911 research outputs found

    Multi Detector Fusion of Dynamic TOA Estimation using Kalman Filter

    Full text link
    In this paper, we propose fusion of dynamic TOA (time of arrival) from multiple non-coherent detectors like energy detectors operating at sub-Nyquist rate through Kalman filtering. We also show that by using multiple of these energy detectors, we can achieve the performance of a digital matched filter implementation in the AWGN (additive white Gaussian noise) setting. We derive analytical expression for number of energy detectors needed to achieve the matched filter performance. We demonstrate in simulation the validity of our analytical approach. Results indicate that number of energy detectors needed will be high at low SNRs and converge to a constant number as the SNR increases. We also study the performance of the strategy proposed using IEEE 802.15.4a CM1 channel model and show in simulation that two sub-Nyquist detectors are sufficient to match the performance of digital matched filter

    Implementation Aspects of a Transmitted-Reference UWB Receiver

    Get PDF
    In this paper, we discuss the design issues of an ultra wide band (UWB) receiver targeting a single-chip CMOS implementation for low data-rate applications like ad hoc wireless sensor networks. A non-coherent transmitted reference (TR) receiver is chosen because of its small complexity compared to other architectures. After a brief recapitulation of the UWB fundamentals and a short discussion on the major differences between coherent and non-coherent receivers, we discuss issues, challenges and possible design solutions. Several simulation results obtained by means of a behavioral model are presented, together with an analysis of the trade-off between performance and complexity in an integrated circuit implementation

    Multichannel Sampling of Pulse Streams at the Rate of Innovation

    Full text link
    We consider minimal-rate sampling schemes for infinite streams of delayed and weighted versions of a known pulse shape. The minimal sampling rate for these parametric signals is referred to as the rate of innovation and is equal to the number of degrees of freedom per unit time. Although sampling of infinite pulse streams was treated in previous works, either the rate of innovation was not achieved, or the pulse shape was limited to Diracs. In this paper we propose a multichannel architecture for sampling pulse streams with arbitrary shape, operating at the rate of innovation. Our approach is based on modulating the input signal with a set of properly chosen waveforms, followed by a bank of integrators. This architecture is motivated by recent work on sub-Nyquist sampling of multiband signals. We show that the pulse stream can be recovered from the proposed minimal-rate samples using standard tools taken from spectral estimation in a stable way even at high rates of innovation. In addition, we address practical implementation issues, such as reduction of hardware complexity and immunity to failure in the sampling channels. The resulting scheme is flexible and exhibits better noise robustness than previous approaches

    Compressed sensing approach to ultra-wideband receiver design

    Get PDF
    One of the scarcest resources in the wireless communication system is the limited frequency spectrum. Many wireless communication systems are hindered by the bandwidth limitation and are not able to provide high speed communication. However, Ultra-wideband (UWB) communication promises a high speed communication because of its very wide bandwidth of 7.5GHz (3.1GHz-10.6GHz). The unprecedented bandwidth promises many advantages for the 21st century wireless communication system. However, UWB has many hardware challenges, such as a very high speed sampling rate requirement for analog to digital conversion, channel estimation, and implementation challenges. In this thesis, a new method is proposed using compressed sensing (CS), a mathematical concept of sub-Nyquist rate sampling, to reduce the hardware complexity of the system. The method takes advantage of the unique signal structure of the UWB symbol. Also, a new digital implementation method for CS based UWB is proposed. Lastly, a comparative study is done of the CS-UWB hardware implementation methods. Simulation results show that the application of compressed sensing using the proposed method significantly reduces the number of hardware complexity compared to the conventional method of using compressed sensing based UWB receiver

    UWB communication systems acquisition at symbol rate sampling for IEEE standard channel models

    Get PDF
    For ultra-wideband (UWB) communications, acquisition is challenging. The reason is from the ultra short pulse shape and ultra dense multipath interference. Ultra short pulse indicates the acquisition region is very narrow. Sampling is another challenge for UWB design due to the need for ultra high speed analog-to digital converter.A sub-optimum and under-sampling scheme using pilot codes as transmitted reference is proposed here for acquisition. The sampling rate for the receiver is at the symbol rate. A new architecture, the reference aided matched filter is studied in this project. The reference aided matched filter method avoids using complex rake receiver to estimate channel parameters and high sampling rate for interpolation. A limited number of matched filters are used as a filter bank to search for the strongest path. Timing offset for acquisition is then estimated and passed to an advanced verification algorithm. For optimum performance of acquisition, the adaptive post detection integration is proposed to solve the problem from dense inter-symbol interference during the acquisition. A low-complex early-late gate tracking loop is one element of the adaptive post detection integration. This tracking scheme assists in improving acquisition accuracy. The proposed scheme is evaluated using Matlab Simulink simulations in term of mean acquisition time, system performance and false alarm. Simulation results show proposed algorithm is very effective in ultra dense multipath channels. This research proves reference aided acquisition with tracking loop is promising in UWB application

    Low-Sampling Rate UWB Channel Characterization and Synchronization

    Get PDF
    We consider the problem of low-sampling rate high-resolution channel estimation and timing for digital ultra-wideband (UWB) receivers. We extend some of our recent results in sampling of certain classes of parametric nonbandlimited signals and develop a frequency domain method for channel estimation and synchronization in ultra-wideband systems, which uses sub-Nyquist uniform sampling and wellstudied computational procedures. In particular, the proposed method can be used for identification of more realistic channel models, where di#erent propagation paths undergo di#erent frequency-selective fading. Moreover, we show that it is possible to obtain high-resolution estimates of all relevant channel parameters by sampling a received signal below the traditional Nyquist rate. Our approach leads to faster acquisition compared to current digital solutions, allows for slower A/D converters, and potentially reduces power consumption of digital UWB receivers significantly

    Low-Sampling Rate UWB Channel Characterization and Synchronization

    Get PDF
    We consider the problem of low-sampling rate high-resolution channel estimation and timing for digital ultra-wideband (UWB) receivers. We extend some of our recent results in sampling of certain classes of parametric non-bandlimited signals and develop a frequency domain method for channel estimation and synchronization in ultra-wideband systems, which uses sub-Nyquist uniform sampling and well-studied computational procedures. In particular, the proposed method can be used for identification of more realistic channel models, where different propagation paths undergo different frequency-selective fading. Moreover, we show that it is possible to obtain high-resolution estimates of all relevant channel parameters by sampling a received signal below the traditional Nyquist rate. Our approach leads to faster acquisition compared to current digital solutions, allows for slower A/D converters, and potentially reduces power consumption of digital UWB receivers significantly
    • …
    corecore