220,333 research outputs found

    Nonintegrability, Chaos, and Complexity

    Full text link
    Two-dimensional driven dissipative flows are generally integrable via a conservation law that is singular at equilibria. Nonintegrable dynamical systems are confined to n*3 dimensions. Even driven-dissipative deterministic dynamical systems that are critical, chaotic or complex have n-1 local time-independent conservation laws that can be used to simplify the geometric picture of the flow over as many consecutive time intervals as one likes. Those conserevation laws generally have either branch cuts, phase singularities, or both. The consequence of the existence of singular conservation laws for experimental data analysis, and also for the search for scale-invariant critical states via uncontrolled approximations in deterministic dynamical systems, is discussed. Finally, the expectation of ubiquity of scaling laws and universality classes in dynamics is contrasted with the possibility that the most interesting dynamics in nature may be nonscaling, nonuniversal, and to some degree computationally complex

    Chaos, Complexity, and Random Matrices

    Get PDF
    Chaos and complexity entail an entropic and computational obstruction to describing a system, and thus are intrinsically difficult to characterize. In this paper, we consider time evolution by Gaussian Unitary Ensemble (GUE) Hamiltonians and analytically compute out-of-time-ordered correlation functions (OTOCs) and frame potentials to quantify scrambling, Haar-randomness, and circuit complexity. While our random matrix analysis gives a qualitatively correct prediction of the late-time behavior of chaotic systems, we find unphysical behavior at early times including an O(1)\mathcal{O}(1) scrambling time and the apparent breakdown of spatial and temporal locality. The salient feature of GUE Hamiltonians which gives us computational traction is the Haar-invariance of the ensemble, meaning that the ensemble-averaged dynamics look the same in any basis. Motivated by this property of the GUE, we introduce kk-invariance as a precise definition of what it means for the dynamics of a quantum system to be described by random matrix theory. We envision that the dynamical onset of approximate kk-invariance will be a useful tool for capturing the transition from early-time chaos, as seen by OTOCs, to late-time chaos, as seen by random matrix theory.Comment: 61 pages, 14 figures; v2: references added, typos fixe

    Nonlinear and Complex Dynamics in Economics

    Get PDF
    This paper is an up-to-date survey of the state-of-the-art in dynamical systems theory relevant to high levels of dynamical complexity, characterizing chaos and near chaos, as commonly found in the physical sciences. The paper also surveys applications in economics and �finance. This survey does not include bifurcation analyses at lower levels of dynamical complexity, such as Hopf and transcritical bifurcations, which arise closer to the stable region of the parameter space. We discuss the geometric approach (based on the theory of differential/difference equations) to dynamical systems and make the basic notions of complexity, chaos, and other related concepts precise, having in mind their (actual or potential) applications to economically motivated questions. We also introduce specifi�c applications in microeconomics, macroeconomics, and �finance, and discuss the policy relevancy of chaos

    Chaos and Complexity of quantum motion

    Full text link
    The problem of characterizing complexity of quantum dynamics - in particular of locally interacting chains of quantum particles - will be reviewed and discussed from several different perspectives: (i) stability of motion against external perturbations and decoherence, (ii) efficiency of quantum simulation in terms of classical computation and entanglement production in operator spaces, (iii) quantum transport, relaxation to equilibrium and quantum mixing, and (iv) computation of quantum dynamical entropies. Discussions of all these criteria will be confronted with the established criteria of integrability or quantum chaos, and sometimes quite surprising conclusions are found. Some conjectures and interesting open problems in ergodic theory of the quantum many problem are suggested.Comment: 45 pages, 22 figures, final version, at press in J. Phys. A, special issue on Quantum Informatio

    Black holes, complexity and quantum chaos

    Full text link
    We study aspects of black holes and quantum chaos through the behavior of computational costs, which are distance notions in the manifold of unitaries of the theory. To this end, we enlarge Nielsen geometric approach to quantum computation and provide metrics for finite temperature/energy scenarios and CFT's. From the framework, it is clear that costs can grow in two different ways: operator vs `simple' growths. The first type mixes operators associated to different penalties, while the second does not. Important examples of simple growths are those related to symmetry transformations, and we describe the costs of rotations, translations, and boosts. For black holes, this analysis shows how infalling particle costs are controlled by the maximal Lyapunov exponent, and motivates a further bound on the growth of chaos. The analysis also suggests a correspondence between proper energies in the bulk and average `local' scaling dimensions in the boundary. Finally, we describe these complexity features from a dual perspective. Using recent results on SYK we compute a lower bound to the computational cost growth in SYK at infinite temperature. At intermediate times it is controlled by the Lyapunov exponent, while at long times it saturates to a linear growth, as expected from the gravity description.Comment: 30 page

    Intrinsic chaos and external noise in population dynamics

    Full text link
    We address the problem of the relative importance of the intrinsic chaos and the external noise in determining the complexity of population dynamics. We use a recently proposed method for studying the complexity of nonlinear random dynamical systems. The new measure of complexity is defined in terms of the average number of bits per time-unit necessary to specify the sequence generated by the system. This measure coincides with the rate of divergence of nearby trajectories under two different realizations of the noise. In particular, we show that the complexity of a nonlinear time-series model constructed from sheep populations comes completely from the environmental variations. However, in other situations, intrinsic chaos can be the crucial factor. This method can be applied to many other systems in biology and physics.Comment: 13 pages, Elsevier styl

    Topological and Dynamical Complexity of Random Neural Networks

    Full text link
    Random neural networks are dynamical descriptions of randomly interconnected neural units. These show a phase transition to chaos as a disorder parameter is increased. The microscopic mechanisms underlying this phase transition are unknown, and similarly to spin-glasses, shall be fundamentally related to the behavior of the system. In this Letter we investigate the explosion of complexity arising near that phase transition. We show that the mean number of equilibria undergoes a sharp transition from one equilibrium to a very large number scaling exponentially with the dimension on the system. Near criticality, we compute the exponential rate of divergence, called topological complexity. Strikingly, we show that it behaves exactly as the maximal Lyapunov exponent, a classical measure of dynamical complexity. This relationship unravels a microscopic mechanism leading to chaos which we further demonstrate on a simpler class of disordered systems, suggesting a deep and underexplored link between topological and dynamical complexity
    corecore