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Dagmar Markechová and Beloslav Riečan
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In order to measure and quantify the complex behavior of real-world systems, either novel
mathematical approaches or modifications of classical ones are required to precisely predict, monitor
and control complicated chaotic and stochastic processes. Though the term of entropy comes from
Greek and emphasizes its analogy to energy, nowadays, it has wandered to different branches of pure
and applied sciences and is understood in a rather rough way with emphasis put on the transition from
regular to chaotic states, stochastic and deterministic disorder, uniform and non-uniform distribution
or decay of diversity.

This Special Issue originates from the 14th International Conference “Dynamical Systems – Theory
and Applications”, held December 11–14, 2017 in Łódź (Poland), and addresses the notion of entropy in
a very broad sense. The presented manuscripts follow from different branches of mathematical/physical
sciences, natural/social sciences and engineering-oriented sciences with emphasis put on the complexity
of dynamical systems. Topics like timing chaos and spatiotemporal chaos, bifurcation, synchronization
and anti-synchronization, stability, lumped mass and continuous mechanical systems modeling, novel
non-linear phenomena, and resonances are discussed.

An Analysis of Deterministic Chaos as an Entropy Source for Random Number Generators
by Kaya Demir and Salih Ergün [1] presents the results of a comparison between bounded chaos,
unbounded chaos and Gaussian white noise as a source of entropy for a random number of generators
yielded by an analytical study of the autocorrelation and the approximate entropy analysis of the
resulting bit sequences [2].

Information Transfer Among the Components in Multi-Dimensional Complex Dynamical Systems
by Yimin Yin and Xiaojun Duan [3] provides a rigorous formalism of information transfer within
a multi-dimensional deterministic dynamic system established for both continuous flows and
discrete mappings.

Fractional Form of a Chaotic Map without Fixed Points: Chaos, Entropy and Control by Adel
Ouannas, Xiong Wang, Amina-Aicha Khennaoui, Samir Bendoukha, Viet-Thanh Pham and Fawaz
E. Alsaadi [4] presents the results of the first dynamic investigation of a fractional order chaotic map
corresponding to a recently developed standard map that exhibits chaotic behavior with no fixed point.
The authors use the approximate entropy measure to quantify the level of chaos in the fractional map.

Tsallis Entropy of Product MV-Algebra Dynamical Systems by Dagmar Markechová and Beloslav
Riečan [5] provides an example of the mathematical modelling of Tsallis of product MV-algebra
dynamical entropy to provide the entropy measure that is invariant under isomorphism.

A Novel Image Encryption Scheme Based on Self-Synchronous Chaotic Stream Cipher and
Wavelet Transform by Chunlei Fan and Qun Ding [6] presents a self-synchronous chaotic stream cipher
that ensures the limited error propagation of image data in the secure transmission of image data.
The cipher is designed with the purpose of resisting active attack.

The General Solution of Singular Fractional-Order Linear Time-Invariant Continuous Systems
with Regular Pencils by Iqbal M. Batiha, Reyad El-Khazali, Ahmed AlSaedi and Shaher Momani [7]

Entropy 2019, 21, 896; doi:10.3390/e21090896 www.mdpi.com/journal/entropy1
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proposes the use of the Adomian decomposition method based on the Caputo’s definition of the
fractional-order derivative to obtain a general solution of singular fractional-order linear-time invariant
continuous systems.

Quantifying Chaos by Various Computational Methods. Part 1: Simple Systems by Jan
Awrejcewicz, Anton V. Krysko, Nikolay P. Erofeev, Vitalyj Dobriyan, Marina A. Barulina and Vadim A.
Krysko [8] proposes an algorithm of calculation of the spectrum of Lyapunov exponents based on a
trained neural network that can be used to compute a spectrum of Lyapunov exponents, and then to
detect a transition of the system regular dynamics into chaos, hyperchaos, and others.

Quantifying Chaos by Various Computational Methods. Part 2: Vibrations of the Bernoulli–Euler
Beam Subjected to Periodic and Colored Noise by Jan Awrejcewicz, Anton V. Krysko, Nikolay P. Erofeev,
Vitalyi Dobriyan, Marina A. Barulina and Vadim A. Krysko [9] presents a theory of non-linear dynamics
of flexible Euler–Bernoulli beams under transverse harmonic load and colored noise that has been
extended to investigate a novel transition type exhibited by non-equilibrium systems embedded in a
stochastic fluctuated medium.

On Points Focusing Entropy by Ewa Korczak-Kubiak, Anna Loranty and Ryszard J. Pawlak [10]
introduces the notion of a (asymptotical) focal entropy point allowing study of the local aspects of the
entropy of non-autonomous dynamical systems.

Last but not least, Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential
Equations Driven by Fractional Brownian Motion and Their Applications by Xiao-Li Ding and
Juan J. Nieto [11] presents a method of investigation of the analytical solutions of multi-time scale
fractional stochastic differential equations driven by fractional Brownian motions that is continued
in [12].
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5. Markechová, D.; Riečan, B. Tsallis Entropy of Product MV-Algebra Dynamical Systems. Entropy 2018, 20, 589.
[CrossRef]

6. Fan, C.; Ding, Q. A Novel Image Encryption Scheme Based on Self-Synchronous Chaotic Stream Cipher and
Wavelet Transform. Entropy 2018, 20, 445. [CrossRef]

7. Batiha, I.; El-Khazali, R.; AlSaedi, A.; Momani, S. The General Solution of Singular Fractional-Order Linear
Time-Invariant Continuous Systems with Regular Pencils. Entropy 2018, 20, 400. [CrossRef]

8. Awrejcewicz, J.; Krysko, A.; Erofeev, N.; Dobriyan, V.; Barulina, M.; Krysko, V. Quantifying Chaos by Various
Computational Methods. Part 1: Simple Systems. Entropy 2018, 20, 175. [CrossRef]

9. Awrejcewicz, J.; Krysko, A.; Erofeev, N.; Dobriyan, V.; Barulina, M.; Krysko, V. Quantifying Chaos by Various
Computational Methods. Part 2: Vibrations of the Bernoulli–Euler Beam Subjected to Periodic and Colored
Noise. Entropy 2018, 20, 170. [CrossRef]

10. Korczak-Kubiak, E.; Loranty, A.; Pawlak, R. On Points Focusing Entropy. Entropy 2018, 20, 128. [CrossRef]

2



Entropy 2019, 21, 896

11. Ding, X.; Nieto, J. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations
Driven by Fractional Brownian Motion and Their Applications. Entropy 2018, 20, 63. [CrossRef]

12. Ding, X.-L.; Nieto, J.J. Analysis and Numerical Solutions for Fractional Stochastic Evolution Equations with
Almost Sectorial Operators. J. Comput. Nonlinear Dynam. 2019, 14, 091001. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

3



entropy

Article
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Abstract: This paper presents an analytical study on the use of deterministic chaos as an entropy
source for the generation of random numbers. The chaotic signal generated by a phase-locked loop
(PLL) device is investigated using numerical simulations. Depending on the system parameters,
the chaos originating from the PLL device can be either bounded or unbounded in the phase direction.
Bounded and unbounded chaos differs in terms of the flatness of the power spectrum associated
with the chaotic signal. Random bits are generated by regular sampling of the signal from bounded
and unbounded chaos. A white Gaussian noise source is also sampled regularly to generate random
bits. By varying the sampling frequency, and based on the autocorrelation and the approximate
entropy analysis of the resulting bit sequences, a comparison is made between bounded chaos,
unbounded chaos and Gaussian white noise as an entropy source for random number generators.

Keywords: deterministic chaos; random number generator; unbounded chaos; bounded chaos;
phase-locked loop; Gaussian white noise

1. Introduction

Random number generators (RNGs) are fundamental components of cryptographic systems,
as they are responsible for generating the unpredictable key values used in ciphering algorithms
to protect the integrity, confidentiality and authenticity of the information [1]. Basically, an RNG
consists of an entropy source, a sampler to harvest entropy and a post processor to remove statistical
imperfections [2]. An ideal entropy source used in an RNG system should have a constant power
spectral density over its operating bandwidth, and it is preferable that this bandwidth is as wide
as possible [3]. A commonly used entropy source in RNGs is based on amplification of a physical
noise in the microscopic domain, such as thermal or shot noise [4,5]. However, it has been previously
demonstrated that chaotic noise obtained from a macroscopic system can also be used to generate
white noise, eliminating the need for amplification [6]. Despite being deterministic, chaotic systems
can be used as an entropy source due to their extreme sensitivity to initial conditions, noise-like power
spectrum and positive Lyapunov exponent [7]. The use of chaotic systems as an entropy source
in RNGs suggests the possibility of reaching higher throughput data without the need for post
processing and with ease of implementation in an integrated circuit form [8–10]. With two or more
positive Lyapunov exponents, hyperchaotic systems can also be used for random number generation,
and they have more complex behaviors, making it harder to predict the RNG output time series [11].
However, synchronization of two coupled hyperchaotic systems despite parameter mismatches
was demonstrated in [12] based on the concept of the Master Stability Function. In [13], the security
issues of chaos-based random number generators were discussed by studying the synchronization of
chaotic systems, and it is suggested that the inclusion of noise analysis in deterministic chaos qualifies
chaos-based generators as a truly random number source. In this paper, the use of a phase-locked

Entropy 2018, 20, 957; doi:10.3390/e20120957 www.mdpi.com/journal/entropy4
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loop (PLL) device in the chaotic regime for random number generation is considered. The use of PLL
circuits for the generation of random numbers in reconfigurable hardware platforms was extensively
studied, where the randomness was extracted from the intrinsic jitter of the synthesized clock signal
by the PLL [14–17]. In this paper, the PLL device is used to generate bounded and unbounded chaos,
as described in [18,19]. At the input of the voltage-controlled oscillator (VCO) component of the PLL,
a chaotic signal is observed under certain conditions; however, the spectrum of this chaotic signal is
non-flat over the spectral bandwidth. By adjusting the system parameters, the chaos can be made
unbounded, which results in an approximately flat spectrum up to a certain frequency, similar to white
Gaussian noise [20].

In this paper, using deterministic chaos as an entropy source, random bit sequences of fixed length
are generated by regularly sampling the chaotic signal observed at the VCO input when the nature
of chaos is bounded and unbounded. The sampling frequency limits the maximum throughput of
the RNG and is a critical parameter to ensure randomness in the generated bit stream. A faster sampling
rate is preferred for high-throughput data, but the bandwidth of the entropy source imposes restrictions
on the maximum allowable sampling frequency to maintain randomness in the resulting bit sequence.
To investigate this phenomenon, the sampling frequency is gradually elevated, and the randomness
of the resulting bit streams are assessed through the application of the concepts of autocorrelation
and approximate entropy. Then the bounded and unbounded chaos is benchmarked against white
Gaussian noise, which might originate in a stationary stochastic process. It is numerically shown
that up to a certain frequency which is dependent on the PLL system parameters, unbounded chaos
approaches white Gaussian noise as an entropy source to generate random numbers by the regular
sampling of an irregular waveform method. To the best of authors’ knowledge, this is the first analytical
study on the application of bounded and unbounded chaos from a PLL device as an entropy source
for RNG and the comparison of deterministic bounded or unbounded chaos and white Gaussian noise
from a stochastic process. This paper is organized as follows. In Section 2, the equations governing
the PLL system are described. Section 3 focuses on the formation of bounded and unbounded chaos in
PLL and the analysis of the associated chaotic signals. In Section 4, regular sampling of the chaotic
signal method is applied to generate random bit sequences using bounded chaos, unbounded chaos
and white Gaussian noise as an entropy source and the randomness of the generated bit sequences are
discussed, followed by conclusions in Section 5.

2. Chaotic System

The chaotic system in this paper is based on a sinusoidally driven PLL, which has previously been
extensively studied in [19,20]. Therefore, the equations will be summarized by referring to [19,20].
Basically, a PLL device is made up of a phase detector to identify the phase error, a low-pass
filter and a VCO generating a square wave at a frequency dependent on input signal amplitude.
Figure 1 illustrates the phase model of a PLL. The θin, θout and φ(t) = θin − θout are input phase,
output phase and phase error, respectively.

Figure 1. The phase model of the PLL system.
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The nonlinear function h(φ) is a 2π-periodic function of φ and it is in symmetric triangular form
for an EX-OR type phase detector. It is defined as

h(φ) = h(φ + 2nπ), n = 0,±1,±2, . . . ..n ∈ Z (1)

h(φ) =

{
φ f or |φ| < π

2
−φ + π f or π

2 < φ < 3π
2

(2)

The transfer function of the low-pass (lag-lead) filter is given as

F(s) = (1 + τ2s)/(1 + τ1s) (3)

Following the diagram in s-domain

φ(s) = θin(s)− θout(s) (4)

θout(s) = h(φ(s))K0F(s)· 1
s

(5)

Substituting (3), (5) in (4), using cross multiplication and then dividing each side by τ1,

φ(s) + h(φ(s))K0
(1 + τ2s)
(1 + τ1s)s

= θin(s) (6)

τ1s2φ(s) + sφ(s) + K0h(φ(s)) + τ2sK0h(φ(s)) = τ1s2θin(s) + sθin(s) (7)

s2φ(s) +
1
τ1
(sφ(s) + K0τ2sh(φ(s))) +

(
K0

τ1

)
h(φ(s)) = s2θin(s) +

1
τ1

sθin(s) (8)

Using (8), with respect to the phase error φ, the system equation in the time domain can be stated as

d2φ

dt2 +
1
τ1

(
1 + K0τ2h′(φ)

)dφ

dt
+

(
K0

τ1

)
h(φ) =

d2θin
dt2 +

1
τ1

dθin
dt

(9)

Assuming the input signal is modulated by a sinusoidal waveform

dθin
dt

= Δω + Msinωmt (10)

Δω = ωin − ωout (11)

where ωm, ωin, ωout and Δω are phase modulation, input signal, output signal angular frequencies
and frequency detuning, respectively. The natural angular frequency and the damping coefficient are
defined as follows:

ωn =
√

K0/τ1 = 2π fn (12)

ζ = (1 + K0τ2)/2
√

K0τ1 (13)

To simplify the equations, the following normalized parameters are introduced:

β =
ωn

K0
=

1√
K0τ1

normalized natural frequency (14a)

σ =
Δω

ωn
normalized frequency detuning (14b)

Ωm =
ωm

ωn
normalized modulation frequency (14c)

6
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m =
M
ωn

normalized maximum angular frequency deviation (14d)

By changing the time t into τ = ωnt and replacing τ by t again, Equation (9) can be given as

d2φ

dt2 + β

[
1 +

(2ζ − β)h′(φ)
β

]
dφ

dt
+ h(φ) = βσ + β msinΩmt + mΩmcosΩmt (15)

where 2ζ − β = K0τ2/
√

K0τ1 ≥ 0. For simplicity, the filter is assumed to be a lag filter
2ζ − β = 0, (τ2 = 0). By changing the time t into t = t′ − θ

Ωm
where tan (θ ) = Ωm

β , and replacing
t′ by t again, Equation (15) can be simplified as

d2φ

dt2 + β
dφ

dt
+ h(φ) = βσ + asinΩmt (16)

a = m
√

β2 + Ωm2 (17)

For small values of a , the solutions are periodic with Ωm, which means that the phase φ is phase-locked
with the input signal. With an increase in a , the phase φ shows bifurcations and becomes chaotic,
as seen in Figure 2. For fixed values of β and Ωm, the parameter m is gradually increased, thus the a
parameter is linearly elevated. The bifurcations and transition from bounded to unbounded chaos
is observed in Figure 2. It is observed that the PLL system demonstrates unbounded chaos when m
(normalized maximum angular frequency deviation) is between approximately 1.75 and 3.

Depending on the parameters as seen in Figure 2, the chaos is either bounded or unbounded in
the φ-direction. In [6,18–20], it is suggested that the chaotic change of φ(t) approaches a Wiener-Levy
process over long times. Therefore, its derivative dφ/dt is supposed to yield a white noise-like
spectrum at angular frequencies substantially below Ωm, ωo(ωo = 1) and ωr(ωr = β/2), where ωo

and ωr are the natural angular frequency and the relaxation angular frequency of the simplified system,
respectively. The chaotic signal at the VCO input is given as

.
θout = msinΩmt − .

φ (18)

In this paper, the focus is on the signal at the VCO input as it exhibits chaotic behaviors which can be
exploited for random number generation.

Figure 2. Bifurcation map of φ with respect to m illustrating bounded and unbounded chaos
(β = 0.56, Ωm = 0.9, σ = 0).

7
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3. Chaotic Signal Formation

In this section, the normalized equations of the PLL are entered into a numerical solver,
and the system parameters are adjusted to set the PLL to operate in the chaotic regime. For numerical
solutions, Dynamics Solver software is used. To put the system in chaos, the normalized natural frequency
β and the normalized modulation frequency Ωm are chosen to be 0.56 and 0.9, respectively, although many
other combinations of parameter values for chaos can be found by experimenting with the numerical
solver. Then, a is changed linearly by varying the m parameter according to (17). The bifurcation
graph shown in Figure 2 suggests that for these values of β and Ωm, m = 1.75 is the transition border
from bounded to unbounded chaos. Figure 3 illustrates the change of Lissajous patterns in φ-

.
φ plane

when the type of chaos transitions from bounded at m = 1.74 to unbounded at m = 2.29 by modifying
only the m parameter in parallel with the bifurcation graph shown in Figure 2.

 
(a) 

 
(b) 

Figure 3. Lissajous patterns in φ − .
φ plane exhibiting (a) bounded and (b) unbounded chaos.

Associated parameters β = 0.56, Ωm = 0.9, σ = 0 and m = (1.74, 2.29) for bounded and unbounded
chaos respectively.

Figures 4 and 5 show the signals at VCO input in the time domain and the associated power
spectra for cases of unbounded and bounded chaos in a comparative manner. As the solutions
are obtained for normalized equations, units are not shown in Figure 4 and 5. Even by observing
the time-domain waveforms, it may be possible to distinguish between unbounded and bounded
chaos, as unbounded chaos displays a larger degree of irregularity and aperiodicity compared
to bounded chaos. The time-domain signal at the VCO input, as shown in Figure 4, seems visually
more regular compared to the signal shown in Figure 5. However, power spectral analysis is
a safer method to identify the type of chaos. Figure 4 demonstrates that the power spectrum is not

8
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flat for bounded chaos; therefore, it is not an optimal entropy source for random number generation.
However, for unbounded chaos, Figure 5 shows that the power spectrum for the VCO input in
a normalized equation can be visually considered to be flat from DC up to approximately Ω ≈ 0.15,
which corresponds to a frequency of f ≈ 0.15 × fn ≈ 230 Hz. To expand the flat spectrum range, it is
necessary to increase the natural frequency for a fixed Ωm. Having a flat spectrum similar to white
noise makes the VCO input signal from an unbounded chaos case a possible entropy source for
the generation of random numbers using the regular sampling of an irregular waveform method.
It exhibits very irregular and aperiodic behaviors, which make it unpredictable and useful to be
exploited for random number generation.

  
(a) (b) 

Figure 4. Chaotic signal at VCO input for bounded chaos (a) in the time domain, and (b) the associated
power spectrum.

  
(a) (b) 

Figure 5. Chaotic signal at VCO input for unbounded chaos (a) in the time domain, and (b) the associated
power spectrum.

4. Random Bit Generation and Discussion

A method to generate output bit sequence is regular sampling of the chaotic signal at the VCO
input and comparing the samples with a threshold value. The ergodicity of chaotic signals makes
it possible to analyze the distribution and statistical properties of the chaotic variable independent
of initial conditions and sampling frequency. Therefore, the mean value of the samples over a long
operation time can be selected as the threshold. At the time of sampling, if the signal value is below
the threshold, bit 0 is produced; otherwise, the output is bit 1. However, the sampling frequency fs

needs to be adjusted to generate random bits with high entropy and without correlation between
successive bits. The sampling frequency determines the throughput of the RNG, and it heavily depends
on the power spectrum of the chaotic signal at the VCO input. For selection of the sampling frequency,

9
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autocorrelation analysis can be utilized as a metric to quantify randomness in a finite bit sequence.
The absolute value of normalized autocorrelation function at a lag of one sampling period gives
the correlation between successive bits. Therefore, bit sequences with a length of 20 KBits are generated
by regularly sampling the chaotic signal at varying frequencies and the absolute value of the normalized
autocorrelation at one-bit lag, i.e., one sampling period is calculated. To find the absolute value of
the normalized autocorrelation at one-bit lag, first the mean of the 20 KBits sequence is subtracted
from each binary value in the bit stream and xn is obtained. Then the autocorrelation function for
the resulting bit sequence xn is normalized such that at zero lag, the value is 1, and then its absolute
value is calculated. As the autocorrelation function for the 20 KBits sequence is real and symmetric
around zero lag, the value corresponding to one-bit lag can be found by substituting m = ±1 and taking
the absolute value of the result in (20):

R̂xx(0) =
N−m−1

∑
n=0

xn
2 (19)

R̂xx,normalized(m) =
1

R̂xx(0)

⎧⎪⎨⎪⎩
N−m−1

∑
n=0

xn+m xn , m ≥ 0

R̂xx(−m) , m < 0

(20)

The VCO input signals from the previous section depicting bounded and unbounded chaos are used for
random bit generation by the regular sampling of an irregular waveform method. White Gaussian noise
generated by Matlab is also used to generate random bits by regular sampling as a benchmark to assess
the use of chaos as an entropy source for RNGs.

Figure 5 shows the relation between the sampling period and the absolute values of the normalized
autocorrelation function at one-bit lag according to (20) for the bit sequences generated using
bounded chaos, unbounded chaos and Gaussian white noise, respectively. As can be expected,
the correlation between successive bits generally decreases when the sampling period increases,
which also means reducing the sampling frequency. However, the plot of absolute values of
the normalized autocorrelation exhibits local maxima and minima for both bounded and unbounded
chaos. It is noteworthy to mention that the variation in the autocorrelation value is higher in
the case of bounded chaos than for unbounded chaos. In case of bounded chaos, the peaks are
separated from each other by approximately 3.6Tn, where Tn = 2π

ωn
. Therefore, this can be interpreted

as an indication that it would be easier to make a random generator by sampling the chaotic signal
in unbounded chaos. For unbounded chaos, from Figure 5, it can be stated approximately that for
obtaining a random bit stream, the sampling period should be adjusted as Ts = k·5. 2·Tn , k = 2, 3, ....
Furthermore, the performance of unbounded chaos as an entropy source approaches that of white
Gaussian noise. As white Gaussian noise is assumed to be white with infinite bandwidth, there
is no restriction on the minimum sampling period that can be used to generate a random bit
sequence. By proper selection of the sampling frequency of the chaotic signal, the absolute value of
normalized autocorrelation values at one-bit lag of the bit sequence can be made close to that of the bit
sequence generated by regular sampling of Matlab-based white Gaussian noise which has an infinite
and flat power spectrum.

However, as can be observed from Figure 6, in general, the absolute value of autocorrelation of
bit sequences at one-bit lag generated by white Gaussian noise are lower compared to bit sequences
obtained from unbounded chaos. This is because the sampled chaotic signal is obtained purely by
the solution of deterministic equations. However, if the system were implemented experimentally,
the non-deterministic thermal and shot noise in electronic components would affect the chaotic
trajectories continuously, making the bit stream generated by regular sampling of the chaotic signal
non-deterministic, thus resulting in autocorrelation values closer to those of white Gaussian noise [9].

10
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To further analyze the randomness of the RNG output, the concept of approximate entropy
(ApEn) is used as a measure of sequential irregularity. For a finite length of bit sets, approximate
entropy gives an idea of the randomness, with higher ApEn values indicating a higher level of
randomness. ApEn approaches the theoretical maximum information entropy of ln(2) ≈ 0.69 for
a perfectly random bit sequence. The approximate entropy (ApEn) values of order 8 are calculated for
the bit sequences of a length of 20 KBits generated by sampling unbounded chaos, bounded chaos
and a Gaussian white noise signal at varying sampling frequencies. Figure 7 shows the relation between
approximate entropy of the output bit stream and the sampling period for unbounded chaos, bounded
chaos and Gaussian white noise, respectively. It is noteworthy to mention that at peak points of high
autocorrelation, the approximate entropy is at a local minimum. Furthermore, increasing the sampling
period, i.e., slowing the RNG throughput, generally results in higher ApEn value. In the case of
bounded chaos, there exists a periodic pattern of ups and downs which is due to the non-flat power
spectrum. However, in case of unbounded chaos, the ApEn value reaches the theoretical maximum
quickly after a certain sampling rate, does not deviate very much, and approximates the value of white
Gaussian noise. Unbounded chaos approaches white Gaussian noise, which shows the advantage of
using unbounded chaos as an entropy source instead of bounded chaos.

Table 1. Results of the FIPS-140-2 test suite for RNG based on regular sampling of chaotic signal.

Statistical Tests p-Value

Frequency 0.777297
Block Frequency 0.543739

Runs 0.041646
Longest Run 0.496469

  
(a) (b) 

 
(c) 

Figure 6. Relation between absolute value of normalized autocorrelation at one-bit lag and the sampling
period τs for (a) bounded chaos, (b) unbounded chaos, and (c) white Gaussian noise.

As the amount of data that can be numerically produced with regular sampling of a chaotic
PLL signal is limited; the data sequence is not put through NIST-800-22 test suite, since it involves

11
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at least 40 bit sequences with a length of 1Mbit. Instead, bit streams of 20 KBits length are subjected
to tests of FIPS-140-2 test suite without any post processing [7]. The numerical binary streams
of length 20 KBits obtained by regular sampling of the chaotic signal from a PLL device passed
all 4 statistical tests, as shown in Table 1 where p-Value (0 ≤ p −Value ≤ 1) is a real number estimating
the probability that a perfect RNG would produce a less random sequence than the given sequence.

  
(a) (b) 

 
(c) 

Figure 7. Relation between absolute value of normalized autocorrelation at one-bit lag and the sampling
period τs for (a) bounded chaos, (b) unbounded chaos, and (c) white Gaussian noise.

5. Conclusions

In this paper, the chaotic signal from a phase-locked loop device is studied in order
to develop a comparison between deterministic chaotic and stochastic processes for generation
of random numbers. By adjusting the system parameters, the chaos becomes either bounded or
unbounded in the phase direction, and this changes the power spectral characteristics of the chaotic
signal. Random binary sequences are generated by regular sampling of the chaotic PLL signals.
Autocorrelation and approximate entropy analysis is used to quantify the relationship between
the randomness of the generated bit streams and the associated sampling periods. The chaotic signals
are benchmarked against white Gaussian noise, and it is shown that unbounded chaos approaches
Gaussian white noise as an entropy source for random number generation. To the best of the authors’
knowledge, this is the first analytical study investigating using bounded and unbounded chaos
from a PLL device as an entropy source for random number generation and the comparison of
deterministic chaos to white noise from a stochastic process.
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Abstract: In this paper, a rigorous formalism of information transfer within a multi-dimensional
deterministic dynamic system is established for both continuous flows and discrete mappings.
The underlying mechanism is derived from entropy change and transfer during the evolutions of
multiple components. While this work is mainly focused on three-dimensional systems, the analysis
of information transfer among state variables can be generalized to high-dimensional systems.
Explicit formulas are given and verified in the classical Lorenz and Chua’s systems. The uncertainty
of information transfer is quantified for all variables, with which a dynamic sensitivity analysis could
be performed statistically as an additional benefit. The generalized formalisms can be applied to
study dynamical behaviors as well as asymptotic dynamics of the system. The simulation results can
help to reveal some underlying information for understanding the system better, which can be used
for prediction and control in many diverse fields.

Keywords: Information transfer; continuous flow; discrete mapping; Lorenz system; Chua’s system

1. Introduction

Uncertainty quantification in complex dynamical systems is an important topic in prediction
models. By integrating information-theoretic methods to investigate potential physics and measure
indices, the uncertainty can be quantified better in ensemble practical predictions of complex dynamical
systems. For instance, one of the important motivations is the couplings among variables of dynamical
systems generating information at a nonzero rate [1], which produces information exchange [2].
Entropy can be used to quantitatively describe production, gathering, exchange and transfer of
information [3]. Information transfer analysis can be used to detect asymmetry in the interactions of
subsystems [1,4]. The emergent phenomena cannot be simply derived or solely predicted from the
knowledge of the structure or from the interactions among individual elements in complex systems [5].
The dynamics of information transportation plays a critical role in complex systems, resulting in the
system prediction [6,7], controls of a system [8,9] and causal analysis [10,11]. It emphasizes further
understanding and investigating information transportation in complex dynamical systems. It has
been applied to quantify nonlinear interactions based on the information transfer by several underlying
efficient estimation strategies in complex dynamical systems [12–14]. Simple examples are used to
illustrate various complex phenomena. The formalisms about information transfer are mostly based
on two time series [1,15–17].

Recently, a new approach on information flow between the components of two-dimensional (2D)
systems was adapted by Liang and Kleeman [6], which can be used to deal with the change of the
uncertainty of one component given by the other component. This idea is based on specific interactions
between two components in complex dynamical systems. For a system with dynamics given, a measure
of information transfer can be rigorously formulated (referred as LK2005 formalism henceforth in [6]).

Entropy 2018, 20, 774; doi:10.3390/e20100774 www.mdpi.com/journal/entropy14
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In the forms of continuous flows and discrete mappings, the information flow has been analyzed
using the Liouville equations [18] and the Frobenius–Perron operators [18]. These two equations are
the evolution equations of the joint probability distributions, respectively. The present formalism is
consistent with the transfer entropy of Schreiber [1] in both transfer asymmetry and quantification.
A variety of generalizations and applications of the work in Reference [4] are developed in [19–25].
Majda and Harlim [26] applied the strategy to study subspaces of complex dynamical systems. For 2D
systems, Liang and Kleeman discovered a concise law on the entropy evolution of deterministic
autonomous systems and obtained the time rate of information flow from one component to the
other [6]. Until now, the 2D formalism has been extended to some dynamical systems in different
forms and scales with successful applications between two variables [23,25]. In the light of these
applications, by thoroughly describing the statistical behavior of a system, this rigorous LK2005
formalism has yielded remarkable results [3].

However, the uncertainty of many real-world systems needs to be quantified among the variables
for revealing the nonlinear relationships, so as to better understand the intrinsic mechanism and
predict the forthcoming states of the systems [27]. Besides, many physical systems are affected by the
interactions between multiple components in diverse fields [28]. For example, sensitivity analysis of
an aircraft system with respect to design variables, parameters and uncertainty factors can be used
to estimate the effects on the objective function or constraint function. The uncertainty analysis and
sensitivity analysis (UASA) process is one of the key steps for determining the optimal search direction
and guiding the design and decision-making, which aims at predicting complex computer models by
quantifying the sensitivity information of the coupling variables. It can be offered to quick guide of
determining design parameters which lead to high performance aircraft designs. Some preceding tools
[29,30] related to sensitivity analysis are applicable for low-dimensional static problems and an urgent
problem of high dimensionality arises when outputting variables of numerical models with spatially
and temporally need to be solved [31]. The rigorous formalism of information flow has the potential to
revolutionize the ability to analyze and measure uncertainty and sensitivity information in dynamical
systems.

Hence, considering realistic applications, we generalize the LK2005 formalism to several variables
of multi-dimensional dynamical systems in this paper. More precisely, we extend the results in [6,25]
to the information flow between groups of components, rather than individual components. We aim
to demonstrate that the formalism is feasible among several variables in arbitrary multi-dimensional
dynamical systems when dynamics is fully known. In addition, the generalized formalisms can be
reduced to two-dimensional formalisms as a special case. We also highlight the relationship between
the LK2005 formalism and our generalized formalisms. Two applications are proposed with the
classical Lorenz system and Chua’s system as validations of our formalisms. Compared with the
LK2005 formalism and the transfer mutual information method [32], the generalized formalisms are
beneficial for revealing more information among variables. It can better explore the complexity of
evolution and intrinsic regularity of multi-dimensional dynamical systems. Meanwhile, it can provide
a simple and versatile method to analyze sensitivity in dynamical models. These generalized formulas
enable one to understand the relationship between information transfer and the behavior of a system.
It can be used to perform sensitivity analysis as a measure in multi-dimensional complex dynamical
systems. Therefore, the generalized formalisms have much wider applications and are significant to
investigate real-world problems.

The structure of this paper is as follows: Section 2 recalls a systematic introduction of the theories
and the formalisms about information flow in 2D systems; In Section 3, the formalisms are generalized
to adapt to multi-dimensional complex dynamical system components based on the LK2005 formalism.
Details on the derivations of the formalisms and the related properties are demonstrated; Section 4
gives a description about the formalisms with multi-dimensional applications; the summary of this
paper is given in Section 5.
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2. Two-Dimensional Formalism of Information Transfer (the LK2005 Formalism [6])

2.1. Continuous Flows

For 2D continuous and deterministic autonomous systems with fully known dynamics,

dx

dt
= F(x), (1)

where F = (F1, F2) with Fi = Fi(x1, x2) for any i = 1, 2 is known as the flow vector and x = (x1, x2) ∈
Ω = Ω1 × Ω2. A stochastic process X = (X1, X2) ∈ Ω with joint probability density ρ(x1, x2, t) at
time t is the random variables corresponding to the sample values (x1, x2). For convenience, we will
use the notation ρ or ρ(x1, x2) instead of the notation ρ(x1, x2, t) throughout Section 2, including the
same expression at multi-dimensional cases in Section 3. In addition, the integral domain is the whole
sample space Ω, except where noted. The probability density ρ associated with Equation (1) satisfies
the Liouville equation [18]:

∂ρ

∂t
+

∂(F1ρ)

∂x1
+

∂(F2ρ)

∂x2
= 0. (2)

The rate of change of joint entropy of X1 and X2, H(t)
de f
= − ∫∫Ω ρ log ρdx1dx2, satisfies the relation [6]

dH
dt

= E(∇ · F), (3)

where E means the mathematical expectation with respect to ρ and E(∇ · F) =
∫∫

Ω ρ(∇ · F)dx1dx2.
That is to say, when a system evolves with time, the change of its joint entropy is totally controlled by
the contraction or expansion of the phase space [6]. Later on, Liang and Kleeman showed that this
property holds for deterministic systems of arbitrary dimensionality [20].

Liang and Kleeman [6] provided a very efficient heuristic argument to describe the decomposition
of the various evolutionary mechanisms of information transfer in terms of the individual and joint
time rates of entropy changes of X1, X2 and (X1, X2). Firstly, they computed dH1

dt and dH2
dt , where Hi is

the entropy of Xi defined according to the marginal density, ρi. Secondly, they employed the novel
idea of frozen variables to analyze the individual time rates of entropy changes. When Xi is fixed
and Xj evolves on its own in 2D systems, they found its temporal rate of change of entropy depends

only on E(
∂Fj
∂xj

), denoted by
dH∗

j
dt . In the presence of interactions between Xi and Xj, they observed that

dHj
dt �= E

(
∂Fj
∂xj

)
=

dH∗
j

dt . Therefore, Liang and Kleeman [6] concluded that the difference between
dHj
dt

and E
(

∂Fj
∂xj

)
should equal to the rate of entropy transfer from Xi to Xj. In the meantime, they denoted

the rate of flow from Xi to Xj by Ti→j (T stands for ”transfer”) and defined information flow/transfer as

Ti→j =
dHj

dt
−

dH∗
j

dt
= −

∫∫
Ω

ρi|j(xi|xj)
∂(Fjρj)

∂xj
dxidxj, (4)

where ρi|j(xi|xj) =
ρ(xi ,xj ,t)

ρ(xj ,t)
and i, j = 1, 2 with different i, j at the same time.

2.2. Discrete Mappings

Similarly, Liang and Kleeman [6] also gave the formalism about a system in the discrete mapping
form. Considering a 2D transformation

Φ : Ω → Ω, (x1, x2) → (Φ1(x), Φ2(x)) ,
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where x = (x1, x2) ∈ Ω and Ω := Ω1 × Ω2. The evolution of the density of Φ is driven by the
Frobenius–Perron operator (F − P operator) P : L1(Ω) → L1(Ω) [18]. The entropy increases as

ΔH = −
∫∫

Pρ log Pρdx1dx2 +
∫∫

ρ log ρdx1dx2

= −
∫∫

ρ(x1, x2) log|J−1|dx1dx2,

where J−1 is the Jacobian matrix of Φ. When Φj is invertible in 2D transformations,

ΔH∗
j = E log|Jj|. (5)

The entropy of Xj increases as

ΔHj = −
∫

Ωj

(∫
Ωi

Pρdxi

)
log

(∫
Ωi

Pρdxi

)
dxj +

∫
Ωj

ρj log ρjdxj,

where ρj is the marginal density of Xj. When Φj is noninvertible in 2D transformations,

ΔH∗
j =

∫
ρj(xj) log ρj(xj)dxj

−
∫∫

Pjρj
(
Φj(xi, xj)

)
log Pjρj

(
Φj(xi, xj)

)
ρ(xi|xj)|Jj|dxidxj,

(6)

where Pj is the F − P operator when xi is frozen as a parameter in Pj. The entropy transferring from Xi
to Xj is

Ti→j =−
∫

Ωj

(∫
Ωi

Pρdxi

)
log

(∫
Ωi

Pρdxi

)
dxj

+
∫∫

Pjρj
(
Φj(xi, xj)

)
log Pjρj

(
Φj(xi, xj)

)
ρ(xi|xj)|Jj|dxidxj,

(7)

where i, j = 1, 2 with different i, j at the same time.

3. n-Dimensional Formalism of Information Transfer

3.1. Continuous Flows

Firstly, we consider a three-dimensional (3D) continuous autonomous system,

dx

dt
= F(x), (8)

where F = (F1, F2, F3) is a known flow vector. Similarly, the probability density ρ associated with
Equation (8) satisfies the Liouville equation [18]:

∂ρ

∂t
+

∂(F1ρ)

∂x1
+

∂(F2ρ)

∂x2
+

∂(F3ρ)

∂x3
= 0. (9)

Analogous to the derivation in [6], firstly, multiplying by (1 + log ρ) for Equation (9), after some
algebraic manipulations:

∂(ρ log ρ)

∂t
+ F · (∇ · (ρ log ρ)) + ρ(1 + log ρ)∇ · F = 0. (10)
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Then, integrating for Equation (10),

dH
dt

−
∫∫∫

Ω
∇ · (ρ log ρF)dx1dx2dx3 −

∫∫∫
Ω

ρ∇ · Fdx1dx2dx3 = 0.

Assuming that ρ vanishes at the boundaries (the compact support assumption for ρ and the assumption
is reasonable in real-world problems [6]), it is found that the time rate of the joint entropy change of
X1, X2 and X3,

H(t)
de f
= −

∫∫∫
Ω

ρ log ρdx1dx2dx3,

satisfies
dH
dt

−
∫∫∫

Ω
ρ(x1, x2, x3)∇ · Fdx1dx2dx3 = 0

or
dH
dt

= E(∇ · F),

where E(∇ · F) =
∫∫∫

Ω ρ(∇ · F)dx1dx2dx3.
As mentioned above, the time rate of change of H equals to the mathematical expectation of the

divergence of the flow vector F. When we are interested in the entropy evolution of a component, xk in
3D systems, the marginal density is

ρk(xk, t) =
∫∫

Ωi×Ωj

ρ(xi, xj, xk, t)dxidxj.

The evolution equation of ρk is derived by taking the integral of Equation (9) with respect to xi and xj
over the subspace Ωi × Ωj :

∂ρk
∂t

+
∂

∂xk

∫∫
Ωi×Ωj

ρFkdxidxj = 0.

The third and fourth terms in Equation (9) have been integrated out with the compact support
assumption for ρ. So the entropy for the component

Hk(t) = −
∫

Ωk

ρk log ρkdxk

evolves as
dHk
dt

=
∫∫∫

Ω

[
log ρk

∂(ρFk)

∂xk

]
dxidxjdxk,

i.e.,
dHk
dt

= −
∫∫∫

Ω
ρ

[
Fk
ρk

∂ρk
∂xk

]
dxidxjdxk. (11)

The Equation (11) states how Hk evolves with time. The evolutionary mechanism of Hk derives from

two parts: One is from the evolution itself, dH∗
k

dt ; another from the transfers of Xi and Xj according to
the coupling in the joint density distribution ρ. From Section 2, we know that when Xk evolves on its
own, then

E
(

∂Fk
∂xk

)
=

dH∗
k

dt
=
∫∫∫

Ω
ρ

∂Fk
∂xk

dxidxjdxk.

18



Entropy 2018, 20, 774

Therefore, the rate of information flow/transfer from Xi, Xj to Xk is

Ti,j→k =
dHk
dt

− dH∗
k

dt
=
∫∫∫

Ω
ρ

(
Fk
ρk

∂ρk
∂xk

+
∂Fk
∂xk

)
dxidxjdxk

= −
∫∫∫

Ω

ρ

ρk

∂(Fkρk)

∂xk
dxidxjdxk

= −
∫∫∫

Ω
ρi,j|k(xi, xj|xk)

∂(Fkρk)

∂xk
dxidxjdxk,

(12)

where ρi,j|k(xi, xj|xk) =
ρ(xi ,xj ,xk ,t)

ρ(xk ,t) and i, j, k = 1, 2, 3 with different i, j, k at the same time.
In particular, if F1 = F1(x1) has no dependence on x2, then T2→1 = 0. There is no information

transfer from random variable component X2 to X1. This holds true with the transfers defined in
LK2005 formalism. Obviously, in system (8) , when F1 has no dependence on x2, x3, there should be
no information transfer from X2, X3 to X1, but there is possibility that the transfers in other directions
may be nonzero when F2 depends on x1, x3 or F3 depends on x1, x2. This is consistent with the
information transfer defined in Equation (12). As a matter of fact, an important property of the transfer
is given below.

Theorem 1. If Fk is independent of xi, xj in system (8) with different i, j, k, then Ti,j→k = 0.

Proof of Theorem 1. According to the formalism of information transfer for system (8), with the
notation of Fk = Fk(xk),

Ti,j→k = −
∫∫∫

Ω
ρi,j|k(xi, xj|xk)

∂(Fkρk)

∂xk
dxidxjdxk

= −
∫

Ωk

(∫∫
Ωi×Ωj

ρi,j|k(xi, xj|xk)dxidxj

)
∂(Fkρk)

∂xk
dxk

= −
∫

Ωk

∂(Fkρk)

∂xk
dxk = 0.

It is worth noting that, while Xk gains information from Xi or Xj, or Xi and Xj, Xi or Xj might
have no dependence on Xk in 3D systems. An important property about information transfer is its
asymmetry among the components [1]. In addition, it is interesting to note that the formalism of 3D
systems can be reduced to 2D cases under the condition that one variable does not depend on another
variable. For example, If the evolution of Xk is independent of Xi, then

Ti,j→k = −
∫∫∫

Ω
ρi,j|k(xi, xj|xk)

∂(Fkρk)

∂xk
dxidxjdxk

= −
∫∫

Ωj×Ωk

(∫
Ωi

ρ(xi, xj, xk)dxi

)
1

ρ(xk)

∂(Fkρk)

∂xk
dxjdxk

= −
∫∫

Ωj×Ωk

ρ(xj|xk)
∂(Fkρk)

∂xk
dxjdxk = Tj→k.

(13)

In particular, when Xk is independent of Xi and Xj,

Ti,j→k = Ti→k = Tj→k = 0.
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According to Theorem 1, the results are apparent. Furthermore, when Xk depends on Xi and Xj,

Ti,j→k = −
∫∫∫

Ω
ρi,j|k(xi, xj|xk)

∂(Fkρk)

∂xk
dxidxjdxk

= −
∫∫∫

Ω
ρ(xj|xk) · ρi|j,k(xi|xj, xk)

∂(Fkρk)

∂xk
dxidxjdxk

= −
∫

Ωi

(∫∫
Ωj×Ωk

ρj|k(xj|xk)
∂(Fkρk)

∂xk
dxjdxk

)
ρi|j,k(xi|xj, xk)dxi

= −
∫

Ωi

Tj→k · ρi|j,k(xi|xj, xk)dxi,

or

Ti,j→k = −
∫

Ωj

Ti→k · ρj|i,k(xj|xi, xk)dxj. (14)

From the above derivations, we can see that our formalisms are further intensified by emphasizing the
inherent relation with the formalisms in 2D systems. The information flows from two variables and
the high order interactions between them to another variable are quantified by formula (12). These are
generalized forms of the LK2005 formalism. In Section 4, we will validate the conclusions by the
applications of all formulas in the Lorenz and Chua’s systems. Moreover, when several variables are
involved, the formalisms are capable to tackle information transfers of a multi-dimensional system.

Combining the Liouville equation

∂ρ

∂t
+

∂(F1ρ)

∂x1
+

∂(F2ρ)

∂x2
+ · · ·+ ∂(Fnρ)

∂xn
= 0, (15)

with Equation (3), dH
dt = E(∇ · F) in n-dimensional situations, we can generalize the formalism to

n-dimensional continuous and deterministic autonomous systems in the same way. For example,
the transfer of information from components X2, X3, . . . , Xn to X1 is

T2,3,...,n→1 = −
∫

Ω
ρ2,3,...,n(x2, x3, . . . , xn|x1)

∂(F1ρ1)

∂x1
dx1dx2 . . . dxn.

Hence, Theorem 1 can be generalized to multi-dimensional cases.

3.2. Discrete Mappings

For a 3D transformation Φ : Ω → Ω, (x1, x2, x3) → (Φ1(x), Φ2(x), Φ3(x)) , the evolution of
its density is driven by the Frobenius–Perron operator (F − P operator) P : L1(Ω) → L1(Ω) [18].
Similar to the 2D case, after some efficient computations, the entropy transfer from Xi, Xj to Xk in
three-dimensional mappings has the following form:

Ti,j→k =ΔHk − ΔH∗
k

=−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk

+
∫∫∫

Pkρk
(
Φk(xi, xj, xk)

)
log Pkρk

(
Φk(xi, xj, xk)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk.

(16)

We also give a theorem for the discrete mappings and highlight the relationship between
two-dimensional formalisms and generalized formalisms. The formalisms can be extended to
high-dimensional situations as well. The detailed processes are demonstrated in Appendix A.
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4. The Application of Multi-Dimensional Formalism of Information Transfer

4.1. The Lorenz System

In this section, we propose an application to study the information flows about the
Lorenz system [33]: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dx1

dt
= σ(x2 − x1)

dx2

dt
= x1(r − x3)− x2

dx3

dt
= x1x2 − bx3

,

where σ, r and b are parameters, x1, x2 and x3 are the system state variables, and t is time. A chaotic
attractor of Lorenz system with σ = 10, r = 28, b = 8

3 is shown in Figure 1.
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Figure 1. The Lorenz attractor with initial value (1,1,1).

Firstly, we need to obtain the joint probability density function ρ(x1, x2, x3) of X to calculate
information flows among the variables. For a deterministic system with known dynamics,
the underlying evolution of the joint density ρ(x1, x2, x3) can be obtained by solving the Liouville
equation. Taking into account of the computational load, we estimate the joint density ρ(x1, x2, x3) via
numerical simulations. The steps are summarized as follows:

• Initialize the joint density ρ(x1, x2, x3) with a preset distribution ρ0, then generate an ensemble
through drawing samples randomly according to the initial distribution ρ0.

• Partition the sample space Ω into “bins”.
• Obtain an ensemble prediction for the Lorenz system at every time step.
• Estimate the three-variable joint probability density function ρ via bin counting at every time step.

The Lorenz system is solved by applying a fourth order Runge–Kutta method with a time
step Δt = 0.01. According to Figure 1, the computation domain is restricted to Ω ≡ [−30, 30] ×
[−30, 30]× [0, 60], which includes the attractor of the Lorenz system. We discretize the sample space
into 60 × 60 × 60 = 21, 600 bins to ensure covering the whole attractor and one draw per bin on

21



Entropy 2018, 20, 774

average via making 21,600 random draws. Initially, we assume X is distributed as a Gaussian process
N(u(t), Σ(t)), with a mean u and a covariance matrix Σ:

u(0) =

⎡⎢⎣u1

u2

u3

⎤⎥⎦ , Σ(0) =

⎡⎢⎣σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

⎤⎥⎦ .

Although we have used different parameters u and σ2
d (d = 1, 2, 3) to compute information flows

for the Lorenz system, the final results are the same and the trends stay invariant. The parameters u
and σ2

d can be adjusted for different experiments. Here we only show the results of one experiment
with ud = 4 and σ2

d = 4. The ensemble is developed by drawing sample randomly in the light of
a pre-established distribution ρ0(x). We obtain an ensemble of X and estimate the three-variable joint
probability density function ρ(x1, x2, x3, t) by the way of counting the bins, at every time step. As the
equations are integrated forward in the Lorenz system, ρ can be estimated as a function of time and
describe the statistics of the system. A detailed discussion on probability estimation through bin
counting are referred to [20,25]. The sample data with initial value (1,1,1) and an estimated marginal
density of x1, x2 and x3 are displayed in Figure 2.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-20

0

20

X
1
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-50

0

50

X
2
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

t

0

50

X
3
 

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

x
1
pdf

x
2
pdf

x
3
pdf

Figure 2. Left panel: a sample data (X1, X2 and X3) of the Lorenz system generated by a fourth order
Runge–Kutta method with Δt = 0.01. Right panel: an estimated marginal density of x1, x2 and x3 via
counting the bins and initializing with a Gaussian distribution, respectively.

Through formula (12), the information transfer within three variables can be computed. There are
nine transfer series in the Lorenz system, but here we mainly focus on the couple effect from two
components to another component, that is, Ti,j→k, i, j, k = 1, 2, 3 with different i, j, k at the same time.
A nonzero Ti,j→k means that Xi and Xj are causal to Xk, and the value means how much uncertainty that
Xi and Xj bring to Xk. Among all the transfers, it is clearly shown that any two variables drive the other
variable in the dynamics except the evolution of X1 which only depends on X2. For the sake of revealing
some underlying information in the chaotic dynamical system better, we also give information transfer
among the components over space with a Gaussian distribution initialization and the averaged
density over time via using the following formula: Si,j→k = − ∫∫ ρ̄i,j|k(xi, xj|xk, t) ∂(Fk ρ̄k(t))

∂xk
dxidxj,

which characterizes the strength of information transfer at different planes of x = xi. That is to say,
it demonstrates the information transfer of xj and xk to xi plane, whose relative values represent the
magnitudes of information transfer. The calculation results are plotted in the left panel and the right
one of Figure 3, respectively. According to the magnitude of parameters in the Lorenz system and
the definition of rigorous 3D formalisms, the information transfer from X1, X2 to X3 is the smallest.
The results are just as we expected, |T1,2→3| < |T1,3→2| < |T2,3→1|, as shown in the left panel of
Figure 3. Meanwhile, we can get much information through numerical simulations. For example,
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the information transfer from X2 and X3 on X1 is larger than that of X1 and X3 on X2 in the Lorenz
system, which is helpful for us to better analyze the system and the fields of interest. Only the absolute
value of T measures the information transfer among the variables [23]. As the ensemble evolution
is carried forth, any two variables aim to reduce the uncertainty of the other variable [24]; in other
words, any two variables tend to stabilize the other variable. All information flows go to constants,
which means that the system tends to be stable simultaneously. Comparing the left panel with the
right one in Figure 3, we can find that not only the information flow from X2 and X3 to X1 is the largest
at different times, but also the total information transfer is the largest at x1 plane, and the strength of
information transfer obeys a distribution in each direction of x. Repeated experiments are found to be
in line with the results no matter whatever the initialization is given.
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Figure 3. Left panel: the multivariate information flow of the Lorenz system: blue dot-dash line: T2,3→1;
green star line: T1,3→2; red solid line: T1,2→3 (in nats per unit time); Right panel: the information
strength of transfer in the Lorenz system: blue dot-dash line: S2,3→1; green star line: S1,3→2; red solid
line: S1,2→3 (arbitrary unit).

In particular, we compute the transfer, T2→1, then compare T2→1 with the transfer, T2,3→1 in
Figure 4, as well as plot the transfers T1→2, T3→2 and T1,3→2 in Figure 5.
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Figure 4. T2→1 and T2,3→1in the Lorenz system (in nats per unit time).
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Figure 5. T1→2, T3→2 and T1,3→2 in the Lorenz system (in nats per unit time).

Since the evolution of X1 is independent of X3 and the evolution of X2 depends on X1 and X3

in the Lorenz system, the transfer T2→1 should be equal to T2,3→1 and neither the transfer T1→2 nor
T3→2 should not be equal to T1,3→2 according to the derivations in Section 3.1. As expected, there is
almost no difference between the two flows in Figure 4. The interpretation of the results is that X3

is not causal to X1 in the Lorenz system. The result agrees well with theoretical analysis, which also
validates our formalisms. But the graphs T1→2 and T3→2 are quite different from the graph T1,3→2

in Figure 5, as that both X1 and X3 are causal to X2 in the Lorenz system. From Figures 4 and 5,
we can find that the information flow T2→1 is different from T1→2, as a property of asymmetry of the
information transfer. There exists hidden sensitivity information in information transfer processes of
high-dimensional dynamical systems: whether or not one variable brings more uncertainty to another
variable. Comparing the magnitudes of three flows in Figure 5, we can say that X3 is more sensitive
to X2 than X1 to X2 from the sensitivity analysis point of view. All the above differences are exactly
the embodiment of the differences between the information flows in multi-dimensional dynamical
systems and the LK2005 formalism. The proposed formalisms can be used to measure information
transfers among the variables in dynamical systems and the numerical results can show how the
measurement behavior with time, compared with the qualification of information transfer between
two variables [4] and the transfer mutual information method [32]. For example, it can be quantified
the influence that x3 on the relationship between x1 and x2 using the transfer mutual information
method in the Lorenz system. With our generalized formalisms, we can give quantitatively the
influence from x3 to the relationship between x1 and x2 as a dynamical process and other relationships
(such as the asymmetrical influence between two variables) among the variables for analyzing the
system better. To test the influence of error propagation on the measurement of information transfers,
we use a different natural interval extension to compute information transfers according to the striking
method [34]. In other words, we compute information transfers using formula (12) in the Lorenz system
with the rewritten second equation, that is, rx1 − x1x3 is used to replace x1(r − x3). For the Lorenz
system, the results show that, the algorithm performs well (the relative error < 2%). All simulations
are performed on a 64-bit Matlab R2016a environment. The physical consistency of the proposed
approach in this paper can be explained as that a direction of the phase space is frozen in order to
extract information transfers from the other two directions [3]. In addition, nonlinearity may lead a
deterministic system to chaos, which causes the “spikes” in the right panel of Figure 3 and corresponds
to intermittent switching in the chaotic dynamics. As the remarkable theory stated in [35], it indicates
when the dynamics are about to switch lobes of the attractor in the Lorenz system.
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Since Liouville equations and Frobenius–Perron analysis describe an ensemble of trajectories,
we can use the generated formalisms of information flow as a sensitivity analysis index to perform
dynamic sensitivity information analysis instead of the preceding widely used methods such
as repeated calculation of principal component coefficients [36,37], construction of functional
metamodels [31,38], calculation of moving average of the sensitivity index [39] and direct perturbation
analysis of a dynamical system [40]. Using information flow to identify sensitive variables is directly
based on the statistical perspective, which can improve numerical accuracy and efficiency while
reduce the calculation load, compared with conventional dynamic sensitivity analysis methods.
We cannot only quantify how much the uncertainty among variables of a system, but also understand
how they influence system behavior, so it may be measured and used for prediction and control in
realistic applications.

Furthermore, we use Equation (15) to compute information transfers, Tyzw→x, Txzw→y, Txyw→z,
and Txyz→w with the same strategy in the four-dimensional (4D) dynamical system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= 12(y − x)
dy
dt

= 23x − xz − y + w
dz
dt

= xy − 2.1z
dw
dt

= −6y − 0.2w

,

whose results are shown in Figure 6.
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Figure 6. Left panel: an estimated marginal density of x, y, z and w via counting the bins and initializing
with a Gaussian distribution, respectively; Right panel: the multivariate information flow over time of
a 4D dynamical system.

The generalized formalisms are useful to deal with universal problems, which is not difficult to
be applied to higher-dimensional cases.

4.2. The Chua’s System

Since it is the first analog circuit to realize chaos in experiments, the initial Chua’s system is
a well-known dynamical model [41]. The Chua’s system is described in reference [42] and there are
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many researches on its dynamical behavior [43,44]. Here we present an investigation of the information
flows within the smooth Chua’s system [45]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dx
dt

= p(x + y − x ln
√

1 + x2)

dy
dt

= x − y + z
dz
dt

= −qy

,

where p, q are parameters, x, y and z are state variables in R and t ∈ R+. When p = 11 and q = 14.87,
a chaotic attractor of the Chua’s system is shown in Figure 7.
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Figure 7. The attractor of Chua’s system with x(0) = −3, y(0) = 2, z(0) = 1. The former three
trajectories are x, z-plane,x, y-plane and y, z-plane, respectively. The last trajectory is a 3D plot of x, y
and z.

As mentioned before, using the same estimation procedures, we can obtain the density ρ(x, y, z)
of R by counting the bins at each step. From Figure 7, the appropriate computation domain
Ω ≡ [−10, 10] × [−10, 10] × [−10, 10] which includes an attractor of the Chua’s system can be
selected to estimate the three-variable joint probability density function. The following computation is
demonstrated by applying a fourth order Runge–Kutta method. Similarly, we only show the results
of one experiment after computing information flows multiple times by using different parameters.
Suppose that R is distributed as a Gaussian process N(u(t), Σ(t)), with a mean u and a covariance
matrix Σ in the initial state:

u(0) =

⎡⎢⎣9
9
9

⎤⎥⎦ , Σ(0) =

⎡⎢⎣9 0 0
0 9 0
0 0 9

⎤⎥⎦ .

Due to the additional fact that the smooth Chua’s circuit has a highly non-coherent dynamics [46],
we discretize the sample space into 200 × 200 × 200 = 8, 000, 000 bins to adequately understand the
information transfer and the behavior of the system over time. A sample data and an estimation
result of three marginal densities are shown in Figure 8, and we can find that the dynamical behaviors
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of the system are consistent with the results, such as symmetry. Using formula (12) to compute the
information transfers within three variables of Chua’s system. Firstly, we discuss the coupling effect
from two components to the other component, the calculation results are demonstrated in Figure 9.
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Figure 8. Left panel: a sample data (X, Y and Z) of the Chua’s system generated by a fourth order
Runge–Kutta method with Δt = 0.01; Right panel: the purple line, black line, and blue line represent
an estimated marginal density of x, y, z by counting bins, respectively.
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Figure 9. Left panel: the multivariate information flow of the Chua’s system: green dot-dash line:
Ty,z→x; red dot-dash line: Tx,z→y; blue dot-dash line: Tx,y→z (in nats per unit time); Right panel:
the information strength of transfer in the Chua’s system: green dot-dash line: Sy,z→x; red dot-dash
line: Sx,z→y; blue dot-dash line: Sx,y→z (arbitrary unit).

Secondly, we compute the transfers, Ty→z and Tz→y, then compare Ty→z with the transfer, Tx,y→z

and Tz→y with Tx,z→y in Figures 10 and 11, respectively. We also show the corresponding results of the
strength of information transfer among the components with a Gauss distribution initialization and
the averaged density over time in Figure 9.
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Figure 10. Ty→z and Tx,y→z in the Chua’s system (in nats per unit time).
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Figure 11. Tz→y and Tx,z→y in the Chua’s system (in nats per unit time).

Since X causes Y but does not cause Z in the Chua’s system, the numerical results
of Figures 10 and 11 conform with the derivations of Equations (13) and (14) in Section 3.1.
More specifically, there is almost no difference between the two flows in Figure 10, however, there exists
large disparity between the two flows in Figure 11. The results also verify our formalisms. In addition,
as shown in Figures 10 and 11, we can see that the information flow Ty→z is different from Tz→y due
to the asymmetry of information transfer. All simulations are performed on a 64-bit Matlab R2016a
environment. We are able to estimate that one variable makes another variable more uncertain or more
predictable via the generalized formalisms. Besides, we can identify sensitive variables by computing
information transfers among the variables in dynamical systems.

Compared with the Lorenz system, the Chua’s system embodies in engineering systems
besides that their discoveries were extraordinary and changed scientific thinking [46]. It can
be used as another means to research, experiment and think about humanity, identity and art,
etc. [47,48]. In studying visualization of the dynamics of Chua’s circuit through computational models,
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the quantitative transformations of behavior are being taken into account [46]. The multi-dimensional
formalisms of information flow enable us to improve our ability to estimate, predict, and control
complex systems in many diverse fields. Furthermore, most existing approaches in control and
synchronization of chaotic systems require adjusting the parameters of the model and estimating
system parameters, which become an active area of research [49], and an additional benefit provided
by the multi-dimensional formalisms of information flow is parameter estimation. We can compute
information flows of the simulation model with different sets of parameters and do the same procedure
for obtaining a group of feedback, then determine the optimal parameters that cater for the actual
needs in order to put insight into complex behavior of models by comparing the change rates.

5. Conclusions

Based on the LK2005 formalism, we propose a rigorous and general formalism of the information
transfer among multi-dimensional complex dynamical system components, for continuous flows and
discrete mappings, respectively. Information transfers are quantified through entropy transfers from
some components to another component, enabling us to better understand the physical mechanism
underlying the superficial behavior and explore deeply hidden information in the evolution of
multi-dimensional dynamical systems. When the generalized formalisms are reduced to 2D cases,
the results are consistent with the LK2005 formalism. We mainly focus on the study of 3D systems
and apply the formalisms to investigate information transfers for the Lorenz system and the Chua’s
system. In the above-mentioned two cases, we show that information flows of the whole evolution
and the strength of information transfer at different planes, which implies that how uncertainty
propagates and how dynamic essential information in the system transports. The results of experiments
on the generalized formalisms conform with observations and empirical analysis in the literature,
whose application may benefit many diverse fields. Compared with the qualification of information
transfer between two variables [4] and the transfer mutual information method [32], the generalized
formalisms are helpful for analyzing the relationships among the variables in dynamical systems
and the research of complex systems. Moreover, since the formalism is built on the statistical nature
of information, it has the potential to perform sensitivity analysis in multi-dimensional complex
dynamical systems and advance our ability to estimate, predict and control these systems. In practice,
for complex high-dimensional dynamical systems, it is not easy to give the dynamics analytically.
Considering many critical data-driven problems are primed to take advantage of progress in the
data-driven discovery of dynamics [35], we are developing a dynamic-free formulation to analyze
information flows of multi-dimensional dynamical systems.

In the future, the formalism will be further generated to high-dimensional stochastic dynamical
systems and time-delay systems. Meanwhile, future research should investigate how the information
flow as a new indicator can be deployed in the frame of dynamic sensitivity analysis.
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Appendix A. Discrete Mappings

Now consider a 3D transformation

Φ : Ω → Ω, (x1, x2, x3) → (Φ1(x), Φ2(x), Φ3(x)) (A1)
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and the Frobenius–Perron operator (F− P operator) P : L1(Ω) → L1(Ω) [18] which steers the evolution
of its density. Loosely, given a density ρ = (x1, x2, x3), P is defined as that∫∫∫

w
Pρ(x1, x2, x3)dx1dx2dx3 =

∫∫∫
Φ−1(w)

ρ(x1, x2, x3)dx1dx2dx3,

where w represents any subset of Ω. When Φ is invertible, P can be expressed clearly as Pρ(x) =

ρ
[
Φ−1(x)

] |J−1|, where J−1 = J−1(x1, x2, x3) = det
[

∂(Φ−1(x1,x2,x3))
∂(x1,x2,x3)

]
is the determinant of the Jacobian

matrix of Φ. Similar to the two-dimensional case, the entropy increases

ΔH =−
∫∫∫

Pρ log Pρdx1dx2dx3 +
∫∫∫

ρ log ρdx1dx2dx3

=−
∫∫∫

ρ
(

Φ−1(x1, x2, x3)
)
|J−1| log

[
ρ
(

Φ−1(x1, x2, x3)
)
|J−1|

]
dx1dx2dx3

+
∫∫∫

ρ log ρdx1dx2dx3

=−
∫∫∫

ρ(v1, v2, v3)|J−1|
[
log ρ(v1, v2, v3) + log|J−1|

]
|J|dv1dv2dv3

+
∫∫∫

ρ log ρdx1dx2dx3

=−
∫∫∫

ρ(x1, x2, x3) log|J−1|dx1dx2dx3,

concisely rewritten as
ΔH = E log|J|. (A2)

Meantime, in the case when Φk is invertible of 3D transformations,

ΔH∗
k = E log|Jk|. (A3)

The entropy of Xk increases as

ΔHk =−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk

+
∫

Ωk

ρk log ρkdxk,

(A4)

where ρk is the marginal density of Xk.
When Φk is noninvertible,

ΔH∗
k =

∫
ρk(xk) log ρk(xk)dxk

−
∫∫∫

Pkρk
(
Φk(xi, xj, xk)

)
log Pkρk

(
Φk(xi, xj, xk)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk,

(A5)

where Pk is the F − P operator when xi, xj is frozen as parameters in Pk. It is easy to find that
Equation (A5) reduces to Equation (A3) when Φk is invertible. Therefore, the entropy transfers from
Xi, Xj to Xk can be unified into a form

Ti,j→k =−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωi

Pρdxidxj

)
dxk

+
∫∫∫

Pkρk
(
Φk(xi, xj, xk)

)
log Pkρk

(
Φk(xi, xj, xk)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk,

(A6)

where i, j, k = 1, 2, 3 with different i, j, k at the same time.
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Just as the former case with continuous variables, the information flow obtained by Equation (A6)
has the following property:

Theorem A1. If Φk is independent of xi, xj in system (A1) with different i, j, k, then Ti,j→k = 0.

The detailed proof of Theorem A1 is presented in Appendix A.1. Moreover, the formalism of 3D
system can be reduced to the formalism in 2D cases with the previously mentioned conditions being
satisfied. For example, when Φk has no dependence on xi,

Ti,j→k =−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk

+
∫∫∫

Pkρk
(
Φk(xi, xj, xk)

)
log Pkρk

(
Φk(xi, xj, xk)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk

=−
∫

Pkρk log Pkρkdxk

+
∫∫

Pkρk(Φk(xi, xj, xk) log Pkρk(Φi(xi, xj, xk))|Jk|
(∫

Ωi

ρ(xi, xj|xk)dxi

)
dxidxj

=−
∫

Pkρk log Pkρkdxk

+
∫∫

Pkρk
(
Φk(xj, xk)

)
log Pkρk

(
Φk(xj, xk)

)
ρ(xj|xk)|Jk|dxjdxk = Tj→k.

In particular, when Φk has no dependence on xi and xj,

Ti,j→k = Ti→k = Tj→k = 0.

Furthermore, when Φk has dependence on xi and xj,

Ti,j→k =−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk

+
∫∫∫

Pkρk
(
Φk(xi, xj, xk)

)
log Pkρk

(
Φk(xi, xj, xk)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk

=−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk

+
∫∫∫

Pkρk
(
Φk(xi, xj, xk)

)
log Pkρk

(
Φk(xi, xj, xk)

)
ρ(xj|xk)ρ(xi|xj, xk)|Jk|dxidxjdxk

=−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk

+
∫

Ωi

(∫∫
Ωj×Ωk

Pkρk
(
Φk(xi, xj, xk)

)
log Pkρk

(
Φk(xi, xj, xk)

)
ρ(xj|xk)|Jk|dxjdxk

)
· ρ(xi|xj, xk)dxi

=−
∫

Ωi

Tj→k · ρ(xi|xj, xk)dxi

+
∫

Ωi

(∫
Ωk

Pkρk log Pkρkdxk

)
· ρ(xi|xj, xk)dxi −

∫
Ωk

Pkρk log Pkρkdxk

The above formalisms can also be generalized to n-dimensional systems by efficient processing of the
relationship between the F − P operator∫

w
Pρ(x1, x2, . . . xn)dx1dx2 . . . dxn =

∫
Φ−1(w)

ρ(x1, x2, . . . xn)dx1dx2 . . . dxn
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and the entropy evolution at different time steps. For example, the transfer of entropy from
X2, X3, . . . , Xn to X1 is

T2,3,...,n→1 =−
∫

Ω1

(∫
Ω2...n

Pρdx2dx3 . . . dxn

)
log

(∫
Ω2...n

Pρdx2dx3 . . . dxn

)
dx1

+
∫

Ω
P1ρ1 (Φ1(x1, x2, . . . , xn)) log P1ρ1 (Φ1(x1, x2, . . . , xn))

· ρ(x2, x3, . . . , xn|x1)|J1|dx1dx2 . . . dxn.

Here Ω2...n is the simplified script of Ω2 × Ω3 × . . . × Ωn. Similar to the continuous cases,
the generalized version of the property of Theorem A1 is also suitable for multi-dimensional
discrete mappings.

Appendix A.1.

Proof of Theorem A1. We only need to show that when Φk is independent of xi, xj in 3D system,

ΔH∗
k = ΔHk.

According to Equation (A4) and Equation (A5), we only need to prove

−
∫∫∫

Ω
Pkρk

(
Φk(xk, xi, xj)

)
log Pkρk

(
Φk(xk, xi, xj)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk

= −
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk.

According to the definition of the F − P operator and the condition that Φk is independent of xi, xj at
the same time,

−
∫∫∫

Ω
Pkρk

(
Φk(xk, xi, xj)

)
log Pkρk

(
Φk(xk, xi, xj)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk

= −
∫

Ωk

Pkρk
(
Φk(xk, xi, xj)

)
log Pkρk

(
Φk(xk, xi, xj)

) |Jk|
∫∫

Ωi×Ωj

ρ(xi, xj|xk)dxidxjdxk

because
∫∫

Ωi×Ωj
ρ(xi, xj|xk)dxidxjdxk = 1

−
∫

Ωk

Pkρk
(
Φk(xk, xi, xj)

)
log Pkρk

(
Φk(xk, xi, xj)

) |Jk|
∫∫

Ωi×Ωj

ρ(xi, xj|xk)dxidxjdxk

= −
∫

Ωk

Pkρk(yk) log Pkρk(yk)dyk

= −
∫

Ωk

pkρk(xk) log Pkρk(xk)dxk

= −
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk
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where y1 = Φk(xk, xi, xj). So

ΔH∗
k =

∫
ρk(xk) log ρk(xk)dxk

−
∫∫∫

Pkρk
(
Φk(xk, xi, xj)

)
log Pkρk

(
Φk(xk, xi, xj)

)
ρ(xi, xj|xk)|Jk|dxidxjdxk

=−
∫

Ωk

(∫∫
Ωi×Ωj

Pρdxidxj

)
log

(∫∫
Ωi×Ωj

Pρdxidxj

)
dxk

+
∫

Ωk

ρk log ρkdxk = ΔHk.
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Abstract: In this paper, we investigate the dynamics of a fractional order chaotic map corresponding
to a recently developed standard map that exhibits a chaotic behavior with no fixed point. This is
the first study to explore a fractional chaotic map without a fixed point. In our investigation, we
use phase plots and bifurcation diagrams to examine the dynamics of the fractional map and assess
the effect of varying the fractional order. We also use the approximate entropy measure to quantify
the level of chaos in the fractional map. In addition, we propose a one-dimensional stabilization
controller and establish its asymptotic convergence by means of the linearization method.

Keywords: discrete chaos; discrete fractional calculus; hidden attractors; approximate entropy;
stabilization

1. Introduction

Over the last few decades and since the Hénon map was first proposed [1], discrete-time chaotic
dynamical systems have received a great deal of attention from numerous disciplines due to their
ability to model various natural phenomena [2]. Throughout the years, a variety of chaotic maps has
been proposed and their dynamics investigated [3–7]. The dynamics and control of such systems
have been widely investigated [8–13]. Recently, an interesting investigation was carried out in [14] on
a rather general 2D map that can, under certain parameters, have no fixed points and possess hidden
dynamics. The authors examined the stability of the fixed points and showed that the map exhibits rich
dynamics and may in some instances have a very tiny basin of attraction. Note that the term hidden
attractors first came about in the investigation of continuous chaotic systems [15–17]. They refer to
attractors that do not contain the neighborhoods of the equilibria. The hidden attractor property
plays important roles in science and engineering [18–21]. The existence of such attractors in many
engineering applications is considered problematic and requires stabilization [22–24]. The authors
considered a new system inspired by the logistic map and examined its bifurcation and hidden
dynamics. The schematic approach proposed in [14] for studying such hidden dynamics has been
picked up by researchers such as [25].

Entropy 2018, 20, 720; doi:10.3390/e20100720 www.mdpi.com/journal/entropy36
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In recent years, with the growing advancement in the field of discrete fractional calculus,
a few studies have emerged considering the dynamics, control and applications of fractional chaotic
maps [26–32]. In addition, there are few works related to chaotic maps with hidden attractors [14,25].
Especially, research to date has not yet studied fractional chaotic maps without a fixed point. It should
be noted that although the inception of fractional continuous calculus took place centuries ago,
its discrete counterpart was not properly explored until recently [33]. The first definition of a fractional
difference operator was made by Diaz and Olser in 1974 [34]. In fact, the vast majority of available
literature on the subject was published in the last decade, including [35–40].

In this paper, we examine the dynamics the fractional version of the general map proposed in [14]
by means of phase plots and bifurcation diagrams. It is noted that there is no fixed point in such
a chaotic fractional map. There is no fractional-order chaotic map without fixed points reported in the
literature. As far as we aware, this is the first time that a fractional-order chaotic map without fixed
points has been investigated. We show that the fractional order has a major impact on the chaotic
range and the shape of hidden attractors. We also use the approximate entropy measure to quantify
the level of chaotic behavior present in the fractional map. By varying the fractional order, we show
that it has an impact on the entropy. We also propose a one-dimensional stabilization controller that
forces the system states to zero asymptotically. Throughout our analysis, we make use of numerical
methods to confirm the findings.

2. The Fractional Map without Fixed Points

In this paper, we are interested in the dynamics, entropy and control of the fractional map based
on the standard iterated map of the form:{

x (n + 1) = y (n) ,
y (n + 1) = x (n) + a1x2 (n) + a2y2 (n)− a3x (n) y (n)− a4,

(1)

where a1, a2, a3 and a4 are some real-value parameters. This map was developed by Jiang et al. [14]
as a variation of the original Hénon map [1]. They showed by means of analytical and numerical
methods that hidden chaotic attractors exist in the map for certain values of the parameters a1, a2, a3

and a4. The phase-space portraits of the map with no fixed point are depicted in Figure 1 for three
typical examples. This map has some interesting dynamics with hidden strange attractors. The authors
showed that chaos exists in the map with different scenarios: no fixed point, a single fixed point and
two fixed points. In the following, we develop a fractional chaotic map based on (1) to examine its
dynamics and control.

Before we can state the fractional map we are concerned with, let us recall some important aspects
of discrete fractional calculus. First of all, consider a generic function X (t) : Na → R where Na

denotes the set of all discrete numbers starting from a, i.e., Na = {a, a + 1, a + 2, ...}. Given a fractional
difference number υ > 0 and the function σ(s) = s + 1, we define the υ-th fractional sum of X (t)
similar to [35] as:

Δ−υ
a X (t) =

1
Γ (υ)

t−υ

∑
s=a

(t − σ (s))(υ−1) X (s) , (2)

for all t ∈ Na+n−υ and with tυ being the falling function defined in terms of the Gamma function Γ as:

tυ =
Γ (t + 1)

Γ (t + 1 − υ)
. (3)

With this in mind, we may define the υ-th Caputo type delta difference of X (t) similar to [36] by:

CΔυ
a X (t) = Δ−(n−υ)

a ΔnX (t) =
1

Γ (n − υ)

t−(n−υ)

∑
s=a

(t − σ (s))(n−υ−1) Δn
s X (s) , (4)
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where υ �∈ N is the fractional order, t ∈ Na+n−υ and n = [υ] + 1.
Now, that we have stated the basics of discrete fractional calculus, we may start our analysis.

System (1) can be rewritten in difference form as:{
Δx (n) = y (n)− x (n) ,
Δy (n) = x (n) + a1x2 (n) + a2y2 (n)− a3x (n) y (n)− a4 − y (n) .

(5)

Then, using the Caputo difference operator CΔυ
a as defined in (4), we obtain the fractional version

of the map for t ∈ Na+1−υ and 0 < υ ≤ 1 as:⎧⎪⎨⎪⎩
CΔυ

a x (t) = y (t − 1 + υ)− x (t − 1 + υ) ,
CΔυ

a y (t) = x (t − 1 + υ) + a1x2 (t − 1 + υ) + a2y2 (t − 1 + υ)

−a3x (t − 1 + υ) y (t − 1 + υ)− a4 − y (t − 1 + υ) .
(6)

From here on, we will refer to (6) as the fractional map. Our new fractional-order map belongs
to a special class of dynamical systems with “hidden attractors”, which have received significant
attention recently [19,24]. We believe that our work will assist researchers in further understanding
systems with hidden attractors.

In order to examine the dynamics of the fractional map (6), we must develop a numerical formula
for it. Let us recall an important theorem that defines the equivalent discrete integral equation
corresponding to a generic fractional difference, which will enable us to obtain our numerical formula.

Figure 1. Phase plots of the map without a fixed point for: (a) (a1, a2, a3, a4) = (0.2, 0.71, 0.91, 1.14) and
(x(0), y(0)) = (0.93,−0.44); (b) (a1, a2, a3, a4) = (0.51, 1, 1.51, 0.74) and (x(0), y(0)) = (−0.81, 0.51);
(c) (a1, a2, a3, a4) = (0.6, 1, 1.6, 0.72) and (x(0), y(0)) = (−0.26, 0.18).

Theorem 1 ([41]). For the delta fractional difference equation:{
CΔυ

a u (t) = f (t + υ − 1, u (t + υ − 1)) ,
Δk = uk, n = [υ] + 1, k = 0, 1, ..., n − 1,

(7)

the equivalent discrete integral equation can be obtained as:

u (t) = u0 (t) +
1

Γ (υ)

t−υ

∑
s=a+n−υ

(t − σ (s))(υ−1) f (s + υ − 1, u (s + υ − 1)) , t ∈ Nα+n, (8)

where:

u0 (t) =
m−1

∑
k=0

(t − a)k

k
Δku (a) . (9)
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By applying Theorem 1, we can state the equivalent discrete integral form of (6) for t ∈ Na+1 as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x (t) = x (a) + 1

Γ(υ)

t−υ

∑
s=a+1−υ

(t − σ (s))(υ−1) (y (s + υ − 1)− x (s + υ − 1)) ,

y (t) = y (a) + 1
Γ(υ)

t−υ

∑
s=a+1−υ

(t − σ (s))(υ−1) (x (s + υ − 1) + a1x2 (s + υ − 1)

+a2y2 (s + υ − 1)− a3x (s + υ − 1) y (s + υ − 1)− a4 − y (s + υ − 1)
)

.

(10)

The reciprocal (t−σ(s))(υ−1)

Γ(υ) is known as a discrete kernel function. For simplicity, we may choose:

(t − σ (s))(υ−1)

Γ (υ)
=

Γ (t − s)
Γ (υ) Γ (t − s − υ + 1)

. (11)

This leads to the following numerical formulas for a = 0:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x (n) = x (0) + 1

Γ(υ)

n
∑

j=1

Γ(n−j+υ)
Γ(n−j+1) (y (j − 1)− x (j − 1)) ,

y (n) = y (0) + 1
Γ(υ)

n
∑

j=1

Γ(n−j+υ)
Γ(n−j+1)

(
x (j − 1) + a1x2 (j − 1)

+a2y2 (j − 1)− a3x (j − 1) y (j − 1)− a4 − y (j − 1)
)

,

(12)

These numerical formulas will allow us to plot phase-space portraits, bifurcation diagrams
and error convergence plots throughout the remainder of this paper.

3. Chaotic Dynamics and Entropy Analysis

3.1. Chaotic Dynamics

Now that we have our fractional map (6) and the corresponding numerical formulas (12),
let us study the map’s dynamics and chaotic behavior. First, we study the effect of the fractional
order υ on the dynamics of the map for parameter values (a1, a2, a3, a4) = (0.2, 0.71, 0.91, 1.14).
Evaluating (12) for υ = 1 and with some direct calculations, we can see that the resulting dynamics
of the fractional map are identical to those of the classical one even though it has a discrete memory
effect, i.e., the solution x (n) depends on all previous values x (0) , x (1) , ..., x (n − 1). With initial values
(x (0) , y (0)) = (0.93,−0.44), Figure 2 shows the phase portrait of the fractional map for various values
of the fractional order υ. We notice that as υ decreases, the trajectory (x (t) , y (t)) remains bounded,
whereas when υ ≤ 0.976, the chaotic behavior is delayed and the states of the fractional map diverge
to infinity.

Next, we set the parameters (a1, a2, a3, a4)–(0.51, 1, 1.51, 0.74) and choose the initial values
(x (0) , y (0)) = (−0.81, 0.51). Figure 3 depicts the phase portraits of the fractional map for the three
different fractional orders υ = 1, υ = 0.979 and υ = 0.963. Similarly, when υ = 1, the fractional map
refers to the classical system. While 0.963 ≤ υ ≤ 1, the fractional map (6) exhibits a chaotic behavior,
and when υ = 0.962, we fall into an unbounded attractor.
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Figure 2. The chaotic attractor obtained with (a1, a2, a3, a4) = (0.2, 0.71, 0.91, 1.14) and (x(0), y(0)) =
(0.93,−0.44) for different fractional orders υ.

Figure 3. The chaotic attractor obtained with (a1, a2, a3, a4) = (0.51, 1, 1.51, 0.74) and (x(0), y(0)) =

(−0.81, 0.51) for different fractional orders υ.

Let us, now, consider the third set of parameters (a1, a2, a3, a4) = (0.6, 1, 1.6, 0.72) with initial states
(x (0) , y (0)) = (−0.26, 0.18). As can be seen in Figure 4, the resulting trajectories of the fractional map
vary with υ. When υ < 0.95, chaos disappears completely.

The bifurcation diagrams for different parameters (a1, a2, a3, a4) are shown in Figures 5–7,
respectively. First we fix parameters (a1, a3, a4)–(0.2, 0.91, 1.14) and vary a2 along the interval
[0.46, 0.75]. Clearly, decreasing the fractional order υ affects the interval over which chaos is exhibited.
In Figure 6, the bifurcation diagram is obtained with (a2, a3, a4) = (1, 1.51, 0.74) and the critical
parameter a1 being varied in steps of Δa1 = 0.0006. In this case, when we decrease the fractional
order υ, the opposite is observed as the chaotic band expands and the eight-period stage disappears.
Finally, Figure 7 is obtained for (a2, a3, a4) = (1, 1.6, 0.72) with a1 as the critical parameter. We see that
a slight change in the fractional order has a considerable effect on the dynamics of the fractional map.
For completeness, the time evolution of the states belonging to the fractional map are displayed in
Figure 8 for υ = 0.979.
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Figure 4. The chaotic attractor obtained with (a1, a2, a3, a4) = (0.6, 1, 1.6, 0.72) and (x(0), y(0)) =

(−0.26, 0.18) for different fractional orders υ.

Figure 5. Bifurcation diagrams with a2 as the critical parameter and (a1, a3, a4) = (0.2, 0.91, 1.14) and
(x(0), y(0)) = (0.93,−0.44) for different fractional orders υ.
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Figure 6. Bifurcation diagrams with a1 as the critical parameter and (a2, a3, a4) = (1, 1.51, 0.74) and
(x(0), y(0)) = (−0.81, 0.51) for different fractional orders υ.

Figure 7. Bifurcation diagrams with a1 as the critical parameter and (a2, a3, a4) = (1, 1.6, 0.72) and
(x(0), y(0)) = (−0.26, 0.18) for different fractional orders υ.
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Figure 8. Time evolution of states for υ = 0.979 and: (a) (a1, a2, a3, a4) = (0.2, 0.71, 0.91, 1.14) and
(x(0), y(0)) = (0.93,−0.44); (b) (a1, a2, a3, a4) = (0.51, 1, 1.51, 0.74) and (x(0), y(0)) = (−0.81, 0.51);
(c) (a1, a2, a3, a4) = (0.6, 1, 1.6, 0.72) and (x(0), y(0)) = (−0.26, 0.18).

3.2. Entropy Analysis

In information theory, entropy is a logarithmic measure that quantifies the rate of transfer or
generation of information in a particular system. For discrete-time dynamical systems in general,
Kolmogorov–Sinai (KS) entropy is an interesting measure. A direct time-series approximation of the KS
entropy was developed in [42], termed Eckmann–Ruelle (ER) entropy, which quickly became appealing
as a way of quantifying the level of chaos present in a particular system. The idea is that instead of
looking at the phase plots of bifurcation diagrams, an exact measure of the information generated in
a sequence is more indicative of the level of chaos. Calculating the exact ER entropy experimentally
is impossible. Rather, an approximate entropy (ApEn) measure was proposed in [43,44]. ApEn has
been used extensively in the literature to investigate chaos in discrete dynamical systems [25,45].
In order to examine the level of chaotic behavior present in the fractional map (6), we have measured
its approximate entropy (ApEn) and listed it in Table 1. We have calculated the approximate
entropy using the known algorithm [43,44]. As can be seen from Table 1, the results match with
the ones shown in Figures 2 and 3. For the set of parameters (a1, a2, a3, a4) = (0.2, 0.71, 0.91, 1.14) and
(x(0), y(0)) = (0.93,−0.44), the complexity of the fractional map without a fixed point is increased
when reducing the value of different fractional order υ. The complexity of the fractional map without
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a fixed point changes when decreasing the value of υ for (a1, a2, a3, a4) = (0.51, 1, 1.51, 0.74) and
(x(0), y(0)) = (−0.81, 0.51).

Table 1. Approximate entropy calculation of the fractional map for different values of parameters
and υ.

Case υ ApEn

Figure 2 1 0.0903
Figure 2 0.985 0.0955
Figure 2 0.979 0.1094
Figure 3 1 0.2083
Figure 3 0.979 0.1766
Figure 3 0.963 0.2184

4. Stabilization Control

In this section, we aim to propose a one-dimensional control law that stabilizes the states of our
fractional map (6). Stabilization refers to the adaptive control of one or more system states to ensure
all of the states converge asymptotically towards an equilibrium point. In our case, we assume the
equilibrium to be the all zero state. Before we present our result, we recall an important theorem
related to the asymptotic stability of discrete fractional systems through system linearization.

Theorem 2 ([37]). Given a vector-valued function X(t) = (x1(t), ..., xn(t))
T , 0 < υ ≤ 1,

A ∈ Rn×nand ∀t ∈ Na+1−υ, the zero equilibrium of system:

CΔυ
a X (t) = AX (t + υ − 1) , (13)

is asymptotically stable if:

λ ∈
{

z ∈ C : |z| <
(

2 cos
|arg z| − π

2 − υ

)υ

and |arg z| > υπ

2

}
, (14)

for all the eigenvalues λ of A.

Theorem 2 will help us establish the asymptotic convergence of our stabilized system states to
zero. The following theorem summarizes our result.

Theorem 3. The 2D fractional map (6) can be controlled under the 1D control law:

u (t) = −x (t)− a1x2 (t)− a2y2 (t) + a3x (t) y (t) + a4. (15)

Proof. Adding a time-varying control term u (t) to the second state of our fractional map (6) yields:⎧⎪⎪⎪⎨⎪⎪⎪⎩
CΔυ

a x (t) = y (t − 1 + υ)− x (t − 1 + υ) ,
CΔυ

a y (t) = x (t − 1 + υ) + a1x2 (t − 1 + υ) + a2y2 (t − 1 + υ)

−a3x (t − 1 + υ) y (t − 1 + υ)− a4 − y (t − 1 + υ)

+u (t + υ − 1) .

(16)

The aim is to show that with u (t) defined according to (15), the states of (16) converge towards zero
asymptotically. In other words, we want to show that point (0, 0) in phase-space is an asymptotically
stable equilibrium of the system resulting from substitution of (15) into (16), which is simply:{

CΔυ
a x (t) = −x (t − 1 + υ) + y (t − 1 + υ) ,

CΔυ
a y (t) = −y (t − 1 + υ) .

(17)
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System (17) is linear, which makes our job easy. We write it in matrix form as:

CΔυ
a

(
x (t)
y (t)

)
= A

(
x (t)
y (t)

)
, (18)

where:

A =

(
−1 1
0 −1

)
. (19)

Since A is upper-triangular, its eigenvalues are simply λ1 = λ2 = −1, and both of them satisfy:

|λi| <
(

2 cos
|arg λi| − π

2 − υ

)υ

and |arg λi| > υπ

2
, i = 1, 2. (20)

Hence, by Theorem 2, we know that the zero equilibrium of (17) is asymptotically stable,
and consequently, the states of (16) are stabilized.

The control strategy proposed in Theorem 3 has been implemented numerically to confirm its validity.
The fractional map proposed in this paper was run with initial conditions (x (0) , y (0)) = (0.93,−0.44),
parameters (a1, a2, a3, a4) = (0.2, 0.71, 0.91, 1.14) and fractional order υ = 0.97. The term u (t) defined
in (15) was computed iteratively based on previous states and added to the new second state. Figure 9
depicts the time evolution of the states. Clearly, the states converge towards zero, and thus, our
stabilization is successful.

Figure 9. Stabilized states of the fractional map based on control law (15) with (x (0) , y (0)) =

(0.93,−0.44), (a1, a2, a3, a4) = (0.2, 0.71, 0.91, 1.14) and υ = 0.97.

Note that the asymptotic convergence of the control law proposed in Theorem 3 was only
established in the commensurate case, i.e., identical fractional orders for all states. However,
experimental results have in fact shown that the zero solution of the feedback controlled system
is asymptotically stable over a range of circumstances including the incommensurate case and the time
varying fractional order case. Figure 10 shows the stabilized states subject to the same parameters and
initial setting adopted earlier, but with fractional orders

(
υx, υy

)
= (0.95, 0.99). The convergence of the

states towards zero is apparent. Figure 11 depicts the time evolution of the controlled states when the
fractional order is a discrete function of time given by:

υ (t) = 0.8 + 0.2 sin
( x

50

)
. (21)

45



Entropy 2018, 20, 720

Again, the states converge in a very steady way towards zero, but as expected, take longer to
converge compared to the standard case.

Figure 10. Stabilized states of the fractional map based on control law (15) with (x (0) , y (0)) =

(0.93,−0.44), (a1, a2, a3, a4) = (0.2, 0.71, 0.91, 1.14) and
(
υx, υy

)
= (0.95, 0.99).

Figure 11. Stabilized states of the fractional map based on control law (15) with (x (0) , y (0)) =

(0.93,−0.44), (a1, a2, a3, a4) = (0.2, 0.71, 0.91, 1.14) and time varying fractional order (21).

5. Discussion and Conclusions

In this paper, we have examined a fractional chaotic map based on the standard generic
map proposed in [14], which exhibits rich dynamics and hidden chaotic attractors under different
circumstances, i.e., with no fixed points, with a single fixed point or with two fixed points.
Using phase-space portraits and bifurcation diagrams, we have shown that varying the fractional
order impacts the parameter interval over which chaos is observed, as well as the shape of the
resulting attractors. We have also quantified the level of chaos present in the proposed map by
means of the approximate entropy measure. In addition, we have presented a one-dimensional
stabilization controller that forces the system states towards zero asymptotically. Numerical methods
were employed to confirm the convergence of this controller under different scenarios. The controller
has been shown to be resilient to the time variation of the fractional order. As mentioned before,
the standard map upon which our proposed system is based exhibits hidden attractors. This feature has
not been assessed for the new fractional map. It is our intention to address this point in a future study.
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In addition, it has been claimed in many studies that fractional chaotic maps are superior to their
integer counterparts as they involve new degrees of freedom due to the dependence of the maps’
dynamics and trajectory on the fractional order [32]. This makes them of particular importance in
fields where the seemingly random nature of the dynamical states is a desired property such as in data
and image encryption [28]. For instance, we believe that by varying the fractional order by means
of some deterministic time series, a new dimension can be introduced into the encryption process,
making it harder to break. We have not seen any such studies in the literature. Perhaps the reason
for that is the fact that it is rather difficult to establish the convergence of the synchronization errors
in such a scenario. However, experiments have shown that many of the proposed controllers in the
literature remain valid when the fractional order varies in the same way at the master and slave sides.
This will be investigated thoroughly in a future study.
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Abstract: This paper is concerned with the mathematical modelling of Tsallis entropy in product
MV-algebra dynamical systems. We define the Tsallis entropy of order α, where α ∈ (0, 1) ∪ (1, ∞),
of a partition in a product MV-algebra and its conditional version and we examine their properties.
Among other, it is shown that the Tsallis entropy of order α, where α > 1, has the property of
sub-additivity. This property allows us to define, for α > 1, the Tsallis entropy of a product MV-algebra
dynamical system. It is proven that the proposed entropy measure is invariant under isomorphism of
product MV-algebra dynamical systems.
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1. Introduction

The Shannon entropy [1] is the foundational concept of information theory (cf. [2]). We remind
readers that if an experiment has k outcomes with probabilities p1, p2, . . . , pk, then its Shannon entropy
is defined as the sum ∑k

i=1 s(pi), where s : [0, 1] → [0, ∞) is Shannon’s entropy function defined by:

s(x) = −x log x, (1)

for every x ∈ [0, 1] (0 log 0 is defined to be 0). Many years later, the Shannon entropy was exploited
surprisingly in a completely different field, namely, in dynamical systems. Recall that by a dynamical
system in the sense of classical probability theory, we understand a system (Ω, Σ, μ, T), where (Ω, Σ, μ)

is a probability space, and T : Ω → Ω is a measure μ preserving transformation. The entropy of
dynamical systems was introduced by Kolmogorov and Sinai [3,4] as an invariant for distinguishing
them. Namely, if two dynamical systems are isomorphic, then they have the same entropy. In this way
Kolmogorov and Sinai showed the existence of non-isomorphic Bernoulli shifts.

The successful using the Kolmogorov-Sinai entropy of dynamical systems has led to an intensive
study of alternative entropy measures of dynamical systems. We note that in Reference [5], the concept
of logical entropy Hl(T) of a dynamical system (Ω, Σ, μ, T) was introduced and studied. It has been
shown that by replacing Shannon’s entropy function by the function l : [0, 1] → [0, ∞) defined by:

l(x) = x − x2, (2)

for every x ∈ [0, 1], we obtain the results analogous to the case of Kolmogorov-Sinai entropy theory.
The logical entropy Hl(T) is invariant under isomorphism of dynamical systems; so it can be used as
an alternative instrument for distinguishing them. For some other recently published results regarding
the logical entropy measure, we refer, for example, to References [6–15].

Entropy 2018, 20, 589; doi:10.3390/e20080589 www.mdpi.com/journal/entropy50
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In fact, all of the above mentioned studies are possible in the Kolmogorov probability theory
based on the modern integration theory. This allows us to describe and study some of the problems
associated with uncertainty. In Reference [16], Zadeh presented another approach to uncertainty
when he introduced the concept of a fuzzy set. Whereas the Kolmogorov probability applications are
based on objective measurements, the Zadeh fuzzy set theory is based on subjective improvements.
One of the first Zadeh papers on the fuzzy set theory was devoted to probability of fuzzy sets
(cf. [17]), and therefore, the entropy of fuzzy dynamical systems has also been studied (cf. [18–21]).
We recall that the fuzzy set is a mapping f : Ω → [0, 1], hence, the fuzzy partition of Ω is a family
of fuzzy sets A = { f1, f2, . . . , fk} such that ∑k

i=1 fi = 1. Again we can meet the Shannon formula:
H(A) = −∑k

i=1 pi logpi, where pi =
∫

Ω fidμ (cf. [21]).
Anyway the most useful tool for describing multivalued processes is an MV-algebra [22],

especially after its Mundici’s characterization as an interval in a lattice ordered group (cf. [23,24]).
At present, this structure is being investigated by many researchers, and it is natural that there
are results also regarding the entropy in this structure; we refer, for instance, to References [25,26].
A probability theory was also investigated on MV-algebras; for a review see Reference [27]. Of course,
in some probability problems it is needed to introduce a product on an MV-algebra, an operation
outside the corresponding group addition. The operation of a product on an MV-algebra was
introduced independently by Riečan [28] from the point of view of probability and Montagna [29] from
the point of view of mathematical logic. We note that the notion of product MV-algebra generalizes
some families of fuzzy sets; an example of product MV-algebra is a full tribe of fuzzy sets (see e.g., [30]).

The appropriate entropy theory of Shannon and Kolmogorov-Sinai type for the product
MV-algebras was created in References [31,32]. The logical entropy, the logical divergence and the
logical mutual information of partitions in a product MV-algebra were studied in Reference [8]. In the
present paper, we extend the study of entropy in product MV-algebras to the case of Tsallis entropy.

The concept of Tsallis entropy was introduced in 1988 by Constantino Tsallis [33] as a base for
generalizing the usual statistical mechanics. In its form it is identical with the Havrda-Charvát structural
α—entropy [34], introduced in 1967 in the framework of information theory. If P = {p1, p2, . . . , pk} is
a probability distribution, then its Tsallis entropy of order α, where α ∈ (0, 1) ∪ (1, ∞), is defined as
the number:

Tα(P) =
1

α − 1

(
1 −

k

∑
i=1

pi
α

)
. (3)

The entropic index α describes the deviation of Tsallis entropy from the standard Shannon one.
Evidently, if we define, for α ∈ (0, 1) ∪ (1, ∞), the function lα : [0, 1] → [0, ∞) by:

lα(x) =
1

α − 1
(x − xα), (4)

for every x ∈ [0, 1], then the Formula (3) can be written in the following form:

Tα(P) =
k

∑
i=1

lα(pi). (5)

Putting α = 2 in Equation (5), we obtain:

T2(P) =
k

∑
i=1

l2(pi) =
k

∑
i=1

(pi − pi
2) = 1 −

k

∑
i=1

pi
2,

which is the logical entropy of a probability distribution P = {p1, p2, . . . , pk} defined and studied
in Reference [6].

The Tsallis entropy is the most important quantity among Tsallis’ statistics, which form
the foundation of nonextensive statistical mechanics of complex systems; for more details,
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see Reference [35]. The Tsallis statistics are used to describe systems exhibiting long-range correlations,
memory, or fractal properties; their applications have been found for a wide range of phenomena in
diverse disciplines such as physics, geophysics, chemistry, biology, economics, medicine, etc. [36–48].
They are also applicable to large domains in communication systems (cf. [49]).

In this article we continue studying entropy in a product MV-algebra, by defining and studying
the Tsallis entropy of a partition in a product MV-algebra and the Tsallis entropy of product MV-algebra
dynamical systems. The rest of the paper is structured as follows. In the following section, preliminaries
and related works are given. Our main results are discussed in Sections 3–5. In Section 3, we define
and study the Tsallis entropy of a partition in a product MV-algebra. In Section 4, we introduce the
concept of conditional Tsallis entropy of partitions in a product MV-algebra and examine its properties.
It is shown that the proposed definitions of Tsallis entropy are consistent, in the case of the limit of
α going to 1, with the Shannon entropy of partitions studied in Reference [31]. Section 5 is devoted to
the study of Tsallis entropy of product MV-algebra dynamical systems. It is proven that the suggested
entropy measure is invariant under isomorphism of product MV-algebra dynamical systems. The last
section contains a brief summary.

2. Preliminaries

We begin with recalling the definitions of the basic notions and some known results used in the
paper. For defining the notion of MV-algebra, various (but of course equivalent) axiom systems were
used (see e.g., [28,50,51]). In this paper, the definition of MV-algebra given by Riečan in Reference [52]
is used, which is based on the Mundici representation theorem [23,24]. In view of the Mundici theorem,
any MV-algebra may be considered to be an interval of an abelian lattice ordered group. Recall that by
an abelian lattice ordered group [53], we mean a triplet (L,+,≤), where (L,+) is an abelian group,
(L,≤) is a partially ordered set being a lattice and, for every x, y, z ∈ L, x ≤ y =⇒ x + z ≤ y + z.

Definition 1 ([52]). An MV-algebra is an algebraic structure A = (A,⊕,∗, 0, u) satisfying the following conditions:

(i) there exists an abelian lattice ordered group (L,+,≤) such that A = [0, u] = {x ∈ L; 0 ≤ x ≤ u},
where 0 is the neutral element of (L,+) and u is a strong unit of L (i.e., u ∈ L such that u > 0 and to
each x ∈ L there exists a natural number n with the property x ≤ nu);

(ii) ⊕ and ∗ are binary operations on A satisfying the following identities: x ⊕ y = (x + y) ∧ u,
x ∗ y = (x + y − u) ∨ 0.

Definition 2 ([27]). A state on an MV-algebra A = (A,⊕, ∗, 0, u) is a mapping s : A → [0, 1] with the
following two properties:

(i) s(u) = 1;
(ii) if x, y ∈ A such that x + y ≤ u, then s(x + y) = s(x) + s(y).

Definition 3 ([28]). A product MV-algebra is an algebraic structure (A,⊕, ∗, ·, 0, u), where (A,⊕, ∗, 0, u) is
an MV-algebra and · is an associative and abelian binary operation on A with the following properties:

(i) for every x ∈ A, u · x = x;
(ii) if x, y, z ∈ A such that x + y ≤ u, then z · x + z · y ≤ u, and z · (x + y) = z · x + z · y.

In the following text, we will briefly write (A, ·) instead of (A,⊕, ∗, ·, 0, u). A relevant probability
theory for the product MV-algebras was developed by Riečan in Reference [54]; the entropy theory of
Shannon and Kolmogorov-Sinai type for the product MV-algebras was proposed in References [31,32].
The logical entropy theory for the product MV-algebras was proposed in Reference [8]. We present the
main idea and some results of these theories that will be used in the following text.

By a partition in a product MV-algebra (A, ·), we mean a k-tuple X = (x1, x2, . . . , xk)

of (not necessarily different) members of A satisfying the condition x1 + x2 + . . . + xk = u.
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Let X = (x1, x2, . . . , xk), and Y = (y1, y2, . . . , yl) be two partitions in (A, ·). We say that Y is a refinement
of X, and we write X ≺ Y, if there exists a partition {β(1), β(2), . . . , β(k)} of the set {1, 2, . . . , l}
such that xi = ∑j∈β(i) yj, for i = 1, 2, . . . , k. Further, we define the join X ∨ Y of X and Y as
an r-tuple (where r = k · l) consisting of the members xij = xi · yj, i = 1, 2, . . . , k, j = 1, 2, . . . , l.

Since
k
∑

i=1

l
∑

j=1
xi · yj =

(
∑k

i=1 xi

)
·
(

∑l
j=1 yj

)
= u · u = u, the r-tuple X ∨ Y is a partition in (A, ·).

It represents an experiment consisting of the realization of X and Y.

Example 1. Consider a probability space (Ω, Σ, μ) and define A = {IE; E ∈ Σ}, where IE : Ω → {0, 1} stands
for the indicator function of the set E ∈ Σ. The family A is closed under the product of indicator functions and it
is a special case of product MV-algebras. The map s : A → [0, 1] defined, for every IE of A, by s(IE) = μ(E),
is a state on the considered product MV-algebra (A, ·). Evidently, if {E1, E2, . . . , Ek} is a measurable partition of
(Ω, Σ, μ), then the k-tuple

(
IE1 , IE2 , . . . , IEk

)
is a partition in the product MV-algebra (A, ·).

Example 2. Consider a probability space (Ω, Σ, μ) and the family A of all Σ-measurable functions f : Ω → [0, 1],
so called full tribe of fuzzy sets (cf., e.g., [21,30]). The family A is closed under the natural product of fuzzy
sets and it is an important case of product MV-algebras. The mapping s : A → [0, 1] defined, for every f ∈ A,
by the formula s( f ) =

∫
Ω f dμ, is a state on the product MV-algebra (A, ·). The concept of a partition in the

product MV-algebra (A, ·) Tcoincides with the notion of a fuzzy partition (cf. [21]).

The definition of entropy of Shannon type of a partition in a product MV-algebra was introduced
in [31] as follows.

Definition 4. Let X = (x1, x2, . . . , xk) be any partition in a product MV-algebra (A, ·) and s : A → [0, 1] be
a state. Then the entropy of X with respect to s is defined by:

Hs(X) =−
k

∑
i=1

s(xi) · log s(xi). (6)

If X = (x1, x2, . . . , xk), and Y = (y1, y2, . . . , yl) are two partitions in (A, ·), then the conditional entropy
of X given yj ∈ Y is defined by:

Hs(X/yj) = −
k

∑
i=1

s(xi/yj) · log s(xi/yj),

where:

s(xi/yj) =

{ s(xi ·yj)

s(yj)
, if s(yj) > 0;

0, if s(yj) = 0.
(7)

The conditional entropy of X given Y is defined by:

Hs(X/Y)=
l

∑
j=1

s(yj) · Hs(X/yj) = −
k

∑
i=1

l

∑
j=1

s(xi · yj) · log
s(xi · yj)

s(yj)
. (8)

It is used the standard convention that 0 log 0
x = 0 if x ≥ 0. The basis of the logarithm may be any

positive real number, but as a rule logarithms to the basis 2 are taken; the entropy is then expressed
in bits. If the natural logarithms are taken in the definition, then the entropy is expressed in nats.
The entropy of partitions in a product MV-algebra possesses properties corresponding to properties of
Shannon’s entropy of measurable partitions; more details can be found in Reference [31].

The definition of logical entropy of a partition in a product MV-algebra was introduced in
Reference [8] as follows.
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Definition 5. Let X = (x1, x2, . . . , xk) be a partition in a product MV-algebra (A, ·), and s : A → [0, 1] be
a state. Then the logical entropy of X with respect to s is defined by:

Hs
l (X) =

k

∑
i=1

l(s(xi)), (9)

where l : [0, 1] → [0, ∞) is the logical entropy function defined by Equation (2). If X = (x1, x2, . . . , xk),
and Y = (y1, y2, . . . , yl) are two partitions in (A, ·), then the conditional logical entropy of X given Y is defined by:

Hs
l (X/Y) =

l

∑
j=1

s(yj)
2 −

k

∑
i=1

l

∑
j=1

s(xi · yj)
2. (10)

3. The Tsallis Entropy of Partitions in a Product MV-Algebra

We begin this section with the definition of Tsallis entropy of a partition in a product MV-algebra
(A, ·), and then we will examine its properties. In the following, we will suppose that s : A → [0, 1] is
a state.

Definition 6. Let X = (x1, x2, . . . , xk) be a partition in a product MV-algebra (A, ·). Then we define the
Tsallis entropy of order α, where α ∈ (0, 1) ∪ (1, ∞), of the partition X with respect to s by:

Ts
α(X) =

1
α − 1

(
1 −

k

∑
i=1

s(xi)
α

)
. (11)

Remark 1. Let us consider the function lα : [0, 1] → [0, ∞) defined by Equation (4). Since ∑k
i=1 s(xi) = 1,

the formula (11) can be expressed in the following form:

Ts
α(X) =

k

∑
i=1

lα(s(xi)). (12)

Evidently, if we put α = 2, the logical entropy Hs
l (X) is obtained. It is possible to verify that the function

lα is, for every α ∈ (0, 1) ∪ (1, ∞), a non-negative function. Namely, if α ∈ (0, 1), then we have xα ≥ x,
for every x ∈ [0, 1], hence lα(x) = 1

α−1 (x − xα) ≥ 0, for every x ∈ [0, 1]. On the other hand, for α > 1,
we have xα ≤ x, for every x ∈ [0, 1], hence lα(x) = 1

α−1 (x − xα) ≥ 0, for every x ∈ [0, 1].

Example 3. Let (A, ·) be any product MV-algebra. Let us consider the partition E = (u) representing an experiment
resulting in a certain event. Then E ≺ X, for every partition X in (A, ·), and Ts

α(E) = lα(s(u)) = lα(1) = 0.

Theorem 1. Let X = (x1, x2, . . . , xk) be any partition in a product MV-algebra (A, ·). Then:

0 ≤ Ts
α(X) ≤ 1

α − 1

(
1 − k1−α

)
.

The equality Ts
α(X) = 1

α−1
(
1 − k1−α

)
holds if and only if the state s is uniform over X, i.e., if and only if

s(xi) =
1
k , for i = 1, 2, . . . , k.

Proof. The inequality Ts
α(X) ≥ 0 follows from the non-negativity of function lα, so it is sufficient to

prove the second assertion. We will use the Jensen inequality. It is easy to verify that the function lα is
concave, therefore, applying the Jensen inequality, we have:

lα

(
1
k ∑k

i=1 s(xi)

)
≥ ∑k

i=1
1
k

lα(s(xi))
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with the equality if and only if s(x1) = s(x2) = . . . = s(xk). Since ∑k
i=1 s(xi) = 1, it follows that:

Ts
α(X) =

k

∑
i=1

lα(s(xi)) ≤ k · lα

(
1
k ∑k

i=1 s(xi)

)
= k · lα

(
1
k

)
=

k
α − 1

(
1
k
−
(

1
k

)α)
=

1
α − 1

(
1 − k1−α

)
.

The equality holds if and only if s(x1) = s(x2) = . . . = s(xk), i.e., if and only if s(xi) = 1
k ,

for i = 1, 2, . . . , k. �

The following propositions will be needed for the proofs of our results.

Proposition 1. Let X, Y, Z be partitions in a product MV-algebra (A, ·). Then:

(i) X ≺ X ∨ Y;
(ii) X ≺ Y implies X ∨ Z ≺ Y ∨ Z.

Proof. For the proof, see Reference [8]. �

Proposition 2. Let X, Y, V, Z be partitions in a product MV-algebra (A, ·) such that X ≺ Y, and V ≺ Z.
Then X ∨ V ≺ Y ∨ Z.

Proof. Let X = (x1, x2, . . . , xk), Y = (y1, y2, . . . , yl), V = (v1, v2, . . . , vm), Z = (z1, z2, . . . , zn),
X ≺ Y, V ≺ Z. Then there exists a partition {β(1), β(2), . . . , β(k)} of the set {1, 2, . . . , l} such
that xi = ∑j∈β(i) yj, for i = 1, 2, . . . , k, and there exists a partition {γ(1), γ(2), . . . , γ(m)} of the set
{1, 2, . . . , n} such that vr = ∑k∈γ(r) zk, for r = 1, 2, . . . , m. Put δ(i, r) = {(j, k); j ∈ β(i), k ∈ γ(r)},
for i = 1, 2, . . . , k, r = 1, 2, . . . , m. We get:

xi · vr =
(
∑j∈β(i) yj

)
·
(
∑k∈γ(r) zk

)
= ∑(j,k)∈δ(i,r) yj · zk,

for i = 1, 2, . . . , k, r = 1, 2, . . . , m, what means that X ∨ V ≺ Y ∨ Z. �

Proposition 3. Let X = (x1, x2, . . . , xk) be a partition in a product MV-algebra (A, ·), and s : A → [0, 1] be
a state. Then:

(i) ∑k
i=1 s(xi · y) = s(y), for every y ∈ A;

(ii) ∑k
i=1 s(xi/y) = 1, for every y ∈ A with s(y) > 0.

Proof. For the proof of the claim (i), see [8]. If y ∈ A with s(y) > 0, then using the previous equality,
we obtain:

k

∑
i=1

s(xi/y) =
1

s(y)

k

∑
i=1

s(xi · y) =
s(y)
s(y)

= 1. �

Theorem 2. Let X, Y be partitions in a product MV-algebra (A, ·) such that X ≺ Y. Then Ts
α(X) ≤ Ts

α(Y).

Proof. Suppose that X = (x1, x2, . . . , xk), Y = (y1, y2, . . . , yl), X ≺ Y. Then there exists a
partition {β(1), β(2), . . . , β(k)} of the set {1, 2, . . . , l} such that xi = ∑j∈β(i) yj, for i = 1, 2, . . . , k.

Hence s(xi) = s
(

∑j∈β(i) yj

)
= ∑j∈β(i) s(yj), for i = 1, 2, . . . , k. Consider the case when α ∈ (1, ∞). Then:

s(xi)
α =

(
∑j∈β(i) s(yj)

)α ≥ ∑j∈β(i) s(yj)
α,

for i = 1, 2, . . . , k. Summing both sides of the above inequality over i, we get:

∑k
i=1 s(xi)

α ≥ ∑k
i=1 ∑j∈β(i) s(yj)

α = ∑l
j=1 s(yj)

α.
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In this case we have 1
α−1 > 0, hence:

Ts
α(X) =

1
α − 1

(
1 −

k

∑
i=1

s(xi)
α

)
≤ 1

α − 1

(
1 −

l

∑
j=1

s(yj)
α

)
= Ts

α(Y).

The case of α ∈ (0, 1) can be obtained in the same way. �

As an immediate consequence of the previous theorem and Proposition 1, we obtain the
following result.

Corollary 1. For every partitions X, Y in a product MV-algebra (A, ·), it holds:

Ts
α(X ∨ Y) ≥ max[Ts

α(X), Ts
α(Y)].

Proposition 4. Let X = (x1, x2, . . . , xk), and Y = (y1, y2, . . . , yl) be partitions in a product MV-algebra
(A, ·). Then, for α > 1, it holds:

l

∑
j=1

s(yj)
α

k

∑
i=1

lα
(
s(xi/yj)

) ≤ Ts
α(X).

Proof. Applying the Jensen inequality, we have:

l

∑
j=1

s(yj)·lα
(
s(xi/yj)

) ≤ lα

(
l

∑
j=1

s(yj)·s(xi/yj)

)
= lα

(
l

∑
j=1

s(xi · yj)

)
= lα(s(xi)),

for i = 1, 2, . . . , k, and consequently:

l

∑
j=1

s(yj)·
k

∑
i=1

lα
(
s(xi/yj)

) ≤ k

∑
i=1

lα(s(xi)) = Ts
α(X). (13)

The assumption that α > 1 implies the inequality s(yj)
α ≤ s(yj), for j = 1, 2, . . . , l. The function lα is

non-negative, therefore, for j = 1, 2, . . . , l, we get:

s(yj)
α

k

∑
i=1

lα
(
s(xi/yj)

) ≤ s(yj)
k

∑
i=1

lα
(
s(xi/yj)

)
,

and consequently:
l

∑
j=1

s(yj)
α

k

∑
i=1

lα
(
s(xi/yj)

) ≤ l

∑
j=1

s(yj)
k

∑
i=1

lα
(
s(xi/yj)

)
.

The last inequality combined with (13) yields the claim. �

Theorem 3. Let X, Y be partitions in a product MV-algebra (A, ·). Then, for α > 1, it holds:

Ts
α(X ∨ Y) ≤ Ts

α(X) + Ts
α(Y).

Proof. Suppose that X = (x1, x2, . . . , xk), Y = (y1, y2, . . . , yl). Let us calculate:
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1 1 1 1

1 1 1 1

1 1

1 1( ) 1 ( ) 1 ( ) ( / )
1 1

1 1 ( ) ( ) ( ) ( / )
1

1 11 ( ) ( ) 1 ( / )
1 1

k l l k
s

i j j i j
i j j i

l l l k

j j j i j
j j j i

l l

j j i j
j j i

T X Y s x y s y s x y

s y s y s y s x y

s y s y s x y
1

1 1 1

1 1

1 1

1( ) ( ) ( / ) ( / )
1

1( ) ( ) ( / ) ( / )
1

( ) ( ) ( / ) ( ) ( ).

k

l k k
s

j i j i j
j i i
l k

s
j i j i j

j i
l k

s s s
j i j

j i

T Y s y s x y s x y

T Y s y s x y s x y

T Y s y l s x y T X T Y

In the last step we used Proposition 4. �

Example 4. Let us consider the family A of all Borel measurable functions f : [0, 1] → [0, 1], and define
in A the operation · as the natural product of fuzzy sets. Then the system (A, ·) is a product MV-algebra.
In addition, we define a state s : A → [0, 1] by the formula s( f ) =

∫ 1
0 f (x)dx, for every f ∈ A,

and consider the pairs X = ( f1, f2), Y = (g1, g2), where f1(x) = x, f2(x) = 1 − x, g1(x) = x2,
g2(x) = 1 − x2, for every x ∈ [0, 1]. Evidently, X and Y are partitions in the product MV-algebra
(A, ·). By elementary calculations we get that they have the state values 1

2 , 1
2 and 1

3 , 2
3 of the corresponding

elements, respectively. The partition X ∨ Y = ( f1 · g1, f1 · g2, f2 · g1, f2 · g2) has the state values 1
4 , 1

4 , 1
12 , 5

12
of the corresponding elements. We want to find out whether the statement of the previous theorem is
true in the case under consideration. Using the formula (11), it can be computed that Ts

2(X) = 0.5,
Ts

2(Y)
.
= 0.4444, Ts

2(X ∨ Y) .
= 0.6944, Ts

3(X) = 0.375, Ts
3(Y)

.
= 0.3333, Ts

3(X ∨ Y) .
= 0.4479. It holds

Ts
2(X ∨ Y) < Ts

2(X) + Ts
2(Y), and Ts

3(X ∨ Y) < Ts
3(X) + Ts

3(Y), which is consistent with the assertion of
Theorem 3. Put α = 1

2 . We obtain: Ts
1/2(X)

.
= 0.8284, Ts

1/2(Y)
.
= 0.7877, Ts

1/2(X ∨Y) .
= 1.8683. It can be seen

that Ts
1/2(X ∨ Y) > Ts

1/2(X) + Ts
1/2(Y). The result means that the Tsallis entropy Ts

α(X) of order α ∈ (0, 1)
does not have the property of sub-additivity.

One of the most important properties of Shannon entropy is additivity. In the following theorem
it is shown that the Tsallis entropy Ts

α(X) does not have the property of additivity; it satisfies the
following weaker property of pseudo-additivity.

Theorem 4. If partitions X, Y in a product MV-algebra (A, ·) are statistically independent with respect to s,
i.e., s(x · y) = s(x) · s(y), for every x ∈ X, and y ∈ Y, then:

Ts
α(X ∨ Y) = Ts

α(X) + Ts
α(Y) + (1 − α) · Ts

α(X) · Ts
α(Y).

Proof. Suppose that X = (x1, x2, . . . , xk), Y = (y1, y2, . . . , yl). Let us calculate:

1 1 1 1

1 1 1 1

1 1 1

1 1( ) 1 ( ) 1 ( ) ( )
1 1

1 1 ( ) ( ) ( ) ( )
1

1 11 ( ) ( ) 1 ( )
1 1

k l k l
s

i j i j
i j i j

l l k l

j j i j
j j i j

l l k

j j i
j j i

T X Y s x y s x s y

s y s y s x s y

s y s y s x

( ) ( ) (1 ) ( ) ( ).s s s sT Y T X T X T Y
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In the last part of this section, we will prove the concavity of Tsallis entropy Ts
α(X) on the family

of all states defined on a given product MV-algebra (A, ·).

Proposition 5. Let s1, s2 be two states defined on a common product MV-algebra (A, ·). Then, for every real
number λ ∈ [0, 1], the map λs1 + (1 − λ)s2 : A → [0, 1] is a state on (A, ·).

Proof. The proof is simple, so it is omitted. �

Theorem 5. Let s1, s2 be two states defined on a common product MV-algebra (A, ·). Then, for every partition
X in a product MV-algebra (A, ·), and for every real number λ ∈ [0, 1], the following inequality holds:

λTs1
α (X) + (1 − λ)Ts2

α (X) ≤ Tλs1+(1−λ)s2
α (X).

Proof. Assume that X = (x1, x2, . . . , xk). The function lα is concave, therefore, for every real number
λ ∈ [0, 1], we get:

λTs1
α (X) + (1 − λ)Ts2

α (X) = λ
k
∑

i=1
lα(s1(xi)) + (1 − λ)

k
∑

i=1
lα(s2(xi))

=
k
∑

i=1
(λlα(s1(xi)) + (1 − λ)lα(s2(xi))) ≤

k
∑

i=1
lα(λs1(xi) + (1 − λ)s2(xi))

=
k
∑

i=1
lα((λs1 + (1 − λ)s2)(xi)) = Tλs1+(1−λ)s2

α (X).

As a consequence of Theorem 5, we get the concavity of the logical entropy Hs
l (X) as a function

of s. The result of the previous theorem is illustrated in the following example.

Example 5. Consider the product MV-algebra (A, ·) from Example 4 and the real functions G1, G2 defined by the
equalities G1(x) = x, G2(x) = x2, for every real number x. We define two states s1 : A → [0, 1], s2 : A → [0, 1]
by the formulas s1( f ) =

∫ 1
0 f (x)dG1(x) =

∫ 1
0 f (x)dx, s2( f ) =

∫ 1
0 f (x)dG2(x) =

∫ 1
0 f (x)2xdx, for every f of

A. Further, we consider the partition X =
(

I[0, 1
3 )

, I[ 1
3 ,1]

)
in (A, ·). By simple calculation we get that it has the

s1-state values 1
3 , 2

3 of the corresponding elements, and the s2-state values 1
9 , 8

9 of the corresponding elements.
In the previous theorem we put λ = 0.2. We will show that, for the chosen α ∈ (0, 1) ∪ (1, ∞), the following
inequality holds:

0.2 · Ts1
α (X) + 0.8 · Ts2

α (X) ≤ T0.2s1+0.8s2
α (X). (14)

Put α = 1
2 . We calculated that Ts1

1/2(X)
.
= 0.7877, Ts2

1/2(X)
.
= 0.5523, and T0.2s1+0.8s2

1/2 (X)
.
= 0.6267.

One can easily check that in this case:

0.2 · Ts1
1/2(X) + 0.8 · Ts2

1/2(X) < T0.2s1+0.8s2
1/2 (X).

For the case of α = 2, i.e., for the logical entropy, we get: Ts1
2 (X)

.
= 0.4444, Ts2

2 (X)
.
= 0.1975,

T0.2s1+0.8s2
2 (X)

.
= 0.2627, and for the case of α = 3, we obtain: Ts1

3 (X)
.
= 0.3333, Ts2

3 (X)
.
= 0.148148,

T0.2s1+0.8s2
3 (X)

.
= 0.19704. One can easily check that in both cases the inequality (14) holds.

4. The Conditional Tsallis Entropy of Partitions in a Product MV-Algebra

In this section we introduce and study the concept of conditional Tsallis entropy of partitions in
a product MV-algebra (A, ·).

Definition 7. Let X = (x1, x2, . . . , xk), and Y = (y1, y2, . . . , yl) be partitions in a product MV-algebra (A, ·).
We define the conditional Tsallis entropy of order α, where α ∈ (0, 1) ∪ (1, ∞), of X given Y as the number:
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Ts
α(X/Y) =

1
α − 1

(
l

∑
j=1

s(yj)
α −

k

∑
i=1

l

∑
j=1

s(xi · yj)
α

)
. (15)

Remark 2. Evidently, if we put α = 2, then we obtain the conditional logical entropy of X given Y defined by
Equation (10).

At α = 1 the value of Ts
α(X/Y) is undefined because it gives the shape 0

0 . In the following theorem
it is shown that for α → 1 the conditional Tsallis entropy Ts

α(X/Y) tends to the conditional Shannon
entropy Hs(X/Y) defined by the formula (8), when the natural logarithm is taken in this formula.

Theorem 6. Let X = (x1, x2, . . . , xk), and Y = (y1, y2, . . . , yl) be partitions in a product MV-algebra
(A, ·). Then:

lim
α→1

Ts
α(X/Y) = −

k

∑
i=1

l

∑
j=1

s(xi · yj) · ln
s(xi · yj)

s(yj)
.

Proof. For every α ∈ (0, 1) ∪ (1, ∞), we have:

Ts
α(X/Y) =

1
α − 1

(
l

∑
j=1

s(yj)
α −

k

∑
i=1

l

∑
j=1

s(xi · yj)
α

)
=

f (α)
g(α)

,

where f and g are continuous functions defined, for every α ∈ (0, ∞), by the equalities:

f (α) =
l

∑
j=1

s(yj)
α −

k

∑
i=1

l

∑
j=1

s(xi · yj)
α, g(α) = α − 1.

The functions f and g are differentiable and evidently, lim
α→1

g(α) = 0. Also, it can easily be verified that

lim
α→1

f (α) = 0. Indeed, by Proposition 3, we get:

lim
α→1

f (α) =
l

∑
j=1

s(yj)−
k

∑
i=1

l

∑
j=1

s(xi · yj) = 1 −
k

∑
i=1

s(xi) = 1 − 1 = 0.

Using L’Hôpital’s rule, it follows that lim
α→1

Ts
α(X/Y) = lim

α→1

f ′(α)
g′(α) , under the assumption that the

right hand side exists. It holds d
dα g(α) = 1, and:

d
dα

f (α) =
l

∑
j=1

d
dα

(
s(yj)

α)− k

∑
i=1

l

∑
j=1

d
dα

(
s(xi · yj)

α) = l

∑
j=1

s(yj)
α ln s(yj)−

k

∑
i=1

l

∑
j=1

s(xi · yj)
α ln s(xi · yj).

It follows that:

lim
α→1

Ts
α(X/Y) = lim

α→1
f ′(α) =

l
∑

j=1
s(yj) ln s(yj)−

k
∑

i=1

l
∑

j=1
s(xi · yj) ln s(xi · yj)

=
k
∑

i=1

l
∑

j=1
s(xi · yj) · ln s(yj)−

k
∑

i=1

l
∑

j=1
s(xi · yj) · ln s(xi · yj) = − k

∑
i=1

l
∑

j=1
s(xi · yj) · ln

s(xi ·yj)

s(yj)
. �

Example 6. Let X = (x1, x2, . . . , xk) be any partition in a product MV-algebra (A, ·), and E = (u). Then:

Ts
α(X/E) =

1
α − 1

(
s(u)α −

k

∑
i=1

s(xi · u)α

)
=

1
α − 1

(
1 −

k

∑
i=1

s(xi)
α

)
= Ts

α(X).
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Theorem 7. Let X = (x1, x2, . . . , xk) be any partition in a product MV-algebra (A, ·). Then:

lim
α→1

Ts
α(X) = −

k

∑
i=1

s(xi) · ln s(xi).

Proof. The statement is an immediate consequence of the previous theorem; it suffices to put
Y = E = (u). �

Theorem 8. For arbitrary partitions X, Y, Z in a product MV-algebra (A, ·), it holds:

(i) Ts
α(X/Y) ≥ 0;

(ii) Ts
α(X ∨ Y/Z) = Ts

α(X/Z) + Ts
α(Y/X ∨ Z);

(iii) Ts
α(X ∨ Y) = Ts

α(X) + Ts
α(Y/X).

Proof. Let X = (x1, x2, . . . , xk), Y = (y1, y2, . . . , yl), Z = (z1, z2, . . . , zm).

(i) By Proposition 3, it holds s(yj) = ∑k
i=1 s(xi · yj), for j = 1, 2, . . . , l, hence, we can write:

Ts
α(X/Y) = 1

α−1

(
l

∑
j=1

s(yj)
α − k

∑
i=1

l
∑

j=1
s(xi · yj)

α

)
= 1

α−1

(
l

∑
j=1

s(yj)
α−1 k

∑
i=1

s(xi · yj)−
k
∑

i=1

l
∑

j=1
s(xi · yj)

α

)
= 1

α−1

k
∑

i=1

l
∑

j=1
s(xi · yj)

(
s(yj)

α−1 − s(xi · yj)
α−1
)

.

Suppose that α ∈ (1, ∞). For i = 1, 2, . . . , k, j = 1, 2, . . . , l, we have s(xi · yj) ≤ s(yj), which implies
that s(xi · yj)

α−1 ≤ s(yj)
α−1, for i = 1, 2, . . . , k, j = 1, 2, . . . , l. Since 1

α−1 > 0, for α ∈ (1, ∞), it follows
that Ts

α(X/Y) ≥ 0. On the other hand, for α ∈ (0, 1), it holds s(xi · yj)
α−1 ≥ s(yj)

α−1, for i = 1, 2, . . . , k,
j = 1, 2, . . . , l. In this case 1

α−1 < 0, hence Ts
α(X/Y) ≥ 0.

(ii) By direct calculations, we have:

Ts
α(X/Z) + Ts

α(Y/X ∨ Z) = 1
α−1

(
m
∑

k=1
s(zk)

α − k
∑

i=1

m
∑

k=1
s(xi · zk)

α
)

+ 1
α−1

(
k
∑

i=1

m
∑

k=1
s(xi · zk)

α − k
∑

i=1

l
∑

j=1

m
∑

k=1
s(xi · yj · zk)

α

)

= 1
α−1

(
m
∑

k=1
s(zk)

α − k
∑

i=1

l
∑

j=1

m
∑

k=1
s(xi · yj · zk)

α

)
= Ts

α(X ∨ Y/Z).

(iii) The statement is an immediate consequence of the previous property; it suffices to put
Z = E = (u). �

By combining the property (iii) from Theorem 8 with Theorem 4, we obtain the following property
of conditional Tsallis entropy Ts

α(X/Y).

Theorem 9. If partitions X, Y in a product MV-algebra (A, ·) are statistically independent with respect to
s, then:

Ts
α(X/Y) = Ts

α(X) + (1 − α) · Ts
α(X) · Ts

α(Y).

Theorem 10. Let X, Y be partitions in a product MV-algebra (A, ·). Then, for α > 1, it holds:

Ts
α(X/Y) ≤ Ts

α(X).

Proof. Let α > 1. Then by the use of the property (iii) from Theorem 8 and Theorem 3, we get:
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Ts
α(X/Y) = Ts

α(X ∨ Y)− Ts
α(Y) ≤ Ts

α(X) + Ts
α(Y)− Ts

α(Y) = Ts
α(X). �

To illustrate the result of previous theorem, we provide the following example, which is
a continuation of Example 4.

Example 7. Consider the product MV-algebra (A, ·), the state s : A → [0, 1] and the partitions X, Y from
Example 4. We have calculated that Ts

3(X) = 0.375, Ts
3(Y)

.
= 0.3333, Ts

1/2(X)
.
= 0.8284, Ts

1/2(Y)
.
= 0.7877.

By easy calculations we get that Ts
3(X/Y) .

= 0.1146, Ts
1/2(X/Y) .

= 1.0806, Ts
3(Y/X) = 0.0729,

Ts
1/2(Y/X)

.
= 1.0399. It can be seen that Ts

3(X/Y) < Ts
3(X), and Ts

3(Y/X) < Ts
3(Y), which is consistent with

the assertion of Theorem 10. On the other hand, we have Ts
1/2(X/Y) > Ts

1/2(X), and Ts
1/2(Y/X) > Ts

1/2(Y).
The result means that the conditional Tsallis entropy Ts

α(X/Y) of order α ∈ (0, 1) does not have the property
of monotonicity.

5. The Tsallis Entropy of Dynamical Systems in a Product MV-Algebra

In this section, we introduce and study the concept of the Tsallis entropy of a dynamical system
in a product MV-algebra (A, ·).

Definition 8. ([32]). By a dynamical system in a product MV-algebra (A, ·), we understand a system (A, s, τ),
where s : A → [0, 1] is a state, and τ : A → A is a map such that τ(u) = u, and, for every x, y ∈ A,
the following conditions are satisfied:

(i) if x + y ≤ u, then τ(x) + τ(y) ≤ u, and τ(x + y) = τ(x) + τ(y);
(ii) τ(x · y) = τ(x) · τ(y);
(iii) s(τ(x)) = s(x).

Remark 3. We say also briefly a product MV-algebra dynamical system instead of a dynamical system in
a product MV-algebra.

Example 8. Let (Ω, Σ, μ, T) be a classical dynamical system. Let us consider the product MV-algebra (A, ·)
and the state s : A → [0, 1] from Example 1. In addition, let us define the mapping τ : A → A by the equality
τ(IE) = IE ◦ T = IT−1(E), for every IE ∈ A. Then the system (A, s, τ) is a dynamical system in the considered
product MV-algebra (A, ·).

Example 9. Let (Ω, Σ, μ, T) be a classical dynamical system. Let us consider the product MV-algebra (A, ·) and
the state s : A → [0, 1] from Example 2. If we define the mapping τ : A → A by the equality τ( f ) = f ◦ T,
for every f ∈ A, then it is easy to verify that the system (A, s, τ) is a dynamical system in the considered product
MV-algebra (A, ·).

Let (A, s, τ) be a dynamical system in a product MV-algebra (A, ·), and X = (x1, x2, . . . , xk) be
a partition in (A, ·). Put τ(X) = (τ(x1), τ(x2), . . . , τ(xk)). Since x1 + x2 + . . . + xk = u, according to
Definition 8, we have τ(x1) + τ(x2) + . . . + τ(xk) = τ(x1 + x2 + . . . + xk) = τ(u) = u, what means
that the k-tuple τ(X) is a partition in (A, ·).

Proposition 6. Let (A, s, τ) be a dynamical system in a product MV-algebra (A, ·), and X, Y be partitions in
(A, ·). Then

(i) τ(X ∨ Y) = τ(X) ∨ τ(Y);
(ii) X ≺ Y implies τ(X) ≺ τ(Y).
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Proof. The property (i) follows from the condition (ii) of Definition 8. Suppose that X = (x1, x2, . . . , xk),
Y = (y1, y2, . . . , yl), X ≺ Y. Then there exists a partition {β(1), β(2), . . . , β(k)} of the set {1, 2, . . . , l}
such that xi = ∑j∈β(i) yj, for Therefore, by the condition (i) from Definition 8, we have:

τ(xi) = τ
(
∑j∈β(i) yj

)
= ∑j∈β(i) τ(yj), for i = 1, 2, . . . , k.

However, this means that τ(X) ≺ τ(Y). �

Define τ2 = τ ◦ τ, and put τn = τ ◦ τn−1, for n = 1, 2, . . . , where τ0 is the identical mapping.
It is obvious that the mapping τn : A → A possesses the properties from Definition 8. Hence, for any
non-negative integer n, the system (A, s, τn) is a dynamical system in a product MV-algebra (A, ·).

Theorem 11. Let (A, s, τ) be a dynamical system in a product MV-algebra (A, ·), and X, Y be partitions in
(A, ·). Then, for any non-negative integer n, the following equalities hold:

(i) Ts
α(τ

n(X)) = Ts
α(X);

(ii) Ts
α(τ

n(X)/τn(Y)) = Ts
α(X/Y).

Proof. Suppose that X = (x1, x2, . . . , xk), Y = (y1, y2, . . . , yl).

(i) Since for any non-negative integer n, and i = 1, 2, . . . , k, it holds s(τn(xi)) = s(xi), we obtain:

Ts
α(τ

n(X)) =
k

∑
i=1

lα(s(τn(xi))) =
k

∑
i=1

lα(s(xi)) = Ts
α(X).

(ii) Based on the same argument, we get:

Ts
α(τ

n(X)/τn(Y)) = 1
α−1

(
l

∑
j=1

s(τn(yj))
α − k

∑
i=1

l
∑

j=1
s(τn(xi · yj))

α

)

= 1
α−1

(
l

∑
j=1

s(yj)
α − k

∑
i=1

l
∑

j=1
s(xi · yj)

α

)
= Ts

α(X/Y).

Theorem 12. Let (A, s, τ) be a dynamical system in a product MV-algebra (A, ·), and X be a partition in
(A, ·). Then, for n = 2, 3, . . . , the following equality holds:

Ts
α(∨n−1

k=0 τk(X)) = Ts
α(X) + ∑n−1

i=1 Ts
α(X/ ∨i

k=1 τk(X)).

Proof. We use proof by mathematical induction on n, starting with n = 2. For n = 2, the claim holds
by the property (iii) of Theorem 8. We suppose that the claim holds for a given integer n > 1, and we
will prove that it holds for n + 1. By the property (i) of Theorem 11, we get:

Ts
α(∨n

k=1τk(X)) = Ts
α(τ(∨n−1

k=0 τk(X))) = Ts
α(∨n−1

k=0 τk(X)).

Therefore, using the property (iii) of Theorem 8 and our inductive hypothesis, we obtain:

Ts
α(∨n

k=0τk(X)) = Ts
α((∨n

k=1τk(X)) ∨ X) = Ts
α(∨n

k=1τk(X)) + Ts
α(X/ ∨n

k=1 τk(X))

= Ts
α(∨n−1

k=0 τk(X)) + Ts
α(X/ ∨n

k=1 τk(X))

= Ts
α(X) + ∑n−1

i=1 Ts
α(X/ ∨i

k=1 τk(X)) + Ts
α(X/ ∨n

k=1 τk(X))

= Ts
α(X) + ∑n

i=1 Ts
α(X/ ∨i

k=1 τk(X)).

In conclusion, the claim is obtained by the principle of mathematical induction. �

62



Entropy 2018, 20, 589

In the following, we will define the Tsallis entropy of a dynamical system (A, s, τ). First, we define
the Tsallis entropy of τ relative to a partition X in (A, ·). Then we remove the dependence on X to get
the Tsallis entropy of a dynamical system (A, s, τ). The following proposition will be needed.

Proposition 7. Let (A, s, τ) be a dynamical system in a product MV-algebra (A, ·), and X be a partition in
(A, ·). Then, for α > 1, there exists the following limit:

lim
n→∞

1
n

Ts
α (∨n−1

k=0 τk(X)).

Proof. Put cn = Ts
α (∨n−1

k=0 τk(X)), for n = 1, 2, . . . . Then the sequence {cn}∞
n=1 is a sequence of

non-negative real numbers with the property cr+s ≤ cr + cs, for every natural numbers r, s. Indeed,
by means of sub-additivity of Tsallis entropy Ts

α(X) for α > 1, and the property (i) from Theorem 11,
we have:

cr+s = Ts
α (∨r+s−1

k=0 τk(X)) ≤ Ts
α (∨r−1

k=0τk(X)) + Ts
α (∨r+s−1

k=r τk(X))

= cr + Ts
α (τr(∨s−1

k=0τk(X))) = cr + Ts
α (∨s−1

k=0τk(X)) = cr + cs.

The result guarantees (in view of Theorem 4.9, [55]) the existence of lim
n→∞

1
n cn. �

Definition 9. Let (A, s, τ) be a dynamical system in a product MV-algebra (A, ·), and X be a partition in
(A, ·). Then we define, for α > 1, the Tsallis entropy of τ relative to X by:

Ts
α (τ, X) = lim

n→∞

1
n

Ts
α (∨n−1

k=0 τk(X)).

Remark 4. Consider any dynamical system (A, s, τ) in a product MV-algebra (A, ·), and the partition E = (u).
Evidently, ∨n−1

k=0 τk(E) = E, and Ts
α (τ, E) = lim

n→∞
1
n Ts

α (∨n−1
k=0 τk(E)) = lim

n→∞
1
n Ts

α (E) = 0.

Theorem 13. Let (A, s, τ) be a dynamical system in a product MV-algebra (A, ·), and X be a partition in
(A, ·). Then, for α > 1, and for any non-negative integer r, the following equality holds:

Ts
α (τ, X) = Ts

α (τ,∨r
i=0τi(X)).

Proof. Using Definition 9, we can write:

Ts
α (τ,∨r

i=0τi(X)) = lim
n→∞

1
n Ts

α (∨n−1
k=0 τk(∨r

i=0τi(X)))

= lim
n→∞

r+n
n · 1

r+n Ts
α (∨r+n−1

k=0 τk(X))

= lim
n→∞

1
r+n Ts

α (∨r+n−1
k=0 τk(X)) = Ts

α (τ, X). �

Theorem 14. Let (A, s, τ) be a dynamical system in a product MV-algebra (A, ·), and X, Y be partitions in
(A, ·) such that X ≺ Y. Then, for α > 1, it holds Ts

α(τ, X) ≤ Ts
α(τ, Y).

Proof. Let X ≺ Y. By Propositions 2 and 6, we have ∨n−1
k=0 τk(X) ≺ ∨n−1

k=0 τk(Y), for n = 1, 2, . . . .
Therefore, by Theorem 2, we get:

Ts
α(∨n−1

k=0 τk(X)) ≤ Ts
α(∨n−1

k=0 τk(Y)).

Consequently, dividing by n and letting n → ∞, we get Ts
α(τ, X) ≤ Ts

α(τ, Y). �
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Definition 10. The Tsallis entropy of a dynamical system (A, s, τ) in a product MV-algebra (A, ·) is defined,
for α > 1, by:

Ts
α (τ) = sup{Ts

α (τ, X) ; X is a partition in (A, ·)}.

Theorem 15. Let (A, s, τ) be a dynamical system in a product MV-algebra (A, ·). Then, for α > 1, and every
natural number k, it holds Ts

α (τk) = k · Ts
α (τ).

Proof. Let X be a partition in (A, ·). Then, for every natural number k, we have:

Ts
α (τk,∨k−1

j=0 τ j(X)) = lim
n→∞

1
n Ts

α (∨n−1
i=0 (τ

k)
i
(∨k−1

j=0 τ j(X))

= lim
n→∞

1
n Ts

α (∨n−1
i=0 ∨k−1

j=0 τki+j(X)) = lim
n→∞

nk
n

1
nk Ts

α (∨nk−1
j=0 τ j(X)) = k · Ts

α (τ, X).

Hence, we obtain:

k · Ts
α (τ) = k · sup{Ts

α (τ, X) ; X is a partition in (A, ·)}
= sup

{
Ts

α (τk,∨k−1
j=0 τ j(X)) ; X is a partition in (A, ·)}

≤ sup
{

Ts
α (τk, Y) ; Y is a partition in (A, ·)} = Ts

α (τk).

On the other hand, by Proposition 1, we have X ≺ ∨k−1
j=0 τ j(X). Hence, by Theorem 14, we obtain:

Ts
α (τk, X) ≤ Ts

α (τk,∨k−1
j=0 τ j(X)) = k · Ts

α (τ, X).

This implies that:

Ts
α (τk) = sup

{
Ts

α (τk, X) ; X is a partition in (A, ·)}
≤ k · sup{Ts

α (τ, X) ; X is a partition in (A, ·)} = k · Ts
α (τ). �

Definition 11. Two product MV-algebra dynamical systems (A1, s1, τ1), (A2, s2, τ2) are called isomorphic,
if there exists some one-to-one and onto map Φ : A1 → A2 such that Φ(u1) = u2, and, for every x, y ∈ A1,
the following conditions are satisfied:

(i) Φ(x · y) = Φ(x) · Φ(y);
(ii) if x + y ≤ u1, then Φ(x + y) = Φ(x) + Φ(y);
(iii) s2(Φ(x)) = s1(x);
(iv) Φ(τ1(x)) = τ2(Φ(x)).

In this case, Φ is said to be an isomorphism.

Proposition 8. Let (A1, s1, τ1), (A2, s2, τ2) be isomorphic product MV-algebra dynamical systems, and
Φ : A1 → A2 be an isomorphism between them. Then, for the inverse Φ−1 : A2 → A1, the following
properties are satisfied:

(i) Φ−1(x · y) = Φ−1(x) · Φ−1(y), for every x, y ∈ A2;
(ii) if x, y ∈ A2 such that x + y ≤ u2, then Φ−1(x + y) = Φ−1(x) + Φ−1(y);
(iii) s1(Φ−1(x)) = s2(x), for every x ∈ A2;
(iv) Φ−1(τ2(x)) = τ1(Φ−1(x)), for every x ∈ A2.

Proof. The map Φ : A1 → A2 is bijective, therefore, for every x, y ∈ A2, there exist x′, y′ ∈ A1 such
that Φ−1(x) = x′, and Φ−1(y) = y′.

(i) Let x, y ∈ A2. Then we get:
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Φ−1(x · y) = Φ−1(Φ(x′) · Φ(y′)) = Φ−1(Φ(x′ · y′)) = x′ · y′ = Φ−1(x) · Φ−1(y).

(ii) Let x, y ∈ A2 such that x + y ≤ u2. Then x′ + y′ ≤ u1, and, therefore, we have:

Φ−1(x + y) = Φ−1(Φ(x′) + Φ(y′)) = Φ−1(Φ(x′ + y′)) = x′ + y′ = Φ−1(x) + Φ−1(y).

(iii) Let x ∈ A2. Then s2(x) = s2(Φ(x′)) = s1(x′) = s1(Φ−1(x)).
(iv) Let x ∈ A2. Then Φ−1(τ2(x)) = Φ−1(τ2(Φ(x′))) = Φ−1(Φ(τ1(x′))) = τ1(x′) = τ1(Φ−1(x)). �

Theorem 16. Let (A1, s1, τ1), (A2, s2, τ2) be isomorphic product MV-algebra dynamical systems,
and α > 1. Then:

Ts1
α (τ1) = Ts2

α (τ2).

Proof. Let Φ : A1 → A2 be an isomorphism between dynamical systems (A1, s1, τ1), (A2, s2, τ2).
Consider a partition X = (x1, x2, . . . , xk) in a product MV-algebra (A1, ·). Then x1 + x2 + . . . + xk = u1,
and therefore, by the condition (ii) of Definition 11, it holds Φ(x1) +Φ(x2) + . . .+Φ(xk) = Φ(x1 + x2 +

. . . + xk) = Φ(u1) = u2. This means that the k-tuple Φ(X) = (Φ(x1), Φ(x2), . . . , Φ(xk)) is a partition
in a product MV-algebra (A2, ·). Moreover, according to the condition (iii) of Definition 11, we have:

Ts2
α (Φ(X)) = ∑k

i=1 lα(s2(Φ(xi))) = ∑k
i=1 lα(s1(xi)) = Ts1

α (X).

Hence, using the conditions (iv), and (i) of Definition 11, we get:

Ts2
α (∨n−1

k=0 τk
2 (Φ(X))) = Ts2

α (∨n−1
k=0 Φ(τk

1 (X)))

= Ts2
α (Φ(∨n−1

k=0 τk
1 (X))) = Ts1

α (∨n−1
k=0 τk

1 (X)).

Therefore, dividing by n and letting n → ∞, we obtain:

Ts2
α (τ2, Φ(X)) = lim

n→∞

1
n

Ts2
α (∨n−1

k=0 τk
2 (Φ(X))) = lim

n→∞

1
n

Ts1
α (∨n−1

k=0 τk
1 (X)) = Ts1

α (τ1, X).

This implies that:{
Ts1

α (τ1, X) ; X is a partition in (A1, ·)} ⊂{Ts2
α (τ2, Y) ; Y is a partition in (A2, ·)},

and consequently:

Ts1
α (τ1) = sup

{
Ts1

α (τ1, X) ; X is a partition in (A1, ·)}
≤ sup

{
Ts2

α (τ2, Y) ; Y is a partition in (A2, ·)} = Ts2
α (τ2).

The converse Ts2
α (τ2) ≤ Ts1

α (τ1) can be obtained in a similar way; according to Proposition 8, it suffices
to consider the inverse Φ−1 : A2 → A1. �

Remark 5. It trivially follows from Theorem 16 that if Ts1
α (τ1) �= Ts2

α (τ2), then the corresponding dynamical
systems (A1, s1, τ1), (A2, s2, τ2) are not isomorphic. This means that some product MV-algebra dynamical
systems can be distinguished due to their different Tsallis entropies.

6. Conclusions

In this article we dealt with the mathematical modelling of Tsallis entropy in product MV-algebras.
Our results are given in Sections 3–5. In Section 3 we have introduced the notion of Tsallis entropy
Ts

α(X) of a partition X in a product MV-algebra (A, ·), and we examined properties of this entropy
measure. In Section 4 we have defined and studied the conditional Tsallis entropy of partitions in this
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algebraic structure. It has been shown that the proposed concepts are consistent, in the case of the
limit of α → 1, with the Shannon entropy expressed in nats, defined and studied in Reference [31].
Moreover, putting α = 2 in the proposed definitions, we obtain the logical entropy of partitions in
a product MV-algebra defined and studied in Reference [8].

Section 5 was devoted to the mathematical modelling of Tsallis entropy in product MV-algebra
dynamical systems. From Example 8 it follows that the notion of product MV-algebra dynamical
system is a generalization of the concept of classical dynamical system. We have shown that the Tsallis
entropy is invariant under isomorphism of product MV-algebra dynamical systems.

In the proofs we used L’Hôpital’s rule and the known Jensen inequality. To illustrate the results,
we have provided several numerical examples. In Example 2, we have mentioned that the full tribe of
fuzzy sets is a special case of product MV-algebras; hence, all the results of this article can be directly
applied to this family of fuzzy sets. We remind that a fuzzy subset of a non-empty set Ω is any mapping
f : Ω → [0, 1], where the value f (ω) is interpreted as the degree of belonging of element ω of Ω to

the fuzzy set f (cf. [16]). In Reference [56], Atanassov has generalized the Zadeh fuzzy set theory by
introducing the idea of an intuitionistic fuzzy set (IF-set), a set that has the degree of belonging as
well as the degree of non-belonging with each of its elements. From the point of view of application,
it should be noted that for a given class F of IF-sets can be created an MV-algebra A such that F can be
inserted to A. Also the operation of product on F can be defined by such a way that the corresponding
MV-algebra is a product MV-algebra. Therefore, the presented results are also applicable to the case
of IF-sets.
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Abstract: In this paper, a novel image encryption scheme is proposed for the secure transmission
of image data. A self-synchronous chaotic stream cipher is designed with the purpose of resisting
active attack and ensures the limited error propagation of image data. Two-dimensional discrete
wavelet transform and Arnold mapping are used to scramble the pixel value of the original image.
A four-dimensional hyperchaotic system with four positive Lyapunov exponents serve as the chaotic
sequence generator of the self-synchronous stream cipher in order to enhance the security and
complexity of the image encryption system. Finally, the simulation experiment results show that this
image encryption scheme is both reliable and secure.

Keywords: hyperchaotic system; self-synchronous stream cipher; permutation entropy; image
encryption; wavelet transform

1. Introduction

With the rapid development of social networking, cloud computing, and mobile network
communication technology, the problem of secure storage and real-time transmission of image data is
increasingly important. Encryption and digital watermarking technology play an important role
in guaranteeing the security of multimedia data [1]. However, because of the high correlation
and redundancy of adjacent pixels of the digital image, some international standard encryption
algorithms are not suitable for image encryption, including 3DES (Triple Data Encryption Algorithm),
IDEA (International Data Encryption Algorithm), and AES (Advanced Encryption Standard), etc.
On the other hand, the chaotic nonlinear dynamic system has some good characteristics, such as
positive Lyapunov exponents, ergodicity, sensitivity to initial conditions, topological transitivity, and
unpredictability [2–5], and was widely applied in the field of cryptography and secret communication.
In recent years, in order to better solve the security transmission of digital images, some scholars have
put forward a series of image security encryption schemes based on the chaotic system and the inherent
characteristics of digital images [6–9]. For example, Ping et al. [10] proposed a permutation-substitution
image encryption scheme with the Henon map, which can resist a chosen-plaintext attack and
known-plaintext attack. Ye et al. [11] put forward an efficient symmetric image encryption algorithm
based on an intertwining Logistic map. Haroun [12] came up with a real-time image encryption
scheme using a low-complexity discrete 3D dual chaotic cipher.

However, these image encryption schemes generally use low-dimensional chaotic systems or
high-dimensional chaotic systems with only one positive Lyapunov exponent such as Logistic, Tent,
Henon, and Lorenz, etc. Compared with the high-dimensional hyperchaotic system with more than
two positive Lyapunov exponents, the complexity of nonlinear dynamic characteristics of the above
chaotic systems are lower. Additionally, because of the influence of the calculation precision and
the quantization method, the chaotic binary sequences generated by the low-dimensional chaotic
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Entropy 2018, 20, 445

systems emerge with short periodic phenomena [13,14], which will seriously affect the security of
image encryption. Furthermore, the above image encryption schemes usually adopt the synchronous
sequence cipher based on the chaotic binary sequences [15,16]. In synchronous stream ciphers, the key
stream is independent of plaintext or ciphertext. In the process of communication, the sender and
receiver must keep accurate synchronization. If the synchronization mechanism is broken by active
attack, the receiver will not be able to decrypt the ciphertext correctly. For instance, if an attacker
inserts or removes a certain number of bits ciphertext, it will immediately destroy the synchronization
mechanism of the synchronous sequence cipher. Therefore, this encryption method cannot resist
active attack [17]. On the basis of the above image encryption problem, we proposed a novel image
encryption scheme based on self-synchronous chaotic stream cipher and wavelet transform. Firstly,
a two-dimensional discrete wavelet transform is used to convert the original image from the spatial
domain to the frequency domain with the purpose of strengthening the difficulty of cracking. Secondly,
the pixel value of the image is scrambled by Arnold mapping. Finally, the scrambled image is encrypted
by self-synchronous chaotic stream cipher. This algorithm uses a four-dimensional hyperchaotic
system with four positive Lyapunov exponents and a self-synchronous stream cipher mechanism.
The generation of the key stream of the self-synchronous stream cipher is not independent of the
plaintext and ciphertext stream but is related to the seed key and n-bits ciphertext that have been
generated before. In the process of ciphertext transmission, the 1-bit ciphertext error will only affect
the correct decryption of the n-bits ciphertext in the back. The decryption process returns to normal
after this time. Therefore, this scheme cannot only resist active attack but also ensures the limited
error propagation of image data. The experimental results show that the encryption scheme has
good security.

The rest of this paper is organized as follows: Section 2 introduces a four-dimensional
hyperchaotic system and the design scheme of the self-synchronous chaotic stream cipher. Furthermore,
the performance of the discrete chaotic sequence was analyzed by multi-scale permutation entropy and
NIST-800-22 test. In Section 3, a novel image encryption scheme is proposed and a detailed security
analysis is carried out with histogram and information entropy analyses, etc. Section 4 summarizes
the conclusion of this paper.

2. Design and Implementation of Self-Synchronous Chaotic Stream Cipher

2.1. The Description of Four-Dimensional Discrete Chaotic System

In this section, a four-dimensional chaotic system is constructed through the Chen–Lai
algorithm [18,19]. The discrete dynamic equations of the system can be expressed as the follows:⎛⎜⎜⎜⎝
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⎞⎟⎟⎟⎠(mod1) (1)

where ‖·‖2 and e represent Euclidean norm and mathematical constant, respectively. The mod is the
module operations, and c is control parameter. Furthermore, matrix A is given as follows:

A =

⎛⎜⎜⎜⎝
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0.7 0.4 0.1 0.2
0.2 −0.5 0.1 0
0 −1/3 0.1 0
0 −1/4 0.3 0.6

⎞⎟⎟⎟⎠. (2)

When c = 3, the Lyapunov exponents of the system are given by LE1 = 3.0128, LE2 = 3.0454,
LE3 = 3.0717, and LE4 = 3.0799. The number of positive Lyapunov exponents are more than two. Thus,
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the system is a four-dimensional hyperchaotic system. The chaotic time series of the four-dimensional
hyperchaotic system are shown in Figure 1.

  
(a) (b) 

  
(c) (d) 

Figure 1. The chaotic time series of the four-dimensional hyperchaotic system with: (a) x1(k); (b) x2(k);
(c) x3(k); (d) x4(k).

2.2. Quantization and Performance Analysis of Discrete Chaotic Sequences

2.2.1. Binary Quantization Method

For the above chaotic system, xj(k) ∈ (0, 1) with j = 1, 2, 3, 4. In this paper, we adopt the binary
quantization method to quantize discrete chaotic real value sequences. The corresponding quantization
method is defined as follows:

Qj(k) =

{
0 xj(k) < td
1 xj(k) ≥ td

j = 1, 2, 3, 4 (3)

where Qj(k) is the quantized chaotic binary sequence, and td represents the quantization threshold
with td = 0.5.

2.2.2. Multi-Scale Permutation Entropy Analysis

Multi-scale permutation entropy (MPE) [20,21] has the advantages of high robustness and fast
computational speed. It is widely applied in the measurement of binary sequence complexity and
nonlinear system analysis. In this section, we perform a multi-scale permutation entropy analysis
for the above chaotic binary sequence. The parameters of MPE have embedding dimension m, delay
factor τ, and scale factor s. For the choice of the parameter values of the multi-scale permutation
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entropy with the purpose of calculating the complexity of chaotic binary sequences, Sun et al. [22]
and Xu et al. [23] give the recommended parameter range in order to obtain more accurate entropy
values. On the basis of the theoretical research of the above references, in this experiment, we set
m = 3, τ = 2, and s ∈ [3, 7], respectively. The experimental results are shown in Table 1. As can be
seen from Table 1, all MPE values of chaotic binary sequences are more than 0.9 and display good
sequence complexity.

Table 1. The multi-scale permutation entropy (MPE) value of chaotic binary sequences with Q1(k),
Q2(k), Q3(k), and Q4(k).

Scale Factor S Q1(k) Q2(k) Q3(k) Q4(k)

3 0.9201 0.9260 0.9177 0.9132
4 0.9366 0.9382 0.9449 0.9410
5 0.9548 0.9488 0.9567 0.9377
6 0.9590 0.9572 0.9585 0.9526
7 0.9552 0.9533 0.9704 0.9553

2.2.3. NIST-800-22 Test

NIST-800-22 is a statistical test suite for random and pseudorandom number generators for
cryptographic applications. This test standard was enacted by the National Institute of Standards and
Technology (NIST). The test statistic is used to calculate a p-value that summarizes the strength of the
evidence against the null hypothesis. On the basis of the results of NIST test, we can judge whether or
not this chaotic binary sequence is suitable for a cryptographic algorithm. NIST-800-22 is made up of
16 test methods, including the longest run test, cumulative sums, and the linear complexity test, etc.
For these tests, each p-value is the probability that a perfect random number generator would have
produced a sequence less random than the sequence that was tested, given the kind of non-randomness
assessed by the test. A significance level (α) can be chosen for the tests. If p − value ≥ α, then the
null hypothesis is accepted; i.e., the sequence appears to be random. If p − value < α, then the null
hypothesis is rejected; i.e., the sequence appears to be non-random. Typically, α is chosen in the
range [0.001, 0.01]. Common values of α in cryptography are about 0.01 based on the NIST-800-22
test standard [24]. The experimental results of NIST-800-22 test are shown in Table 2. Table 2 shows
that the chaotic binary sequences Q1(k), Q2(k), Q3(k), and Q4(k) passed all the tests. These sequences
show good randomness and meet the requirements of the stream cipher.

Table 2. NIST-800-22 test of chaotic binary sequences.

Test Item
Q1(k) Q2(k) Q3(k) Q4(k) Result

p − Value p − Value p − Value p − Value

Approximate Entropy 0.026853 0.013829 0.068205 0.034937 Success
Block Frequency 0.058378 0.870831 0.724584 0.297646 Success

Cumulative Sums 0.459642 0.069717 0.963210 0.328997 Success
FFT 0.358795 0.919848 0.081236 0.713570 Success

Frequency 0.435391 0.447255 0.888660 0.193601 Success
Linear Complexity 0.186537 0.203633 0.569565 0.232544 Success

Longest Run 0.359643 0.087189 0.789913 0.250387 Success
Non-Overlapping Template 0.348045 0.680967 0.106169 0.068529 Success

Overlapping Template 0.512834 0.063236 0.020689 0.490518 Success
Random Excursions 0.319514 0.181174 0.524622 0.304589 Success

Random Excursions Variant 0.579380 0.177934 0.108254 0.659874 Success
Rank 0.949536 0.648387 0.862457 0.648387 Success
Runs 0.340097 0.086469 0.041369 0.027231 Success

Serial Test-1 0.407933 0.213432 0.648688 0.814738 Success
Serial Test-2 0.462490 0.880617 0.584615 0.512974 Success

Maurer’s Universal 0.026152 0.538143 0.142680 0.600293 Success
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2.3. The Design of Self-Synchronous Chaotic Stream Cipher

The self-synchronous stream cipher is also known as the asynchronous stream cipher.
The generation of the key stream of self-synchronous stream cipher is not independent of the plaintext
and ciphertext stream but is related to the seed key and some ciphertext that has been generated before.

It has the advantages of limited error propagation, self-synchronous and ciphertext statistical
diffusion. In this section, the encryption and decryption block diagram of the self-synchronous stream
cipher based on the four-dimensional hyperchaotic system is shown in Figure 2.
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Figure 2. The self-synchronous chaotic stream cipher with: (a) decryption block diagram; (b) decryption
block diagram.

Where K, (K1
s , K2

s , K3
s , K4

s ), ⊕ and function g(·) represent the seed key, subkey, exclusive OR (XOR)
operational character and subkey generation function, respectively. Ci−1 and Ci are the ciphertext
stream generated at two adjacent moments. Q1, Q2, Q3, and Q4 are the quantized chaotic binary
sequence. P1

i , P2
i , P3

i , and P4
i are the adjacent plaintext stream with the purpose of parallel encryption.

According to Equations (1) and (2), f1(·), f2(·), f3(·), and f4(·) can be given as Equation (4).⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1(k + 1) = f1(·) = A11x1(k) + A12x2(k) + A13x3(k) + A14x4(k) + (‖A‖2 + ec)x1(k)(mod1)
x2(k + 1) = f2(·) = A21x1(k) + A22x2(k) + A23x3(k) + A24x4(k) + (‖A‖2 + ec)x2(k)(mod1)
x3(k + 1) = f3(·) = A31x1(k) + A32x2(k) + A33x3(k) + A34x4(k) + (‖A‖2 + ec)x3(k)(mod1)
x4(k + 1) = f4(·) = A41x1(k) + A42x2(k) + A43x3(k) + A44x4(k) + (‖A‖2 + ec)x4(k)(mod1)

(4)
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The encryption process of the self-synchronous chaotic stream cipher can be described as follows:

1. The subkey (K1
s , K2

s , K3
s , K4

s ) is generated by function g(·) and Kj
s ∈ (0, 1) with j = 1, 2, 3, 4.

Where K and Ci−1 are the 0-1 binary sequence with length of 32 bits. The function g(·) is given
as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K = (k1, k2, · · · , k32)

Ci−1 = (c1
i−1, c2

i−1, · · · , c32
i−1)

K1
s = g(K, Ci−1) =

8
∑

v=1
(k4v−3 ⊕ c4v−3

i−1 )2−v

K2
s = g(K, Ci−1) =

8
∑

v=1
(k4v−2 ⊕ c4v−2

i−1 )2−v

K3
s = g(K, Ci−1) =

8
∑

v=1
(k4v−1 ⊕ c4v−1

i−1 )2−v

K4
s = g(K, Ci−1) =

8
∑

v=1
(k4v ⊕ c4v

i−1)2
−v

(5)

2. The generated subkey (K1
s , K2

s , K3
s , K4

s ) is used as the state variable (x1(k), x2(k), x3(k), x4(k)) of
the four-dimensional hyperchaotic system. The key stream Q1, Q2, Q3 and, Q4 with length of
8 bits are generated by hyperchaotic Equation (4) and a binary quantization operation with the
purpose of parallel encryption.

3. Ciphertext Ci is generated by the Equation (6). At the same time, the Ci will feedback to the
function g(·) with the purpose of generating the next round subkey (K1

s , K2
s , K3

s , K4
s ). Where || is

sequence assembly operation.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Q1 ⊕ P1
i = c1

i , c2
i , · · · , c8

i
Q2 ⊕ P2

i = c9
i , c10

i , · · · , c16
i

Q3 ⊕ P3
i = c17

i , c18
i , · · · , c24

i
Q4 ⊕ P4

i = c25
i , c26

i , · · · , c32
i

Ci = (Q1 ⊕ P1
i )
∣∣∣∣(Q2 ⊕ P2

i )
∣∣∣∣(Q3 ⊕ P3

i )
∣∣∣∣(Q4 ⊕ P4

i ) = c1
i , c2

i , · · · , c32
i

(6)

The decryption process of the self-synchronous chaotic stream cipher is similar to the encryption
process, which is not repeated here.

3. A Novel Image Encryption Scheme Based on Self-Synchronous Chaotic Stream Cipher

3.1. The Description of the Image Encryption Scheme

In this section, a novel image encryption scheme is proposed based on self-synchronous
chaotic stream cipher, Arnold mapping, and two-dimensional discrete wavelet transform (DWT).
The encryption process of the proposed scheme is shown in Figure 3. Firstly, the spatial domain of
the image is transformed into the frequency domain by two-layer DWT. Secondly, Arnold mapping
is implemented with the purpose of obtaining good diffusion effectiveness. Finally, on the basis of
self-synchronous chaotic stream cipher, the scrambled image is encrypted to ensure its security.

74



Entropy 2018, 20, 445

Figure 3. The encryption process of the proposed scheme.

3.1.1. Discrete Wavelet Transform

The DWT plays an important role in image compression and image information
processing. The decomposition process of signal So by the two-dimensional DWT is shown
in Figure 4. A two-dimensional matrix So can be decomposed into four groups of coefficients
[cA, cD(h), cD(v), cD(d)]. Where cA, cD(h), cD(v), and cD(d) represent approximate coefficient (low
frequency component), horizontal detail coefficient, vertical detail coefficient, and diagonal detail
coefficients, respectively. Furthermore, the approximate coefficient cA can continue to be decomposed
by the same method. On the basis of the above image encryption scheme, in order to obtain the
transformation coefficient, the pixel value of the grayscale image is processed by two-dimensional
discrete wavelet transform. Thereafter, the spatial domain of the digital image is transformed into the
frequency domain with the purpose of enhancing the pixel scrambling effect.

↓

↓

↓

↓

↓

↓

oS

cA

hcD

vcD

dcD

Figure 4. The principle block diagram of the two-dimensional discrete wavelet transform.
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3.1.2. Arnold Mapping

Arnold mapping [25], also known as cat mapping, is a chaotic mapping method for repeated
folding and stretching transformation in a limited area. It is widely applied to pixel scrambling of
images. The mathematical equation of Arnold mapping is given as follows:[

Xn+1

Yn+1

]
=

[
1 a
b ab + 1

][
Xn

Yn

]
(modM) (7)

where (Xn, Yn) and (Xn+1, Yn+1) represent the pixel coordinates of the original image and the pixel
coordinates of transformed image, respectively. In addition, Xn, Yn, Xn+1, Yn+1 ∈ {0, 1, · · · , N − 1},
and a = 1, b = 1. The variable M is the size of the image.

3.2. Security Analysis of Image Encryption Scheme

In this section, the Lena, fruits, and airplane gray images with a size of 256 × 256 are
encrypted using the above image encryption scheme based on self-synchronous chaotic stream cipher.
The security analysis results of image encryption are shown below.

3.2.1. Histogram Analysis

The histogram of the image is an important statistical feature of the image. It can be considered
as the gray density function of the image. One of the evaluation criteria of image encryption effect
is whether the gray histogram of the ciphertext image has the characteristics of uniform distribution.
The results of the grayscale histogram are shown in Figure 5, and the horizontal and vertical coordinates
of the gray histogram represent the pixel values and number of pixel values, respectively. As can be
seen from the Figure 5g–i, the pixel values of the ciphertext images are so evenly distributed that it
is difficult for the attacker to extract the plaintext pixel statistical characteristics from the ciphertext.
Therefore, this image encryption scheme can resist statistical attacks well.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Cont.
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(g) (h) (i) 

Figure 5. Histogram test with: (a) plain-image of Lena; (b) plain-image of airplane; (c) plain-image of
fruits; (d) histogram of plain-image of Lena; (e) histogram of plain-image of airplane; (f) histogram of
plain-image of fruits; (g) histogram of encrypted image of Lena; (h) histogram of encrypted image of
airplane; (i) histogram of encrypted image of fruits.

3.2.2. Correlation Analysis of Adjacent Pixels

Correlation analysis refers to the analysis of two variables with correlation so as to measure
the correlation degree of two variables. The correlation of adjacent pixels can reflect the scrambling
effect of image pixels. The mathematical equation for the correlation of adjacent pixels is shown as
follows [26]:

E(x) =
1
N

N

∑
k=1

xk (8)

D(x) =
1
N

N

∑
k=1

(xk − E(x))2 (9)

cov(x, y) =
1
N

N

∑
k=1

(xk − E(x))(yk − E(y)) (10)

ρxy =
cov(x, y)√
D(x)

√
D(y)

(11)

where xk and yk represent the grey values of two adjacent pixels, and N is the number of randomly
selected adjacent pixels from the original or encrypted image. The ρxy, E(x), D(x) and cov(x, y)
represent the correlation coefficient, mean value, variance, and covariance, respectively.

For the correlation analysis experiment, we randomly selected 2000 pairs of adjacent pixels
in horizontal, vertical, and diagonal directions from the plain and encrypted images of Lena.
The experimental results are shown in Figure 6. Where (i, j) represents the position coordinates
of this pixel in the image. As can be seen from the figure, the correlation of cipher-images is much
lower than that of plain-images. Furthermore, Table 3 shows the correlation analysis of the adjacent
pixels with the Lena, airplane, and fruits image. Obviously, the correlation coefficient of the plain-image
is close to 1. On the contrary, the correlation coefficient of the cipher-image is close to 0, which indicates
a good performance.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. The correlation plots of two adjacent pixels for the plain and encrypted images of Lena
with: (a) horizontal correlation of plain-image of Lena; (b) horizontal correlation of cipher-image of
Lena; (c) vertical correlation of plain-image of Lena; (d) vertical correlation of cipher-image of Lena;
(e) diagonal correlation of plain-image of Lena; (f) diagonal correlation of cipher-image of Lena.

Table 3. Correlation analysis of adjacent pixels for the Lena, airplane, and fruits images.

Direction Horizontal Vertical Diagonal

Plain-image of Lena 0.9577 0.9440 0.9126
Cipher-image of Lena −0.0082 0.0027 0.0030

Plain-image of Airplane 0.9147 0.9225 0.9109
Cipher-image of Airplane 0.0334 −0.0285 −0.0073

Plain-image of Fruits 0.9540 0.9497 0.9459
Cipher-image of Fruits −0.0273 −0.0176 −0.0026
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3.2.3. Peak Signal-To-Noise Ratio (PSNR) Analysis

The peak signal-to-noise ratio is an objective criterion for evaluating images, and its mathematical
equation is given as follows:

PSNR = 10 log10(L2/MSE) (12)

MSE =
1

M2

M

∑
i=1

M

∑
j=1

(I′(i, j)− I(i, j))2 (13)

where M × M is the size of image, I′(i, j), and I(i, j) represent the pixel value of encrypted and
original images, respectively. MSE is mean squared error, and L is the range of gray values in the
image. Generally speaking, the better the encryption effect is, the smaller the PSNR of the image
becomes. The results of the PSNR test is shown in Table 4. For the test result of our scheme, it is the
average PSNR of the Lena, airplane, and fruits images. Similarly, for the image encryption method of
Yin et al. [27] and Zhu [28], this PSNR represents the average value of multiple images. As can be seen
from the table, our scheme has a smaller PSNR value, which shows a good encryption effect.

Table 4. Peak signal-to-noise ratio (PSNR) test with different methods.

Methods PSNR Value

Our scheme 8.1543
Yin et al. [27] 8.4100

Zhu [28] 9.2322

3.2.4. Information Entropy Analysis

Information entropy can measure the distribution of gray values in images. The more random the
gray value distribution, the greater the information entropy of the image. According to the information
theory of Shannon, the information entropy can be defined as follows:

H(s) = −
2n−1

∑
i=0

P(si) log2(P(si)) (14)

where P(si) represents the probability of symbol si, n is the number of bits required to store each
pixel value, 2n is the total states of the information source s. When n = 8, the theoretical value of
information entropy is 8. The information entropy test was performed for the encrypted images of
Lena, airplane, and fruits. Table 5 shows the experimental results of the entropy test. The test result of
our scheme is the average entropy value of the Lena, airplane, and fruits images. For the scheme of Liu
et al. [29], Liu et al. [30], and Niyat [31], these entropy values represent the average value of multiple
images. As can be seen from the table, the entropy value of encrypted image of our scheme is closer to
the theoretical value 8. Therefore, this scheme can effectively resist the information entropy attack.

Table 5. Information entropy test with different methods.

Methods Entropy Value

Our scheme 7.9971
Liu et al. [29] 7.9914
Liu et al. [30] 7.9851

Niyat et al. [31] 7.9877

4. Discussion

In this paper, we proposed a novel image encryption scheme with the purpose of ensuring secure
transmission of image data. A four-dimensional hyperchaotic system is constructed to act as the chaotic
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sequence generator. Moreover, the performance of chaotic binary sequences is analyzed by multi-scale
permutation entropy and the NIST-800-22 test. The test results show that the binary sequence has
good randomicity and security. On the basis of the chaotic sequence generator, a self-synchronous
stream cipher is designed to encrypt the image data. The generation of the key stream of the chaotic
stream cipher is related to the seed key and a certain number of bits ciphertext that has been generated
previously. It has the advantages of limited error propagation, self-synchronous and ciphertext
statistical diffusion, which can satisfy the security and stability of image encryption system. Finally,
a novel image encryption scheme is designed based on the self-synchronous stream cipher. Arnold
mapping and wavelet transform are used to obtain a good scrambling effect for the digital image.
Some simulation results show that the proposed scheme is both reliable and secure.
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Abstract: This paper introduces a general solution of singular fractional-order linear-time invariant
(FoLTI) continuous systems using the Adomian Decomposition Method (ADM) based on the Caputo's
definition of the fractional-order derivative. The complexity of their entropy lies in defining the
complete solution of such systems, which depends on introducing a method of decomposing their
dynamic states from their static states. The solution is formulated by converting the singular system
of regular pencils into a recursive form using the sequence of transformations, which separates the
dynamic variables from the algebraic variables. The main idea of this work is demonstrated via
numerical examples.
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fractional linear systems; regular pencils; Schur factorization

1. Introduction

A dynamical system represented by differential equations with non-integer order derivatives
is denoted as a fractional-order system. In general, most practical systems are best described by
fractional-order dynamics (FoD), where the integer-order representation of such systems is considered
as a special case. Recently, different types of problems of fractional-order dynamical systems have been
considered in the literature [1,2]. Time-domain system identification using the fractional-order models
was initiated in the late nineties. Several methods of discretizing the fractional-order differential equation
using Grunwald–Letnikov (GL) approximation or phase assignment technique can be found in [3,4],
while another biquadratic approximation of the fractional-order Laplacian operator based on the flatness
of the phase frequency response at its center frequency is discussed in [5]. Furthermore, the state–space
representations of fractional-order systems have been broadly used to investigate system stability,
observability and controllability [6–8]. The generalization of FoD have allowed it to flourish in many
fields of applications, such as control theory, communication systems and applied mathematics [9,10].

The singular (descriptor) fractional-order system of differential equations plays an important role
in many applications, such as electric networks, economics, optimization problems, analysis of control
systems, constrained mechanics, aircraft and robot dynamics, biology and large-scale systems [9,10].
Many continuous or discrete-time systems are usually described by complete dynamical states that
vary with time, which have wide applications in social sciences, chaotic systems, economics, electrical
networks, information theory and medical sciences [11–16]. Since the singular systems enjoy static and
dynamic states, the complexity of their entropy depends on the methods of decomposing these states
from each other to completely identify the analytical solution of such systems.
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The solution of singular systems with regular and singular pencils was discussed in references [17–21],
while the optimal solution of a class of singular linear systems of regular and singular pencils that have
non-consistent linear systems of nabla difference equations with non-consistent initial conditions was
discussed in reference [22]. The relationship between the solutions of an initial value problem of a
linear singular system of fractional nabla difference equations, its proper dual system and its transposed
dual system as well as introduced necessary and sufficient conditions for the existence and uniqueness
of their solution were thoroughly investigated in reference [23]. The initial value problem of a class
of non-homogeneous singular systems of fractional nabla difference equations with constant matrix
coefficients was investigated in reference [24], which considered two cases: square coefficient matrices with
a singular leading coefficient and regular pencils; and square and non-square matrices of singular pencils.

In this work, we only considered singular linear systems with regular pencils. The case of
the systems of singular pencils is left for further development. To find the general solution of
fractional-order singular systems, the Adomian Decomposition Method (ADM) [22,23] is extended
by first introducing the general solution of the regular commensurate fractional-order linear-time
invariant (FoLTI) continuous systems, which is described by the following general form:

Dαx(t) = Ax(t) + Bu(t), 0 < α ≤ 1, (1a)

y(t) = Cx(t) + Du(t), (1b)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the system states, the input, and output vectors,
respectively; while A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m are the system constant matrices.

The ADM is extended here to obtain the solution of a singular FoLTI continuous system that has
the following general form:

EDαx(t) = Ax(t) + Bu(t), 0 < α ≤ 1, (2a)

y(t) = Cx(t) + Du(t), (2b)

where E ∈ Rn×n is a singular matrix; x(t) ∈ Rn is the pseudo-state; u(t) ∈ Rm is the control input;
y(t) ∈ Rp is the output; and A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n with rank C = p.

Definition 1. [24] The matrix pencil sE − A, where E and A ∈ Rn×q and for an arbitrary s ∈ C, is called:

(1) Regular when n = q and det (sE − A) �= 0,
(2) Singular when n = q or n �= q and det (sE − A) = 0.

In this work, we considered the class of regular pencils with a singular matrix E.
Singular fractional-order systems consist of coupled differential and algebraic equations. The control of
singular fractional-order systems is not well-flourished compared to that of the conventional dynamical
systems. However, it is possible to use the sequence of transformations to decouple the differential
and the algebraic parts of the system from each other, thus enabling the application of the standard
state–space control theory to a dynamical subsystem of a lower order [24–27].

There are three main steps used to decouple the system’s static and dynamic parts from each
other. The first one involves using the generalized Schur decomposition method, the second one
involves solving a coupled Sylvester equation and the third one involves constructing well-defined
transformation matrices [28,29]. The first step is thoroughly investigated using numerical linear algebra.
Various existing methods for transforming a matrix into a Jordan-Schur form and a matrix pencil into
a Weierstrass–Schur form have been investigated in reference [28]. These methods are extended to
extract the partial information that corresponds to the dominant eigenvalues from large-scale matrices
and matrix pencils. The solution and perturbation analysis of a coupled Sylvester equation is presented
in reference [29]. The Schur method and the Hessenberg–Schur method are extended for a coupled
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Sylvester equation, which is transformed into a standard Sylvester equation. This equation is solved
using standard techniques presented in [28,29].

This work is outlined as follows. In the next section, the necessary definitions and preliminaries
are introduced. Section 3 describes the ADM method. Section 4 introduces the solution of FoLTI
systems with regular pencils. A recursive method to decompose the singular systems is introduced in
Section 5, followed by numerical examples in Section 6. The summaries and concluding remarks are
presented in Section 7.

2. Basic Definitions and Preliminaries

The Caputo definition of fractional-order derivatives is adopted in this work. It is a modification of the
Riemann–Liouville definition and it has the advantage of only using the initial conditions that corresponds
to integer-order derivatives, which is suitable for most physical systems [30–32]. The following definitions
and preliminaries of fractional-order calculus are presented here for completeness.

Definition 2 [9,10]. Let f (t) be an integrable piecewise continuous function on any finite subinterval of
(0,+∞). Thus, the fractional integral of f (t) of order α is defined as:

Jα f (t) :=
tα−1

Γ(α)
× f (t) =

1
Γ(α)

∫ t

0
(t − τ)α−1 f (τ)dτ, t > 0, α > 0. (3)

In this paper, we will use the following equality [20]:

Jαtμ =
Γ(μ + 1)

Γ(μ + α + 1)
tμ+α, α > 0, μ > −1, t > 0. (4)

Definition 3 [9,10]. The Caputo fractional-order derivative is defined as:

Dα f (t) =
1

Γ(M − α)

∫ t

0

f M(τ)

(t − τ)α+1−M dτ, f M(τ) =
dM f (τ)

dτM , (5)

where Γ(·) is the Gamma function and M − 1 ≤ α < M, M ∈ N.

Definition 4 [8]. The Mittag–Leffler function of two parameters is defined by:

Eα,β(t) = ∑∞
k=0

tk

Γ(kα + β)
. (6)

Definition 5 [9]. The Mittag–Leffler matrix function of two parameters is defined by:

Eα,β(Atα) = ∑∞
k=0

Aktαk

Γ(kα + β)
, (7)

where A ∈ Rn×n.

Definition 6 [31]. The system given by (1) or the pair (E, A) is said to be regular pencil if there exists a unique
solution x(t) for a given initial condition.

Lemma 1 [32]. The system described by (1) or the pair (E, A) is said to be a regular pencil if and only if
det(Esα − A) �= 0, for s ∈ C.
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3. Solution of FoLTI Systems Using ADM Method

In this section, we used the ADM method to obtain the general solution of fractional-order state
equations of linear time-invariant continuous systems. See [25–27] for an overview of the ADM
technique. In the subsequent discussion, consider the linear system described by (1a) and assume the
definition of Caputo fractional-order derivative; i.e.,

Dαx(t) = Ax(t) + Bu(t), 0 < α ≤ 1, (8)

with the initial condition:
x(0) = v. (9)

Notice that applying Jα (i.e., fractional-order integration of order α) on both sides of system (8) yields:

x(t) = x(0) + AJαx(t) + BJαu(t). (10)

To use the Adomian decomposition method, we assume that the general solution of (8) takes the
general form of x(t) = ∑∞

k=0 xk(t), in which:

x0(t) = v + BJαu(t) (11)

and
xk(t) = AJαxk−1(t), k ≥ 1. (12)

Now, from (11) and (12), one can obtain the following recursive formula for the system states:

x1(t) = Jα[Av + ABJαu(t)], x2(t) = J2α
[
A2v + A2BJαu(t)

]
, . . . , xk(t) = Jkα

[
Akv + AkBJαu(t)

]
. (13)

Therefore,
x1(t) = Av

Γ(α+1) tα + ABJ2αu(t), x2(t) = A2v
Γ(2α+1) t2α + A2BJ3αu(t), . . . ,

xk(t) = Akv
Γ(kα+1) tkα + AkBJ(k+1)αu(t).

(14)

Since the general solution x(t) = ∑∞
k=0 xk(t), Equation (14) then yields:

x(t) = ∑∞
k=0

(Atα)k

Γ(kα + 1)
v + ∑∞

k=0 AkBJ(k+1)αu(t). (15)

That is,

x(t) = ∑∞
k=0

(Atα)k

Γ(kα + 1)
v + ∑∞

k=0 AkB
1

Γ((k + 1)α)

∫ t

0
(t − τ)(k+1)α−1u(τ)dτ. (16)

or,

x(t) = ∑∞
k=0

(Atα)k

Γ(kα + 1)
v +

∫ t

0
∑∞

k=0
Ak(t − τ)(k+1)α−1

Γ((k + 1)α)
Bu(τ)dτ. (17)

Alternately, in terms of the Mittag–Leffler matrix functions of (7), one may rewrite (17) as follows:

x(t) = Eα,1(Atα)v +
[
tα−1Eα,α(Atα)

]
[Bu(τ)]. (18)

Consequently, the general solution of system states, described by (8), can be written in the following
general form:

x(t) = φα0(t)v +
∫ t

0
φα(t − τ)Bu(τ)dτ, x(0) = v (19)
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where

φα0(t) = Eα,1(Atα) =
∞

∑
k=0

(Atα)k

Γ(kα + 1)
, (20)

φα(t) = tα−1Eα,α(Atα) = ∑∞
k=0

Akt(k+1)α−1

Γ((k + 1)α)
. (21)

and the general solution of the system output is given by:

y(t) = C
{

Eα,1(Atα)v +
[
tα−1Eα,α(Atα)

]
[Bu(t)]

}
+ Du(t). (22)

4. The General Solution of FoLTI Singular Systems with Regular Pencils

The general solution of FoLTI singular continuous systems is usually obtained by first
transforming the system into the canonical form [33–35], which enables one to easily decompose
the static terms from the dynamic ones. The following lemmas are presented for completeness
to derive the general solution of the FoLTI singular systems with regular pencils. To simplify the
process of obtaining the general solution, the system matrices (E, A) with regular pencils may be both
transformed into a triangular form with the zero eigenvalues of E placed at the lower right block.

Lemma 2 [33]. Consider the following FoLTI singular continuous system:

EDαx(t) = Ax(t) + Bu(t), 0 < α ≤ 1, (23)

where E ∈ Rn×n is a singular matrix of rank n1 < n, x(t) ∈ Rn, u(t) ∈ Rm, and A ∈ Rn×n, B ∈ Rn×m..

If (23) is regular, there exist non-singular matrices P1, Q1 ∈ Rn×n, such that:

P1EQ1 =

[
E1 E2

0 E3

]
, P1 AQ1 =

[
J1 J2

0 J3

]
, (24)

where E1 ∈ Rn1×n1 is non-singular; E3 ∈ Rn2×n2 is an upper triangular matrix with all diagonal elements
being zero; J1 ∈ Rn1×n1 ; J3 ∈ Rn2×n2 is non-singular and upper triangular; and E2, J2 ∈ Rn1×n2 .

The generalized Schur decomposition given by (24) and the subsequent reordering of the diagonal
elements of E may be conducted using “qz” MATLAB function to construct E1 and J1 as upper
triangular matrices [32].

Lemma 3 [36]. Consider (24), then there exist matrices L, R ∈ Rn1×n2 , such that:[
I L
0 I

][
E1 E2

0 E3

][
I R
0 I

]
=

[
E1 0
0 E3

]
(25)

and [
I L
0 I

][
J1 J2

0 J3

][
I R
0 I

]
=

[
J1 0
0 J3

]
. (26)

Lemma 4 [36]. Consider system (23), if this system is regular, then there exist non-singular matrices P, Q ∈ Rn×n

such that the transformation:

PEQQ−1Dαx(t) = PAQQ−1x(t) + PBu(t) (27)
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yields the following structure:[
In1 0
0 N

]
Q−1Dαx(t) =

[
F 0
0 In2

]
Q−1x(t) +

[
H
K

]
u(t), (28)

where N ∈ Rn2×n2 is a nilpotent matrix, F ∈ Rn1×n1 ; and n1 is equal to the degree of the polynomial
det (Es − A), such that n1 + n2 = n, and where:

PEQ =

[
In1 0
0 N

]
, PAQ =

[
F 0
0 In2

]
, PB =

[
H
K

]
, (29)

where H ∈ Rn1×m, K ∈ Rn2×m and s ∈ C.

Proof. According to Lemma 1, let P1 and Q1 be matrices such that P = P3P2P1 and Q = Q1Q2, where:

P2 ≡
[

I L
0 I

]
, P3 ≡

[
E−1

1 R
0 J−1

3

]
, and Q2 ≡

[
I R
0 I

]
, (30)

where P2, P3, Q2 ∈ Rn×n. �

Now from Lemma 2, the matrices L and R satisfy:

PEQ =

[
I L
0 J−1

3 E3

]
, PAQ =

[
E−1

1 J1 R
0 I

]
, (31)

where N = J−1
3 E3 is a nilpotent matrix because E3 is an upper triangular matrix with zero diagonal

elements; while J−1
3 and J3 are both upper triangular matrices. The form of (28) is obtained by letting

F = E−1
1 J1.

Now consider system (2) with D = 0, i.e.,

EDαx(t) = Ax(t) + Bu(t), 0 < α ≤ 1, x(0) = v (32)

y(t) = Cx(t) (33)

Let the system of (32) be regular. From Lemma 4, it follows that (32) can be rewritten as [37,38]:[
In1 0
0 N

][
Dαw1(t)
Dαw2(t)

]
=

[
F 0
0 In2

][
w1(t)
w2(t)

]
+

[
H
K

]
u(t), (34)

w(t) = Q−1x(t) ≡
[

w1(t) w2(t)
]T

, (35)

where w1(t) ∈ Rn1 ; w2(t) ∈ Rn2 ; and PB =
[

H K
]T

.
Thus, the following two subsystems are obtained:

Dαw1(t) = Fw1(t) + Hu(t), (36)

NDαw2(t) = w2(t) + Ku(t). (37)

Since x(0) = v, therefore:

w0 = Q−1x(0) = Q−1v ≡ [v0v1]
T , (38)

where v0(t) ∈ Rn1 and v1(t) ∈ Rn2 .
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The general solution of (36) is defined in terms of its fractional-order state equation (see (19)) as follows:

w1(t) = φα0(t)v +
∫ t

0
φα(t − τ)Hu(τ)dτ, x(0) = v, (39)

where

φα0(t) = Eα,1(Ftα) = ∑∞
k=0

(Ftα)k

Γ(kα + 1)
, (40a)

φα(t) = tα−1Eα,α(Ftα) = ∑∞
k=0

Fkt(k+1)α−1

Γ((k + 1)α)
. (40b)

The solution of subsystem (37) is obtained using the property of the nilpotent matrix N. Thus, there
are two cases to consider:

Case 1: N = 0,
In this case, w2(t) = −Ku(t). (41)

Case 2: N �= 0,
To clarify this general case, let N2 = 0. Pre-multiplying the second row of (34) by N yields:

N2Dαw2(t) = Nw2(t) + NKu(t). (42)

Now, differentiating both sides of (42) of order α (i.e., applying Dα to both sides) and using (35) yields:

w2(t) = −Ku(t)− NKDαu(t) + N2D2αw2(t). (43)

Since N2 = 0 by hypothesis, therefore:

w2(t) = −Ku(t)− NKDαu(t). (44)

In general, since N is a nilpotent matrix, there exists an integer number l such that Nl = 0.
Now, pre-multiplying (34) by Nl−1 and using (35) yields:

w2(t) = −Ku(t)− ∑l−1
j=0 NjKDjαu(t). (45)

Substituting (40a) and (45) into (37) and (38) implies the following general solution of (34):

x(t) = Q

[
In1

0n2×n1

]
(φα0(t)v0 +

∫ t
0 φα(t − τ)Hu(τ)dτ) + Q

[
0n1×n2

In2

](
−Ku(t)− ∑l−1

j=0 NjKDjαu(t)
)

, (46a)

where

φα0(t) = Eα,1(Ftα) =
∞

∑
k=0

(Ftα)k

Γ(kα + 1)
, (46b)

φα(t) = tα−1Eα,α(Atα) = ∑∞
k=0

Akt(k+1)α−1

Γ((k + 1)α)
. (46c)

Finally, the solution of y(t) follows directly from (46a) and (34).

5. Recursive form of FoLTI Systems with Regular Pencils

A recursive solution of FoLTI systems with regular pencils is first investigated by considering
the unforced system (homogeneous) of (32) and by using proper Schur transformation matrices.
The following theorem outlines the main results of this work.
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Theorem 1. Consider a FoLTI homogeneous singular system with regular pencils of the following form:

EDαx(t) = Ax(t), 0 < α ≤ 1, (47a)

y(t) = Cx(t), (47b)

where E ∈ Rn×n is a singular matrix of rank n − d < n; x(t) ∈ Rn; y(t) ∈ Rp; A ∈ Rn×n; C ∈ Rp×n with
rank C = p; and with an initial condition x(0) = v. Let Aλ ≡ (A − λαE)−1 A, Eλ ≡ (A − λαE)−1E; and let

Q =
[

Qs Q̃s

]
∈ Rn×n be a unitary matrix such that Eλ = QTQ∗ =

[
Qs Q̃s

][ Gs Ds

0 Ns

][
Qs

∗

Q̃s
∗

]
,

where Gs ∈ Rn−d×n−d is an invertible matrix and Ns ∈ Rd×d is a nilpotent matrix, which has all the zero
eigenvalues of Eλ. Therefore, the general solution of (47) can be expressed as:

x(t) = QsEα,1

((
Gs

−1 + λα I
)

tα
)

Qs
∗ v = Qs

[
∞

∑
k=0

((
Gs

−1 + λα I
)
tα
)k

Γ(kα + 1)

]
Qs

∗v (48)

and
y(t) = Cx(t).

Proof. The general solution of (47) can be obtained by transforming it into a recursive form using the
Schur factorization structure. Since the pair (E, A) is assumed to be a regular pencil, from Lemma 1,
there exists some λ ∈ C such that A − λαE is invertible, which implies that det(A − λαE) �= 0.
Since Aλ ≡ (A − λαE)−1 A, and Eλ ≡ (A − λαE)−1E by hypothesis, pre-multiplying (47a) by
(A − λαE)−1 yields:

(A − λαE)−1EDαx(t) = (A − λαE)−1 A x(t). (49)

System (47) can be rewritten as:
EλDαx(t) = Aλx(t). (50)

Since
Aλ= (A − λαE)−1 A =(A − λαE)−1(A − λαE + λαE) = I + λαEλ, (51)

Then (50) is defined as:
EλDαx(t) = (I + λαEλ)x(t). (52)

Now, since Eλ = QTQ∗ =
[

Qs Q̃s

][ Gs Ds

0 Ns

][
Qs

∗

Q̃s
∗

]
by hypothesis, which is verified in [35],

one may decompose the system states of (47a) to obtain:

x(t) = Qsx1(t) + Q̃sx2(t), (53)

where x1 ∈ Rn−d, x2 ∈ Rd; d > 0.
Substituting (53) into (52) gives:

Eλ

[
Qs Q̃s

]
Dα

[
x1(t)
x2(t)

]
= (I + λαEs)

[
Qs Q̃s

][ x1(t)
x2(t)

]
. (54)

Moreover, applying the Schur decomposition on (52) yields:

[
Qs Q̃s

][ Gs Ds

0 Ns

][
Qs

∗

Q̃s
∗

][
Qs Q̃s

][ Dαx1(t)
Dαx2(t)

]
=
[

Qs Q̃s

][ x1(t)
x2(t)

]
+
[

Qs Q̃s

][ λαGs λαDs

0 λαNs

][
Qs

∗

Q̃s
∗

][
Qs Q̃s

][ x1(t)
x2(t)

]
(55)
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which leads to:

[
Qs Q̃s

][ Gs Ds

0 Ns

][
Dαx1(t)
Dαx2(t)

]
=
[

Qs Q̃s

][ x1(t)
x2(t)

]
+
[

Qs Q̃s

][ λαGs λαDs

0 λαNs

][
x1(t)
x2(t)

]
. (56)

Now, since Q =
[

Qs Q̃s

]
is invertible, we obtain:

[
Gs Ds

0 Ns

][
Dαx1(t)
Dαx2(t)

]
=

(
I +

[
λαGs λαDs

0 λαNs

])[
x1(t)
x2(t)

]
(57)

Thus, (57) yields the following coupled equations:

GsDαx1(t) = (1 + λαGs)x1(t) + λαDsx2(t), (58)

NsDαx2(t) = (1 + λαNs)x2(t). (59)

Since Gs is invertible, (58) can be rewritten as:

Dαx1(t) =
(

Gs
−1 + λα I

)
x1(t) + λαGs

−1Dsx2(t). (60)

Moreover, since Ns is a nilpotent matrix with Ns
d = 0, pre-multiplying (59) by Ns

d−1 implies:

0 = Ns
dDαx2(t) =

(
Ns

d−1 + λαNs
d
)

x2(t) = Ns
d−1x2(t). (61)

This implies that Ns
d−1Dαx2(t) = 0. Again, we have:

0 = Ns
d−1Dαx2(t) =

(
Ns

d−2 + λαNs
d−1
)

x2(t) = Ns
d−2x2(t). (62)

This also implies that Ns
d−2Dαx2(t) = 0. Repeating this process with decreasing powers of Ns

eventually leads to x2(t) = 0 for all t. Therefore, the subsystems (59) and (60), respectively, become:

Dαx1(t) =
(

Gs
−1 + λα I

)
x1(t) (63)

and
x2(t) = 0. (64)

Obviously, according to the Schur basis of (53) and from (19–21), the recursive solution of (63) is given by:

x(t) = QsEα,1

((
Gs

−1 + λα I
)

tα
)

Qs
∗ v = Qs

[
∞

∑
k=0

((
Gs

−1 + λα I
)
tα
)k

Γ(kα + 1)

]
Qs

∗v (65)

and
y(t) = Cx(t). (66)

Hence, the general solution (65) of the singular FoLTI systems with regular pencils is
completely identified. �

6. Illustrative Examples

To illustrate the main ideas of this work, this section includes two numerical examples to highlight
the main ideas of the proposed approach of solving singular FoLTI continuous systems.
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Example 1. Consider the following singular FoLTI system, where R and L are constants, while u(t) is an input signal:

LDαx3(t) = u(t), (67a)

Rx2(t) = u(t), (67b)

x1(t)− x2(t)− x3(t) = 0. (67c)

One may rewrite system (67) in the following form:⎡⎢⎣ 0 0 L
0 0 0
0 0 0

⎤⎥⎦Dα

⎡⎢⎣ x1(t)
x2(t)
x3(t)

⎤⎥⎦ =

⎡⎢⎣ 0 0 0
1 −1 −1
0 −R 0

⎤⎥⎦
⎡⎢⎣ x1(t)

x2(t)
x3(t)

⎤⎥⎦+

⎡⎢⎣ 1
0
1

⎤⎥⎦u(t), (68)

where:

E =

⎡⎢⎣ 0 0 L
0 0 0
0 0 0

⎤⎥⎦, A =

⎡⎢⎣ 0 0 0
1 −1 −1
0 −R 0

⎤⎥⎦, and B =

⎡⎢⎣ 1
0
1

⎤⎥⎦. (69)

Obviously, E is singular since det E = 0. However, the pencil (E, A) is regular, because:

det(Eλα − A) =

∣∣∣∣∣∣∣
0 0 Lλα

−1 1 1
0 R 0

∣∣∣∣∣∣∣ = −RLλα �= 0. (70)

From (46), the solution of system (68) is obtained as follows:

Let P =

⎡⎢⎣ 1
L 0 0
0 0 −1

R
0 1 −1

R

⎤⎥⎦, and Q =

⎡⎢⎣ 1 0 1
0 1 0
1 0 0

⎤⎥⎦; Q−1 =

⎡⎢⎣ 1 0 1
0 1 0
1 0 −1

⎤⎥⎦. (71)

It follows that:

PEQ =

⎡⎢⎣ 1 0 0
0 0 0
0 0 0

⎤⎥⎦, PAQ =

⎡⎢⎣ 0 0 0
0 1 0
0 0 1

⎤⎥⎦, PB =

⎡⎢⎣ 1
L−1
R−1
R

⎤⎥⎦. (72)

From (28), system (69) can be transformed to the following form:⎡⎢⎣ 1 0 0
0 0 0
0 0 0

⎤⎥⎦
⎡⎢⎣ 1 0 1

0 1 0
1 0 −1

⎤⎥⎦Dα

⎡⎢⎣ x1(t)
x2(t)
x3(t)

⎤⎥⎦ =

⎡⎢⎣ 0 0 0
0 1 0
0 0 1

⎤⎥⎦
⎡⎢⎣ 1 0 1

0 1 0
1 0 −1

⎤⎥⎦
⎡⎢⎣ x1(t)

x2(t)
x3(t)

⎤⎥⎦+

⎡⎢⎣ 1
L−1
R−1
R

⎤⎥⎦u(t). (73)

In light of (34) and (35), further transformation of (73), respectively, yields:⎡⎢⎣ 1 0 0
0 0 0
0 0 0

⎤⎥⎦Dα

[
w1(t)
w2(t)

]
=

⎡⎢⎣ 0 0 0
0 1 0
0 0 1

⎤⎥⎦[ w1(t)
w2(t)

]
+

[
H
K

]
u(t) (74)

with

w(t) =

⎡⎢⎣ 1 0 1
0 1 0
1 0 −1

⎤⎥⎦
⎡⎢⎣ x1(t)

x2(t)
x3(t)

⎤⎥⎦,

[
H
K

]
=

⎡⎢⎣ 1
L−1
R−1
R

⎤⎥⎦. (75)

Thus:
Dαw1(t) = Dαx3(t) = 1

L u(t) , (76a)
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w2(t) =

[
x2(t)

x1(t)− x3(t)

]
= −

[ −1
R−1
R

]
u(t). (76b)

Using (40), the general solution of (67) is given by:⎡⎢⎣ x1(t)
x2(t)
x3(t)

⎤⎥⎦ =

⎡⎢⎣
1
R u(t) + x3(0) + 1

LΓ(α)

∫ t
0 (t − τ)α−1u(τ)dτ

1
R u(t)
x3(0) + 1

LΓ(α)

∫ t
0 (t − τ)α−1u(τ)d

⎤⎥⎦ (77)

Example 2. Consider system (47) for 0 < α ≤ 1 where:

E =

⎡⎢⎢⎢⎣
1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦, A =

⎡⎢⎢⎢⎣
0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎥⎦, C = [1 0 1 0], (78)

subject to the initial condition

x(0) = v =

⎡⎢⎢⎢⎣
1
1
0
1

⎤⎥⎥⎥⎦. (79)

Notice that E is a singular matrix since det E = 0, and the pencil (E, A) is regular, because:

det(A − λαE) =

∣∣∣∣∣∣∣∣∣
−λα 0 0 0

1 0 −λα 0
0 1 0 0
0 0 0 1

∣∣∣∣∣∣∣∣∣ = −λ2α �= 0. (80)

Observe that (78) represents the parameters of a singular FoLTI regular system. If follows from (52) that:

Es = (A − λαE)−1E =

⎡⎢⎢⎢⎣
− 1

λα 0 0 0
0 0 1 0

− 1
λ2α 0 − 1

λα 0
0 0 0 0

⎤⎥⎥⎥⎦. (81)

Thus, the Schur factorization for Es is:

Q =

⎡⎢⎢⎢⎣
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎤⎥⎥⎥⎦, T =

⎡⎢⎢⎢⎣
−1
λα

−1
λ2α 0 0

0 −1
λα 0 0

0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦, Q∗ =

⎡⎢⎢⎢⎣
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎥⎦. (82)

That is:

Qs =

⎡⎢⎢⎢⎣
0 1
0 0
1 0
0 0

⎤⎥⎥⎥⎦, Q̃s =

⎡⎢⎢⎢⎣
0 0
1 0
0 0
0 1

⎤⎥⎥⎥⎦, Gs =

[ −1
λα

−1
λ2α

0 −1
λα

]
, Ds = Ns =

[
0 0
0 0

]
. (83)

Moreover: (
Gs

−1 + λα I
)

tα =

[
0 tα

0 0

]
. (84)
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Using (65), the general solution is given by:

x(t) = QsEα,1

((
Gs

−1 + λα I
)

tα
)

Qs
∗ v =

⎡⎢⎢⎢⎣
0 1
0 0
1 0
0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

∞

∑
k=0

[
0 tα

0 0

]k

Γ(kα + 1)

⎤⎥⎥⎥⎥⎥⎦
[

0 0 1 0
1 0 0 0

]⎡⎢⎢⎢⎣
1
1
0
1

⎤⎥⎥⎥⎦. (85)

Now, since: [
0 tα

0 0

]k

= 0, k = 2, 3, 4, . . . (86)

Thus, (85) reduces to:

x(t) =
[

0 0 tα

Γ(α+1) 0
]T

(87)

Finally, from (77) and (87), y(t) = Cx(t) = tα

Γ(α+1) .

7. Conclusions

The general solution of FoLTI continuous systems is introduced in the sense of the Caputo
definition of fractional order derivative using the Adomian Decomposition Method (ADM). The same
approach is extended to obtain the general solution of singular FoLTI continuous systems with regular
pencils. This approach benefits from the structure of the canonical form of the system state matrices.
Using the Schur decomposition, the system matrices were transformed to separate the static variables
from the dynamic variables. Hence, a recursive technique is implemented to uniquely define the
general solutions of both the dynamic and the static parts of the system. The case of singular FoLTI
systems with singular pencils is left for further development.
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Abstract: The aim of the paper was to analyze the given nonlinear problem by different methods
of computation of the Lyapunov exponents (Wolf method, Rosenstein method, Kantz method,
the method based on the modification of a neural network, and the synchronization method) for
the classical problems governed by difference and differential equations (Hénon map, hyperchaotic
Hénon map, logistic map, Rössler attractor, Lorenz attractor) and with the use of both Fourier spectra
and Gauss wavelets. It has been shown that a modification of the neural network method makes it
possible to compute a spectrum of Lyapunov exponents, and then to detect a transition of the system
regular dynamics into chaos, hyperchaos, and others. The aim of the comparison was to evaluate
the considered algorithms, study their convergence, and also identify the most suitable algorithms
for specific system types and objectives. Moreover, an algorithm of calculation of the spectrum of
Lyapunov exponents based on a trained neural network has been proposed. It has been proven that
the developed method yields good results for different types of systems and does not require a priori
knowledge of the system equations.

Keywords: Lyapunov exponents; Wolf method; Rosenstein method; Kantz method; neural network
method; method of synchronization; Benettin method; Fourier spectrum; Gauss wavelets

1. Introduction

The first part of the present work is focused on the numerical investigation of classical dynamical
systems to estimate velocity of divergence of the neighborhood trajectories with the help of a measure
coupled with the Kolmogorov entropy [1] (or metrics). In reference [1], based on the mathematical
results of Oseledec [2] and Pesin [3], it has been shown that the numerically imposed relations can
be treated as exact/true values. The method proposed by Wolf [1] is most widely used to verify and
study chaotic dynamics. However, also the Rosenstein [4] and Kantz [5] methods are often employed
to estimate the largest Lyapunov exponents. The state-of-the-art of papers devoted to the theoretical
background of the Lyapunov exponents and methods of their computations has been carried out
by Awrejcewicz et al. [6]. In particular, the method of the choice of an embedding dimension has
been described. The method of the correlating dimension, the false nearest neighbor method and the

Entropy 2018, 20, 175; doi:10.3390/e20030175 www.mdpi.com/journal/entropy96
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method of gamma-test have been presented based on the Hénon and Lorenz attractors. In particular,
the occurrence of high computational difficulties has been observed in the case of the Wolf method
and its marginally successful employment to small values of the studied data.

To avoid the abovementioned drawbacks, a novel neural network-based algorithm to estimate the
largest Lyapunov exponents by considering only one coordinate has been proposed. In reference [6]
have reported the neural network algorithm for computation of a full spectrum of Lyapunov exponents.
A comparison of the results obtained by Golovko with the exact values of the Lyapunov exponents of
the Lorenz and Hénon systems have exhibited small errors.

In References [7,8], the method of largest Lyapunov exponent computation using the synchronization
phenomena of identical systems has been proposed. A few types of coupling have been studied,
depending on the type of the considered system. It has been pointed out that large computation time is
required to achieve full synchronization.

The method proposed in References [9,10] is particularly suitable to study chaotic dynamics of
continuous mechanical systems. It should be emphasized that, owing to the results published by
the authors of the present paper, the analysis of nonlinear dynamics based on the estimation of the
Lyapunov exponents yields a conclusion that the mentioned problems have not been satisfactorily
solved yet [1,4,5,9,10].

More recently, Vallejo and Sanjuan [11,12] have studied the predictability of orbits in coupled
systems by means of finite-time Lyapunov exponents. This approach has allowed them to estimate
how close the computed chaotic orbits are to the real/true orbits, being characterized by the systems
shadowing properties.

In the present paper, classical systems (Hénon map [13], hyperchaotic Hénon map [14], logistic
map [15], Rössler attractor [16], and Lorenz attractor [17]) were analyzed with Gauss wavelets [18],
Fourier spectra and Poincaré maps of a chaotic attractor [19–21].

It is known that the fundamental property of chaos is the existence of strong sensitivity to a change
of the initial conditions. The definition of chaos, given first by Devaney in 1989 [22], includes three
fundamental parts. In addition to sensitivity to the variation of the initial conditions, a condition of
mixing, known also as the transitivity condition and the regularity condition, measured by the density
of the periodic points or classical notion of periodicity is also included. In 1992, Banks et al. [23] proved
that the condition of sensitivity to the initial condition can be neglected, i.e., conditions of transitivity
and periodicity imply the sensitivity condition.

Knudsen [24] has defined chaos as a function given on a bounded metric space which has a dense
orbit and essentially depends on initial conditions.

Owing to the definition proposed by Gulick [25], chaos exists when either there is essential
dependence on the initial conditions or a chaotic function has positive Lyapunov exponents in each
point of the space and which does not eventually tend to a periodic orbit. This definition has been also
employed in the present work.

2. Lyapunov Exponents

2.1. The Largest Lyapunov Exponent

The following dynamical system was considered:

.
x = f (x) (1)

where x stands for the N-dimensional state vector.
Two closed phase points x1 and x2 were chosen (in the phase space). They stand for the origins of

the trajectories (x1(t) and x2(t)). The change in the distance d between two corresponding points of
these trajectories under evolution of system (1) can be monitored by:

d(t) =
∣∣∣→ε (t)∣∣∣ = |x2(t)− x1(t)| (2)
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If the dynamics of system (1) is chaotic, d(t) increases exponentially in time, i.e.,:

d(t) ≈ d(0)ekt (3)

This yields the average velocity of the exponential divergence of the trajectories:

k ≈
ln
[

d(t)
d(0)

]
t

(4)

or more precisely:

k = lim
d(0) → 0

t → ∞

ln[d(t)/d(0)]
t

(5)

The quantity h is known as the Kolmogorov-Sinai entropy (KS-entropy). Employing the
KS-entropy, one can define the studied process, i.e., quantify if the process is regular or chaotic.
In particular, if the system dynamics is periodic or quasi-periodic, the distance d(t) is not inversed
in time and the KS-entropy is equal to zero (h = 0). If the system dynamics tends to a stable fixed
point d(t) → 0, then h < 0. Contrarily, KS-entropy is positive (h > 0) if one deals with chaotic dynamics.
KS-entropy is the maximum characteristic Lyapunov exponent that enables one to follow velocity of
information lost with respect to the initial system state.

2.2. Results

The spectrum of Lyapunov exponents makes it possible to qualitatively quantify a local property
with respect to the stability of an attractor. Consider a phase trajectory x(t) of the dynamical system (1),
starting from the point x(0) as well as its neighborhood trajectory x1(t) as follows:

x1(t) = x(t) +
→
ε (t) (6)

The following function can be constructed:

λ
[→

ε (0)
]
= lim

t→∞

ln

[ ∣∣∣→ε (t)∣∣∣∣∣∣→ε (0)∣∣∣
]

t
(7)

which is defined on the vector of initial displacement
→
ε (0) such that

∣∣∣→ε (0)∣∣∣ = ε, where ε → 0.
All possible rotations of the initial displacements vector with respect to n directions of the

N-dimensional phase space of the Function (7) will suffer the jump-like changes in the finite series
of the values λ1, λ2, λ3, . . . , λn. These values of the function λ are called Lyapunov exponents
(LEs). Positive/negative values of LEs can be viewed as a measure of the averaged exponential
divergence/convergence of the neighborhood trajectories.

A sum of LEs stands for an averaged divergence of the phase trajectories flow. In the case of
a dissipative system, i.e., a system possessing an attractor, this sum is always negative. As numerical
case studies show, in some dissipative systems the LEs are invariant with respect to the chosen initial
conditions. Hence, a spectrum of LEs can be understood as the property of an attractor.

Usually, LEs are presented in a sequence of LE values in decreasing order. For instance, symbols
(+, 0, −) mean that for the analyzed attractor, there is one direction in a 3D space, where exponential
stretching is exhibited, the second direction indicates neutral stability, and the third one—exponential
compression. It should be noted that all attractors different from stable stationary points always have
at least one LE equal to zero (in average sense, all points of a trajectory are bounded by a compact
manifold and they cannot exhibit divergence or converge).
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In what follows, relationships between the Lyapunov exponents and the properties and types of
attractors are illustrated and discussed:

(1) n = 1. In this case only a stable fixed point can be an attractor (node or focus). There exists one
negative LE denoted by λ 1 = (−),

(2) n = 2. In 2D systems, there are two types of attractors: stable fixed points and limit cycles.
The corresponding LEs follow:

• (λ1, λ2) = (−,−)—stable fixed/fixed point;
• (λ1, λ2) = (0,−)—stable limit cycle (one exponent is equal to zero).

(3) n = 3. In 3D phase space, there exist four types of attractors: stable points, limit cycles, 2D tori
and strange attractors. The following set of LEs characterizes possible dynamical situations to
be met:

• (λ1, λ2, λ3) = (−,−,−)—stable fixed point;
• (λ1, λ2, λ3) = (0,−,−)—stable limit cycle;
• (λ1, λ2, λ3) = (0, 0,−)—stable 2D tori;
• (λ1, λ2, λ3) = (+, 0,−)—strange attractor.

In the majority of the studied problems, it is impossible to give an analytical definition of LEs,
since the analytical solution to the governing differential equations would have to be known. However,
there exist reliable algorithms to find all Lyapunov exponents numerically.

3. Methods of Analysis of Lyapunov Exponents

3.1. Benettin Method

We began with the numerical investigation of the Kolmogorov entropy of the Hénon-Heiles
model. Numerical computations were carried out with accuracy up to 14 digits by means of employing
the so-called method of central points. Observe that a similar method has been used in reference [26].

Based on the Lyapunov exponents, the ergodic properties of dissipative dynamical systems with
a few degrees of freedom were numerically studied with the Lorenz system. The system exhibited
the exponents spectrum of the (+, 0, −) type, and the exponents had the same values for the orbits
beginning from an arbitrary point on the attractor. It means that the ergodic property of a general
dynamical system can be quantified by a spectrum of the characteristic Lyapunov exponents. Below,
a brief description of the used method is presented.

Let a point x0 belong to the attractor A of a dynamical system. An evolution trajectory of the point
x0 is referred to as a real/true trajectory. A positive quantity ε, being significantly less than the attractor
dimension, is chosen. Furthermore, an arbitrary perturbed point x̃0 is chosen in a way to satisfy
‖x̃0 − x0‖ = ε. The evolution of points x0 and x̃0 is considered in a short time interval T, and new
points are denoted by x1 and x̃1, respectively. A vector Δx1 = x̃1 − x1 is called the perturbation vector.
The first estimate of the exponent is found with the use of the following formula

λ̃1 =
1
T

ln
||Δx1||

ε
. (8)

The time interval T is chosen in a way to keep the amplitude of perturbation less than the
linear dimensions of the phase space nonhomogenity and the attractor dimension. The normalized
perturbation vector Δx′1 = εΔx1/||Δx1|| is taken, and a new perturbed point x̃′1 = x1 + Δx′1 is defined.
Finally, the so far described procedure is implemented taking into account x1 and x̃1 instead of x0 and
x̃0, respectively.

After repeating this procedure M times, λ is defined as an arithmetic average of the estimates λ̃l
obtained on each computational step:
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λ ∼= 1
M

M

∑
i=1

λ̃l =
1
M

M

∑
i=1

1
T

ln
||Δxi||

ε
=

1
MT

M

∑
i=1

ln
||Δxi||

ε
. (9)

In order to achieve a higher estimate, one can take large M and carry out computations for
a different initial point x0. This method can be used when the equations governing the system
evolution are known. It should be noted, however, that these equations are usually unknown for the
experimental data.

To compute the Lyapunov spectrum numerically, one can use another approach generalizing the
Benettin’s algorithm. In general, it is necessary to follow a few trajectories of the perturbed points
instead of only one, fundamental trajectory (the number of perturbed trajectories is equal to the
dimension of the phase space). For this purpose, a numerical approach based on derivation of the
dynamic equations in variations can be used [27]. Since the largest LE plays a crucial role in the
evolution of all perturbed trajectories, it is necessary to carry out orthogonalization of the perturbation
vectors on each step of the algorithm. In what follows, a procedure of numerical estimation of the
Lyapunov spectrum of a dynamical system is briefly described. To simplify, the considerations are
limited to 3D systems.

Let r0 stand for a point of the chaotic attractor and ε be a fixed positive number, small in
comparison to linear dimensions of the attractor. The points x0, y0 and z0 are chosen so that the
perturbation vectors Δx0 = x0 − r0, Δy0 = y0 − r0, Δz0 = z0 − r0 have the length ε and are mutually
orthogonal. After a certain small time interval T, the points r0, x0, y0 and z0 are transformed into
points r1, x1, y1 and z1, respectively. Then, new perturbation vectors Δx1 = x1 − r1, Δy1 = y1 − r1,
Δz1 = z1 − r1 are considered. The orthogonlization using the well-known (in linear algebra)
Gramm–Schmidt method is carried out. After this step, the obtained vectors of perturbation
Δx′′

1 , Δy′′
1 , Δz′′

1 become orthonormalized, i.e., they are mutually orthogonal and have the unit length.
Then, the renormalization of the perturbation vectors is carried out again to get lengths of the vectors
in terms of the magnitude ε:

Δx′′′
1 = Δx′′

1 × ε, Δy′′′
1 = Δy′′

1 × ε, Δz′′′
1 = Δz′′

1 × ε (10)

. We take the following perturbed points:

x′1 = x1 + Δx′′′
1 , y′1 = y1 + Δy′′′

1 , z′1 = z1 + Δz′′′
1 (11)

Next, the process is repeated, i.e., instead of the points r0, x0, y0 and z0, the points r1, x′1, y′1 and z′1
are taken into account, respectively.

Repeating the so far described procedure M times, one finds:

S1 = ∑M
k=1 ln ‖Δx′k‖, S2 = ∑M

k=1 ln ‖Δy′k‖, S3 = ∑M
k=1 ln ‖Δz′k‖. (12)

Then, a spectrum Λ = {λ1, λ2, λ3} of LEs can be found by the following formulas:

λi =
Si

MT
, i = 1, 2, 3 (13)

In this method, the choice of time interval T is crucial. If one takes too large time interval T,
then all perturbed trajectories are inclined in the direction corresponding to the maximum LE, and
hence the obtained results are not reliable.

3.2. Wolf Method

In Reference [1], a novel algorithm to find nonnegative Lyapunov exponents by using a time
series has been proposed. It has been illustrated that the Lyapunov exponents are associated with
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either exponential divergence or convergence of the neighborhood orbits in the considered phase space.
In general, the method is applicable only when analytical governing equations are known, and it is
based on tracing the large time-consuming increase in the number of elements in a small volume of
an attractor.

We defined a Lyapunov exponent and a spectrum of Lyapunov exponents, and then illustrated
how the system dynamics depends on the number of exponents with different signs in the spectrum.
Our approach included reconstruction of an attractor and investigation of orbital divergence on the
possibly smallest distances using the approximate Gramm–Schmidt orthogonalization procedure in the
reconstructed phase. In order to estimate the largest Lyapunov exponent, a long trace of time evolution
of the chosen pair of the neighborhood orbits was carried out. Note that a particular attention should
be paid, since the reconstructed attractor may contain points belonging to different attractors.

Two versions of the method are proposed. The first one includes the so-called fixed evolution
time, where the time interval associated with the change of the points is fixed.

The main idea of the proposed method is that the largest Lyapunov exponent is computed based
on one time series and used when the equations describing the system evolution are unknown and
when it is impossible to measure all remaining phase coordinates.

Consider a time series x(t), t = 1, . . . , N of one coordinate of a chaotic process measured in equal
time intervals. The method of mutual information allows one to define the time delay τ, whereas
the method of false neighbors yields the dimension of the embedded space m. As a result of the
reconstruction, one gets a set of points of the space Rm:

xi = (x(i), x(i − τ), . . . , x(i − (m − 1)τ)) = (x1(i), x2(i), . . . , xm(i)), (14)

where i = ((m − 1)τ + 1), . . . , N.
We take a point from the series (3) and denote it by x0. In the series (3), one can find a point

x̃0, where the relation ||x̃0 − x0||= ε0 < ε holds, and where ε is a fixed quantity, essentially less than
the dimension of the reconstructed attractor. It is required that the points x0 and x̃0 are separated in
time. Then, time evolution of these points is observed on the reconstructed attractor until the distance
between points achieves εmax. The new points are denoted by x1 and x̃1, the distance is ε′0, and the
associate interval of time evolution is denoted by T1.

After that, we again consider the Sequence (14) the find the point x̃′1, located close to x1,
where ||x̃′1 − x1|| = ε1 < ε holds. Vectors x̃1 − x1 and x̃′1 − x1 should possibly have the same direction.
Then, the procedure is repeated for points x1 and x̃′1.

By repeating the above procedure M times, the largest Lyapunov exponent is estimated:

λ ∼=
M−1

∑
k=0

ln(ε′k/εk)/
M

∑
k=1

Tk. (15)

This method has been employed in the present research to test the accuracy of results by using the
classical and known spectra of the Lyapunov exponents of the Hénon map, Rössler equations, chaos and
hyperchaos exhibited by the Lorenz system, and McKay-Glass equation [28]. In addition, it has been also
employed to study the Belousov–Zhabotinsky reaction [29] and the Couette-Taylor flow [30].

Wolf et al. [1] have pointed out certain restrictions on the choice of the embedding dimension
and the time required for the attractor reconstruction to achieve the most accurate estimates of the
Lyapunov exponents. Using the Rössler attractor [16] and the Belousov–Zhabotynskiy reaction [29],
the authors have demonstrated the effects of the time change during the attractor reconstruction,
the time of evolution of the system between steps of the time change, the maximum length of the
replacement vector and the minimum length of the exchange vector on the values of the estimated
largest Lyapunov exponent. Furthermore, it has been shown that variation (between 0.5 and 1.5) of the
time of the system evolution leads to reliable estimates of the studied three chaotic attractors. Also,
some data requirements that make it possible to obtain the most accurate estimate of the Lyapunov
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exponent, such as the use of small length scale data as well as some restrictions on the presence of
noisy perturbations in the data (static and dynamic), have been discussed.

The proposed algorithms can be used to detect chaos as well as to compute its parameters also for
the experimental data with a few positive exponents. Furthermore, numerical studies have presented
the topological complexity of chaos (the Lorenz attractor) and have shown that the deterministic chaos
can be distinguished from white noise (the Belousov–Zhabotinsky reaction).

3.3. Rosenstein Method

Despite this method is simple in realization in comparison to the previous ones and it is
characterized by high computational speed, it does not directly yield λ1, but rather the function:

y(i, Δt) =
1

Δt
〈
ln dj(i)

〉
, dj(i) = minxj ||xj − x′j||, (16)

where xj is a given point, and x′j denotes its neighbor.
The algorithm is based on the relationship between dj and the Lyapunov exponents:

dj(i) ≈ eλ1(iΔt). The largest Lyapunov exponent is computed by estimating the inclination of the
most linear part of the function. It should be mentioned, however, that finding this linear part does not
belong to easy tasks.

3.4. Kantz Method

The algorithm proposed by Kantz [5] computes the LLE by searching all neighbors in vicinity of the
reference trajectory and estimates the average distance between neighbors and the reference trajectory
as a function of time (or a relative time multiplied by the data sampling frequency). The algorithm is
based on the following formula:

S(τ) =
1
T

T

∑
t=1

ln

(
1

|Ut| ∑
i∈Ut

|xt+τ − xi+τ |
)

(17)

where xt stands for an arbitrary signal point; Ut is a neighborhood of xt; xi is a neighbor of xt;
τ—relative time multiplied by the sampling frequency; T—sample size; S(τ)—stretching factor in
the region of a linear growth indicating a curve whose slope is equal to LE, i.e., eλτ ∝ eS(τ). However,
the assumption of a linear growth introduces new errors. Despite the fact that the method is useful and
accurate for systems with known LEs, the choice of parameters and the region where the mentioned
linear growth occurs is, in practice, arbitrary.

The method yields correct results if the value of the Lyapunov exponent is known a priori,
and hence the space with the tangent equal to that value can be chosen.

3.5. Computation of LLE Based on Synchronization of Nonnegative Feedback

In reference [7], the method of LLE computation based on synchronization of coupled identical
systems has been proposed. The following k-dimensional discrete system:

y′i = f (yi) (18)

has been considered, where y ∈ Rk, i ∈ (1, 2, . . . , k). The supplemental system has been proposed in
the following way:

x′i = f (yi + Δyi)

y′i = f (yi)

Δy′i = [ f (yi + Δyi)− f (yi)] exp(−p)
(19)
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where x, y, Δy ∈ Rk. Evolution of k-dimensional system is governed by k of LLEs. Consequently,
synchronization of the perturbed and nonperturbed systems (19) is guaranteed by the following inequality:

p > λmax (20)

where λmax stands for LLEs of the studied systems (18).
Figure 1 shows synchronization between perturbed (first equation of (19)) and nonperturbed

(second equation of (19)) systems for alogistic map. The synchronization starts at p equal to λ, and this
value represents the largest Lyapunov exponent of the system.

Figure 1. Synchronization of perturbed and nonperturbed systems in the case of a logistic map (λ points
to the largest Lyapunov exponent value).

In reference [8], systems with excitations have been studied. The authors have proposed the
following way of coupling of identical systems:

.
x = f (x)

.
y = f (y) + d(x − y)

(21)

The application of this approach is limited to the systems with known equations of evolutions,
and the way of introducing the coupling of two identical systems depends on the type of the
considered system.

3.6. Jacobi Method

This method has been proposed in references [31,32]. The main idea is to use an algorithm,
the scheme of which is illustrated in Figure 2. A sphere of small radius ε is taken. After a few iterations
m, a certain operator Tm transforms this sphere into an ellipsoid having a1, . . . , ap half-axes. The sphere
is stretched along the axes a1, . . . , as > ε, where s is the number of positive LEs. For sufficiently small
ε, the operator Tm is close to the sum of the shear operator and the linear operator A. The LLEs are
computed as averaged eigenvalues of the operator A on the whole attractor.

A vector ς j is chosen, and a set
{

ςki

}
(i = 1, . . . , N) of i-th neighborhood vectors is found.

The following set of vectors yi ≡ ςki
− ς j, where ‖yi‖ ≤ ε, is taken. After m successive iterations,

the operator Tm transforms the vector ς j into ς j+m, and the vector ςki
into ςki+m

. Eventually, the vectors
yi are transformed into

yi+m = ςki+m
− ς j+m
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Assuming that the radius ε is sufficiently small, one can introduce the operator Aj as follows

yi+m = Ajyi

The operator Aj describes the system in variations. To estimate the operator A, the least-square
method can be employed:

min
Aj

S = min
Aj

1
N

N

∑
i=0

(
yi+m − Ajyi

)2

This yields the following system of equations of the dimension n × n:

AjV = C, (V)kl =
1
N

N

∑
i=1

yk
i yl

i

(C)kl =
1
N

N

∑
i=1

yk
i + myl

i

where V, C are the matrices of the dimension n × n, yk
i stands for the k-th component of vector yi,

and yk
i + m is the k-th component of the vector yi + m. If A is a solution of the equations, then the LEs

can be found in the following way

λi = lim
n→∞

1
nτ

n

∑
j=1

ln Aje
j
i

where
{

ej
}

is a set of basic vectors in a tangent space ς j.

 

Figure 2. Transformation of a sphere of initial states into a counterpart ellipsoid during the
system evolution.

The algorithm can be realized in a way similar to the computation of LEs of the ODEs
given analytically.

Let us choose an arbitrary basis {es} and then follow the changes in the length of the
vector Ajes. As the vectors Ajes grow and their orientations change, it is necessary to perform
their orthogonalization and normalization by using, for example, the Gramm–Schmidt procedure.
The procedure is then repeated for the new basis.

The mentioned method allows one to estimate a spectrum of nonnegative LEs. However, it has
a serious disadvantage—it is highly sensitive to noise and errors.
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3.7. Modification of the Neural Network Method

We have proposed a novel counterpart method to compute LEs based on a modification of the
neural network method (see Figure 3).

A single-layer feed forward neural network presented in Figure 3 has multiple input neurons,
a layer of hidden neurons and one output neuron. The following notation is employed: aij—weight of
the connection between the i-th input neuron and the j-th hidden neuron; bi—weight of connection
between the i-th hidden neuron and the output neuron. To realize the neural network algorithm,
the following criteria were taken into account:

(i) the network is sensitive to the input information (information is given in the form of real numbers);
(ii) the network is self-organizing, i.e., it yields the output space of solutions only based on the inputs;
(iii) the neural network is a network of straight distribution (all connections are directed from input

neurons to output neurons);
(iv) owing to the synapses tuning, the network exhibits dynamic couplings (in the learning process,

the tuning of the synaptic coupling takes place (dW/dt �= 0), where W stands for the weighted
coefficients of the network).

 

Figure 3. Single-layer feed forward neural network, which consists of input neurons, a layer of hidden
neurons and one output neuron.

The hidden layer of neurons contains the hyperbolic tangent, which plays a role of an activation
function (Figure 4). A derivative of the hyperbolic tangent is described by a quadratic function, as it
is in the case of a logistic function. However, contrarily to the logistic function, the space of the
values of the hyperbolic tangent falls within the interval (−1; 1). This results in higher convergence in
comparison to the standard logistic function.

 

Figure 4. Transition function.
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Prognosis of x̂k of a scalar time series xk is made by employing the following formula

x̂k =
n

∑
i=1

bitanh

(
ai0 +

d

∑
j=1

aijxk−j

)
(22)

where n stands for the number of neurons, d is the number of the searched LE, aij stands for the
n × (d + 1) matrix of coefficients, and bi is the vector of the length n. The matrix aij contains the
coupling forces with respect to the network input, the vector bi is used to control the input of each
neuron to the network output, whereas the vector ai0 is used for relatively simple learning based on
data with nonzero averaged value.

Weights a and b are chosen in a probabilistic way, and the dimension of the searched solution
is decreased in the process of learning. The associated Gaussian is chosen in a way to have initial
standard distribution 2−j, centered with respect to zero in order to promote the most recent time
delays (small values of j) in the phase space. The coupling forces are chosen in a way to minimize the
averaged one step mean square error of a forecast:

e =
∑c

k=d+1(x̂k − xk)
2

c − d
(23)

During the training of the network, sensitivity of the output is defined by computing partial
derivatives of all averaged points of the time series in each time step xk−j:

Ŝ(j) =
1

c − j

c

∑
k=j+1

∣∣∣∣∣ ∂x̂k
∂xk−j

∣∣∣∣∣ (24)

In the case of the network given by (22), the partial derivatives have the following form:

∂x̂k
∂xk−j

=
n

∑
i=1

aijbisec h2

(
ai0 +

d

∑
m=1

aimxk−m

)
(25)

The largest value j is the optimal embedding dimension, and the key role is played by Ŝ(j) as in
the false nearest neighbors method. The individual values of Ŝ(j) yield a quantitative estimate of the
importance of each time step using the associated terms of the autocorrelation function or coefficients
of the associated linear model.

The weights of the trained neural network are substituted to the matrix of solutions, and the input
data are used to define the initial state. The computation of the spectrum is realized by employment of
the generalized Benettin’s algorithm based on the obtained system of equations.

4. Wavelet Methods

Gauss Wavelets

In the majority of engineering problems, the Fourier analysis is insufficient, since it deals with
the averaged spectrum of the whole studied vibration signal and presents only a general picture of
the signal. On the contrary, wavelets play a role of a “microscope” which allows one to observe the
spectrum at each time instant, and detect births/deaths of the frequencies in time.

A wavelet transform of a 1D signal is realized with respect to a basis being usually a soliton-like
function with given properties. The basis is obtained by displacement and tension/compression of
a function called a wavelet.

In the present work, the Gauss wavelets, defined as derivatives of the Gauss function, were used.
Higher-order derivatives have many zero moments, and hence they allow one to obtain information
about higher-order features hidden in the investigated signal.
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The 8th order Gauss wavelets of the of the following form were employed:

g8(x) = −
(

105 − 420x2 + 210x4 − 28x6 + x8
)

exp
−x2

2 (26)

5. Analysis of Classical Dynamical Systems by LEs and Gauss Wavelets

In this section, simple classical systems (Figures 5–9) have been studied with emphasis put on
a comparison of the LEs (Tables 1–5) obtained using the Wolf, Rosenstein, Kantz and neural network
methods. The convergence of the mentioned methods, depending on the number of iteration steps,
has been illustrated and discussed (Tables 6–10). The Benettin method has been used as a reference
because for most systems, there are no analytically calculated spectra of Lyapunov exponents.
Moreover, the Benettin method calculates Lyapunov exponents based on the system equations.

 
(a) 

  
(b) (c) 

  
(d) (e) 

 
(f) 

Figure 5. Nonlinear characteristics of the oscillation signal: (a) Time histories; (b) Time window;
(c) Chaotic attractor; (d) Fourier frequency spectrum; (e) Wavelet spectrum; (f) Dependence of LLE on
the control parameter.
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(a) 

  
(b) (c) 

  
(d) (e) 

  
(f) 

 
(g) 

Figure 6. Characteristics of the Hénon map: (a) Time history; (b) Time window; (c) Chaotic attractor;
(d) Fourier frequency spectrum; (e) Wavelet spectrum; (f) Dependence of LLE on the control parameter;
(g) Lyapunov exponents plane (Hénon map).
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(a) 

  
(b) (c) 

 
(d) (e) 

  

 
(f) 

Figure 7. Cont.
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(g) 

Figure 7. Signal characteristics: (a) Time history; (b) Time window; (c) Chaotic attractor; (d) Fourier
frequency spectrum; (e) Wavelet spectrum; (f) Dependence of LLE on the control parameter;
(g) Lyapunov exponents plane (generalized Hénon map).

 
(a) 

  
(b) (c) 

 
(d) (e) 

Figure 8. Cont.
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(f) 

  

 
(g) 

Figure 8. Signal characteristics: (a) Time history; (b) Time window; (c) Chaotic attractor; (d) Fourier
frequency spectrum; (e) Wavelet spectrum; (f) Dependence of LLE on the control parameter;
(g) Lyapunov exponents plane (Rössler attractor).
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Figure 9. Signal characteristics: (a) Time history; (b) Time window; (c) Chaotic attractor; (d) Fourier
frequency spectrum; (e) Wavelet spectrum; (f) Dependence of LLE on the control parameter;
(g) Lyapunov exponents plane (Lorenz attractor).

5.1. Logistic Map

A logistic map describes how the population changes with respect to time:

Xn+1 = RXn(1 − Xn) (27)

Here, Xn takes the values from 0 to 1 and presents the population in the n-th year, whereas X0

denotes the initial population (in the year 0); R is a positive parameter characterizing an increase
in the population (computations were carried out for R = 4). The first Lyapunov exponent and the
Kaplan–Yorke dimension have been estimated by Sprott [33,34]. He has obtained: λ1 = 0.693147181,
and the Kaplan–Yorke dimension: 1.0.

Figures 5–9 report the following results: (a) signal; (b) signal window; (c) chaotic attractor; (d)
Fourier power spectrum; (e) Gauss wavelet of the 8th order, described in Section 4; (f) LLE change

depending on the system control parameter; (g) LEs on the control parameters plane (where:

g
—only

negative Lyapunov exponents, —one positive exponent, —two positive exponents, —three
positive exponents).

The power spectrum is noisy and it is not possible to distinguish the dominating frequency.
A similar situation is exhibited by the Gauss wavelet, where a large set of frequencies is visible.
Dynamics of LLE changing increases for r > 3.

As can be seen in Table 1, all computational methods were compared with Benettin’s original
results. Good coincidence was exhibited by the neural network method, the Rosenstein method,
the Kantz method, and the method of synchronization. The Wolf method gave decreased/increased
value of LLE in comparison to the original value.
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Table 1. Spectrum of Lyapunov exponents and LLEs computed by different methods (logistic map).

LE Spectrum

Benettin Method Neural Network

(LEs): 0.69315
Dimension Kaplan–Yorke (DKY): 1

Kolmogorov-Sinai entropy (KSE): 0.69315
Phase volume compression (PVC): 0.69315

LEs: 0.69290
DKY: 1

EKS: 0.69290
PVC: 0.69290

LLE

Wolf Method Rosenstein Method Kantz Method Method of Synchronization

LLE: 0.99683 LLE: 0.690553 LLE: 0.69810 LLE: 0.696

5.2. Hénon Map

The Hénon map takes a point (Xn, Yn) and maps it into another point by the following formulas:

Xn+1 = 1 − aX2
n + Yn,

Yn+1 = bXn.
(28)

The following parameters are fixed for numerical experiments: a = 1.4, b = 0.3. Since the
Equations (28) do not correspond to a real object, the parameters are replaced with fixed values.
Sprott [34] has computed the Lyapunov spectrum and the Kaplan–Yorke dimension of the map
using the Benettin method [27] by solving (28). He has obtained the following LEs: λ1 = 0.419217,
λ2 = −1.623190, and the Kaplan–Yorke dimension: 1.258267.

Similarly to the logistic map, the power spectrum exhibits a uniform noisy shape. However,
one can distinguish a dominating frequency (ω1 ≈ 0, 45). This frequency is also visible on the wavelet
spectrum as a region of the largest amplitudes along the whole signal (brighter regions in the graph).
Plots of the change in the LLE correlate with bifurcation diagrams for the same interval of changes
in the parameters a and b. Dynamics of the LLE changes increases with the increase in both control
parameters. Starting with the graphs of LEs for a given set of control parameters, the system mainly
remains in a periodic regime, but it exhibits chaotic dynamics for large values of the control parameters.

Beginning from the results shown in Table 2, the majority of the employed computational methods
yielded good results. However, the most accurate results were obtained by the neural network
method (for whole spectrum of LEs), the Rosenstein method, the Kantz method, and the method of
synchronization (in the case of LLEs). The Wolf method gave decreased estimated values of the LLEs.

Table 2. Lyapunov exponents spectrum and LLEs computed by different methods (Hénon map).

Spectrum of LLEs

Benettin Method Neural Network

LEs: 0.41919; −1.62316
DKY: 1.25826
EKS: 0.41919

PVC: −1.20397

LEs: 0.41919; −1.62316
DKY: 1.25826
EKS: 0.41919

PVC: −1.20397

LLEs

Wolf Method Rosenstein Method Kantz Method Synchronization Method

LLE: 0.38788 LLE: 0.414218 LLE: 0.41912 LLE: 0.40608
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Table 3. Lyapunov exponents spectrum and LLEs computed by different methods (generalized
Hénon map).

Spectrum of LEs

Benettin Method Neural Network

LEs: 0.27628; 0.25770; −4.04053
DKY: 2.13215
EKS: 0.53397

PVC: −3.50656

LEs: 0.29251; 0.27104; −4.04583
DKY: 2.13929
EKS: 0.56355

PVC: −3.48227

LLEs

Wolf Method Rosenstein Method Kantz Method Synchronization Method

LLE: 0.45214 LLE: 0.27930 LLE: 0.26601 0.27250

Table 4. Lyapunov exponents spectrum and LLEs computed by different methods (Rössler attractor).

Spectrum of LEs

Benettin Method Neural Network

LE: 0.07135; 0.00000; −5.39420
DKY: 2.01323
KSE: 0.07135

PVC: −5.32285

LE: 0.07593; −0.00060; −0.78178
DKY: 2.09635
EKS: 0.07593

PVC: −0.70646

LLEs

Wolf Method Rosenstein Method Kantz Method

LLE: 0.05855 LLE: 0.0726 LLE: 0.0774

Table 5. Lyapunov exponents spectrum and LLEs computed by different methods (Lorenz attractor).

Spectrum of LEs

Benettin Method Neural Network Method

LE: 0.90557; 0.00000; −14.57214
DKY: 2.06214
EKS: 0.90557

PVC: −13.66656

LE: 0.9490; 0.0610; −13.9101
DKY: 2.07261
EKS: 1.0101

PVC: −12.9000

LLEs

Wolf Method Rosenstein Methhod Kantz Method

LLE: 0.81704 LLE: 0.836 LLE: 0.807185

Table 6. Fourier power spectra (a) and Gauss wavelet spectra (b) obtained for Δt = 1, 2 and the LLEs
computed by different methods (logistic map).

Δt = 1 Δt = 2

Fourier Power Spectra (a)

  

Gauss Wavelet Spectra (b)

115



Entropy 2018, 20, 175

Table 6. Cont.

Δt = 1 Δt = 2

 

LLE (Wolf)

0.99961 1.00014

LLE (Rosenstein)

0.69231 0.69065

LLE (Kantz)

0.6981 0.69005

LLE (Synchronization)

0.69400 0.69330

LEs (Benettin)

LES: 0.69318
DKY: 1.00000
KSE: 0.69318
PVC: 0.69318

LES: 0.69400
DKY: 1.00000
KSE: 0.69400
PVC: 0.69400

LEs (Neural Network)

LES: 0.69290
DKY: 1

SE: 0.69290
PVC: 0.69290

LES: 0.69107
DKY: 1.00000
KSE: 0.69107
PVC: 0.69107

Table 7. Fourier power spectra (a) and Gauss wavelet spectra (b) obtained for Δt = 1, 2 and the
computed LLEs by different methods (Hénon map).

Δt = 1 Δt = 2

Fourier Power Spectra (a)

  

Gauss Wavelet Spectra (b)
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Table 7. Cont.

Δt = 1 Δt = 2

 

LLE (Wolf)

0.4158 0.39734

LLE (Rosenstein)

0.41637 0.400635

LLE (Kantz)

0.41912 0.41478

LLE (Synchronization)

0.40608 0.40510

All LEs (Benettin)

LEs: 0.41919; −1.62316
DKY: 1.25826
EKs: 0.41919

PVC: −1.20397

LEs: 0.41917; −1.62315
DKY: 1.25825
EKs: 0.41917

PVC: −1.20397

All LEs (Neural Network)

LEs: 0.41919; −1.62316
DKY: 1.25826
KSE: 0.41919

PVC: −1.20397

LEs: 0.40924; −1.61321
DKY: 1.25368
KSE: 0.40924

PVC: −1.20397

Table 8. Fourier power spectra (a) and Gauss wavelet spectra (b) obtained for Δt = 1, 2 and the
computed LLEs by different methods (generalized Hénon map).

Δt = 1 Δt = 2

Fourier Power Spectra (a)

  

Gauss Wavelet Spectra (b)
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Table 8. Cont.

Δt = 1 Δt = 2

LLE (Wolf)

0.45214 0.46706

LLE (Rosenstein)

0.27930 0.27459 (0.62515)

LLE (Kantz)

0.26601 0.3359

LLE (Synchronization)

0.27250 0.27200

All LEs (Benettin)

LEs: 0.27628; 0.25770; −4.04053
DKY: 2.13215
KSE: 0.53397

PVC: −3.50656

LEs: 0.27487; 0.25631; −4.03774
DKY: 2.13155
EKS: 0.53118

PVC: −3.50656

All LEs (Neural Network)

LEs: 0.29251; 0.27104; −4.04583
DKY: 2.13929
KSE: 0.56355

PVC: −3.48227

LEs: 0.26304; 0.24387; −4.14321
DKY: 2.12235
KSE: 0.50691

PVC: −3.63630

Table 9. Fourier power spectra and Gauss wavelet spectra obtained for Δt = 0.05, 0.1, 0.15, 0.2 and
the computed LLEs by different methods (Rössler attractor).

Δt = 0.05 Δt = 0.1 Δt = 0.15 Δt = 0.2

Fourier Power Spectrum

    

Gauss Wavelets

LLE (Wolf)

0.07283 0.05855 0.01731 0.02544

LLE (Rosenstein)

0.083 0.0726 0.06553 0.606

LLE (Kantz)

0.0234 0.0208 0.02133 0.0215

All LEs (Benettin)

LES: 0.07156; 0.00000;
−5.38768

DKY: 2.01328
KSE: 0.07156

PVC: −5.31612

LES: 0.06959; 0.00000;
−5.21949

DKY: 2.01333
KSE: 0.06959

PVC: −5.14990

LES: 0.06789; 0.00000;
−4.34385

DKY: 2.01563
KSE: 0.06789

PVC: −4.27596

LES: 0.06205; −0.00001;
−2.84111

DKY: 2.02184
KSE: 0.06205

PVC: −2.77906

All LEs (neural network)

LES: 0.06259; −0.07984;
−0.32528

DKY: 1.78396
KSE: 0.06259

PVC: −0.34253

LES: 0.07340; −0.02681;
−0.23525

DKY: 2.19807
KSE: 0.07340

PVC: −0.18865

LES: 0.07374; 0.00057;
−0.36909

DKY: 2.20135
KSE: 0.07432

PVC: −0.29477

LES: 0.07983; −0.02816;
−0.91182

DKY: 2.05667
KSE: 0.07983

PVC: −0.86015
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Table 10. Fourier power spectra and Gauss wavelet spectra obtained for Δt = 0.005, 0.01, 0.015, 0.02
and the computed LLEs by different methods (Lorenz attractor).

Δt = 0.005 Δt = 0.01 Δt = 0.015 Δt = 0.02

Fourier Power Spectrum

    

Gauss Wavelet

   

LLE (Wolf)

0.9721 0.81704 0.867 0.712

LLE (Rosenstein)

0.876 0.836 0.858 0.859

LLE (Kantz)

0.898 0.9 0.762667 0.84

LES (Benettin)

LES: 0.90632; 0.00000;
−14.57297

DKY: 2.06219
KSE: 0.90632

PVC: −13.66666

LES: 0.90523; 0.00000;
−14.57179

DKY: 2.06212
KSE: 0.90523

PVC: −13.66656

LES: 0.90551; 0.00000;
−14.57163

DKY: 2.06214
KSE: 0.90551

PVC: −13.66613

LES: 0.90596; 0.00000;
−14.57086

DKY: 2.06218
KSE: 0.90596

PVC: −13.66490

LES (Neural Network)

LES: 0.91677; 0.04404;
−6.464

DKY: 2.14864
EKS entropy: 0.96081

PVC: 0.89617

LE: 0.9490; 0.0610;
−13.9101

DKY: 2.07261
EKS: 1.0101

PVC: −12.9000

LES: 0.8913; −0.3508;
−14.3577

DKY: 2.03765
EKS: 0.8913

PVC: −13.8172

LES: 0.7485; −0.05558;
−23.3505

DKY: 2.0296
EKS: 0.7485

PVC: −22.65758

5.3. Hyperchaotic Generalised Hénon Map

To obtain the hyperchaotic Hénon map, one needs to take a point (Xn, Yn, Zn) and map it into the
following one:

Xn+1 = a − aY2
n − bZn,

Yn+1 = Xn,
Zn+1 = Yn.

(29)

The computations were carried out for the following fixed parameters: a = 3.4, b = 0.1.
The Lyapunov spectrum reported in reference [14] is: 0.276; 0.257; 4.040.

One can distinguish a large number of frequencies in the power spectrum. Frequencies with the
largest amplitude are located in the interval [0.15; 0.3] (frequencies ω1 − ω4), but the remaining part of
the spectrum is noisy. This interval corresponds to the brightest region on the Gauss wavelet, which is
correlated with the values of the power spectrum. Changes in LLEs coincide with the bifurcation
diagrams constructed for the same intervals of changes in the control parameters a and b. Dynamics of
LLEs increases with the increase in the control parameters. As in the case of the Hénon map, the chart of
LEs for the selected control parameters exhibits, for a majority of studied parameters, periodic dynamics.
It transits into chaos for a ≈ 1.4, and is almost suddenly shifted into hyperchaos (2 positive LEs).
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Good results were obtained by the Benettin, Rosenstein and synchronization methods (divergence
from the third decimal place). The neural network yielded slightly increased estimates of two first
LEs, whereas the third LE was estimated almost exactly. The Kantz method gave a decreased result in
comparison to reference data. The Wolf method resulted in the largest error.

5.4. Rössler Attractor

The following Rössler system of ODEs was investigated:⎧⎪⎨⎪⎩
.
x = −y − z,
.
y = x + ay,

.
z = b + z(x − c),

(30)

and the computations were carried out for the following fixed parameters a = b = 0.2 and c = 5.7.
The original study yielded the Lyapunov spectrum: 0.0714, 0, −5:3943, and the Kaplan–Yorke

dimension equal to 2.0132.
The power spectrum contains the fundamental frequency ω1, which is accompanied by damped

bursts (frequencies ω2 − ω10). In the whole time interval, the Gauss wavelet exhibits the brightest
region of the fundamental frequency with darker peaks going to zero. Thus, the picture is analogous
to the power spectrum. Contrarily to the studied maps, the bifurcation diagrams have a more
complex structure. However, there is still correlation with the changes in LLEs for the corresponding
control parameters. The parameter b has the smallest influence on the change in LLE. Graphs of
LLEs also exhibit a more complex structure. Borders of different vibration kinds have complex
forms, which illustrates the increase in the system complexity. Aside from the chaos and hyperchaos
zones, there are drops indicating 3 positive LEs. Amabili et al. [35] have suggested to call all chaotic
oscillations, for which at least two positive Lyapunov exponents exist, by hyperchaotic.

As far as Table 4 is considered, the best results were yielded by the Benettin and Rosenstein
methods. The method of neural networks gave very good results in the case of estimates of two
first LEs, but underestimated the third exponent. The Wolf method yielded smaller value of the
first exponent compared to the reference data. The most underestimated results were given by the
Kantz method.

The carried out numerical experiments showed that changing the sampling frequency did not
affect the power spectrum and wavelet spectrum. This was also validated by results obtained by the
Benettin, neural networks, and Rosenstein methods, which yielded the results very close to original
ones. The Kantz method gave underestimated results for different sampling frequency, correlating
with the results obtained for the standard sample size.

5.5. Lorenz Attractor

The system is described by the following ODEs:⎧⎪⎨⎪⎩
.
x = σ(y − x),

.
y = x(r − z)− y,

.
z = xy − bz,

(31)

where r stands for the normalized Rayleigh number (nondimensional number defining fluid behavior
under gradient):

r =
gβΔTL3

νχ
. (32)

In the above equation, the following notation is used: g—gravity of Earth; L—characteristic
dimension of the fluid space; ΔT—temperature difference between fluid walls; ν—kinematic fluid
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viscosity, χ—thermal conductivity of the fluid; β—coefficient of heat fluid extension; σ—Prandtl
number (takes into account heat source property) governed by the following equation

σ =
ν

α
=

ηCp

ℵ , (33)

where: ν = η/ρ—kinematic viscosity, η—dynamic viscosity, ρ—density, α = ℵ
ρCp

—temperature
transfer coefficient, ℵ—heat transfer coefficient, Cp—specific heat capacity under constant pressure;
and ρ—information about the geometry of the convective cell.

The following parameters were fixed: σ = 10.0, r = 28.0, b = 8/3. The original results are:
LEs: 0.9056, 0, −14.5723; the Kaplan–Yorke dimension: 2.06215.

The power spectrum of the attractor decreases uniformly when approaching a finite frequency,
and there are no frequencies with a strongly dominating amplitude. The latter observation has been
also verified by the Gauss wavelet spectrum. The bifurcation diagrams, similar to those for the
Rössler system, exhibit a complex structure, but the correlation to the LLEs change is conserved.
The richest/lowest dynamics of LLE is obtained for changing parameter r/σ. Based on the reported
graphs of LEs, one can conclude that the system dynamics is fully chaotic. There are also narrow
windows of hyperchaotic dynamics.

A comparison of the results reported in Table 5 with the original results exhibits an excellent
coincidence of the Benettin method (original results) and the neural network method (+4.79%).
The Wolf and Rosenstein methods yielded the underestimated results of the LLE value. The worst
estimation has been obtained by Kantz method.

Changing the sampling frequency did not change Fourier and wavelet power spectra. This was
also validated by the Benettin and Rosenstein methods, which yield the results very close to the
original values in spite of the arbitrary choice of the sampling frequency.

6. Concluding Remarks

The analysis of the dynamics of the studied classical system by different methods leads to
a conclusion that the most perspective and useful is the modified method of neural networks [9,10].
It gives excellent convergence to the original results and, as the only one (besides of the Benettin
method), allows to compute the spectrum of all Lyapunov exponents. In addition, very good results
were obtained by the Rosenstein and Kantz methods for all studied systems. However, this method
can be used to estimate only the largest Lyapunov exponents.

As far as the convergence is considered, the Wolf method yielded either over- or underestimated
values of LEs. The method of synchronization worked reasonably well for the maps, but it was not
useful in studying differential equations (the Rössler or Lorenz systems). The mentioned systems
require the use of another type of coupling, which is a drawback of the method.

It should be emphasized that this part of the paper serves as a preliminary study of a more
complicated nonlinear continuous structural system, which is studied in Part 2. The carried out
analysis of the works devoted to feasible methods for computation of Lyapunov exponents shows that
there is no universal, verified, and general method to compute the exact (in the sense of numerics)
values of the Lyapunov exponents. This observation leads to the conclusion that there is a need to
employ qualitatively different methods to check the reliability of “true chaotic results”. Furthermore,
the carried out analysis is a helping tool to study systems of an infinite dimension. Such an analysis is
the subject of the second part of the paper.
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Abstract: In this part of the paper, the theory of nonlinear dynamics of flexible Euler–Bernoulli
beams (the kinematic model of the first-order approximation) under transverse harmonic load and
colored noise has been proposed. It has been shown that the introduced concept of phase transition
allows for further generalization of the problem. The concept has been extended to a so-called
noise-induced transition, which is a novel transition type exhibited by nonequilibrium systems
embedded in a stochastic fluctuated medium, the properties of which depend on time and are
influenced by external noise. Colored noise excitation of a structural system treated as a system with
an infinite number of degrees of freedom has been studied.
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1. Introduction

There are some well-recognized and thoroughly investigated scenarios of transition from regular
to chaotic vibration of deterministic systems, such as the well-known Ruelle–Takens scenario, in which
the key role is played by only three frequencies [1]. It was found that the “noisy” behavior was
exhibited by a “strange attractor” occurred after three successive limit cycle bifurcations. In addition,
a period doubling bifurcation route to chaos as well as a scenario of transition by means of intermittency
were also detected and studied [2]. However, a stochastic character of the matter may induce more
interesting regimes of nonlinear vibrations than that reported in the available literature [3]. Transitions
from one nonlinear state to another are analogous to equilibrium phase transitions and they are met
in nonequilibrium processes under deterministic external inputs. A question arises: Is it possible to
extend the classical transitions to processes in which a key role is played by noise? It implies theoretical
investigations of the transitions induced by noise based on the numerical study. The investigation
of deterministic chaotic multi-dimensional systems has been carried out (e.g., [4–9]). The aim of the
present work was to extend the mentioned approaches to the case of the noise-induced transitions
into chaos.
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The investigation of complex vibrations of continuous systems belongs to challenging problems
of modern dynamics. In the works of Amabili [10,11], distributed mechanical systems have been
considered in the form of a shallow shell of double curvature and a closed cylindrical shell with
16 degrees of freedom. The problem has been solved by Galerkin’s method, but the number of similar
works is limited. In most of the available papers, reduced-model approaches have been used to
simplify these considerations. Namely, one can find numerous papers attempting to significantly
simplify the studied problem of an infinite dimension to one- or two-degree-of-freedom reduced
models. The obtained results are usually validated under strong assumptions and can be treated rather
as qualitative since an increase in the number of modes often yields essentially different outcome.

One of the most important problems encountered when studying chaotic vibrations is the
reliability of the obtained results in the case of true/real chaos. True/real chaos means a reliable
and validated chaotic solution obtained numerically, and is contrary to a possible “false chaotic
solution” caused by the errors associated with the used numerical algorithms as well as time and
spatial steps. A more detailed description can be found in Reference [12]. The majority of investigations
rely on numerical simulations, which may accumulate the errors yielding false results regarding the
estimation of true chaos. Therefore, one of the aims of the present paper was to validate the truth of
chaotic orbits by different numerical methods, since the obtained results may depend on the employed
numerical method.

Proper modeling and the way of solving the spatiotemporal nonlinear dynamics of
Euler–Bernoulli beams and other structural members governed by nonlinear PDEs plays a crucial role
in obtaining true/reliable results. The majority of the research devoted to dynamics of continuous
mechanical systems has its origin in engineering and, depending on the needs, the governing PDEs
should satisfy different requirements regarding the results accuracy and duration of the computations.
For instance, in static problems, it is rather expected to get highly accurate models, which usually
require long computational time since the commonly used program packages are based on the
FEM (finite element method) and/or the FDM (finite difference method) as well as the higher-order
Galerkin methods, the Ritz-type methods, etc. Contrarily, dynamic problems (often) require control,
which means from the point of view of complexity of the governing PDEs that the developed model
should be rather dedicated to the considered task and the nonlinear PDEs should be appropriately
reduced to get reliable and relatively fast numerical results. In general, there is no way to solve the
infinite-dimension nonlinear problems analytically.

Thus, the knowledge and experience about proper modeling of nonlinear vibrations of structural
members as well as the way of getting solution to the governing PDEs with the supplemented boundary
and initial conditions are the key factors in achieving reliable results.

To exhibit the importance of the mentioned problem, we used the classical Lorentz [13] results,
showing that, depending on the time step, the used numerical schemes (Euler and Runge–Kutta)
and Taylor series truncation, one can get the so-called “computational chaos”, i.e., a spurious
solution not validated by either real laboratory experiment or qualitatively different numerical
approaches. As reported by Yee and Sweby [14], even small time steps and the employment of
the classical Euler, Runge–Kutta, predictor-corrector schemes may yield spurious solutions (sometimes
coexisting with true solutions). It may also happen that the decrease in the time step may yield worse
computational results. For instance, Corless et al. [15] pointed out that a true/correct chaotic orbit can
be even suppressed.

Note that the investigation of spatial dynamics of structures involves distribution in time and
space and, usually, the problem should be reduced to that of many nonlinear ODEs and possibly AEs
(algebraic equations). However, the first-mode approximations are usually used to investigate chaotic
vibrations of simple 1D structural members (beams). As mentioned above, this approach requires to
be rather strictly realized in real/engineering problems (see, e.g., [16–19]).
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In the following, the description of numerous works devoted to study nonlinear beams, including
the Euler–Bernoulli beams, is omitted and we refer only to the recent tendency in analyzing nonlinear
dynamics of beams taking into account a stochastic/random excitation.

Bar-Yoseph et al. [20] employed the space-time spectral element method for a nonlinear
Euler–Bernoulli beam using a generalized Galerkin approach as well as a discontinuous mixed Galerkin
method for the temporal discretization. However, they considered only the two first modes.

Based on short datadets, Dunne and Ghanbari [21] predicted extreme exceedance probabilities
matched with experimental investigations of highly nonlinear clamped-clamped beam vibrations
driven by band-limited white noise.

Ge and Xu [22] proposed a stochastic nonlinear dynamical model of vibrations of a flexible beam
under axial excitation, considering random environmental factors. The governing PDEs were simplified
using the stochastic average theory, and then the methods of Lyapunov exponents and boundary
classification with the account of diffusion process were employed to study the stochastic stability of
the trivial solutions. Then, the stochastic Hopf bifurcation was studied. However, the problem was
limited to investigating only one second-order ODE.

Cacciola et al. [23] analyzed the vibrational response of a beam with an edge nonpropagating
crack by means of a stochastic analysis to detect the presence and the location of structural
damage. Numerical investigation was used to show that a cantilever beam exhibited high sensitivity
of the skewness coefficient of the rotational degrees of freedom. However, only third- and
fourth-order statistical quantities of the response were evaluated, and the obtained results were
not validated experimentally.

Sahoo et al. [24] studied nonlinear transverse vibration of a simply-supported traveling
Euler–Bernoulli beam under principal parametric resonance and in presence of internal resonance.
However, the problem was essentially limited to studying only the principal parametric resonance of
the first mode by employing the method of multiple scales.

Lan and Qin [25] investigated the energy harvesting from the horizontal coherent resonance of
a vertical cantilever beam subjected to the vertical base excitation. They demonstrated the horizontal
coherence resonance when the beam was excited by a vertical white noise. However, derivation of the
governing PDEs was not shown, but only the experimental results were reported.

Xu and Ma [26] investigated, in a rigorous mathematical way, the existence of a compact random
attractor for the floating beam equation with strong damping and white noise. However, their results
seem to be mathematically-oriented. The authors did not present any numerical results, and hence
direct application of the obtained results to real problems is rather limited.

It is known and commonly accepted that the main characteristic feature of deterministic chaos
is its essential dependence on the initial conditions. The definition of chaos, initially formulated by
Devaney in 1989 [27], consists of three parts. In addition to the essential dependence on the initial
conditions, there is a chaotic mixing condition referred to as the transitivity and regularity condition,
measured by a density of periodic points. On the other hand, in 1992, Banks et al. [28] proved that the
transitivity and regularity conditions imply the sensitivity to the initial conditions.

A more rigorous chaos definition, given by Knudsen [29] also exists, where a function defined
on a bounded metric space is chaotic if it has a dense orbit and exhibits essential dependence on the
initial conditions.

Owing to chaos definition proposed by Gulick [12], chaos exists if either there is an essential
dependence on the initial conditions or a chaotic function has a positive Lyapunov exponent in its each
point, and hence if it finally does not tend to a periodic or quasi-periodic orbit.

In this paper, similar to in Part 1, we employed chaos definition given by Gulick [12], i.e., we
validated true chaotic solutions by employing computations of the Lyapunov exponents. The obtained
solutions depend on the chosen kinematic hypothesis, boundary and initial conditions, number of
beam partitions in the case of the FDM (finite difference method), the chosen method of solutions to
the Cauchy problems, and the chosen time step.

126



Entropy 2018, 20, 170

To detect true chaotic vibrations when numerically solving the problem devoted to nonlinear
vibrations of a package consisting of two beams with a clearance and subjected to transversal sinusoidal
load and the colored noise, the following complex investigations were employed:

1. Since PDEs are reduced to ODEs (Cauchy problem) using the FDM of second-order accuracy,
their solution essentially depends on the number of beam length partitions (nodes). We need
to find a number of partitions n, for which the solution coincided with the case of using n + 1
partitions. Furthermore, we want to achieve convergence even with respect to time history in
the case of chaotic orbits. In monograph [30] dealing with a similar problem, the convergence
was achieved only with respect to the periodic vibrations, and in the case of chaotic vibrations,
only integral convergence was accepted, i.e., coincidence of power spectra was used to validate
true chaos.

2. The Cauchy problem was solved numerically and it is known that it depends on the chosen
method and the integration step, which is why we chose different methods to validate the
computational results: fourth order the Runge–Kutta method (RK4) and the second order
Runge–Kutta method (RK2) [31], the fourth order Runge–Kutta–Fehlberg method (RKF45) [32,33],
the fourth order Cash–Karp method (RKCK) [34], the eighth order Runge–Kutta–Prince–Dormand
method (RK8PD) [35], the implicit second order Runge–Kutta method (rk2imp), and the fourth
order Runge–Kutta implicit method (rk4imp). The implicit method makes it possible to include
an arbitrary form of the used matrix of the related coefficients, whereas the RKF45, RKCK,
and RK8PD methods allow for the automatic change of the computational step as well as to
control errors introduced by integration.

3. For each of the introduced numbers of partitions of the beam length and the solutions to the
Cauchy problems, the time histories (vibration signals), 2D and 3D phase portraits, the Fourier
power spectra, the Morlet wavelets, snapshots of beam deflections, and Poincaré maps were
constructed. For the chosen signal, a 2D wavelet spectrum was also constructed. The following
mother wavelets were employed: Haar [36]; Shannon–Kotelnikov and Meyer [37]; Daubechies
wavelets from db2 up to db16 [38]; coiflets, simlets, and the Morlet and complex Morlet
wavelets [39]; and the wavelets based on the derivative of the Gauss function of the order
higher than eight. However, the Haar and Shannon–Kotelnikov wavelets were unsuitable for our
purpose. Namely, the first one was badly localized with respect to frequency, and the second one
with respect to time.

The analysis of the wavelet spectra yielded by the Daubechies wavelets, coiflets and simlets
showed that an increase in the filter order results in an increase in the frequency deflection/localization.
The results obtained by the Daubechies wavelets, simlets and coiflets were practically the same, which
validates them. However, their frequency localization was not enough suitable to be reliable while
studying the character of vibrations of the studied continuous mechanical system.

As expected, the results obtained based on the derivative of the Gauss functions yielded an
increase in the frequency resolution with an increase in the derivative order. The power spectra
obtained based on the Meyer wavelet [40,41] (a smoothened variant of the Shannon–Kotelnikov
wavelet) were better localized in the low-frequency band than the Morlet power spectra. However,
the latter ones fit the higher part of the frequency spectrum better. In the following, we give the
results based on the mother Morlet wavelets. In Morlet wavelets, there is a lack of scaling function
ϕ, the function ψ does not have a compact carrier and it is given explicitly. The complex Morlet and
Gauss wavelets exhibit better localization with respect to frequency, but their real counterpart is better
localized in time. Therefore, to study complex vibrations of dynamical continuous systems (beams),
one can use both real and complex Morlet wavelets based on the derivatives of the Gauss functions of
the order higher than sixteen.

4. Since we employed the Gulick [12] definition of chaos, we needed to compute and validate signs
of the largest Lyapunov exponents (LLEs). Spectra of Lyapunov exponents were estimated based
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on the Kantz [42], Wolf [43] and Rosenstein [44] methods. The results were eventually accepted if
they agreed to the fourth decimal place.

Vibrations of geometrically nonlinear Bernoulli–Euler beam (kinematic model of the first
approximation) were studied as a system with many degrees of freedom subjected to colored noise.
White noise states for a general stationary probabilistic process X(t) with a constant spectral density.
The term “white” corresponds to the white light, the spectrum of which combines the whole palette of
colors in the visible spectrum part. The correlation white noise function is governed by the formula
B(t) = σ2δ(t), where σ2 is a constant, and δ(t) stands for the delta function. An essentially nonlinear
character of the behavior of plates and shells under loading by noise pressure has been found in
several works. The Gaussian white noise model is very useful and appropriate to study different
natural processes. The colored noise spectrum corresponds to the distribution of the visible part of the
light spectrum.

2. Problem Statement and the Mathematical Model

We considered a one-layer isotropic elastic beam (Figure 1) representing a 2D area of the space R2

with the attached coordinate system introduced in the following way: in the beam body, a so-called
reference line, also called a middle line, z = 0 was fixed; the axis OX was directed from the left to the
right along the middle line. The beam area Ω, in the given coordinate system, was defined as follows:
Ω = {x ∈ [0; a];−h ≤ z ≤ h}, 0 ≤ t ≤ ∞. The following notation was employed: 2h—beam height,
a—beam length.

 

Figure 1. Scheme of the investigated beam.

The mathematical model was constructed based on the Bernoulli–Euler hypothesis considering
a nonlinear relation between deformations and displacements in the von Kármán form. The governing
PDEs in displacements had the following form [45]:

E2h
{

∂2u
∂x2 + L3(w, w)

}
− 2h γ

g
∂2u
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{
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(
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}
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(1)

where: w(x, t) is the beam deflection, u(x, t) is the displacement along the OX axis, ε is the dissipation
coefficient, q = q(x, t) is the transverse load,

.
q(t) is the colored noise, E is Young’s modulus, γ is the

specific volume beam weight, and g is the gravity of Earth.
The following non-dimensional quantities were introduced:

w = w
2h , u = ua

(2h)2 , x = x
a , λ = a

2h , q = q a4

(2h)4E
,

t = t
τ , τ = a

c , c =
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c .
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The system in Equation (1), taking into account Equation (2), took the following simple
counterpart form

∂2u
∂x2 + L3(w, w)− ∂2u

∂t2 = 0,
1

λ2

{
L2(w, w) + L1(u, w)−

(
1
12

)
∂4w
∂x4

}
− ∂2w

∂t2 − ε ∂w
∂t + q +

.
q = 0,

(3)

(bars over non-dimensional quantities were omitted).
Equation (3) was supplemented by the following boundary conditions: simple support

w(0, t) = w(1, t) = u(0, t) = u(1, t) = ∂2w(0, t)/∂x2 = ∂2w(1, t)/∂x2 = 0 (4)

or clamping

w(0, t) = w(1, t) = u(0, t) = u(1, t) = ∂w(0, t)/∂x = ∂w(1, t)/∂x = 0 (5)

on both beam ends.
In the case of mixed boundary conditions (clamping and simple support):

w(0, t) = w(1, t) = u(0, t) = u(1, t) = ∂w(0, t)/∂x = ∂2w(1, t)/∂x
2
= 0 (6)

The initial conditions were as follows:

w(x, t)|t=0 =
∂w(x, t)

∂t

∣∣∣∣
t=0

= u(x, t)|t=0 =
∂u(x, t)

∂t

∣∣∣∣
t=0

= 0 (7)

3. Methods of Solution

3.1. FDM Method

Wes substituted the differential operators with respect to x in Equations (3)–(7) by difference
operators for the function w(x, t), u(x, t) with the help of the FDM with approximation O

(
h2). PDEs in

Equation (3) were reduced to the following ODEs

..
wi + ε1

.
wi = L1,h(wi, ui),

..
ui = L2,h(wi, ui), i = 0, . . . , n, (8)

where n is the number of partitions along x, c stands for the spatial step, and the difference operators
L1,c and L2,c have the following form:

L1,c(wi, ui) =
1

λ2

(
− 1

12
1
c4 (wi+2 − 4wi+1 + 6wi − 4wi−1 + wi−2) +

1
2c (wi+1 − wi−1)

× 1
s2 (ui+1 − 2ui + ui−1) +

1
2c (wi+1 − wi−1)

1
s2 (ui+1 − 2ui + ui−1) +

(
1
2c (wi+1 − wi−1)

)2 1
c2 (wi+1 − 2wi + wi−1)+

1
c2 (wi+1 − 2wi + wi−1)

(
1
2s (ui+1 − ui−1) +

1
8s2 (wi+1 − wi−1)(wi+1 − wi−1)

))
,

L2,c(wi, ui) =
1
c2 (ui+1 − 2ui + ui−1) +

1
2c (wi+1 − wi−1)

1
c2 (wi+1 − 2wi + wi−1)

In Equations (8), it is necessary to consider the values at the boundary points, which are defined by
the boundary conditions. For the boundary conditions in Equation (4): w−i = −wi, w0 = 0, wn = 0, u0 =

0, un = 0 (simple support). For the boundary conditions in Equation (5): w−i = −wi, w0 = 0, wn =

0, u0 = 0, un = 0 (clamping).
The initial conditions in Equation (7) can be rewritten in the difference form as follows:

w(xi)
∣∣t=0 = 0; u(xi)

∣∣t=0 = 0;
.

w(xi)
∣∣t=0 = 0;

.
u(xi)

∣∣t=0 = 0, (i = 0, . . . , n).
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3.2. Lyapunov Exponents

Wolf et al. [43] proposed an algorithm allowing for estimation of positive Lyapunov exponents
based on the time series. It was shown that Lyapunov exponents correspond to either exponential
fast divergence or convergence of the neighborhood orbits in the studied phase space. The employed
concept of computation comes from the earlier method applied only to analytically defined
mathematical models. The method traces a long term increase in a small volume chosen in the studied
attractor and yields the largest Lyapunov exponent (LLE) based on one time series. The method does
not require any knowledge about the evolutionary equations and phase coordinates. The algorithm
for computing the LLE was described in Part 1 of our paper. As a reminder, the Kantz [42] and
Rosenstein [44] methods are based on constructing the time-dependent function and take into account
divergence of the nearby trajectories in the phase space in a certain time period. Then, they try to find
the straightest part of this function (which is not always possible). A tangent of the inclination angle of
this straight line yields the LLE.

3.3. Case Studies and Results Analysis

Owing to the above-described methodology, we began with investigating the convergence of
the FDM with approximations O

(
h2) and the Runge–Kutta methods as well as with comparing

the results obtained by different Runge–Kutta methods. The comparisons were made by taking
n = 40; 80; 120; 160; 200; 240; 280; 320; 360; 400; 440 nodes in the FDM when transiting PDEs in Equation (3),
the boundary conditions in Equation (5) and the initial conditions in Equation (7) to ODEs (Cauchy
problem). The Cauchy problem was solved by the Runge–Kutta methods of the second, fourth and eighth
orders (Figure 2b reports the results obtained for n = 360 yielded by different kinds of Runge–Kutta
methods). The most reliable results were obtained for the eighth order Runge–Kutta method in the
Prince–Dormand modified version. Convergence of the vibration periodic and chaotic signals was
investigated. Figures 2 and 3 present time histories/signals (Figure 2a), phase portraits (Figure 2b), power
spectra (Figure 2c) and the Morlet wavelet spectra (Figure 3) for the periodic vibrations depending on the
nodes number n = 40; 80; 160. Convergence of FDM was fully achieved for n = 80. All the mentioned
vibration characteristics fully coincided.

 
(a) (b) (c) 

Figure 2. Convergence of the FDM (finite difference method) with respect to the vibrations signal and
Fourier power spectrum (periodic orbits). (a) Signal (n = 40; 80; 160); (b) Phase portraits (n = 40; 80;
160); (c) Fourier power spectrum (n = 40; 80; 160).

Then, we studied convergence of the FDM for chaotic vibrations. Figure 4a presents the vibration
signals w(0.5, t) obtained for n = 120; 240; 320; 360; 400. For n = 120, the deflection essentially
differed from the deflection obtained for n = 240; 320; 360; 400 (for which the deflections coincided).

Owing to Point 3 of the described methodology, power spectra, phase portraits, and Morlet
wavelet spectra for ω ∈ [0.2; 5] are reported in Table 1. These characteristics were considered
for n = 120; 320; 360; 400. In the power spectrum, for n = 120, the independent frequencies
ω1, ω3, ω5, ω6, ω8, ω9, ω10, ω11, ω12, ω13, ω15; the dependent frequencies ω14 = 2

5 ωp, ω7 = 3
5 ωp;
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and a chaotic component were detected. An increase in the number of nodes changed the signal
frequency spectrum (Fourier power spectrum). Eleven frequencies were detected for n = 320 and
twelve for n = 360; 400. The phase portraits present washed out clouds converging to a ring with
the increase in the number of nodes up to n = 320; 360; 400. For n = 120, the wavelet spectrum
exhibits three frequencies ωp, ω3 and ω14, and an increase in the number of nodes yielded only two
frequencies—ωp and ω3. It means that convergence with respect to power spectra, phase portraits and
wavelet spectra was achieved.

 

Figure 3. Convergence of the FDM with respect to the Morlet wavelet spectrum (periodic orbits).

(a) (b) 

Figure 4. Signals obtained for n = 120; 240; 320; 360; 400; (a) Convergence of w(0.5; t), t ∈ [1218; 1222]
vs. Number of Nodes; (b) Convergence of w(0.5; t), t ∈ [1217; 1220] vs. Numerical Method Types.

All Lyapunov exponents (Table 2) obtained by three mentioned methods are positive, and each of
the methods is convergent with respect to n (a/(2 h) = 50).

To study behavior of nonlinear beams under harmonic q = q0 sin(ωpt) load and colored noise of
amplitude Cn, a package of programs allowing for construction and analysis of the power spectra and
Lyapunov exponents was developed. Beam vibrations were traced on the time interval t ∈ [0; 2024],
the number of partitions in the FDM was n = {80; 400}, and the ratio of the beam length to the beam
thickness was λ = 50. All results were obtained for the beam center. Vibration signals, Fourier power
spectra, Morlet wavelet-spectra, phase and modal portraits, autocorrelation functions and LLEs were
analyzed for the given type of colored noise.

When carrying out the numerical study, we chose a frequency such that the addition of
low-amplitude noise did not change the system state. This motivated us to consider the noise amplitude
Cn = 5, 000 being compatible with the amplitude of periodic excitation.

The spectrum density of the employed colored noises is proportional to 1/ f α, where f stands for
the frequency of the spectrum, and α takes the following values: α = −2—purple noise; α = −1—blue
noise; α = 0—white noise; α = 1—pink noise; and α = 2—brown noise.

The values for all time series for colored noise were found in the interval [−1; 1] and then
multiplied by Cn and added to the sinusoidal load.
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Table 1. Dynamical beam characteristics for n = 120; 320; 360; 400.

Power Spectrum Phase Portrait Wavelet Spectrum

N = 120

N = 320

 

N = 360, 400

Table 2. LLEs (the largest Lyapunov exponents) computed by the Wolf, Rosenstein and Kantz methods.

λ q n Wolf Rosenstein Kantz

50 10000 160 0.10078 0.11334 0.04127
50 10000 200 0.07357 0.07359 0.02888
50 10000 240 0.09443 0.08599 0.03110
50 10000 360; 400 0.09885 0.07995 0.03190

Table 3 includes Morlet wavelet transform, Fourier spectrum, vibrational signal, Poincaré map,
and 2D phase portraits for the beam partitions n = {80; 400} (for fixed Cn = 5000). Results presented
in Table 4 show that the most “noisy parts” of the Fourier and wavelet spectra were yielded by pink
noise with dominating low-frequency band. The wavelet spectrum and the Fourier spectrum exhibit
chaos on for all frequencies, phase portraits present dense clouds of phase plots, whereas Poincaré
maps exhibit “chaotically” distributed points. Spectral densities of blue and white noise are similar,
but white noise exhibits more low-frequency power, and hence the system is less chaotic in this case.
On the contrary to the Fourier spectra, the phase portraits for white and brown noise are very similar.
The strength of chaos again depends on low-frequency components of noise. This is validated by
purple noise with dominating high-frequency components.

The methodology for finding the largest Lyapunov exponents by the Kantz and Rosenstein
methods required the estimation of a tangent of the inclination angle of the most linear part of the
time-dependent functions (Table 5). For this purpose, the least-squares algorithm was employed.

All possible points of the graph are taken for approximation at a given minimum length in time
in percentage (in this case 30%) and the interval corresponding to the smallest sum of squares of the
deviation of the initial data from this interval is selected.
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The function S(τ) represents the dependence of the average divergence of the corresponding
trajectories for the initial states governed by the inequality

∣∣x(t)− x
(
tj
)∣∣ < ε (ε is a certain small

quantity) for the considered time evolution τ.

Table 3. Characteristics of the beam vibrations (Cn = 5000, ω0 = 1.0853, q0 = 5000).

Noise Morlet Wavelet Fourier Spectrum w(t) 2D Phase Portrait Poincaré Map

α = −2
purple

α − α − α α αα − α − α α αα − α − α α αα − α − α α αα − α − α α α

α = −1
blue

α − α − α α αα − α − α α αα − α − α α αα − α − α α αα − α − α α α

α = 0
white

α − α − α α αα − α − α α αα − α − α α α

 

α − α − α α αα − α − α α α

α = 1
pink

α − α − α α αα − α − α α αα − α − α α α

 

α − α − α α αα − α − α α α

α = 2
brown

α − α − α α αα − α − α α αα − α − α α αα − α − α α αα − α − α α α

Table 4. Dependence of the average divergence of the neighborhood trajectories versus the considered
evolution time τ.

Kantz Rosenstein Wolf

α − α − α α αα − α − α α αα − α − α α α

Table 5. LLEs for the investigated solutions (W/K/R state for the Wolf/Kantz/Rosenstein
method, respectively).

α = −2 α = −1 α = 0 α = 1 α = 2

W: 0.0
K: 0.0
R: 0.0

W: 0.0
K: 2·10−2

R: 6·10−2

W: 0.0
K: 3·10−2

R: 6·10−2

W: 0.0
K: 3·10−2

R: 7·10−2

W: 0.0
K: 2·10−2

R: 6·10−2
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4. Concluding Remarks

The second part of this paper dealt with more complicated nonlinear dynamics exhibited by the
Bernoulli–Euler beam subjected to deterministic and noisy input. In this case, the following main
conclusions were yielded.

1. Convergence of the employed numerical methods was investigated with respect to the spatial
and time coordinates (finite difference method with approximation O(h2) and the Runge–Kutta
type methods). Numerical results showed that, to achieve reliable conclusions, it is necessary
to conduct a complex analysis and, owing to the proposed methodology, each signal should be
studied separately.

2. The most negligible effect was observed when purple noise was added—beam vibrations
remained periodic. On the other hand, beam vibrations were significantly influenced by
pink noise. The degree of chaotization of the system essentially depends on the presence of
low-frequency components in noise. The employment of the Morlet mother wavelets allowed to
detect time evolution of frequencies during chaotic beam vibrations (Table 2 (α = 0; 1; 2)).

3. It was found, illustrated and discussed that the Wolf (W), Kantz (K) and Rosenstein (R) methods
may yield significantly different values of Lyapunov exponents for the same signal. On the other
hand, all the above-mentioned methods exhibited good correlation when used to study different
colored noises.

4. The obtained results indicate a need to employ a more complex study by using qualitatively
different numerical approaches to obtain reliable/true chaotic vibrations.

It can be concluded that, to obtain the most reliable results, it is necessary to consider a mechanical
system (flexible beam) as a system with an infinite number of freedom degrees. One should investigate
the convergence of the solution when reducing the partial differential equations to the Cauchy problem
by the second-order finite element method O(h2). The number of the beam length should be maximized
(in this work, from n = 50 to n = 400 partitions were considered). The Cauchy problem can be solved
by several other methods, such as Runge–Kutta method. For every problem, the largest Lyapunov
exponents need to be investigated in several ways (for instance, by Wolf, Kantz, and Rosenstein
methods). Finally, the presented complex and diverse research study guaranteed the reliability of the
obtained results.
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Abstract: In the paper, we consider local aspects of the entropy of nonautonomous dynamical systems.
For this purpose, we introduce the notion of a (asymptotical) focal entropy point. The notion of
entropy appeared as a result of practical needs concerning thermodynamics and the problem of
information flow, and it is connected with the complexity of a system. The definition adopted
in the paper specifies the notions that express the complexity of a system around certain points
(the complexity of the system is the same as its complexity around these points), and moreover, the
complexity of a system around such points does not depend on the behavior of the system in other
parts of its domain. Any periodic system “acting” in the closed unit interval has an asymptotical focal
entropy point, which justifies wide interest in these issues. In the paper, we examine the problems of
the distortions of a system and the approximation of an autonomous system by a nonautonomous
one, in the context of having a (asymptotical) focal entropy point. It is shown that even a slight
modification of a system may lead to the arising of the respective focal entropy points.

Keywords: nonautonomous (autonomous) dynamical system; topological entropy; (asymptotical)
focal entropy point; disturbation; m-dimensional manifold

MSC: 54C70; 37A35; 37B40; 58C30; 26A18

1. Introduction and Preliminaries

In many papers dealing with dynamical systems, their strong relation to difference equations
is pointed out (see [1]), which gives the possibilities of their wide applications in many fields of
knowledge, including economics, biology, information flow or physics [2–7]. Among the problems
connected with “dynamical systems with discrete time observations”, a special role is played by the
entropy of these systems, which may be treated as a “measure” of the complexity of a dynamical
system. This notion was introduced with respect to the issues connected with thermodynamics and
the problem of “information loss” (more details on this topic can be found in [8]). At the beginning, the
notion of entropy was related to the measure theory. Later, there appeared the notion of topological
entropy introduced by R. Adler, A. Konheim and J. McAndrew [9], and next, an equivalent definition
for metric spaces was formulated [10,11]. It is worth mentioning that in the further stage of research, the
definition of topological entropy for discontinuous functions was also studied [12]. The considerations
mentioned concerned autonomous systems. Later, still, there appeared results regarding the entropy of
nonautonomous dynamical systems. We will base our investigations, among others, on [13]. In general,
the notion of entropy concerns a global property of dynamical systems. However, research connected
for example with stability points or non-wandering points, as well as the analysis of various examples
of functions lead to the conclusion that it is also purposeful to examine local aspects of entropy and
points around which the entropy is “focused” in some sense, e.g., [14,15]. Simultaneously, the example
presented in [16] (p. 1118) shows that it is intentional to assume that the essence of a point “focusing”
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entropy should be connected with the behavior of functions only (exclusively) around this point
or the value of functions at this point (sometimes, the fact that a point is a full entropy point [15]
is decisively influenced by the behavior of a function “far away” from that point). For that reason,
a new approach to this problem was introduced in [16]. All the above-mentioned papers concerned
autonomous systems. In this paper, we will refer to these issues as nonautonomous dynamical systems.
Our considerations will be mainly connected with the periodicity of the examined systems. Such kind
of investigations are frequently connected in the literature with such systems (e.g. [6,13,17]). It is
caused by the connections of such systems with periodic difference equations (it is well signalled
in [3]).

Throughout the paper, the symbol N will stand for the set of all positive integers and N0 = N∪{0}.
Moreover, (X, ρ) will denote a compact metric space. The closure, the interior and the cardinality of a
set A ⊂ X will be denoted by cl(A), int(A) and #(A), respectively. For any function f : X → X and
sets A, B ⊂ X, the symbols f � A and A →

f
B mean the restriction of f to A and B ⊂ f (A), respectively.

The symbol FIXX(x0) will denote the family of all self-maps defined on X such that the point
x0 is their fixed point, and the symbol FIX( f ) will stand for the set of all fixed points of a function
f . Moreover, for any functions f , g : X → X, let us adopt the following notation �= ( f , g) = {x ∈ X :
f (x) �= g(x)}.

Let (X, �) be a metric space and {Kn}n∈N be a sequence of nonempty closed subsets of X. We shall
say that the sequence {Kn}n∈N has the extension property if for any i, j ∈ N and any continuous
function ϕ : A → Kj, where A ⊂ Ki is a closed set, one can find a continuous function ψ : Ki → Kj,
which is an extension of ϕ, i.e., ψ � A = ϕ. Obviously, if for example X = Rn and Kn are cubes, then
this fact follows from the generalizations of the classical Tietze theorem.

Following [13], by a nonautonomous dynamical system on X (NDS), we will mean any sequence
of functions f1,∞ = { fi}i∈N such that fi : X → X. If fi = f for i ∈ N, then we call the system
autonomous and denote it by ( f ). For n ∈ N, let fn,∞ = { fn, fn+1, . . . } and f n

1,∞ = { f n
(i−1)·n+1}i∈N,

where f n
i = fn+i−1 ◦ fn+i−2 ◦ · · · ◦ fi+1 ◦ fi. Moreover, let f 0

i = f−0
i = id (where id is the identity

function) and f−n
i = f−1

i ◦ f−1
i+1 ◦ · · · ◦ f−1

i+(n−1) for any i, n ∈ N (the last notation will be applied to sets,
so we do not assume that these maps are invertible). If f : X → X is a function, then for any n ∈ N, the
symbol f n will denote the n-th iteration of f , i.e., f n = f ◦ f n−1 and f 0 = id.

We say that a dynamical system f1,∞ is periodic with a period n if fk = fk mod n, if k mod n �= 0
and fk = fn otherwise. Moreover, we say that x0 is a periodic point with a period n of an NDS f1,∞ if
x0 is a fixed point of an NDS f n

1,∞, i.e., f n
(i−1)·n+1(x0) = x0 for any i ∈ N.

If M is a matrix, then the trace of M will be denoted by tr(M). Let {Mn}n∈N be a sequence of

square matrices of the same degree t. Then, for any k ∈ N, we will consider
k

∏
i=1

Mi = M1 · M2 · · · · · Mk.

In [13] was introduced a Bowen-like definition of entropy for an NDS consisting of continuous
functions. This definition was expanded for systems consisting of arbitrary functions in the paper [8].
We will briefly review that notion.

Let n ∈ N and ε > 0. A set E ⊂ X is called (n, ε)-separated if for any two distinct points x, y ∈ E,
there exists j ∈ {0, . . . , n − 1} such that ρ( f j

1(x), f j
1(y)) > ε. If Y ⊂ X, then E is (n, ε)-separated in Y

if it satisfies the above condition and E ⊂ Y. Let sn( f1,∞, Y, ε) denote the maximal cardinality of the
(n, ε)-separated set in Y. Then, the entropy of a system f1,∞ on Y is the number:

h( f1,∞, Y) = lim
ε→0

lim sup
n→∞

1
n

log sn( f1,∞, Y, ε).

If Y = X, then we write briefly h( f1,∞) instead of h( f1,∞, X). Moreover, if we consider an
autonomous system ( f ), then the entropy of this system will be denoted by h( f , Y) and h( f ),
respectively. By the entropy of a function f , we will mean the entropy of a respective autonomous
system ( f ).
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Now, we will signal, in the form of lemmas, basic facts that will be used in the further part of the
paper. Reasoning similar to that in the proofs of Lemma 4.3 and 4.5 [13] allows proving the following
result concerning the entropy of an NDS consisting of not necessarily continuous functions.

Lemma 1. Let f1,∞ be a dynamical system. Then, for any n ≥ 1, we have:

h( f n
1,∞) ≤ n · h( f1,∞).

Lemma 2. Let f1,∞ be a dynamical system on X. For any 1 ≤ i ≤ j < ∞, we have h( fi,∞) ≤ h( f j,∞).

In the case of NDS, entropy does not always fully reflect the complexity of a system (see, e.g., the
considerations in [13], p. 216). Therefore, in [13] was introduced a new notion of asymptotical entropy,
which, with respect to autonomous systems, coincides with the classical entropy.

An asymptotical entropy of a dynamical system f1,∞ is the number h∗( f1,∞) defined as follows:
h∗( f1,∞) = lim

n→∞
h( fn,∞). The existence of such a limit follows from Lemma 2. Moreover, Lemma 2

allows concluding that h( f1,∞) ≤ h∗( f1,∞). It is worth adding that the inequality from Lemma 2 is not
true for entropy on subsets of the space, so the asymptotical entropy of a system on a set Y ⊂ X is
defined as the following upper limit:

h∗( f1,∞, Y) = lim sup
n→∞

h( fn,∞, Y).

Our terminology and notations related to m-dimensional manifolds will coincide with those of [18].
An m-dimensional manifold with a boundary is a nonempty compact metric space (M, d) such that
every point q ∈ M has a neighborhood U that is homeomorphic (via a transformation called the chart
on U) to an open subset of the m-dimensional upper half space Hm = {(x1, ..., xm) ∈ Rm : xm ≥ 0}.
Since any open ball in Rm is homeomorphic to some open subset of Hm, an m-dimensional topological
manifold is an m-dimensional topological manifold with a boundary (with an empty boundary).
Therefore, in this paper, we will consider only m-dimensional topological manifolds with a boundary.

If M is a nonempty m-dimensional manifold with a boundary, a point that belongs to the inverse
image of int(Hm) = {(x1, ..., xm) ∈ Rm : xm > 0} under some chart is called an interior point of M.
The set of all interior points of a manifold M will be denoted by Int(M). The symbol BM will stand for
the set of all closed submanifolds M of M (i.e., M ⊂ M is a closed manifold) such that the dimensions
of M and M are the same.

We shall say that an NDS ( f1,∞) of functions defined on M is irreducible at x0 if for n ∈ N,
a function f n

1 is irreducible at x0, i.e., for any open neighborhood U of x0, there exists a point
y0 ∈ Int(M) ∩ U such that f n

1 (x0) �= f n
1 (y0).

2. Focal Entropy Points of NDS

Now, we will introduce the notion of a focal entropy point of NDS, having in mind the general
assumption: the fact that a given point is a focal entropy point means that the complexity of the system
in any neighborhood of this point is the same as the complexity of the whole system and does not
depend on the behavior of functions around other points.

Let A be a family of nonempty subsets of X such that each nonempty open set contains some
element of A. In view of the considerations presented in this paper, from now on, we will assume that
A contains the family of all closed sets of cardinality continuum.

Put Θ(A) = {(A1, . . . , Am) : A1, . . . , Am ∈ A, m ∈ N, cl(Ai) ∩ cl(Aj) = ∅ for i �= j}.

Let A = (A1, . . . , Am) ∈ Θ(A) and n ∈ N. Set Mfn(A) = [a fn
i,j ]i,j≤m, where:

a fn
i,j =

⎧⎨⎩1 if Ai →
fn

Aj,

0 if Aj \ fn(Ai) �= ∅.
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Moreover, for k ∈ N, a system ( f1,∞) and A = (A1, . . . , Am) ∈ Θ(A), let:

Mk
f1,∞

(A) =
k

∏
n=1

Mfn(A) := [ak
i,j]i,j≤m. (1)

The entropy of f1,∞ with respect to the sequence A is the following number:

Hf1,∞(A) =

⎧⎨⎩lim sup
k→∞

1
k log tr(Mk

f1,∞
(A)) if tr(Mk

f1,∞
(A)) > 0,

0 if tr(Mk
f1,∞

(A)) = 0.

The process of computing the entropy of a system with respect to a sequence of sets may be
simplified by introducing the notion of a path. Let k ∈ N. For a k-path connected with the sequence
A and with the dynamical system ( f1,∞), we call each sequence of sets (Ap1 , Ap2 , . . . , Apk ) such that
pi ∈ {1, . . . , m} for i = 1, . . . , k and:

Ap1 −→
f1

Ap2 −→
f2

Ap3 −→
f3

. . . −→
fk−2

Apk−1 −→
fk−1

Apk .

The sets Ap1 , Ap2 , . . . , Apk are called the nodes of the path. If no confusion can arise, we will
write simply k-path. We say that a point x0 ∈ Ap1 is connected with a k-path (Ap1 , Ap2 , . . . , Apk ) if
f i
1(x0) ∈ Api+1 for i = 1, . . . , k − 1. It is easy to see that such a point exists for any path.

One can easily notice that the entry ak
i,j, where i, j ∈ {1, . . . , m}, of the matrix (1) is equal to the

number of (k + 1)-paths connected with the sequence A and the NDS f1,∞ such that the set Ai is the
first node of the path and the set Aj is its last node. Consequently, tr(Mk

f1,∞
(A)) is equal to the number

of (k + 1)-paths connected with the sequence A and the NDS f1,∞ such that the set Ai is simultaneously
the first and the last node of the path, for i = 1, . . . , m.

Now, let us state the theorem, which will allow introducing the next steps of the definition.

Theorem 1. Let f1,∞ be an NDS, A = (A1, . . . , Am) ∈ Θ(A) and n ∈ N. Then:

Hf n
1,∞

(A) ≤ h( f n
1,∞) ≤ n · h( f1,∞).

Proof. The second inequality follows from Lemma 1, so it is sufficient to show the first inequality.
Suppose, contrary to our claim, that there exists a real number α such that:

h( f n
1,∞) < α < Hf n

1,∞
(A). (2)

It is obvious that α > 0 and Hf n
1,∞

(A) > 0. According to our assumptions connected with the

family Θ(A), we have εA = 1
2 min{ρ(cl(Ai), cl(Aj)) : i, j ∈ {1, . . . , m} ∧ i �= j} > 0. Taking into

account (2), we obtain that there exists an increasing sequence of positive integers {ks}s∈N such that:

1
ks

log tr(Mks
f n
1,∞

(A)) > α for s = 1, 2, . . . (3)

Clearly, aks
1,1, aks

2,2, . . . , aks
m,m are successive entries of the main diagonal of the matrix Mks

f n
1,∞

(A),

for any s ∈ N. By (3), one can conclude that for any s ∈ N, we have Nks = {i ∈ {1, . . . , m} : aks
i,i >

0} �= ∅. For any s ∈ N and i ∈ {1, . . . , m}, the number of (ks + 1)-paths of the form Ai −→
f n
1

Ap1 −→
f n
n+1

Ap2 −→
f n
2n+1

. . . −→
f n
(ks−2)n+1

Apks−1 −→
f n
(ks−1)n+1

Ai, where pw ∈ {1, . . . , m} for w = 1, . . . , ks − 1, is equal to aks
i,i .

For any s ∈ N and i ∈ Nks , let βks
i denote the set of all (ks + 1)-paths whose first and last node is

Ai. Obviously #(βks
i ) = aks

i,i . Therefore, let βks
i = {Bks

i,1, Bks
i,2, . . . , Bks

i,aks
i,i
}. For any s ∈ N, i ∈ Nks and

j ∈ {1, . . . , aks
i,i}, let bks

i,j be a point connected with the path Bks
i,j.
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Put Δ(ks) = {bks
i,j : i ∈ Nks ∧ j ∈ {1, . . . , aks

i,i}} for s ∈ N. It is easily seen that bks
i,j ∈ Ai for

s ∈ N, i ∈ Nks and j ∈ {1, . . . , aks
i,i}. Thus, if i1, i2 ∈ Nks and i1 �= i2, then bks

i1,j �= bks
i2,j. Moreover, if

j1, j2 ∈ {1, . . . , aks
i,i} and j1 �= j2, then bks

i,j1
�= bks

i,j2
. Thus, #(Δ(ks)) = ∑

i∈Nks

#(βks
i ) = ∑

i∈Nks

aks
i,i , and finally,

#(Δ(ks)) =
m
∑

i=1
aks

i,i , because aks
i,i = 0 for i ∈ {1, . . . , m} \ Nks .

Let bks
i1,j1

, bks
i2,j2

be any distinct points of the set Δ(ks). If i1 �= i2, then ρ(bks
i1,j1

, bks
i2,j2

) ≥
ρ(cl(Ai1), cl(Ai2)) > εA. If i1 = i2 = i, then j1 �= j2. Thus, since bks

i,j1
is connected

with the path Bks
i,j1

= (Ai,j1 , Ap1,j1 , . . . , Apks−1,j1 , Ai,j1) and bks
i,j2

is connected with the path Bks
i,j2

=

(Ai,j2 , Ap1,j2 , . . . , Apks−1,j2 , Ai,j2) and Bks
i,j1

�= Bks
i,j2

, so there exists w0 ∈ {1, . . . , ks − 1} such that

Apw0 ,j1 �= Apw0 ,j2 and ρ( f w0·n(bks
i,j1

), f w0·n(bks
i,j2

)) ≥ ρ(cl(Apw0 ,j1), cl(Apw0 ,j2)) > εA. This gives that
Δ(ks) is the (ks, εA)-separated set for the system ( f n

1,∞).

As a consequence, we obtain sks( f n
1,∞, εA) ≥ #(Δ(ks)) = aks

1,1 + · · · + aks
m,m. Let ε ∈ (0, εA).

Thus, lim sup
l→∞

1
l log sl( f n

1,∞, ε) ≥ lim sup
s→∞

1
ks

log
m
∑

i=1
aks

i,i = lim sup
s→∞

1
ks

log tr(Mks
f n
1,∞

(A)) ≥ α, and hence,

h( f n
1,∞) = lim

ε→0
lim sup

l→∞

1
l log sl( f n

1,∞, ε) ≥ α, which contradicts (2).

We continue the considerations leading to the definition of a focal entropy point. Let U ⊂ X
be an open set. For A = (A1, . . . , Am) ∈ Θ(A), the notation A ⊂ U will mean that Ai ⊂ U for any
i ∈ {1, . . . , m}. Let us adopt the following notation:

H(A, f1,∞, U) = sup
{

1
n

Hf n
1,∞

(A) : A ∈ Θ(A) ∧A ⊂ U ∧ n ∈ N

}
.

Notice that on account of Theorem 1, for any open set U, we have:

H(A, f1,∞, U) ≤ h( f1,∞). (4)

Put:

d(A, f1,∞, U) =

⎧⎪⎪⎨⎪⎪⎩
H(A, f1,∞ ,U)

h( f1,∞)
if h( f1,∞) ∈ (0, ∞),

1 if H(A, f1,∞, U) = ∞ or h( f1,∞) = 0,

0 if H(A, f1,∞, U) ∈ [0, ∞) and h( f1,∞) = ∞.

Using the last quantity, one can define the next one in the following way:

E(A, f1,∞, x0) = inf{d(A, f1,∞, U) : U ∈ O(x0)},

where O(x0) denotes the family of all open sets containing x0.
According to Theorem 1, we have E(A, f1,∞, x0) ≤ 1. If E(A, f1,∞, x0) = 1, then we say that a point

x0 ∈ X is a A-focal entropy point of a system f1,∞.
Notice that if a system f1,∞ is autonomous, i.e., fi = f for i ∈ N, then the definition of a A-focal

entropy point of the system f1,∞ coincides with the definition introduced in [16].
If in the definition of the quantity d(A, f1,∞, U) we will replace an entropy h( f1,∞) with

asymptotical entropy h∗( f1,∞), then by defining in an analogous way as above, we will obtain the
notion of a asymptotical A-focal entropy point of f1,∞. In such a case, we will use a star in the respective
symbols: d∗(A, f1,∞, U), E∗(A, f1,∞, x0). Therefore, we say that a point x0 ∈ X is an asymptotical A-focal
entropy point of a system f1,∞ if E∗(A, f1,∞, x0) = 1.

It is easy to see that if x0 is an asymptotical A-focal entropy point of a system f1,∞, then it is a
A-focal entropy point of this system. Obviously, if f1,∞ is periodic, then the notions of an asymptotical
A-entropy point of the system and of a A-focal entropy point of the system coincide.
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The natural question arises whether there exist such points. The next theorem is a partial answer
to this problem.

Theorem 2. Let f1,∞ be a periodic dynamical system on [0, 1] consisting of continuous functions. Then, there
exists an asymptotical A-focal entropy point of the system f1,∞.

Proof. Let n be a period of the system f1,∞. Put f = f n
1 and g1,∞ = f n

1,∞. Then, g1,∞ = ( f ). Hence,
by Lemma 1, we obtain:

h(g1,∞) = n · h( f1,∞). (5)

Moreover, notice that:

gk
1,∞ = f n·k

1,∞ for k ∈ N. (6)

By Corollary 4.5 [16], there exists a point x0 ∈ [0, 1], which is a A-focal entropy point of g1,∞.
We will show that x0 is a A-focal entropy point of the system f1,∞. Let U ∈ O(x0). It is easy to

observe that E(A, g1,∞, x0) = 1 and consequently d(A, g1,∞, U) = 1. We need to consider the following
cases (we omit the trivial case h(g1,∞) = 0):

(i) H(A, g1,∞, U) = ∞. Thus, sup{ 1
k Hgk

1,∞
(A) : A ∈ Θ(A) ∧A ⊂ U ∧ k ∈ N} = ∞. For any β > 0,

there exist kβ ∈ N and Aβ ∈ Θ(A) such that Aβ ⊂ U and 1
kβ

H
g

kβ
1,∞

(Aβ) > n · β. Obviously,

by (6), we have g
kβ

1,∞ = f
n·kβ

1,∞ , so 1
kβ

H
f

n·kβ
1,∞

(Aβ) > n · β, and therefore, 1
n·kβ

H
f

n·kβ
1,∞

(Aβ) > β.

As a consequence, sup{ 1
s Hf s

1,∞
(A) : A ∈ Θ(A) ∧ A ⊂ U ∧ s ∈ N} > β. Hence and from

arbitrariness β, we conclude that sup{ 1
s Hf s

1,∞
(A) : A ∈ Θ(A) ∧ A ⊂ U ∧ s ∈ N} = ∞, and

consequently, d(A, f1,∞, U) = 1.
(ii) h(g1,∞) ∈ (0, ∞) and H(A, g1,∞, U) = h(g1,∞). By (5), we obtain h( f1,∞) ∈ (0, ∞). We have

h(g1,∞) = sup{ 1
k Hgk

1,∞
(A) : A ∈ Θ(A) ∧A ⊂ U ∧ k ∈ N}, so for any β > 0, there exist kβ ∈ N

and Aβ ∈ Θ(A) such that Aβ ⊂ U and 1
kβ

H
g

kβ
1,∞

(Aβ) > h(g1,∞)− n · β. Clearly, by (6), we may

infer that g
kβ

1,∞ = f
n·kβ

1,∞ , so 1
kβ

H
f

n·kβ
1,∞

(Aβ) > h(g1,∞)− n · β. By use of (5), we get 1
n·kβ

H
f

n·kβ
1,∞

(Aβ) >

h( f1,∞)− β. Finally, we have shown that for any β > 0, there exist lβ = n · kβ ∈ N and Aβ ∈ Θ(A)

such that Aβ ⊂ U and 1
lβ

H
f

lβ
1,∞

(Aβ) > h( f1,∞)− β, so:

sup{1
k

Hf k
1,∞

(A) : A ∈ Θ(A) ∧A ⊂ U ∧ k ∈ N} ≥ h( f1,∞). (7)

Moreover, according to (4), we have:

H(A, f1,∞, U) ≤ h( f1,∞). (8)

Finally, (7) and (8) give H(A, f1,∞, U) = sup{ 1
k Hf k

1,∞
(A) : A ∈ Θ(A) ∧ A ⊂ U ∧ k ∈ N} =

h( f1,∞). Thus, d(A, f1,∞, U) = 1.

Since U was chosen arbitrarily, we obtain E(A, f1,∞, x0) = 1, so x0 is a A-focal entropy point of f1,∞,
and simultaneously, it is its asymptotical A-focal entropy point because this system is periodic.

3. Disturbance and Approximation

In various considerations connected with autonomous and nonautonomous dynamical systems,
a special role is played by fixed points of the systems (e.g., stable points [6]). It is not difficult to find
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an example showing that a fixed point of NDS need not be its focal entropy point. On the other hand,
a given NDS can be approximated or disturbed by entering new functions into it. In each of these
operations, it is important to do it by means of functions that are close to the base NDS and belong to
the common structure. This leads in a natural way to distinguishing equivalence classes.

Let f , g ∈ FIXX(x0) and ε > 0. In the set FIXX(x0), we will define the following relation:

f
ε

x0
g ⇔�= ( f , g), f ( �= ( f , g)), g( �= ( f , g)) ⊂ B(x0, ε), (9)

where B(x0, ε) is an open ball with radius ε and center x0. It is not difficult to show that for the fixed
ε > 0 and x0 ∈ X, the relation (9) is an equivalence relation in FIXX(x0).

The symbol [ f ]εx0
will stand for the equivalence class of f ∈ FIXX(x0) under the relation ε

x0
.

In this paper are mainly examined periodic dynamical systems, so it is natural to consider periodic
disruptions called disturbances. The idea of the disturbance is introducing, in equal periods of time,
a function belonging to the equivalence class generated by the iteration of functions lying between
successive disturbance periods.

Let f1,∞ be a periodic NDS with a period k0 ∈ N, and let ε > 0. We say that Tε
1,∞ is a periodic

ε-disturbance of f1,∞ if there exists a continuous function ψ such that:

(PD1) Tε
1,∞ = { f1, f2, . . . , fk0 , ψ, f1, f2, . . . , fk0 , ψ, . . . },

(PD2) ψ ∈ [ f k0
1 ]εx0

.

The next theorem shows that a periodic dynamical system may be periodically disturbed by means of
a function belonging to an earlier defined equivalence class (with arbitrary small ε) in such a way that
a periodic point of the system becomes its asymptotical A-focal entropy point.

Theorem 3. Let f1,∞ be a periodic dynamical system on M consisting of continuous functions such that x0 ∈ M

is a periodic point of this NDS and f1,∞ is irreducible at x0. For any ε > 0, there exists a system Tε
1,∞ that is

a periodic ε-disturbance of f1,∞ such that x0 is an asymptotical A-focal entropy point of Tε
1,∞.

Proof. Let m0 be a period of f1,∞ and m1 be a period of x0. Put n0 = m0 · m1. It follows immediately
that n0 is both a period of f1,∞ and of x0. Let ε > 0 and {Mn}∞

n=0 ⊂ BM be a sequence of connected
submanifolds satisfying the following properties:

[M1] x0 ∈ Mn+1 ⊂ int(Mn) for n ∈ N0,
[M2] f n0

1 (Mn+1) ⊂ int(Mn) for n ∈ N0,
[M3] lim

n→∞
diam(Mn) = 0,

[M4] the sequence {Mn}∞
n=0 has the extension property.

Without loss of generality, we can also assume that M0 ⊂ B(x0, ε
3 ). Obviously, there exists

an open set U ⊂ M, such that x0 ∈ U and f n0
1 (U) ⊂ B(x0, ε

3 ). Moreover, Condition [M3] implies that
there exists k∗ > 1 such that Mk ⊂ U for k ≥ k∗.

Put k1 = k∗ + 1. Since f n0
1 is irreducible at x0 ∈ int(Mk1), it is easy to see that there exist

x1 ∈ Mk1 and an arc A(x0, f n0
1 (x1)) with endpoints at x0 and f (x1) such that A(x0, f n0

1 (x1)) ⊂
f n0
1 (Mk1). Let A1

1, A1
2 be disjoint arcs such that A1

1, A1
2 ⊂ A(x0, f n0

1 (x1)) and x0 �∈ A1
1 ∪ A1

2. Put
Γ1

i = f−n0
1 (A1

i ) ∩Mk1 for i = 1, 2. Then, Γ1
1 �= ∅ �= Γ1

2, x0 �∈ Γ1
1 ∪ Γ1

2 ⊂ Mk1 , Γ1
1 ∩ Γ1

2 = ∅ and the sets
Γ1

1 and Γ1
2 are closed. Moreover, f n0

1 (Γ1
i ) = A1

i for i = 1, 2.
On account of the well-known Hahn–Mazurkiewicz theorem (see, e.g., [19], p. 106), there exists

a continuous function g1 : A1
1 ∪ A1

2 → Mk1 such that g1(A1
1) = Mk1 and g1(A1

2) = Mk1 . From the
fact that the set Γ1

1 ∪ Γ1
2 is closed and from Condition [M3], it follows that there exists k2 > k1 such that

Mk2 ∩ (Γ1
1 ∪ Γ1

2) = ∅. Obviously, (A1
1 ∪ A1

2) ∩ f n0
1 (Mk2) = ∅.

By the same reasoning as above, one can find x2 ∈ Mk2 and A(x0, f n0
1 (x2)) ⊂ f n0

1 (Mk2)
.

Let A2
1, A2

2, A2
3, A2

4 be such arcs that A2
1 ∪ A2

2 ∪ A2
3 ∪ A2

4 ⊂ A(x0, f n0
1 (x2)), A2

i ∩ A2
j = ∅ if i �= j,
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x0 �∈ A2
1 ∪ A2

2 ∪ A2
3 ∪ A2

4. Put Γ2
i = f−n0

1 (A2
i ) ∩Mk2 , i = 1, . . . , 4. Clearly

4⋃
i=1

Γ2
i ⊂ Mk2 , Γ2

i ∩ Γ2
j = ∅

whenever i �= j, x0 �∈ 4⋃
i=1

Γ2
i and Γ2

i are closed for i = 1, . . . , 4. Moreover, f n0
1 (Γ2

i ) = A2
i for i = 1, . . . , 4.

Let g2 : A2
1 ∪ A2

2 ∪ A2
3 ∪ A2

4 → Mk2 be a continuous function such that g2(A2
i ) = Mk2 for i = 1, . . . , 4.

Continuing in this fashion, we obtain two sequences: {ki}i∈N ⊂ N and {Γi}i∈N of closed sets such

that Γi =
2i⋃

s=1
Γi

s ⊂ Mki
for i ∈ N, Γi

s is closed for i ∈ N, s ∈ {1, . . . , 2i} and Γi
s1
∩ Γi

s2
= ∅ whenever

s1 �= s2. Moreover, there exists a sequence {gi}i∈N of continuous functions such that gi( f n0
1 (Γi

s)) = Mki

for i ∈ N, s ∈ {1, . . . , 2i}.

Now, let us consider the set Γ =
∞⋃

i=1
Γi ∪ {x0}. It follows easily that Γ ⊂ int(M1). It is easy to

prove that Γ is closed.
Consider the following function:

g0(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x0 for x = x0,

gi(x) for x ∈ 2i⋃
s=1

Γi
s, i ∈ N,

f n0
1 (x) for x ∈ FrMk∗ .

Clearly, g0 : Γ ∪ FrMk∗ → Mk∗−1. Since Γ ∪ FrMk∗ is closed and g0 is continuous, it follows
by Condition [M4] that there exists a continuous function g∗0 : Mk∗ → Mk∗−1 such that g∗0 � (Γ ∪
FrMk∗) = g0.

Put:

ψ(x) =

{
g∗0(x) for x ∈ Mk∗ ,

f n0
1 (x) for x �∈ Mk∗ .

Consider the system:

T1,∞ = { f1, f2, . . . , fn0 , ψ, f1, f2, . . . , fn0 , ψ, . . . }.

We will show that T1,∞ is a periodic ε-disturbance of f1,∞. Condition (PD1) is obvious. To obtain
Condition (PD2), it is enough to show that ψ ∈ [ f n0

1 ]εx0
. We have �= (ψ, f n0

1 ) ⊂ Mk∗ ⊂ B(x0, ε)

because ψ(x) = f n0
1 (x) for x �∈ Mk∗ . Moreover, f n0

1 ( �= (ψ, f n0
1 )) ⊂ f n0

1 (Mk∗) ⊂ f n0
1 (U) ⊂ B(x0, ε) and

ψ( �= (ψ, f n0
1 )) ⊂ ψ(Mk∗) = g∗0(Mk∗) ⊂ Mk∗−1 ⊂ B(x0, ε). This means that ψ ε

x0
f n0
1 .

What is left is to prove that x0 is an asymptotical A-focal entropy point of T1,∞.
Let V be an arbitrary open neighborhood of x0. Obviously, there exists k0 ∈ N such that Mk ⊂ V

for k > k0. Let α ∈ R and α > 0. We will show that there exists A = (A1, . . . , Am) ∈ Θ(A) such
that H

T
n0+1
1,∞

(A) ≥ (n0 + 1)α. Obviously, one can find i∗ ∈ N such that ki∗ > k0 and i∗ > (n0 + 1)α.

Thus, Γi∗ =
2i∗⋃
s=1

Γi∗
s ⊂ V. Consider A = (Γi∗

1 , . . . , Γi∗
2i∗ ) ⊂ V, and put ψ̃ = ψ ◦ fn0 ◦ · · · ◦ f1. Clearly,

Tn0+1
1,∞ = (ψ̃).

Let k ∈ N. It is evident that tr(Mk
T

n0+1
1,∞

(A)) is equal to the number of (k + 1)-paths connected

with A. We have ψ̃(Γi∗
s ) = ψ( f n0

1 (Γi∗
s )) = Mki∗ and Γi∗

s ⊂ Mki∗ for any s ∈ {1, . . . , 2i∗}, so Γi∗
s1
−→̃

ψ
Γi∗

s2

for s1, s2 ∈ {1, . . . , 2i∗}. As a consequence tr(Mk
T

n0+1
1,∞

(A)) = (2i∗)k. Thus, H
T

n0+1
1,∞

(A) = log 2i∗ = i∗ >

(n0 + 1)α.
Finally, we have shown that for any α > 0, there exists A ∈ Θ(A), A ⊂ V such that

1
n0+1 H

T
n0+1
1,∞

(A) > α. Hence for any α > 0, we have H(A, T1,∞, V) = sup{ 1
n HTn

1,∞
(A) : A ∈ Θ(A) ∧
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A ⊂ V ∧ n ∈ N} ≥ sup{ 1
n0+1 H

T
n0+1
1,∞

(A) : A ∈ Θ(A) ∧A ⊂ V} ≥ α. Thus, H(A, T1,∞, V) = +∞, and

therefore, d∗(A, T1,∞, V) = 1, so x0 is an asymptotical A-focal entropy point of T1,∞.

The next theorem shows the difference between a A-focal entropy point of NDS and
an asymptotical A-focal entropy point of NDS on the interval under as weak as possible assumptions
imposed on the considered functions. For the simplicity of the notation, we will formulate and prove
the theorem for x0 = 0. It can be easily generalized for any x0 ∈ [0, 1].

Theorem 4. Let f : [0, 1] → [0, 1] be a function continuous at 0 ∈ FIX( f ) and such that h( f ) < ∞. Let us
assume that:

(*) there exists a sequence αn ↘ 0 such that for any n ∈ N, we have f ([αn, 1]) ⊂ [αn, 1].

Then, for any ε > 0, there exists a sequence { fn}n∈N of functions continuous at zero such that { fn}n∈N ⊂ [ f ]εx0

and zero is a A-focal entropy point of the system f1,∞ and is not an asymptotical A-focal entropy point of f1,∞.

Proof. Let ε > 0. Let γ be a positive number less than ε and such that f (x) < ε for x ∈ [0, γ].
There exists n0 ∈ N such that αn0 ∈ (0, γ) and f ([αn0 , 1]) ⊂ [αn0 , 1]. Put δ = αn0 , and hence, f (δ) ≥ δ.
Let m ∈ N be an odd positive integer such that log m > h( f ).

From (*), it follows that there exists an interval P ⊂ (0, δ) such that f ([δ, 1])∩ P = ∅. Put a0 = inf P
and b0 = sup P. Notice that 0 < b0 < δ. Consider a sequence xn ↘ 0 such that x1 = a0. Now, we
can define the function f1 : [0, 1] → [0, 1] as follows: f1(0) = 0, f1(xn+1 + 2k xn−xn+1

m ) = xn+1 for
k ∈ {0, 1, . . . , m−1

2 }, f1(xn+1 + (2k − 1) xn−xn+1
m ) = xn for k ∈ {1, . . . , m+1

2 }, f1(xn+1 +
xn−xn+1

2m ) =

xn+1 +
xn−xn+1

2m , f1(xn − xn−xn+1
2m ) = xn − xn−xn+1

2m , f1 is linear on respective intervals in each [xn+1, xn];
and moreover, f1(x) = a0 for x ∈ [a0, b0), f1(x) = b0 for x ∈ [b0, δ) and f1(x) = f (x) for x ∈ [δ, 1].

We next define functions fn for n ≥ 2. Let fn(x) = f1(x) for x ∈ [0, 1] \ (a0, δ), n ≥ 2. Fix y0 ∈
(a0, b0). Put fn(a0 + 2k y0−a0

m+2 ) = a0 for k ∈ {0, 1, . . . , m+1
2 } and fn(a0 + (2k − 1) y0−a0

m+2 ) = y0 for
k ∈ {1, . . . , m+3

2 } and fn linear on the respective intervals. Moreover, fn(x) = y0 for x ∈ [y0, b0),
fn(x) = b0 for x ∈ [b0, δ).

Obviously fn is continuous at zero for n ∈ N and { fn}n∈N ⊂ [ f ]ε0. We will show that h( f1) =

log m = h( f1,∞) and h( fn) = log(m + 2) = h( fn,∞) for n ≥ 2.
We first prove that h( f1, [a0, b0)) = 0. Let ε1 > 0, n ∈ N and M ⊂ [a0, b0) be an (n, ε1)-separated

set for f1. For any x, y ∈ M, x �= y, there exists i0 ∈ {0, . . . , n − 1} such that ρ(( f1)
i0(x), ( f1)

i0(y)) > ε1.
Notice that i0 = 0. Indeed, we have f1(x) = a0 and f1(y) = a0. Hence, for i > 0, we have ( f1)

i(x) = a0

and ( f1)
i(y) = a0, so ρ(( f1)

i(x), ( f1)
i(y)) = 0 for i > 0. As a consequence, for any distinct points

x, y ∈ M, we have ρ(x, y) > ε1. It follows that #(M) ≤ [ b0−a0
ε1

] + 1, so sn( f1, [a0, b0), ε1) ≤ [ b0−a0
ε1

] +

1, where [ b0−a0
ε1

] denotes the smallest positive integer greater than b0−a0
ε1

. Hence, h( f1, [a0, b0)) =

lim
ε1→0

lim sup
k→∞

1
k log(sk( f1, [a0, b0), ε1)) ≤ 0. In an analogous way, one can show that h( f1, [b0, δ)) = 0.

Moreover, we have f1(x) = f (x) for x ∈ [δ, 1] and f1([δ, 1]) ⊂ [δ, 1]. Consequently, h( f1, [δ, 1]) =
h( f , [δ, 1]) < log m.

Let n ∈ N. We will show that h( f1, [xn+1, xn]) = log m. Clearly, f1 � [xn+1, xn] : [xn+1, xn] →
[xn+1, xn] and f1 � [xn+1, xn] is piecewise monotone. Denote by ck the number of intervals of
monotonicity of ( f1)

k. We have ck = mk for k ∈ N. Thus, by Theorem 4.2.4 [20], we have
h( f1, [xn+1, xn]) = lim

k→∞
1
k log ck = log m. Obviously, [0, a0] =

⋃
n∈N

[xn+1, xn], and for any n ∈ N, we have

f1([xn+1, xn]) ⊂ [xn+1, xn]. On account of Lemma 4.1.10 [20] (and the remark after it), we obtain
h( f1, [0, a0]) = sup

n∈N
(h( f1, [xn+1, xn])) = log m. Finally, Proposition 3.5 [12] (see also Lemma 4.1

from [13]) gives that h( f1) = max{h( f1, [0, a0]), h( f1, [a0, b0)), h( f1, [b0, δ)), h( f1, [δ, 1])} = log m.
We now turn to the case n ≥ 2. We have fn � [0, a0] = f1 � [0, a0] and f1 : [0, a0] → [0, a0].

Hence, h( fn, [0, a0]) = h( f1, [0, a0]) = log m. Moreover, fn � [δ, 1] = f1 � [δ, 1] and f1 : [δ, 1] → [δ, 1],
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so h( fn, [δ, 1]) = h( f1, [δ, 1]) < log m. Therefore, fn � [b0, δ) = f1 � [b0, δ) and f1 : [b0, δ) → [b0, δ),
so h( fn, [b0, δ)) = h( f1, [b0, δ)) = 0.

As was done for a function f1, one can show that h( fn, [y0, b0)) = 0 and h( fn, [a0, y0]) = log(m+ 2).
As a consequence, by Proposition 3.5 [12], we obtain h( fn) = log(m + 2).

Since fn = f2 for n ≥ 2, it follows that h( fn,∞) = h( f2) = log(m + 2) for n ≥ 2.
We will show now that h( f1,∞) = log m. We claim that:

( f1)
i(z) = f i

1(z) for z ∈ [0, 1] and i ∈ N0. (10)

Indeed, if z ∈ (a0, b0), then f1(z) = a0. Thus, for i ≥ 1, we have ( f1)
i(z) = a0 and f i

1(z) = a0,
so ( f1)

i(z) = f i
1(z). For i = 0, we have ( f1)

0(z) = z = f 0
1 (z), so ( f1)

i(z) = f i
1(z) for z ∈ (a0, b0) and

i ∈ N0. If z ∈ [0, 1] \ (a0, b0) then fn(z) ∈ [0, 1] \ (a0, b0) for n ∈ N. Therefore, it is easy to see that for
z ∈ [0, 1] \ (a0, b0) and i ≥ 1, we have ( f1)

i(z) = f i
1(z). Obviously, ( f1)

0(z) = z = f 0
1 (z). The proof

of (10) is complete.
Notice that for any n ∈ N and ε1 > 0, the set M ⊂ [0, 1] is (n, ε1)-separated for the system f1,∞

if and only if M is (n, ε1)-separated for f1. Indeed, let M be an (n, ε1)-separated set for f1. Then, for
any distinct points x, y ∈ M, there exists i ∈ {0, . . . , n − 1} such that ρ(( f1)

i(x), ( f1)
i(y)) > ε1. By (10),

we obtain ρ( f i
1(x), f i

1(y)) > ε1, which means that M is an (n, ε1)-separated set for the system f1,∞.
The proof of the converse implication runs in a similar way.

As a consequence, we have sn( f1, [0, 1], ε1) = sn( f1,∞, [0, 1], ε1), so log m = h( f1) = h( f1,∞).
Let U be an arbitrary neighborhood of zero. We will show that H(A, f1,∞, U) = log m. Clearly, by

Theorem 1, we have:

H(A, f1,∞, U) ≤ h( f1,∞) = log m. (11)

Let n ∈ N. Consider the interval [xn+1, xn]. There exists a sequence of points xn+1 < an,1 <

bn,1 < an,2 < bn,2 < · · · < an,m < bn,m < xn such that f1([an,i, bn,i]) = [an,i, bn,i] for i ∈ {1, . . . , m}. Put
An

i = [an,i, bn,i] for i ∈ {1, . . . , m}. Then, An = (An
1 , . . . , An

m) ∈ Θ(A) and:

for any k ∈ N and any i, j ∈ {1, . . . , m} we have An
i →

fk
An

j . (12)

Obviously, for any k ∈ N, the trace tr(Mk
f1,∞

(An)) is equal to the number of (k + 1)-paths with the
first and the last node at An

i for i = 1, . . . , m. By (12), we conclude that the number of such paths is
equal to mk. Hence, 1

k log tr(Mk
f1,∞

(An)) = log m, and therefore:

Hf1,∞(An) = log m. (13)

Let n0 ∈ N be such that [xn0+1, xn0 ] ⊂ U. Then, by (13), we obtain Hf1,∞(An0) = log m,
so H(A, f1,∞, U) ≥ log m. From this and (11), we get H(A, f1,∞, U) = log m. As a consequence,
d(A, f1,∞, U) = 1, which gives E(A, f1,∞, 0) = 1, so zero is a A-focal entropy point of f1,∞.

Simultaneously, zero is not an asymptotical A-focal entropy point of f1,∞, because for any
neighborhood U of zero, we have H(A, f1,∞, U) = log m and h∗( f1,∞) = lim

n→∞
h( fn,∞) = log(m + 2).

Therefore, d∗(A, f1,∞, U) =
log m

log(m+2) , which means that E∗(A, f1,∞, 0) = log m
log(m+2) < 1.

4. Conclusions

In the paper, the notions of a focal entropy point and an asymptotical focal entropy point for
nonautonomous dynamical systems are introduced. The definitions adopted in the paper specify the
notions that express the complexity of a system around these points and moreover, the complexity
of a system around such points does not depend on the behavior of the system in other parts of
its domain. Each asymptotical focal entropy point of an NDS is its focal entropy point. In the case
of periodic dynamical systems these notions coincide. For a periodic NDS consisting of continuous
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functions defined on the closed unit interval there exists an asymptotical focal entropy point. Moreover,
there exists a dynamical system with a focal entropy point which is not its asymptotical focal entropy
point. In the case of some periodic dynamical systems consisting of continuous functions defined on
a topological manifold one can disturb a system to obtain a system “lying close” to the given one and
having an asymptotical focal entropy point.
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Abstract: In this paper, we investigate analytical solutions of multi-time scale fractional stochastic
differential equations driven by fractional Brownian motions. We firstly decompose homogeneous
multi-time scale fractional stochastic differential equations driven by fractional Brownian motions into
independent differential subequations, and give their analytical solutions. Then, we use the variation
of constant parameters to obtain the solutions of nonhomogeneous multi-time scale fractional
stochastic differential equations driven by fractional Brownian motions. Finally, we give three
examples to demonstrate the applicability of our obtained results.

Keywords: multi-time scale fractional stochastic differential equations; fractional Brownian motion;
fractional stochastic partial differential equation; analytical solution

1. Introduction

In the last few years, the interest of the scientific community towards fractional calculus has
experienced an exceptional boost, and so its applications can now be found in a great variety of
scientific fields—for example, anomalous diffusion [1–3], medicine [4], solute transport [5], random
and disordered media [6–8], information theory [9], electrical circuits [10], and so on. The reason for
the success of fractional calculus in modeling natural phenomena is that the operators are nonlocal,
which makes them suitable to describe the long memory or nonlocal effects characterizing most
physical phenomena.

Fractional stochastic differential equations (FSDEs) are an important class of differential equations.
They can model the dynamics of complex systems in finance [8,11–13], and in physical problems [14,15].
For example, in [8], the authors combined stochastic contact process and compound Poisson process to
construct a novel microscope complex price dynamics, in an attempt to reproduce and characterize the
complex dynamics of financial markets. In finance, fractional permutation entropy, sample entropy,
and fractional sample entropy play important roles. It is well-known that entropy is used to quantify
the complexity and uncertainty in financial time series and others. At the same time, the necessity
of a powerful technique for solving these new types of equations arose, becoming one of the main
research objects in the fields of theoretical and applied sciences. In the available literature, there exist
various methods for solving fractional stochastic differential equations, such as analytical methods
and numerical algorithms [16–31].

Analytical solutions of fractional partial equations are of fundamental importance in describing
and understanding physical phenomena, since all the parameters are expressed in the form of infinite
series, and therefore the influence of individual parameters on natural phenomena can be easily
examined. Additionally, the analytical solutions make it easy to study asymptotic behaviors of the

Entropy 2018, 20, 63; doi:10.3390/e20010063 www.mdpi.com/journal/entropy148



Entropy 2018, 20, 63

solutions, which are usually difficult to obtain through numerical calculations. Besides, the analytical
solutions may serve as tools in assessing the computational performance and accuracy of numerical
solutions. Especially, for stochastic differential systems, analytical solutions may provide a useful
tool for assessing the influence of some parameters on statistical properties, permutation entropy,
fractional permutation entropy, sample entropy, and fractional sample entropy. It is well-known that
entropy theory is an important issue because it enables hydraulic and control engineers to quantify
uncertainties, determine risk and reliability, estimate parameters, model processes, and design more
robust and reliable hydraulic canals control systems.

To the authors’ knowledge, the analytical solutions of the FSDEs driven by fractional Brownian
motions (fBms) have not yet been reported in the literature. X.J. Wang et al. [32] considered the following
semilinear parabolic SPDEs in V, driven by an infinite dimensional fractional Brownian motion,

dX(t) + AX(t)dt = F(X(t))dt + ΦdBH(t), X(0) = x0, t ∈ [0, T], (1)

where F : V → V and Φ : V → V are deterministic mappings. Motivated by their work, we investigate
the analytical solution of the following multi-time scale fractional stochastic differential equation:

dY(t)
dt

+ Dα
t
(
a(t)Y(t) + p(t)

)
=
(
b(t)Y(t) + q(t)

)
+
(
σ(t)Y(t) + v(t)

)dBH(t)
dt

, Y(0) = y0, (2)

where b, p, σ, q, a, v ∈ C([0, T]), 0 < α ≤ 1, BH is a fractional Brownian motion defined on [0, T], and y0

is a real-valued random variable on a complete probability space (Ω,F ,P), and it is independent of
BH(t) for all t ∈ [0, T]. The detailed definitions of the Riemann–Liouville fractional derivative and the
fractional Laplacian operator and fBm are given in the next section (or see [33–37]).

The rest of this paper is organized as follows. In Section 2, we give some basic definitions of fBm
and fractional calculus, which will be used in the paper. In Section 3, we give the solution of multi-time
scale FSDEs driven by fBms. In Section 4, we give three examples to demonstrate the applicability of
the obtained results. In Section 5, we give conclusions.

2. Preliminaries

In this section, we give some basic definitions of fractional Brownian motion and fractional
calculus, which will be used throughout this paper. For details, one can refer to [37–40].

Let (Ω,F ,P) be a complete probability space, and [0, T] be a finite time interval.

Definition 1. A one-dimensional fractional Brownian motion BH = {BH(t), t ∈ [0, T]} of Hurst index
H ∈ (0, 1) on [0, T] is a continuous and centered Gaussian process on some probability space (Ω,F ,P) with
covariance function

E[BH(t)BH(s)] =
1
2
(t2H + s2H − |t − s|2H), t, s ∈ [0, T].

If H = 1
2 , then the corresponding fBm is the usual standard Brownian motion. If H > 1

2 , then the
process fBm exhibits a long-range dependence. In this paper, we always assume H ∈ ( 1

2 , 1).

Lemma 1. (Fractional Itô formula) [39] If X(t) satisfies that

dX(t) = u(t)dt + v(t)dBH(t), (3)

where u, v are given functions. Furthermore, let f ∈ C2(R), and assume that f ′(X) and f ′′(X) exist and are
continuous for X ∈ R. Then, it has

d f (X(t)) = ( f ′(X(t))u(t) + H f ′′(X(t))t2H−1v2(t))dt + f ′(X(t))v(t)dBH(t). (4)
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It is interesting to note that if H = 1
2 is formally substituted in Equation (4), then the well-known

Itô formula for classical Brownian motion is obtained.
In the following, we recall some definitions about fractional calculus and some special functions.

Definition 2. Let α > 0. Then, the Riemann–Liouville fractional integral of order α with respect to t is defined as

Iα
t f (t) =

1
Γ(α)

∫ t

0
(t − τ)α−1 f (τ)dτ, t > 0, (5)

where Γ(·) is the Gamma function.

Definition 3. Let f ∈ C([0, T]) and m − 1 < α ≤ m, where m ∈ N+. The Riemann–Liouville fractional
derivative of order α with respect to t is defined as

Dα
t f (t) =

1
Γ(m − α)

dm

dtm

∫ t

0
(t − τ)m−α−1 f (τ)dτ, t > 0. (6)

There exists the following relationship between the Riemann–Liouville fractional integral and the
Riemann–Liouville fractional derivative.

Property 1. Let m − 1 < α ≤ m, where m ∈ N+ [37]. Then the statements are true:

(Dα
t Iα

t f )(t) = f (t), (Iα
t Dα

t f )(t) = f (t)−
m

∑
k=1

(Im−α
t f )(m−k)(0+)
Γ(α − k + 1)

tα−k, t > 0. (7)

Definition 4. Suppose that the Laplacian (−�) has a complete set of orthonormal eigenfunctions ϕn

corresponding to eigenvalues λ2
n on a bounded region D; i.e., (−�)ϕn = λ2

n ϕn on D; B(ϕn) = 0 on
∂D, where B(ϕn) is one of the standard three homogeneous boundary conditions [33]. Let

G =

{
g =

∞

∑
n=1

cn ϕn, cn = 〈g, ϕn〉,
∞

∑
n=1

|cn|2|λn|α < ∞

}
, (8)

then for any g ∈ G, (−�)
α
2 is defined by

(−�)
α
2 g =

∞

∑
n=1

cnλα
n ϕn. (9)

Lemma 2. Suppose that the one-dimensional Laplacian (−�) defined with Dirichlet boundary conditions at
x = 0 and x = L has a complete set of orthonormal eigenfunctions ϕn corresponding to eigenvalues λ2

n on a
bounded region [0, L] [33]. If (−�)ϕn = λ2

n ϕn on [0, L], and ϕn(0) = ϕn(L) = 0, then, the eigenvalues are
given by λ2

n = n2π2

L2 , and the corresponding eigenfunctions are ϕn(x) = sin(nπx/L), n = 1, 2, . . ..

Definition 5. The two-parameter Mittag–Leffler function is defined by [37]

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α, β > 0. (10)

The one-parameter Mittag–Leffler function is defined by

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, α > 0. (11)
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In particular, when β = 1, the two-parameter Mittag–Leffler function coincides with the
one-parameter Mittag–Leffler function; i.e., Eα,1(z) = Eα(z).

Definition 6. A generalized Mittag–Leffler function is defined by [37]

Eα,m,l(z) =
∞

∑
k=0

ckzk, (12)

with

c0 = 1, ck =
k−1

∏
j=0

Γ(α(jm + 1))
Γ(α(jm + l + 1) + 1)

, (13)

where α > 0, m > 0, and α(jm + l) > 0.

In particular, when m = 1, there exists the following relationship between the generalized
Mittag–Leffler function and the two-parameter Mittag–Leffler function:

Eα,1,l(z) = Γ(αl + 1)Eα,αl+1(z). (14)

3. Solution Representation for FSDEs Driven by fBms

In this section, we first give an equivalent form of Equation (2) and then investigate its analytical
solution. Before giving its equivalent form, we provide some explanations about the Riemann–Liouville
fractional integral. In [29] (Definition 3.2 and Example 3.1), the authors gave that the integral with
respect to (dt)α defined as

∫ t

0
f (τ)(dτ)α = α

∫ t

0
(t − τ)α−1 f (τ)dτ, t > 0, (15)

where f ∈ C([0, T]) and 0 < α ≤ 1. Based on this definition, we can obtain the following relationship
between the Riemann–Liouville fractional integral and the integral with respect to (dt)α:

∫ t

0
f (τ)(dτ)α = αΓ(α)(Iα

t f )(t). t > 0, (16)

where f ∈ C([0, T]) and 0 < α ≤ 1.
One sees that Equation (2) is equivalent to the following integral equation:

Y(t) = y0 − 1
Γ(1 − α)

∫ t

0
(t − τ)−α

(
a(τ)Y(τ) + p(τ)

)
dτ +

∫ t

0

(
b(τ)Y(τ) + q(τ)

)
dτ

+
∫ t

0

(
σ(τ)Y(τ) + v(τ)

)
dBH(τ). (17)

By (15), the above equation can be rewritten as:

Y(t) = y0 − 1
Γ(2 − α)

∫ t

0

(
a(τ)Y(τ) + p(τ)

)
(dτ)1−α +

∫ t

0

(
b(τ)Y(τ) + q(τ)

)
dτ

+
∫ t

0

(
σ(τ)Y(τ) + v(τ)

)
dBH(τ). (18)

That is to say, Equation (2) is equivalent to the following equation:{
dY(t) = 1

Γ(2−α)

(
a(t)Y(t) + p(t)

)
(dt)1−α +

(
b(t)Y(t) + q(t)

)
dt +

(
σ(t)Y(t) + v(t)

)
dBH(t),

Y(0) = y0.
(19)
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Therefore, we only need to solve Equation (19). For obtaining the solution of Equation (19),
we first discuss the solution of the correspondent homogeneous case in the next subsection.

3.1. Solution Representation for Linear Homogeneous Case

The corresponding homogeneous differential equation can be written as:{
dY(t) = 1

Γ(2−α)
a(t)Y(t)(dt)1−α + b(t)Y(t)dt + σ(t)Y(t)dBH(t),

Y(0) = y0.
(20)

To obtain the solution of Equation (20), we decompose Equation (20) into three subequations:

dY f (t) =
1

Γ(2 − α)
a(t)Y f (t)(dt)1−α, Y f (0) = y f

0 , (21)

dYd(t) = b(t)Yd(t)dt, Yd(0) = yd
0, (22)

dYs(t) = σ(t)Ys(t)dBH(t), Ys(0) = ys
0, (23)

where y f
0 , yd

0, ys
0 are constants which satisfy y f

0 yd
0ys

0 = y0. Obviously, we have

d(Y f YdYs) = YdYs(dY f ) + Y f Ys(dYd) + Y f Yd(dYs) (24)

= YdYs 1
Γ(2 − α)

a(t)Y f (t)(dt)1−α + Y f Ysb(t)Yd(t)dt + Y f Ydσ(t)Ys(t)dBH(t) (25)

=
1

Γ(2 − α)
a(t)Y(t)(dt)1−α + b(t)Y(t)dt + σ(t)Y(t)dBH(t). (26)

This implies that Y = Y f YdYs is the solution of Equation (20).
In the following, our aim is to solve Equations (21) and (23), because the solution of Equation (22)

is well-known. Firstly, we consider the solution of Equation (21).

Lemma 3. Let 0 < α < 1 and a ∈ C([0, T]). Then, the solution of Equation (21) is given by

Y f (t) =
∞

∑
i=0

Ri
ay f

0 , (27)

where Ra is an operator defined on C([0, T]):

(Ra ϕ)(t) =
1

Γ(1 − α)

∫ t

0
(t − τ)−αa(τ)ϕ(τ)dτ, (28)

and R0
a is an identity operator, and Ri

a denotes the i-times composition operator of Ra, i = 1, 2, . . ..

Proof. Note that Equation (21) is equivalent to the following integral equation:

Y(t) = y0 +
1

Γ(1 − α)

∫ t

0
(t − τ)−αa(τ)Y(τ)dτ. (29)

Construct a successive approximate sequence {Y f
(k)} defined as:

Y f
(k+1)(t) = y0 +

1
Γ(1 − α)

∫ t

0
(t − τ)−αa(τ)Y f

(k)(τ)dτ, k = 0, 1, 2, . . . , (30)
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where we choose Y f
(0)(t) ≡ y f

0 . Then, by induction on k, we can obtain

Y f
(k)(t) =

k

∑
i=0

Ri
ay f

0 , k = 0, 1, 2, . . . , (31)

where the operator Ra is defined in (28).

Next, we will show that the series
∞
∑

i=0
(Ri

ay f
0)(t) is uniformly convergent with respect to t ∈ [0, T].

Because a(t) ∈ C([0, T]), there exists M > 0 such that ‖a‖ ≤ M for any t ∈ [0, T]. Based on this
consideration, we have

∥∥(Ray f
0)(t)

∥∥ =

∥∥∥∥∥ y f
0

Γ(1 − α)

∫ t

0
(t − τ)−αa(τ)dτ

∥∥∥∥∥ ≤ y f
0 Mt1−α

Γ(2 − α)
. (32)

Furthermore, suppose that the following relationship

∥∥(Ri
ay f

0)(t)
∥∥ ≤ y f

0 Miti(1−α)

Γ(i(1 − α) + 1)
(33)

holds for any fixed i ∈ N. Let us prove that the relationship (33) is also valid for i + 1. According to
the induction hypothesis, we get

∥∥(Ri+1
a y f

0)(t)‖ =
1

Γ(1 − α)

∥∥∥∥∥
∫ t

0
(t − τ)−αa(τ)(Ri

ay f
0)(τ)dτ

∥∥∥∥∥ (34)

≤ y f
0 Mi+1

Γ(1 − α)Γ(i(1 − α) + 1)

∫ t

0
(t − τ)−ατi(1−α)dτ. (35)

Making use of a variable substitution τ = ωt, we have

∫ t

0
(t − τ)−ατi(1−α)dτ = t(i+1)(1−α)

∫ 1

0
(1 − ω)−αωi(1−α)dω = t(i+1)(1−α) Γ(1 − α)Γ(i(1 − α) + 1)

Γ((i + 1)(1 − α) + 1)
, (36)

where B(·, ·) is the Beta function defined as

B(z, w) =
∫ 1

0
(1 − τ)z−1τw−1dτ, z, w > 0. (37)

Here we used the relationship between the Beta function and the Gamma function:

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
. (38)

So it has
∥∥(Ri+1

a y f
0)(t)

∥∥ ≤ y f
0 Mi+1t(i+1)(1−α)

Γ((i+1)(1−α)+1) . Hence, for any i ∈ N, we have

∥∥(Ri
ay f

0)(t)
∥∥ ≤ y f

0 Miti(1−α)

Γ(i(1 − α) + 1)
. (39)

That is to say, the series
∞
∑

i=0
(Ri

ay f
0)(t) is uniformly convergent with respect to t ∈ [0, T], and the

sum function is the unique solution of Equation (21). This completes the proof of this lemma.

With respect to this lemma, we have the following remarks.
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Remark 1. In particular, if α = 0, then we have

(Ri
ay f

0)(t) =
y f

0
( ∫ t

0 a(τ)dτ
)i

i!
, i = 1, 2, . . . . (40)

Obviously, (40) is valid for i = 1. Suppose that (40) holds for any fixed i. Let us verify that (40) also holds
for i + 1. According to the induction hypothesis, we have

(Ri+1
a y f

0)(t) = y f
0

∫ t

0
a(τ)

(
∫ τ

0 a(s)ds)i

i!
dτ = y f

0

∫ t

0

(
∫ τ

0 a(s)ds)i

i!
d

(∫ τ

0
a(s)ds

)
=

y f
0(
∫ t

0 a(τ)dτ)i+1

(i + 1)!
. (41)

So, (40) holds for any positive integer. Therefore, the solution of the following initial value problem

dY f (t)
dt

= a(t)Y f (t), Y f (0) = y f
0 (42)

is given by

Y f (t) = y f
0 exp

(∫ t

0
a(τ)dτ

)
. (43)

This coincides with the classical result.

Remark 2. In [29], the author gave the solution of Equation (21) as

Y f (t) = y f
0 E1−α

(
(1 − α)

∫ t

0
(t − τ)−αa(τ)dτ

)
. (44)

We think the representation of the solution of Equation (21) is wrong. For example, α = 1
2 , and a(t) = tβ,

it has ∫ t

0
(t − τ)−ατβdτ =

Γ(1 − α)Γ(1 + β)

Γ(2 − α + β)
t1−α+β. (45)

Therefore, according to the result in [29], the solution is

Y f (t) = y f
0 E 1

2

(
Γ( 3

2 )Γ(1 + β)

Γ( 3
2 + β)

t
1
2+β

)
. (46)

However, we find that Y f (t) defined in (46) is not the solution of Equation (21).
In fact, by using our obtained result in Lemma 3, the solution of Equation (21) is

Y f (t) =
∞

∑
i=0

Ri
ay f

0 = y f
0 E 1

2 ,1+2β,2β

(
t

1
2+β

)
, t ∈ [0, T]. (47)

Next, we consider the solution of Equation (23).

Lemma 4. Let 1
2 < H < 1 and σ ∈ C([0, T]). Then the solution of Equation (23) is

Ys(t) = ys
0 exp

(
− H

∫ t

0
τ2H−1σ2(τ)dτ +

∫ t

0
σ(τ)dBH(τ)

)
. (48)
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Proof. Let

Ys(t) = ys
0 exp

(∫ t

0
p1(τ)dτ +

∫ t

0
p2(τ)dBH(τ)

)
(49)

be the solution of Equation (23). Then, it satisfies Equation (23); i.e.,

dYs(t) = ys
0σ(t) exp

(∫ t

0
p1(τ)dτ +

∫ t

0
p2(τ)dBH(τ)

)
dBH(t). (50)

On the other hand, applying fractional Itô formula to Ys(t) in (49), we have

dYs(t) = x0 exp

(∫ t

0
p1(τ)dτ +

∫ t

0
p2(τ)dBH(τ)

)(
p1(t) + Ht2H−1 p2

2(t)
)

dt + p2(t)dBH(t). (51)

Subtracting (50) from (51), we have

p2(t) = σ(t), p1(t) = −Ht2H−1σ2(t). (52)

Therefore, the solution of Equation (23) is

Ys(t) = ys
0 exp

(
− H

∫ t

0
τ2H−1σ2(τ)dτ +

∫ t

0
σ(τ)dBH(τ)

)
. (53)

The proof of this lemma is completed.

At this stage, we can establish the following theorem.

Theorem 1. Let a, b, σ ∈ C([0, T]), 0 < α < 1, and 1
2 < H < 1. Then, the solution of Equation (20) is given by

Y(t) = exp

(∫ t

0

(
b(τ)− Hτ2H−1σ2(τ)

)
dτ +

∫ t

0
σ(τ)dBH(τ)

)
∞

∑
i=0

Ri
ay0, (54)

where Ra is defined as (28), and Ri
a denotes the i-times composition operator of Ra.

We denote

Φ(t) = exp

(∫ t

0
b(τ)dτ − H

∫ t

0
τ2H−1σ2(τ)dτ +

∫ t

0
σ(τ)dBH(τ)

)
∞

∑
i=0

Ri
a. (55)

One knows that Φ is the fundamental solution of Equation (20). In the following, we will show
that Φ is invertible on [0, T] in an algebraic sense.

Theorem 2. Let Φ be the fundamental solution of Equation (20). Then Φ is invertible on [0, T], and its inverse is

Φ−1 = exp

(
−
∫ t

0

(
b(τ)− Hτ2H−1σ2(τ)

)
dτ −

∫ t

0
σ(τ)dBH(τ)

)
∞

∑
i=0

(−1)iRi
a, (56)

where Ra is the operator defined as (28).
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Proof. From Theorem 1, one knows that the following equation

dZ(t) = − 1
Γ(2 − α)

a(t)Z(t)(dt)1−α − (b(t)− 2Ht2H−1σ2(t)
)
Z(t)dt − σ(t)Z(t)dBH(t), Z(0) = z0 (57)

has a unique solution Z(t) = z0Ψ(t), where Ψ(t) is the fundamental solution of Equation (57) given by

Ψ(t) = exp

(
−
∫ t

0

(
b(τ)− Hτ2H−1σ2(τ)

)
dτ −

∫ t

0
σ(τ)dBH(τ)

)
∞

∑
i=0

(−1)iRi
a, (58)

and follows that

dΨ(t) = − 1
Γ(2 − α)

a(t)Ψ(t)(dt)1−α − (b(t)− 2Ht2H−1σ2(t)
)
Ψ(t)dt − σ(t)Ψ(t)dBH(t). (59)

Additionally, since Φ satisfies that

dΦ(t) =
1

Γ(2 − α)
a(t)Φ(t)(dt)1−α + b(t)Φ(t)dt + σ(t)Φ(t)dBH(t). (60)

Then, by the product rule, we have

d(ΦΨ) = Ψ(dΦ) + Φ(dΨ) + dΦdΨ = 0. (61)

This implies that ΦΨ ≡ constant on t ∈ [0, T]. On the other hand, we note that Φ(0)Ψ(0) = 1.
Thus, Φ(t)Ψ(t) ≡ 1 on t ∈ [0, T]. This implies that Φ is invertible on [0, T], and its inverse is Ψ.
The proof is completed.

3.2. Solution Representation for Linear Nonhomogeneous Case

In this subsection, we consider the solution of Equation (2). We use the variation of constants
parameters to find a particular solution Yp of Equation (2). For this purpose, we define a random function

Yp(t) = Φ(t)c(t), (62)

where c(t) is an unknown random function with c(0) = y0. Let us assume that Yp(t) is a solution of
Equation (2).

By the product rule to Yp, we have

dYp(t) = dΦ(t)c(t) + Φ(t)dc(t) + dΦ(t)dc(t). (63)

Additonally, since Φ is invertible, it has

dc(t) = Φ−1(dYp(t)− dΦ(t)c(t)− dΦ(t)dc(t)
)
. (64)

Furthermore, since Yp(t) is the solution of Equation (2) and Φ is the solution of Equation (20), we have

dc(t) = Φ−1(t)p(t)(dt)1−α + Φ−1(t)q(t)dt + Φ−1(t)v(t)dBH(t)− Φ−1dΦ(t)dc(t). (65)

Additionally, since

dΦ(t)dc(t) = 2Ht2H−1v(t)σ(t)dt. (66)

Therefore, we have

dc(t) = Φ−1(t)p(t)(dt)1−α + Φ−1(t)
(
q(t)− 2Ht2H−1v(t)σ(t)

)
dt + Φ−1(t)v(t)dBH(t), (67)
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and

c(t) = c(0) +
∫ t

0
Φ−1(τ)p(τ)(dτ)1−α +

∫ t

0
Φ−1(τ)

(
q(τ)− 2Hτ2H−1v(τ)σ(τ)

)
dτ

+
∫ t

0
Φ−1(τ)v(τ)dBH(τ). (68)

Thus, the solution Y(t) of Equation (2) is

Y(t) = Φ(t)y0 +
∫ t

0
Φ(t, τ)p(τ)(dτ)1−α +

∫ t

0
Φ(t, τ)

(
q(τ)− 2Hτ2H−1v(τ)σ(τ)

)
dτ

+
∫ t

0
Φ(t, τ)v(τ)dBH(τ), (69)

where Φ(t, τ) = Φ(t)Φ−1(τ), Φ and Φ−1 are defined as (55) and (56), respectively.
Based on the above analysis, we can establish the following theorem.

Theorem 3. Let a, p, q, v, σ ∈ C[0, T], 0 < α < 1 and 1
2 < H < 1. Then the solution of Equation (2) is given by

Y(t) = Φ(t)y0 +
∫ t

0
Φ(t, τ)p(τ)(dτ)1−α +

∫ t

0
Φ(t, τ)

(
q(τ)− 2Hτ2H−1v(τ)σ(τ)

)
dτ

+
∫ t

0
Φ(t, τ)v(τ)dBH(τ), (70)

where Φ(t, τ) = Φ(t)Φ−1(τ), Φ and Φ−1 are defined as (55) and (56), respectively.

4. Applications

In this section, we demonstrate some applications of our obtained results.

Example 1. In this example, we consider a a mathematical model that can simulate the prices of financial
instruments (e.g., stocks).

Let (Ω,F ,P) be a probability space, where Ω is called a sample space, F is a set of all events and possible
statements about the prices on the market, and P is the usual probability measure. The price of an asset Zt in
classical Black–Scholes model is assumed to follow Geometric Brownian motion given by

dZt =
(

μ +
1
2

σ2
)

Ztdt + σZtdWt, Z0 = z0, (71)

where Wt is the standard Brownian motion with respect to P , σ > 0 is the diffusion parameter, and μ ∈ R is the drift.
The classical Black–Scholes model was certainly a breakthrough in the option pricing apparatus, because in

the financial market, one needs to consider the influence of maturity time and the strike price on the financial
derivatives or other factors. For these reasons, the Black–Scholes model with subdiffusion term is assumed to
follow fractional Brownian motion given by [41]

dZt

dt
+ aDα

t Zt =
(

μ +
1
2

σ2
)

Zt + σZt
dBH(t)

dt
, Z0 = z0, (72)

where BH is the fractional Brownian motion with respect to P , H ∈ ( 1
2 , 1), a > 0 is the subdiffusion parameter,

σ > 0 is the diffusion parameter, and μ ∈ R is the drift.

For obtaining the solution of Equation (72), we divide three steps to solve it:
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Step 1: According to (19), Equation (72) is equivalent to the following integral equation:{
dZt =

a
Γ(2−α)

Zt(dt)1−α +
(
μ + 1

2 σ2)Ztdt + σZtdBH(t),
Z0 = z0.

(73)

So, we only need to solve (73). Furthermore, according to (21), (22), and (23), Zt can be expressed
as Zt = Z f

t Zd
t Zs

t , where Z f
t is the solution of the following equation:

dZ f
t =

a
Γ(2 − α)

Z f
t (dt)1−α, Z f

0 = z f
0 , (74)

Zd
t is the solution of the following equation:

dZd
t =

(
μ +

1
2

σ2)Zd
t dt, Zd

0 = zd
0, (75)

and Zs
t is the solution of the following equation:

dZs
t = σZs

t dBH(t), Zs
0 = zs

0, (76)

and also z f
0 zd

0zs
0 = z0.

Step 2: Solve Equations (74)–(76), respectively. According to Lemma 3, the solution of
Equation (74) is Z f

t = z f
0 E1−α(at1−α). According to Lemma 4, the solution of Equation (76) is

Zs
t = zs

0 exp

(
− σ2t2H

2 + σBH(t)

)
.

Step 3: According to Theorem 1, Zt is given by

Zt = z0E1−α(at1−α) exp

(
− σ2t2H

2
+ σBH(t) +

(
μ +

1
2

σ2
)

t

)
. (77)

Example 2. Consider the following fractional stochastic partial differential equation

∂U(x, t)
∂t

+ Dα
t U(x, t) = −kp1(−�)

p1
2 U(x, t)− kp2(−�)

p2
2 U(x, t) + U(x, t)

dBH(t)
dt

, (78)

with the nonhomogeneous Dirichlet boundary conditions

U(0, t) = U(L, t) = 0, (79)

and the initial condition

U(x, 0) = φ(x), (80)

where (x, t) ∈ [0, L]× [0, T] (L and T are constants), 0 < α < 1, 0 < p1 ≤ 1, 1 < p2 ≤ 2, 1
2 < H < 1,

and ϕ(x) is a random function.

According to Lemma 2, the eigenvalues λ2
n (n = 1, 2, . . .) of the operator (−�) with the

homogeneous boundary conditions are λ2
n = n2π2/L2, and the corresponding eigenfunctions are

ϕn(x) = sin(nπx/L), n = 1, 2, . . .. Then we set

U(x, t) =
∞

∑
n=1

Un(t) sin(nπx/L). (81)
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Substituting (81) into (78) and (80) leads to the following equation:

dUn(t)
dt

+ Dα
t Un(t) = −kp1 λ

p1
n Un(t)− kp2 λ

p2
n Un(t) + Un(t)

dBH(t)
dt

, (82)

with the initial condition

Un(0) =
2
L

∫ L

0
φ(x) sin(nπx/L)dx. (83)

By Theorem 1, the solution of Equation (82) with the initial condition (83) is

Un(t) = Un(0) exp

((
− kp1 λ

p1
n − kp2 λ

p2
n

)
t − t2H

H
+ BH(t)

)
E1−α(t1−α). (84)

Therefore, the solution of Equation (78) with the boundary conditions (79) and the initial
condition (80) is

u(x, t) =
∞

∑
n=1

Un(0) exp

((
− kp1 λ

p1
n − kp2 λ

p2
n

)
t − t2H

H
+ BH(t)

)
E1−α(t1−α) sin(nπx/L). (85)

Example 3. Consider the following fractional stochastic partial differential equation

∂U(x, t)
∂t

+ Dα
t U(x, t) = −kp1(−�)

p1
2 U(x, t)− kp2(−�)

p2
2 U(x, t) + v(t)

dBH(t)
dt

+ f (x, t), (86)

with the nonhomogeneous Dirichlet boundary conditions

U(0, t) = U(L, t) = 0, (87)

and the initial condition

U(x, 0) = ψ(x), (88)

where (x, t) ∈ [0, L]× [0, T] (L and T are constants), 0 < α < 1, 0 < p1 ≤ 1, 1 < p2 ≤ 2, 1
2 < H < 1, and

ϕ(x) is a random function.

According to Lemma 2, the eigenvalues λ2
n (n = 1, 2, . . .) of the operator (−�) with the

homogeneous boundary conditions are λ2
n = n2π2/L2, and the corresponding eigenfunctions are

ϕn(x) = sin(nπx/L), n = 1, 2, . . .. Then we set

U(x, t) =
∞

∑
n=1

Un(t) sin(nπx/L), f (x, t) =
∞

∑
n=1

fn(t) sin(nπx/L). (89)

Substituting (89) into (86) and (88) leads to the following equation

dUn(t)
dt

+ Dα
t Un(t) = −kp1 λ

p1
n Un(t)− kp2 λ

p2
n Un(t) + v(t)

dBH(t)
dt

+ fn(t), (90)

with the initial condition

Un(0) =
2
L

∫ L

0
ψ(x) sin(nπx/L)dx. (91)
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By Theorem 3, the solution of Equation (86) with the initial condition (87) is

Un(t) = Φ(t)Un(0) +
∫ t

0
Φ(t, τ) fn(τ)(dτ)1−α +

∫ t

0
Φ(t, τ) fn(τ)dτ +

∫ t

0
Φ(t, τ)v(τ)dBH(τ), (92)

where

Φ(t) = exp

(
− (kp1 λ

p1
n + kp2 λ

p2
n )t

)
E1−α(t1−α), (93)

Φ−1(t) = exp

(
(kp1 λ

p1
n + kp2 λ

p2
n )t

)
E1−α(−t1−α), (94)

and Φ(t, τ) = Φ(t)Φ−1(τ). Therefore, the solution of Equation (86) with the boundary condition (87)
and the initial condition (88) is

U(x, t) =
∞

∑
n=1

Un(t) sin(nπx/L), (95)

where Un(t) is defined in (92).

5. Conclusions

In this paper, we gave analytical solutions of multi-time scale fractional stochastic differential
equations driven by fractional Brownian motions. We first decomposed the homogeneous multi-time
scale fractional stochastic differential equation driven by fractional Brownian motion into independent
differential subequations, and gave its analytical solution. Then, we used the variation of constants
parameters to obtain the solution of the nonhomogeneous multi-time scale fractional stochastic
differential equation driven by fractional Brownian motion. Finally, we demonstrated the applicability
of our obtained results in solving FSDEs.

FSPDEs are an important class of differential equations. In this paper, we combined our obtained
results about fractional stochastic ordinary differential equations and spectral representation technique
to give the analytical solutions of some FSPDEs. In the future, we will investigate entropy analyses
including permutation entropy, fractional permutation entropy, sample entropy, and fractional sample
entropy with the help of our obtained analytical solutions in some practical problems. On the
other hand, we plan to use the obtained analytical solutions of FSPDEs to assess the computational
performance and accuracy of their numerical solutions which we will develop.
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