be returned.

1 {

2 def download funct ion (s e l f , room , c i) :

3 myurl = ’ https : // api . dontpad . com/ ’+ room +’ . body . j son ’

4 po s tu r l = ’ https : // api . dontpad . com/ ’+ room

5 r ewr i t e = ””

6

7 p l a i n t e x tL i s t = []

8

9 payload = { ’ l a s tMod i f i ed ’ : ’ 0 ’ }

10 response = reque s t s . get (myurl , data=payload)

11

12 responseJSON = json . l oads (re sponse . t ex t)

13 text = responseJSON [’ body ’]

14

15 i f t ex t == ”” :

16 return

17

18 l i n e s = text . s p l i t (”\n”)

Page 47 of 72

Chapter 6. Implementation

19

20 for content in l i n e s :

21 a l t e r e d c on t en t = content [: −1]

22 a l t e r e d c on t en t = a l t e r e d c on t en t . s p l i t (”#&”)

23 sender = a l t e r ed c on t en t [0]

24 imageUrl = a l t e r ed c on t en t [1]

25

26 i f sender != s e l f . u s e r uu id :

27 try :

28 image = reque s t s . get (imageUrl) . content

29 except :

30 s e l f . popup error (”Could not r e t r i e v e image from

Imgur . ”)

31 return

32

33 x = imageUrl . s p l i t (”/”)

34 f i l ename = x [3]

35

36 path = ” f i l e s /”

37 path += f i l ename

38

39 with open(path , ”wb”) as handler :

40 handler . wr i t e (image)

41

42 try :

43 mi = l sb . r e v e a l (path) # se c r e t message i s r e v ea l e d

44 except :

45 s e l f . popup error (”Could not r e t r i e v e hidden data

from image . Steganography compromised . ”)

46 return

47

48 p l a i n t e x t = s e l f . decrypt (bytes . fromhex (mi) , c i)

49 p l a i n t e x tL i s t . append (p l a i n t e x t . decode (” utf−8”))

50 else :

51 r ewr i t e += content+”\n”

52

53 i f r ewr i t e == ”” :

54 payload = { ’ t ex t ’ : ’ ’ }

Page 48 of 72

Chapter 6. Implementation

55 r eque s t s . post (pos tur l , data=payload)

56 else :

57 payload = { ’ t ex t ’ : r ewr i t e }

58 r eque s t s . post (pos tur l , data=payload)

59

60 return p l a i n t e x tL i s t

61 }

Listing 6.11: chat.py download function

The ”decrypt” function, responsible for decrypting data, is present in Listing 6.12.

Data is encrypted with AES-256-CBC. The function receives the encrypted data and a

key. It starts by decoding the encrypted data from base64. The IV is retrieved from

the first 16 bytes. A cypher object is initialized with the key and IV in Cipher-Block-

Chaining (CBC) mode. Afterwards, the HMAC and ciphertext are retrieved from the

remaining data. The data is decrypted and a padded message is returned. This padded

message is unpadded and then the HMAC is retrieved from the first 64 bytes of the

message. The remaining bytes are the message itself, the ciphertext. This ciphertext is

turned into binary from hex. With the HMAC available, a new HMAC is generated with

the IV and ciphertext and then compared to the HMAC received. If they do not match

then it is assumed that the file has been compromised in some way. If they match, a

new cypher object is created and then the ciphertext is decrypted which, now, returns

a padded plaintext. This padded plaintext is unpadded with the result being the final

plaintext. The reasoning behind a new cypher object being initialized in line 23 is due

to how Cipher-Block-Chaining works. If the cypher object was not reinitialized, the first

16 bytes of the plaintext end up remaining encrypted, while the rest of the message is

retrieved. This is because, with Cipher-Block-Chaining, the IV is only used on the first 16

bytes, and the remaining blocks make use of data from the previous blocks as its’ ”IV”.

Another available choice for encryption and authentication is ”XChaCha20-Poly1305” [41].

”ChaCha20-Poly1305” is a combination of the encryption algorithm ”ChaCha20” and the

message authentication code generation algorithm ”Poly1305”. When encrypting a large

volume of messages with the same secret key in this combination of algorithms, since the

nonce is only 12 bytes, it becomes more likely that a nonce will be re-used accidentally,

Page 49 of 72

Chapter 6. Implementation

which is a disadvantage. ”XChaCha20-Poly1305” fixes this issue by upping the size of

the nonce to 24 bytes, however, AES-256-CBC was chosen for the prototype due to its

support and implementation details information.

1 {

2 def decrypt (s e l f , enc , key) :

3 enc = base64 . b64decode (enc)

4 iv = enc [: 1 6]

5 c iphe r = AES. new(key , AES.MODECBC, iv)

6 etMsg = enc [1 6 :]

7

8 try :

9 padMsg = c iphe r . decrypt (etMsg)

10 except :

11 s e l f . popup error (”Error occured during decrypt ion − key was

not accepted . ”)

12 return

13

14 tMsg = unpad (padMsg)

15 h i = tMsg [: 6 4] . decode (” utf−8”)

16 eiHex = tMsg [6 4 : len (tMsg)]

17 e i = bytes . fromhex (eiHex . decode (” a s c i i ”))

18 ahi = hmac . new(iv , e i , ha sh l i b . sha256) . hexd ige s t ()

19

20 i f not s e l f . ch e ck s i gna tu r e (hi , ah i) :

21 s e l f . popup error (” S ignature mismatch − f i l e has been

compromised . ”)

22 else :

23 c iphe r = AES. new(key , AES.MODECBC, iv)

24 paddedRaw = c iphe r . decrypt (e i)

25 unpaddedRaw = unpad (paddedRaw)

26 return unpaddedRaw

27 }

Listing 6.12: chat.py decrypt function

The secret key generated whenever the application sends or receives messages is gen-

erated through a KDF. The chosen KDF, as mentioned before, is Argon2. The following

method ”get key” is the function responsible for secret key generation. Since the users get

Page 50 of 72

Chapter 6. Implementation

asked whenever they enter the chatroom to input a passphrase, and the salt remains the

same, users can refresh the secret key used in the chatroom by using a different passphrase.

This, in turn, will generate a different secret key. This does create a problem in this im-

plementation - if there are unread messages in the text-sharing and image-sharing services

that have been encrypted with an old passphrase-generated key, decryption will fail with

the new one.

1 {

2 def get key (s e l f , pwd , s) :

3 k = hash password raw (

4 t ime co s t =16, memory cost=2 ∗∗ 15 , p a r a l l e l i sm=2, hash l en

=32, password=pwd . encode (” utf−8”) ,

5 s a l t=s . encode (” utf−8”) , type=argon2 . l ow l e v e l . Type . ID

6) # key d e r i v a t i on func t i on i n i t i a l i z a t i o n & key crea t ed (

nonce/ s a l t used as w e l l)

7 return k

8 }

Listing 6.13: chat.py get key function

In Listing 6.14, the application first verifies if an appropriate image file has been

chosen and also that the text input field for the message is not empty. A check for if

the user has Internet access is also made. If all of these situations are valid, all buttons

are disabled and then the file path of the image file is processed so only the filename

is recovered. The message is processed to include the user’s UUID, the message, and

the current timestamp. A new secret key is generated and then the upload function is

called, available in Listing 6.15, which will attempt to upload the chosen image with the

encrypted message hidden. If the result is favourable, the message is saved to the database

and added to the user interface, otherwise, the buttons will be re-enabled and the text

input will be cleared of text. Like ”get messages”, the function ”send message” is called

by a function (lines 55-58) that will start a new thread to run it.

1 {

2 def send message (s e l f) :

3 i f s e l f . f i l e p a t h i s None :

4 s e l f . popup error (” Please choose an image to hide data . ”)

5 else :

Page 51 of 72

Chapter 6. Implementation

6 i f s e l f . i d s . chatbox . t ex t == ”” :

7 s e l f . popup error (” Please wr i t e a message . ”)

8 else :

9 net = s e l f . s a f e i n t e r n e t ()

10 i f not net :

11 return

12

13 s e l f . i d s . backbutton . d i s ab l ed = True

14 s e l f . i d s . dotsbutton . d i s ab l ed = True

15 s e l f . i d s . ga l l e r ybu t ton . d i s ab l ed = True

16 s e l f . i d s . chatbox . d i s ab l ed = True

17 s e l f . i d s . sendbutton . d i s ab l ed = True

18

19 path = s e l f . f i l e p a t h . r ep l a c e (”\\” , ”/”)

20 f i l ename = path . s p l i t (”/”)

21 f = f i l ename [−1]

22 f = token hex (8) + f [−4 :]

23

24 msg = s e l f . u s e r uu id

25 msg += ”&#”

26 msg += s e l f . i d s . chatbox . t ex t

27 msg += ”&#”

28 t = time . time ()

29 msg += str (t)

30

31 c i = s e l f . ge t key (s e l f . pwd , s e l f . c h a t s a l t)

32 r e s u l t = s e l f . up load func t i on (path , f , msg , s e l f .

chat uuid , c i)

33

34 i f r e s u l t :

35 i f s e l f . keepMsg == ”False ” :

36 pass

37 else :

38 i message = [s e l f . user uu id , s e l f . i d s . chatbox .

text , t , s e l f . chat uu id]

39 s e l f . o . i n s e r t In t oTab l e (s e l f . t message ,

i message , commit=True)

40 s e l f . m bui lder (s e l f . user uu id , s e l f . i d s . chatbox .

Page 52 of 72

Chapter 6. Implementation

text , t)

41 s e l f . i d s . backbutton . d i s ab l ed = False

42 s e l f . i d s . dotsbutton . d i s ab l ed = False

43 s e l f . i d s . ga l l e r ybu t ton . d i s ab l ed = False

44 s e l f . i d s . chatbox . d i s ab l ed = False

45 s e l f . i d s . sendbutton . d i s ab l ed = False

46 s e l f . working = None

47 else :

48 s e l f . i d s . backbutton . d i s ab l ed = False

49 s e l f . i d s . dotsbutton . d i s ab l ed = False

50 s e l f . i d s . ga l l e r ybu t ton . d i s ab l ed = False

51 s e l f . i d s . chatbox . d i s ab l ed = False

52 s e l f . i d s . sendbutton . d i s ab l ed = False

53 s e l f . working = None

54

55 def s t a r t s end mes sage th r ead (s e l f) :

56 i f s e l f . working i s None :

57 s e l f . working = True

58 Thread (t a r g e t=s e l f . send message) . s t a r t ()

59 }

Listing 6.14: chat.py send message function

In the method ”upload function”, presented in Listing 6.15, the plaintext is encrypted

and afterwards hidden in the image in hex format. The resulting image of the message

being hidden is saved and then encoded in base64 and uploaded anonymously to the image-

sharing service (Imgur) through their API. The final message, to put in the text-sharing

service, is processed and a POST request is sent to their API with the final message as

the payload.

1 {

2 def up load func t i on (s e l f , imgOrig inal , imgSecret , msg , room , c i) :

3 myurl = ’ https : // api . dontpad . com/ ’+ room

4

5 mi = s e l f . encrypt (msg , c i)

6

7 try :

8 s f i = l sb . h ide (imgOrig inal , mi .hex ()) # message hidden in

Page 53 of 72

Chapter 6. Implementation

image

9 except :

10 s e l f . popup error (”Image not appropr ia te f o r steganography . ”

)

11 return

12

13 s f i . save (imgSecret) # a l t e r e d image f i l e saved

14

15 imageName = ” testImage ”

16 imageTit l e = ”Test ”

17

18 try :

19 with open(imgSecret , ” rb”) as secret Image :

20 data = base64 . b64encode (secret Image . read ())

21 r e s u l t = imgurAPI . uploadImageAnonymous (data , imageName ,

imageTit l e)

22 except :

23 return

24

25 f ina lMsg = s e l f . u s e r uu id

26 f ina lMsg += ”#&”

27 f ina lMsg += r e s u l t

28

29 payload = { ’ t ex t ’ : ’ t e s t 2n i gh t ’ }

30 r eque s t s . post (myurl , data=payload)

31

32 return True

33 }

Listing 6.15: chat.py upload function

Encrypting the plaintext, shown in Listing 6.16, requires the generation of a new

IV of 16 bytes (AES.block size). A cypher object is initialized with the secret key and

newly generated IV in CBC mode. Afterwards, the plaintext is padded and then en-

crypted. An HMAC is generated from the ciphertext and IV. The ciphertext is turned

to hex from binary and has the newly-generated HMAC prepended to it. This result of

HMAC+ciphertext is padded and encrypted after initializing a new cypher object. Finally,

Page 54 of 72

Chapter 6. Implementation

the result is encoded in base64 and returned.

1 {

2 def encrypt (s e l f , raw , key) :

3 iv = Random . new () . read (AES. b l o c k s i z e) # iv genera t ion

4 c iphe r = AES. new(key , AES.MODECBC, iv) # cipher o b j e c t

5 paddedRaw = pad (raw) # p l a i n t e x t padding

6 e i = c iphe r . encrypt (paddedRaw) # p l a i n t e x t encryp t ion

7 h i = hmac . new(iv , e i , ha sh l i b . sha256) . hexd ige s t () # hmac

genera t ion

8 eiHex = e i .hex () # cyphe r t e x t bynary to hex

9 tMsg = hi + eiHex # prepend hmac to c yphe r t e x t

10 padMsg = pad (tMsg) # pad hmac+cyphe r t e x t

11 c iphe r = AES. new(key , AES.MODECBC, iv) # cipher o b j e c t

r e f r e s h

12 etMsg = c iphe r . encrypt (padMsg) # encrypt hmac+cyphe r t e x t

13 return base64 . b64encode (iv + etMsg)

14 }

Listing 6.16: chat.py encrypt function

Page 55 of 72

Chapter 7

Validation

In this chapter, it is shown that the developed prototype achieved all requirements.

Some graphs detailing the runtimes and performance of the prototype, as well, as a brief

discussion on the security of this concept, were also shown.

7.1 Functional Validation

All the requirements described in Chapter 5 were accomplished as follows:

(R.1) In terms of ensuring covert communications, this is achieved by foregoing using

centralized servers, using steganography, and using multiple servers as proxies to

transfer data, shown in Figure 5.9.

(R.2) Encrypted message exchange is achieved by all messages being encrypted with AES-

256-CBC with an Argon2 generated secret key, as presented in Listing 6.16 and

6.13.

(R.3) As for user authentication, whenever a user opens the application, it will boot up

to a login screen where they must input a password which will be verified against a

hash in a local database, furthermore, when opening a chatroom, the user will once

again be requested a passphrase making it unlikely for anyone other than the owner

to use the application effectively, shown in Listing 6.5;

(R.4) Cryptographic keys can be refreshed at will by changing the passphrase input when

opening the chatroom. This requires both users to agree on a passphrase and when

Page 56 of 72

Chapter 7. Validation

it will be implemented;

(R.5) The text data in DontPad is deleted upon being received at the destination and the

image data in Imgur is unlisted being only available to those who have the URL;

(R.6) All communications are anonymous, without, the user requiring to login. This

anonymity can be furthered even more by using Virtual Private Networks (VPNs)

and TOR.

(R.7) The users can opt in/out of storing messages locally through a slider in the chatroom

screen.

(R.8) As soon as a message is read by the recipient, the text present in the text-sharing

online service is deleted. The application is able to discern whether the sender of

the message was the current user or someone else through the UUID linked to the

message. If it matches, the message remains as is, for the recipient to eventually

read.

A script was developed that runs the same download/upload functions shown in List-

ing 6.11 and Listing 6.15, however without UI functionality. This script generated a secret

key, encrypted a six-byte message, hid it into three different images of different sizes

(256×256 - 83.4KB, 512×512 - 611KB, 1024×1024 - 597 KB), uploaded the resulting im-

age into Imgur, wrote the image URL to a room in Dontpad, then downloaded that text

from the room, downloaded the image, revealed the message and finally decrypted the

message to get the plaintext six-bytes message. This was done fifty times for each image,

totalling one-hundred-fifty images. Elapsed times for each execution were recorded and

are presented in Table 7.1 and graphically in Figure 7.1.

It is worthy of note that the phase that uses up the most amount of time is the im-

age upload followed by retrieving the image URL from Dontpad, for small images, and

downloading the image from Imgur, for medium and large-sized images. The encryp-

tion and decryption phases were negligible, only ever reaching a max runtime of about 3

milliseconds, this is why these do not seem to appear in Figure 7.1.

The application was tested in a system running an AMD Ryzen 5 5600H with 16 GB

of RAM and an NVIDIA RTX 3060. Overall the system has more than enough power.

Page 57 of 72

Chapter 7. Validation

SMALL MEDIUM LARGE
ms % ms % ms %

Encrypt 0.42± 0.67 ∼ 0% 0.12± 0.33 ∼ 0% 0.18± 0.38 ∼ 0%
Hide 31.43± 3.55 1.12% 34.27± 0.47 0.60% 460.68± 15.71 6.12%

Imgur Upload 1280.09± 149.91 45.45% 3786.86± 547.53 66.69% 4954.71± 827.26 66.67%
Dontpad Upload 487.05± 33.78 17.29% 497.02± 125.19 8.75% 492.64± 143.06 6.63%

Dontpad Download 490.81± 100.33 17.43% 519.69± 238.07 9.15% 516.59± 158.26 6.95%
Imgur Download 372.78± 91.39 13.24% 681.54± 207.38 12.01% 837.70± 342.33 11.27%

Reveal 7.43± 0.62 0.26% 12.28± 1.33 0.22% 21.89± 1.84 0.30%
Decrypt 0.12± 0.33 ∼ 0% 0.04± 0.19 ∼ 0% 0.16± 0.37 ∼ 0%

Key Generation 146.35± 0.97 5.20% 146.51± 1.89 2.58% 146.46± 0.88 1.97%

Table 7.1: Average runtimes by phase with standard deviation and %.

0.42

0.12

0.18

31.43

34.27

460.68

1280.09

3786.86

4954.71

487.05

497.02

492.64

490.81

519.69

516.59

372.78

681.54

837.70

7.43

12.29

21.89

0.12

0.04

0.16

146.35

146.51

146.46

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SMALL

MEDIUM

LARGE

ENCRYPT

HIDE

IMGUR UPLOAD

DONTPAD UPLOAD

DONTPAD DOWNLOAD

IMGUR DOWNLOAD

REVEAL

DECRYPT

KEY GENERATION

Figure 7.1: Runtimes

The application reached a peak of 7% CPU usage and a little over 1% system memory

over 5 minutes of execution. The usages of this system are presented in Figure 7.2.

This graph can be divided into seven different stages:

A. Stage A includes the login phase represented in the first 8 seconds of runtime. The

application sees a spike of CPU usage to a little under 1% that occurs when the ap-

plication goes through the passphrase verification with the local database, decrypts

it and then when it changes screen it sees a CPU spike of 2.8%. Over the remaining

graph, most of the CPU spikes that go to around 2%-4% are caused by UI updating,

Page 58 of 72

Chapter 7. Validation

0

1

2

3

4

5

6

7

8

1 6 1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

1
8

6

1
9

1

1
9

6

2
0

1

2
0

6

2
1

1

2
1

6

2
2

1

2
2

6

2
3

1

2
3

6

2
4

1

2
4

6

2
5

1

2
5

6

2
6

1

2
6

6

2
7

1

2
7

6

2
8

1

2
8

6

2
9

1

2
9

6

S
y
st

e
m

 %

Runtime (in seconds)

CPU % MEM %

Figure 7.2: Usage - CPU/Memory Usage

which ranges from switching screens, adding widgets or removing them.

B. Stage B includes the process of creating, reading and deleting chatrooms or contacts.

These processes usually did not cause much stress to the CPU, peaking at around

1.43%. This stage can be seen happening from seconds 9 to 32. The 3.65% CPU

peak at approximately 31 seconds, which entails the screen switching, is when stage

C starts.

C. Stage C is the act of accessing the chatroom and acting within it. It is divided into

three steps since, in this scenario, the user accesses chatrooms three different times.

The 1% spikes are caused by the user using the scroll view to scroll the messages

shown or writing in the text input field. The 2%-3% spikes are caused by the user

opening the chatroom’s information widget, filechooser (to select an image). This

stage is one of the more prominent ones. From seconds 33 to 128; 140 to 194; and

281 to 300 the user is found in a chatroom. As such the user is found in Stage C,

however, inside this stage the user can also start other stages - Stages D, E, and G.

D. Stage D represents the act of the user sending the message, but it does not include

the act of choosing an image and writing the message. It is only the act of the

application sending the message. This stage was divided into 6 steps corresponding

to the 6 messages sent during it. This stage is categorized by its’ noticeable CPU

usage spikes, which can range from 4% up to 7%. The spikes in seconds 54, 78, 148,

169, 186 and 297 are all spikes originating from the user sending a message. These

spikes are usually followed by a smaller CPU usage spike of around 2% after 5 to 6

Page 59 of 72

Chapter 7. Validation

seconds have passed since the bigger usage spike. This smaller usage spike is caused

by the application adding a widget to the scroll view (the message sent).

E. Stage E represents the act of not doing anything, leaving the application idle. This

stage was divided into 2 steps corresponding to the user idling inside a chatroom

and inside the ”home” screen. This can be seen whenever the CPU usage drops to

0% and stays there for a prolonged amount of time. Seconds 104-122 show this stage

while the user is idle inside a chatroom. Seconds 217-271 show this stage while the

user is idle inside the ”home” screen.

F. Stage F represents the act of leaving a chatroom and then re-entering another room.

This can be recognized by two consecutive 3%-4% CPU usage spikes. In seconds 129

to 139, this stage can be seen, where the user leaves a current chatroom, thus causing

a screen change (which causes the spike) and then a few seconds later re-entering a

chatroom (once again causing a screen change).

G. Stage G represents the act of receiving a message from another user. This is a

method called periodically, every 60 seconds, that checks whether a new message

is available and if so, retrieves it and presents it to the user. An instance of that

happening can be seen in seconds 93 to around 99.

Data collecting the average, peak, and standard deviation values for CPU and memory

usage are presented in Table 7.2.

Seconds CPU Average
CPU Standard

Deviation
CPU Peak MEM Average

MEM Standard
Deviation

MEM Peak

Stage A 1 to 8 0.54% 0.91% 2.82% 0.80% 0.02% 0.84%

Stage B 9 to 32 1.08% 1.09% 3.65% 0.89% 0.02% 0.94%

33 to 129 0.79% 1.14% 6.28% 1.14% 0.08% 1.37%
139 to 194 1.15% 1.37% 7.03% 1.27% 0.03% 1.33%Stage C
281 to 300 1.01% 1.50% 6.03% 1.31% 0.01% 1.32%

54 to 60 1.36% 2.12% 6.28% 1.15% 0.01% 1.16%
78 to 84 1.37% 1.70% 4.95% 1.21% 0.07% 1.37%
148 to 154 1.37% 2.34% 7.03% 1.25% 0.01% 1.26%
169 to 175 1.08% 1.83% 5.47% 1.30% 0.02% 1.33%
186 to 192 1.13% 1.51% 4.56% 1.31% 0.01% 1.32%

Stage D

297 to 300 1.51% 2.61% 6.03% 1.32% 0.00% 1.32%

104 to 122 0.00% 0.00% 0.00% 1.19% 0.00% 1.19%
Stage E

217 to 271 0.00% 0.00% 0.00% 1.30% 0.00% 1.31%

Stage F 130 to 138 1.75% 1.42% 3.78% 1.22% 0.00% 1.22%

Stage G 93 to 99 1.25% 1.63% 4.82% 1.19% 0.01% 1.20%

Table 7.2: CPU/MEM system usage.

Page 60 of 72

Chapter 7. Validation

7.2 Security Discussion

The objective of the proposed messaging service is to enable covert communication

guaranteeing the confidentiality, integrity, and authentication of the exchanged messages

while using images as containers for the message exchange. Considering that the envisioned

concept uses online services, the Dolev–Yao intruder model [15] was considered adequate

for this security analysis. The Dolev–Yao intruder model states that the intruder has

complete control over the network, being capable of reading, altering, or deleting data

in transit.

In the designed Proof of Concept (PoC), the KDF, Secure Random Generator (SRG) [71,

49, 43], and HMAC are assumed to be secure, and the channel’s password and salt are

assumed to be previously exchanged in a secure manner, preferably in-person, and gener-

ated using a SRG. Moreover, it is also assumed that the UUID is securely generated and

that the used images are either chosen randomly from online galleries or from the user’s

gallery accordingly to user preference.

Following these assumptions, a discussion can be made about user anonymization,

message confidentiality, message integrity, and system availability.

User anonymity is assured with the usage of generally available online services that

accept unauthenticated usage, combined with the inability to distinguish between users

that take part in a channel. Only users having the password and salt of a channel can read

messages exchanged in that channel, and it is also assumed that user equipment is secure

in a way that the used services do not collude or pursue user reidentification based on their

access patterns or IP address (such as a non-rooted phone). Aside from using multiple

services, users can also rely on VPN [8, 73, 18, 1, 30] services or a custom-built service on

the TOR [28] network to enhance user anonymity. Furthermore, the Exchangeable Image

File Format (EXIF) data is removed from all images used so that no location data, for

instance, is left.

Message confidentiality is assured with the use of secure functions for KDF, SRG, and

encryption. The channel key (Ci) is derived using a KDF such as Argon2 [6, 7]. A unique,

random, and securely generated IV (IVi) is also used for each message.

Integrity is guaranteed by calculating a hash value (Hi) for each message using a

Page 61 of 72

Chapter 7. Validation

secure HMAC function that receives the encrypted message (Ei) and the current IV (IVi)

as parameters. The hash value will always be unique due to the freshness of the IVi, even

if the message (msg) is the same. The msg and Hi are only exchanged while encrypted,

making them unable to be changed outside of the channel without detection.

The availability of the proposed PoC is considered to be partially assured since the

user is reliant on multiple, externally controlled online services. The PoC is based on

currently existing technology and services; however, an advanced user may create his/her

own image-hosting service as an alternative in case the available hosting services change

operation procedures or experience a shutdown. Further, while an attacker may not be

able to easily delete the image from the chosen image-hosting service, he/she can, however,

delete the URL from the text-hosting service if he/she knows the used filename (UUIDi).

Because the used online text-sharing service does support Transport Layer Security (TLS),

the use of a VPN connection is assumed. If a URL is deleted from the text-hosting service

prior to being read by the recipient, the recipient will not even realize that a new message

had been sent. We argue that the risk of such behaviour is outweighed by the eventual loss

of privacy associated with numbering messages and keeping a record of which ones are read

by whom. If the recipient does not read the message, it will remain in the Dontpad and

Imgur servers, until it is read. The proposed PoC also allows protection against specific

attacks such as replay attacks, Chosen-Ciphertext Attacks (CCAs) [46, 31, 45, 13, 32],

and Chosen-Plaintext Attacks (CPAs) [46, 31, 72, 2, 44]. Although an attacker without

access to the channels’ password and salt is unable to insert new messages in a channel,

the Dolev–Yao intruder model assumes that previous messages can be sent, performing

a replay attack. The proposed PoC adopts the per-message use of a securely generated

random value that can only be used once (nonce). Each user stores previously exchanged

nonce values, rejecting messages for which this value is repeated. Moreover, the nonce

is encrypted when exchanged, and, thus, it is assumed that it is impracticable for the

attacker to alter the nonce, making replay attacks infeasible. In a CCA, the attacker

must be able to request the decryption of ciphertext of their own choosing. In a CPA,

the attacker must obtain the encryption of plaintexts of their own choosing. The only

way to generate a valid ciphertext, or to decrypt it, is by having the correct password

and salt, which are assumed to have been securely exchanged between users. Moreover,

Page 62 of 72

Chapter 7. Validation

the used KDF and SRG are assumed secure, plus the adoption of a fresh IV for each per

message ensures that these attacks do not break the system.

Page 63 of 72

Chapter 8

Conclusions

Currently, mainstream messaging services are provided within social network plat-

forms, and these platforms are able to collect information from users, even when these

platforms use end-to-end encryption. The work presented herein proposes a message ser-

vice to support anonymous and confidential communication without requiring dedicated

online servers but exploiting existing ones, including social networks. The current work

reviewed the viability of using existing online services to support the proposed messaging

service. Steganography was chosen as the technique to enable covert communication, and

existing online services were assessed in terms of their support for the use of steganogra-

phy. Despite most social networks disrupting steganography through image compression,

a selected list of online services can be used. A prototype was developed that made use

of this list of online services to allow for covert communications.

In future work, other online services could be analyzed to create a list of similarly

operating services for photo and text sharing between users. Such a list would increase

the levels of anonymity and resilience. This list could extend to other types of social

communication, such as forums or other text applications (eg. Slack or Discord). Further-

more, a possible way of ensuring redundancy is by sending the image through multiple

online services at the same time with the help of an erasure-coding algorithm. Another

possible addition is the use of QR codes as carriers for the secret message, which is then

embedded in the image, which makes it easier to overcome possible image compression by

online services [23]. Extending chatrooms to groups, allowing for group chats instead of

one-on-one communication, is also planned. Further, rolling filenames in the text-hosting

Page 64 of 72

Chapter 8. Conclusions

service through seeds may be explored, since this would make it more difficult for third

parties to find the filenames being used in the text-sharing services. The prototype could

also be developed for other operating systems, such as Android, iOS, Linux or MacOS,

thanks to the chosen framework which is focused on cross-platform development.

Page 65 of 72

References

[1] VA Babkin and EP Stroganova. “Evaluation and optimization of virtual private

network operation quality”. In: 2019 Systems of Signal Synchronization, Generating

and Processing in Telecommunications (SYNCHROINFO). IEEE. 2019, pp. 1–4.

[2] Gregory V Bard. “The vulnerability of SSL to chosen plaintext attack”. In: Cryp-

tology ePrint Archive (2004).

[3] Richard Barnes et al. url: https : / / messaginglayersecurity . rocks / mls -

protocol/draft-ietf-mls-protocol.html.

[4] Mihir Bellare. “New proofs for NMAC and HMAC: Security without collision resis-

tance”. In: Journal of Cryptology 28.4 (2015), pp. 844–878.

[5] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. “Message authentication using

hash functions: The HMAC construction”. In: RSA Laboratories’ CryptoBytes 2.1

(1996), pp. 12–15.

[6] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. “Argon2: New Generation

of Memory-Hard Functions for Password Hashing and Other Applications”. In: 2016

IEEE European Symposium on Security and Privacy (EuroS P). 2016, pp. 292–302.

doi: 10.1109/EuroSP.2016.31.

[7] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. phc-winner-argon2. Online,

https://github.com/P-H-C/phc-winner-argon2.

[8] T Braun et al. “Virtual private network architecture”. In: Charging and Accounting

Technology for the Internet (Aug. 1, 1999)(VPNA) (1999).

[9] S. Budiansky. Battle of Wits: The Complete Story of Codebreaking in World War

II. Free Press, 2000. isbn: 9780684859323.

Page 66 of 72

https://messaginglayersecurity.rocks/mls-protocol/draft-ietf-mls-protocol.html
https://messaginglayersecurity.rocks/mls-protocol/draft-ietf-mls-protocol.html
https://doi.org/10.1109/EuroSP.2016.31
https://github.com/P-H-C/phc-winner-argon2

References

[10] Aniello Castiglione, Bonaventura D’Alessio, and Alfredo De Santis. “Steganography

and Secure Communication on Online Social Networks and Online Photo Sharing”.

In: 2011 International Conference on Broadband and Wireless Computing, Commu-

nication and Applications. 2011, pp. 363–368. doi: 10.1109/BWCCA.2011.60.

[11] How-Shen Chang. “International data encryption algorithm”. In: jmu. edu, googleuser-

content. com, Fall (2004).

[12] Nicholas Confessore. Cambridge Analytica and Facebook: The scandal and the fallout

so far. Online, https://www.nytimes.com/2018/04/04/us/politics/cambridge-

analytica-scandal-fallout.html. Apr. 2018.

[13] Ronald Cramer and Victor Shoup. “Design and analysis of practical public-key en-

cryption schemes secure against adaptive chosen ciphertext attack”. In: SIAM Jour-

nal on Computing 33.1 (2003), pp. 167–226.

[14] Cryptography Whitepaper. Online, https://threema.ch/press-files/2_documentation/

cryptography_whitepaper.pdf.

[15] D. Dolev and A. Yao. “On the security of public key protocols”. In: IEEE Trans-

actions on Information Theory 29.2 (1983), pp. 198–208. doi: 10.1109/TIT.1983.

1056650.

[16] Morris Dworkin et al. Advanced Encryption Standard (AES). en. 2001-11-26 2001.

doi: https://doi.org/10.6028/NIST.FIPS.197.

[17] Kseniia Ermoshina, Francesca Musiani, and Harry Halpin. “End-to-End Encrypted

Messaging Protocols: An Overview”. In: Third International Conference, INSCI

2016 - Internet Science. Ed. by Franco Bagnoli et al. Vol. 9934. Lecture Notes in

Computer Science (LNCS). Florence, Italy: Springer, Sept. 2016, pp. 244–254. doi:

10.1007/978-3-319-45982-0_22. url: https://hal.inria.fr/hal-01426845.

[18] Paul Joan Ezra et al. “Secured communication using virtual private network (VPN)”.

In: Cyber Security and Digital Forensics (2022), pp. 309–319.

[19] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography engineering:

design principles and practical applications. John Wiley & Sons, 2011.

Page 67 of 72

https://doi.org/10.1109/BWCCA.2011.60
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://threema.ch/press-files/2_documentation/cryptography_whitepaper.pdf
https://threema.ch/press-files/2_documentation/cryptography_whitepaper.pdf
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.1007/978-3-319-45982-0_22
https://hal.inria.fr/hal-01426845

References

[20] Digital Equality Foundation. StegoShare (version 1.01). Online, http://stegoshare.

sourceforge.net/.

[21] W.F. Friedman. Solving german codes in world war I. A cryptographic series. Aegean

Press, 1977.

[22] Wei-Jie Gong et al. “Family E-Chat Group Use Was Associated with Family Wellbe-

ing and Personal Happiness in Hong Kong Adults amidst the COVID-19 Pandemic”.

In: International Journal of Environmental Research and Public Health 18.17 (2021).

issn: 1660-4601. doi: 10.3390/ijerph18179139. url: https://www.mdpi.com/

1660-4601/18/17/9139.

[23] Vladimı́r Hajduk et al. “Image steganography with using QR code and cryptogra-

phy”. In: May 2016. doi: 10.1109/RADIOELEK.2016.7477370.

[24] Nagham Hamid et al. “Image steganography techniques: an overview”. In: Inter-

national Journal of Computer Science and Security (IJCSS) 6.3 (2012), pp. 168–

187.

[25] Dominik Herrmann et al. “Analyzing characteristic host access patterns for re-

identification of web user sessions”. In: Nordic Conference on Secure IT Systems.

Springer. 2010, pp. 136–154.

[26] Stefan Hetzl. Steghide (version 0.5.1). Online, http://steghide.sourceforge.

net/.

[27] Jason Hiney et al. “Using Facebook for Image Steganography”. In: 2015 10th In-

ternational Conference on Availability, Reliability and Security. 2015, pp. 442–447.

doi: 10.1109/ARES.2015.20.

[28] Hsiao-Ying Huang and Masooda Bashir. “The onion router: Understanding a privacy

enhancing technology community”. In: Proceedings of the Association for Informa-

tion Science and Technology 53.1 (2016), pp. 1–10.

[29] Mehdi Hussain and Mureed Hussain. “A survey of image steganography techniques”.

In: (2013).

Page 68 of 72

http://stegoshare.sourceforge.net/
http://stegoshare.sourceforge.net/
https://doi.org/10.3390/ijerph18179139
https://www.mdpi.com/1660-4601/18/17/9139
https://www.mdpi.com/1660-4601/18/17/9139
https://doi.org/10.1109/RADIOELEK.2016.7477370
http://steghide.sourceforge.net/
http://steghide.sourceforge.net/
https://doi.org/10.1109/ARES.2015.20

References

[30] Muhammad Iqbal and Imam Riadi. “Analysis of security virtual private network

(VPN) using openVPN”. In: International Journal of Cyber-Security and Digital

Forensics 8.1 (2019), pp. 58–65.

[31] Bappaditya Jana et al. “An Overview on Security Issues in Modern Cryptographic

Techniques”. In: Proceedings of 3rd International Conference on Internet of Things

and Connected Technologies (ICIoTCT). 2018, pp. 26–27.

[32] Dingding Jia, Xianhui Lu, and Bao Li. “Constructions secure against receiver selec-

tive opening and chosen ciphertext attacks”. In: Cryptographers’ Track at the RSA

Conference. Springer. 2017, pp. 417–431.

[33] Neil F Johnson and Stefan Katzenbeisser. “A survey of steganographic techniques”.

In: Information hiding. 2000, pp. 43–78.

[34] Simon Kemp. The global state of digital in October 2022 - DataReportal – Global

Digital insights. Oct. 2022. url: https://datareportal.com/reports/digital-

2022-october-global-statshot.

[35] Jasleen Kour and Deepankar Verma. “Steganography techniques–A review paper”.

In: International Journal of Emerging Research in Management & Technology 3.5

(2014), pp. 132–135.

[36] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-hashing for message

authentication. Tech. rep. 1997.

[37] Published by L. Ceci and Sep 22. Mobile messaging users worldwide 2025. Sept.

2022. url: https://www.statista.com/statistics/483255/number-of-mobile-

messaging-users-worldwide/.

[38] Wei Lu et al. “Secure Robust JPEG Steganography Based on AutoEncoder With

Adaptive BCH Encoding”. In: IEEE Transactions on Circuits and Systems for Video

Technology 31.7 (2021), pp. 2909–2922. doi: 10.1109/TCSVT.2020.3027843.

[39] Dennis Luciano and Gordon Prichett. “Cryptology: From Caesar Ciphers to Public-

key Cryptosystems”. In: The College Mathematics Journal 18.1 (1987), pp. 2–17.

doi: 10.1080/07468342.1987.11973000. eprint: https://doi.org/10.1080/

Page 69 of 72

https://datareportal.com/reports/digital-2022-october-global-statshot
https://datareportal.com/reports/digital-2022-october-global-statshot
https://www.statista.com/statistics/483255/number-of-mobile-messaging-users-worldwide/
https://www.statista.com/statistics/483255/number-of-mobile-messaging-users-worldwide/
https://doi.org/10.1109/TCSVT.2020.3027843
https://doi.org/10.1080/07468342.1987.11973000
https://doi.org/10.1080/07468342.1987.11973000
https://doi.org/10.1080/07468342.1987.11973000
https://doi.org/10.1080/07468342.1987.11973000
https://doi.org/10.1080/07468342.1987.11973000

References

07468342.1987.11973000. url: https://doi.org/10.1080/07468342.1987.

11973000.

[40] Tayana Morkel, Jan HP Eloff, and Martin S Olivier. “An overview of image steganog-

raphy.” In: ISSA. Vol. 1. 2. 2005, pp. 1–11.

[41] Y. Nir and A. Langley. Chacha20 and Poly1305 for IETF protocols. June 1970. url:

https://www.rfc-editor.org/rfc/rfc8439.

[42] Cosimo Oliboni. OpenPuff (version 4.01). Online, https : / / embeddedsw . net /

OpenPuff_Steganography_Home.html.

[43] Fatih Özkaynak. “Cryptographically secure random number generator with chaotic

additional input”. In: Nonlinear Dynamics 78.3 (2014), pp. 2015–2020.

[44] Yi Qin, Yuhong Wan, and Qiong Gong. “Learning-based chosen-plaintext attack on

diffractive-imaging-based encryption scheme”. In: Optics and Lasers in Engineering

127 (2020), p. 105979.

[45] Charles Rackoff and Daniel R Simon. “Non-interactive zero-knowledge proof of

knowledge and chosen ciphertext attack”. In: Annual international cryptology con-

ference. Springer. 1991, pp. 433–444.

[46] B Srinivasa Rao and P Premchand. “A Review on Combined Attacks on Security

Systems”. In: Int. J. Appl. Eng. Res. ISSN 0973 4562 (2018), pp. 16252–16278.

[47] Ricochet Refresh. Ricochet Refresh. Online, https://www.ricochetrefresh.net/.

[48] Mennatallah M Sadek, Amal S Khalifa, and Mostafa GM Mostafa. “Video steganog-

raphy: a comprehensive review”. In: Multimedia tools and applications 74.17 (2015),

pp. 7063–7094.

[49] K Sathya, J Premalatha, and Vani Rajasekar. “Investigation of strength and security

of pseudo random number generators”. In: IOP Conference Series: materials Science

and Engineering. Vol. 1055. 1. IOP Publishing. 2021, p. 012076.

[50] B. Schneier. Applied Cryptography: Protocols, Algorithms and Source Code in C.

Wiley, 2017. isbn: 9781119439028. url: https://books.google.pt/books?id=

Ok0nDwAAQBAJ.

Page 70 of 72

https://doi.org/10.1080/07468342.1987.11973000
https://doi.org/10.1080/07468342.1987.11973000
https://doi.org/10.1080/07468342.1987.11973000
https://doi.org/10.1080/07468342.1987.11973000
https://doi.org/10.1080/07468342.1987.11973000
https://doi.org/10.1080/07468342.1987.11973000
https://www.rfc-editor.org/rfc/rfc8439
https://embeddedsw.net/OpenPuff_Steganography_Home.html
https://embeddedsw.net/OpenPuff_Steganography_Home.html
https://www.ricochetrefresh.net/
https://books.google.pt/books?id=Ok0nDwAAQBAJ
https://books.google.pt/books?id=Ok0nDwAAQBAJ

References

[51] B. Schneier et al. The Twofish Encryption Algorithm: A 128-Bit Block Cipher. Wiley

Computer Publishing. Wiley, 1999. isbn: 9780471353812.

[52] Secure messaging apps comparison. Online, https://www.securemessagingapps.

com/. Nov. 2021.

[53] Session. Online, https://getsession.org/.

[54] Session: A Model for End-To-End Encrypted Conversations With Minimal Metadata

Leakage. Online, https://arxiv.org/pdf/2002.04609.pdf.

[55] Signal Messenger. Online, https://signal.org/pt_PT/.

[56] softwarepgs. softwarepgs/psst-chat: Prototype - DOI. Version v0.1.1. Nov. 2022. doi:

10.5281/zenodo.7379263. url: https://doi.org/10.5281/zenodo.7379263.

[57] Daniela Stanescu, Valentin Stangaciu, and Mircea Stratulat. “Steganography on

new generation of mobile phones with image and video processing abilities”. In:

2010 International Joint Conference on Computational Cybernetics and Technical

Informatics. 2010, pp. 343–347. doi: 10.1109/ICCCYB.2010.5491253.

[58] Daniela Stanescu et al. “Steganography in YUV color space”. In: 2007 International

Workshop on Robotic and Sensors Environments. IEEE. 2007, pp. 1–4.

[59] The Double Ratchet Algorithm. Online, https://signal.org/docs/specifications/

doubleratchet/.

[60] The Sesame Algorithm: Session Management for Asynchronous Message Encryption.

Online, https://signal.org/docs/specifications/sesame/.

[61] The X3DH Key Agreement Protocol. Online, https://signal.org/docs/specifications/

x3dh/.

[62] The XEdDSA and VXEdDSA Signature Schemes. Online, https://signal.org/

docs/specifications/xeddsa/.

[63] Threema. Online, https://threema.ch/.

[64] Sean Turner and Lily Chen. Updated security considerations for the MD5 message-

digest and the HMAC-MD5 algorithms. Tech. rep. 2011.

Page 71 of 72

https://www.securemessagingapps.com/
https://www.securemessagingapps.com/
https://getsession.org/
https://arxiv.org/pdf/2002.04609.pdf
https://signal.org/pt_PT/
https://doi.org/10.5281/zenodo.7379263
https://doi.org/10.5281/zenodo.7379263
https://doi.org/10.1109/ICCCYB.2010.5491253
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/sesame/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/xeddsa/
https://threema.ch/

References

[65] USA Text Messaging Statistics 2022. Oct. 2022. url: https://www.smscomparison.

com/mass-text-messaging/2022-statistics/.

[66] Samir Vaidya. OpenStego (version 0.82). Online, https://www.openstego.com/.

[67] Philipp Winter and Stefan Lindskog. “How the Great Firewall of China is Blocking

Tor”. In: (Apr. 2012).

[68] Wire. Online, https://wire.com/.

[69] Wire Security Whitepaper. Online, https://wire- docs.wire.com/download/

Wire+Security+Whitepaper.pdf.

[70] Emma Woollacott. Russia doubles down on censorship with expanded block on tor.

Online, https : / / www . forbes . com / sites / emmawoollacott / 2021 / 12 / 09 /

russia-doubles-down-on-censorship-with-expanded-block-on-tor/?sh=

1a81407e19bc. Apr. 2022.

[71] Fei Yu et al. “A survey on true random number generators based on chaos”. In:

Discrete Dynamics in Nature and Society 2019 (2019).

[72] Ning Yu and Kyle Darling. “A low-cost approach to crack python CAPTCHAs using

AI-based chosen-plaintext attack”. In: Applied Sciences 9.10 (2019), p. 2010.

[73] Zhensheng Zhang et al. “An overview of virtual private network (VPN): IP VPN

and optical VPN”. In: Photonic network communications 7.3 (2004), pp. 213–225.

[74] Elżbieta Zielińska, Wojciech Mazurczyk, and Krzysztof Szczypiorski. “Trends in

steganography”. In: Communications of the ACM 57.3 (2014), pp. 86–95.

Page 72 of 72

https://www.smscomparison.com/mass-text-messaging/2022-statistics/
https://www.smscomparison.com/mass-text-messaging/2022-statistics/
https://www.openstego.com/
https://wire.com/
https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf
https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf
https://www.forbes.com/sites/emmawoollacott/2021/12/09/russia-doubles-down-on-censorship-with-expanded-block-on-tor/?sh=1a81407e19bc
https://www.forbes.com/sites/emmawoollacott/2021/12/09/russia-doubles-down-on-censorship-with-expanded-block-on-tor/?sh=1a81407e19bc
https://www.forbes.com/sites/emmawoollacott/2021/12/09/russia-doubles-down-on-censorship-with-expanded-block-on-tor/?sh=1a81407e19bc

	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Problem Statement and Motivation
	Objectives
	Contributions
	Organization

	Background
	Cryptography
	Steganography

	Related Work
	Current Applications
	Research Works

	Online Services Assessment
	Proposed Solution
	Identified requirements
	Specification
	Design

	Implementation
	Main and Screen Manager
	Splash Screen
	Welcome Screen
	Home Screen
	Chat Screen

	Validation
	Functional Validation
	Security Discussion

	Conclusions
	References

