
1

Low-Sampling Rate UWB Channel

Characterization and Synchronization

Irena Maravić, Julius Kusuma and Martin Vetterli

Abstract: We consider the problem of low-sampling
rate high-resolution channel estimation and timing for digi-
tal ultra-wideband (UWB) receivers. We extend some of our
recent results in sampling of certain classes of parametric non-
bandlimited signals and develop a frequency domain method
for channel estimation and synchronization in ultra-wideband
systems, which uses sub-Nyquist uniform sampling and well-
studied computational procedures. In particular, the pro-
posed method can be used for identification of more realistic
channel models, where different propagation paths undergo
different frequency-selective fading. Moreover, we show that
it is possible to obtain high-resolution estimates of all relevant
channel parameters by sampling a received signal below the
traditional Nyquist rate. Our approach leads to faster acqui-
sition compared to current digital solutions, allows for slower
A/D converters, and potentially reduces power consumption
of digital UWB receivers significantly.

Index Terms: UWB, multipath channel, channel model-
ing, channel estimation, sampling, annihilating filters, timing.

I. Introduction

Ultra-wideband (UWB) technology has recently received
much attention for many short-range applications, such as
accurate ranging and positioning as well as multipath fad-
ing mitigation in indoor wireless networks [1] [2] [3] [4] [5].
UWB signals are generated by driving an antenna with very
short electrical pulses, typically on the order of a nanosec-
ond, thus spreading the signal energy from near DC to a
few gigahertz. Although the possibility of using extremely
short pulses for certain applications (such as ranging or
imaging) has been investigated for at least two decades,
there still remains a lot to be done for this technology to
become pervasive. Some of the important issues include
low-cost and low-power designs and novel signal processing
techniques that allow for efficient digital implementation.

The wideband nature of UWB brings new research chal-
lenges both in the analysis and practice of reliable systems.
The first challenge is rapid synchronization and acquisition
for UWB systems. There is a vast literature that has ap-
peared recently [1] [2] [6] [7] [8] [9], addressing both algo-
rithmic and implementation issues of several synchroniza-
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tion techniques, with a clear trend to minimize needed ana-
log components and perform as much processing digitally
as possible [6] [9]. Digital implementation has well-known
advantages, including cheaper technology, full integration,
robustness etc. However, given the extreme bandwidths
involved, it still represents a design challenge. While high-
performance schemes have already been proposed for ana-
log systems [7], their application to digital-oriented solu-
tions is still not feasible due to prohibitively high com-
putational requirements. Furthermore, implementation of
such techniques in digital systems would require very fast
and expensive A/D converters (operating in the gigahertz
range) and therefore will result in high power consumption.
Finally, they are mostly based on exhaustive search and are
inherently time-consuming.

The second challenge arises from the fact that UWB
propagation models in multipath environments are more
complex than existing narrowband models and do not allow
for direct extension of narrowband techniques. The finer
time resolution of UWB means that different multipath
components arriving at the receiver at different delays and
at different angles create a dynamic and extended channel
impulse [3] [4] [5]. To more accurately characterize ultra-
wideband channels, a new model was proposed in which dif-
ferent incoming paths undergo different frequency-selective
attenuations [1]. In their paper, Cramer, Scholtz and
Win proposed to spatially separate the multipath compo-
nents, which is then followed by identifying the different
frequency-selective fading of the individual components.
However, this requires additional hardware, in form of an
antenna array. They used the CLEAN algorithm for the
processing of the signal, which was first developed for space
telemetry applications.

Starting with a simplified channel model, we develop a
method which inspires a new approach to channel esti-
mation and synchronization in wideband systems. This
method yields very precise estimates of channel param-
eters, and uses sub-Nyquist uniform sampling and well-
developed algorithmic solutions. Specifically, we extend
some of our recent sampling results for certain classes of
non-bandlimited signals [10] to the problem of channel es-
timation in ultra-wideband systems [11] [12] [13] [14] [15],
where unknown channel parameters are estimated from a
low-dimensional signal subspace. Our approach leads to
reduced computational requirements and faster acquisition
compared to other proposed digital techniques [6] [8] [9],
thus allowing for a practical hardware implementation and
lower power consumption. We will then extend this frame-
work to a more realistic channel model given in [1]. We
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show that our approach can be used to characterize a more
general channel model without requiring additional hard-
ware support. Our method is particularly suitable in ap-
plications such as estimation of wideband channels, precise
position location or ranging. It can be used in other wide-
band systems as well, primarily for timing synchronization
and localization purposes.

The outline of the paper is as follows. In Section II, we
introduce an UWB channel model and discuss the advan-
tages of the frequency-domain approach, as well as prior
work in spectral estimation. In Section III, we present an
algorithm based on annihilating filters, which allows for
joint estimation of pulse shapes and time delays along dif-
ferent propagation paths. We also discuss a possible mod-
ification of the algorithm which leads to improved perfor-
mance in the presence of noise. Analysis of noise sensitiv-
ity and computational complexity are discussed in Section
IV. In Section V, we present some simulation results that
indicate the effectiveness of our approach, showing perfor-
mances that exceed those of conventional methods. Finally,
in Section VI, we conclude with a brief summary of our
work.

II. Problem Statement

Many communication systems require the receiver
and/or the transmitter to know the channel impulse re-
sponse. Other applications, most notably GPS and UWB-
based ranging systems, require very accurate timing esti-
mation. All of these systems typically use very high sam-
pling frequencies, or involve complex hardware systems to
enable highly-accurate timing estimation.

Consider the following simple example. Let the signal
x(t) be a sum of delta functions with unknown delays
{tl}L−1

l=0 and weighting coefficients {al}L−1
l=0 ,

x(t) =
L−1∑
l=0

alδ(t − tl). (1)

Note that the Fourier transform of this signal is given by:

X(ω) =
L−1∑
l=0

ale
jωtl . (2)

By considering the frequency domain representation of the
signal, we can convert the problem of estimating the un-
known parameters {tl}L−1

l=0 and {al}L−1
l=0 into the classic

spectral estimation problem, that is, estimating complex
frequencies and weighting coefficients of superimposed ex-
ponentials.

The problem of high-resolution spectral estimation is
well-studied: there exists a rich body of literature on both
the theoretical limits and efficient algorithms for reliable
estimation [16] [17] [18] [19]. There is a particularly at-
tractive class of subspace or SVD-based algorithms, called
super-resolution methods, which can resolve closely spaced
sinusoids from a short record of noise-corrupted data. In
[19], a state space method is proposed, which provides an

elegant and numerically robust tool for parameter estima-
tion using a model-based approach. The ESPRIT algo-
rithm is developed in [18], which can be viewed as a gen-
eralization of the state space method applicable to gen-
eral antenna arrays. In [17], several SVD-based techniques
for estimating generalized eigenvalues of matrix pencils are
addressed, such as Direct matrix pencil algorithm, Pro-
ESPRIT and its improved version TLS-ESPRIT.

The parameter estimation problem also arises in the
context of channel estimation in other wideband systems,
such as DS-CDMA [20] [21]. Even though methods de-
veloped for DS-CDMA can be adapted to UWB systems,
much higher sampling rates in the latter as well as cer-
tain bandwidth-dependent effects make the modeling and
estimation of UWB channels a more difficult problem and
therefore require a different solution.

A. UWB Channel Estimation

A number of propagation studies for ultra-wideband sig-
nals have been done, which take into account temporal
properties of a channel or characterize a spatio-temporal
channel response [1] [22]. A typical model for the impulse
response of a multipath fading channel is given by

h(t) =
L∑

l=1

alδ(t − tl) (3)

where tl denotes a signal delay along the l-th path while
al is a complex propagation coefficient, which includes a
channel attenuation and a phase offset along the l-th path.
Although this model does not adequately reflect specific
frequency-dependent effects, it is commonly used for diver-
sity reception schemes in conventional wideband receivers
(e.g. RAKE receivers) [1] [23]. Equation (3) means that a
received signal y(t) consists of a weighted sum of attenu-
ated and delayed replicas of a transmitted signal s(t), i.e.,

y(t) =
L∑

l=1

als(t − tl) + z(t) (4)

where z(t) denotes receiver noise. Clearly, the problem of
estimating unknown channel parameters al and tl is a spe-
cial case of above mentioned spectral estimation problems.

However, different key parameters affect the behavior of
wideband channels as the bandwidth is increased. The
finer time resolution of UWB means that different mul-
tipath components arriving at the receiver at different de-
lays and at different angles create a dynamic and extended
channel impulse [3] [4] [5]. To more accurately character-
ize ultra-wideband channels, a new model was proposed
in [1], in which different incoming paths undergo different
frequency-selective attenuations. This model can be writ-
ten as:

h(t) =
L∑

l=1

alpl(t − tl) (5)

Thus, a received signal is made up of pulses having different
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pulse shapes,

y(t) =
L∑

l=1

alsl(t − tl) + z(t) (6)

where sl(t) are different pulse shapes that correspond to
different propagation paths. Let Y (ω) denote the Fourier
transform of the received signal

Y (ω) =
L∑

l=1

alSl(ω)e−jωtl + Z(ω) (7)

where Sl(ω) and Z(ω) are Fourier transforms of sl(t) and
z(t) respectively. Clearly, in order to completely charac-
terize the channel, we need to estimate the al’s and tl’s as
well as Sl(ω).

In previous work [1], Cramer, Scholtz and Win used
an antenna array to achieve spatio-temporal separation
of the received signal components. We are interested in
low-complexity, possibly even single-antenna applications,
where the receiver can resolve the different multipath com-
ponents without resorting to spatial separation. In the fol-
lowing section, we introduce a frequency-domain method
which takes advantage of the fact that the multipath com-
ponents will be subjected to independent delays at the re-
ception.

III. Channel Estimation Method

A. Theory

Let the ideal bandpass filter be given by:

Hb = rect(ωL, ωU ) = 1[ωL,ωU ] (8)

where ωL and ωU are the cutoff frequencies, while the cen-
tral frequency is ωc = ωL+ωU

2 , and let hb(t) be the time-
domain representation of this ideal bandpass filter.

Suppose that the received signal y(t) is filtered with an
ideal bandpass filter with cutoff frequencies ωL and ωU and
sampled uniformly at a rate Rs ≥ ωU−ωL

2π . Assume next
that N = 2M + 1 uniformly spaced frequency samples of
Y (ω) are available, that is,

Y [n] = Y (ωc + nω0), ω0 =
ωU − ωL

2M
, n = −M, ..., M.

(9)
If we denote by ωn = ωc + nω0, the samples Y [n] can be
expressed as

Y [n] =
L∑

l=1

alSl[n]e−jωntl + Z[n] (10)

where Sl[n] are the samples of the Fourier transform S(ωn)
of the received UWB pulses. Note that in practice, the dis-
crete Fourier transform (DFT) will be used to determine
Y [n] and Sl[n], therefore, in general, (9) and (10) will not
hold exactly. However, these equations are asymptotically
accurate, provided that the sampling period is sufficiently
small to avoid aliasing at the output of the bandpass filter

since the error introduced by a finite length DFT is on the
order of O(N−1). Note that this does not imply that the
sampling rate has to be above the Nyquist rate of the orig-
inal signal, but rather the Nyquist rate which is dictated
by the bandpass filter.

In general, the problem of estimating all the unknown pa-
rameters requires a non-linear estimation procedure. One
possible way to convert the nonlinear estimation problem
into the simpler problem of estimating the parameters of a
linear model is to approximate the coefficients Sl[n] with
polynomials of degree d ≤ R − 1, that is,

Sl[n] =
R−1∑
r=0

sl,rn
r. (11)

Equation (7) now becomes

Y [n] =
L∑

l=1

al

R−1∑
r=0

sl,rn
re−jωntl + Z[n] (12)

By denoting cl,r = alsl,r, we obtain

Y [n] =
L∑

l=1

R−1∑
r=0

cl,rn
re−jωntl + Z[n] (13)

Note that the coefficients Y [n] are again given by a sum
of weighted exponentials, yet the weights depend on n
(through the term nr). In the following, we will present
a method based on annihilating filters [10] [15] [16], which
allows for joint estimation of all the unknown parameters
(cl,r and tl) from a set of at least 2RL+1 coefficients Y [n].

The main idea behind this approach is to find the so-
called annihilating filter H(z) =

∑N
k=0 H [k]z−k that satis-

fies
(H ∗ Y )[n] = 0, ∀n ∈ Z. (14)

It can be shown that such a filter has multiple roots at
zl = e−jω0tl [10], that is,

H(z) =
L∏

l=1

(1 − e−jω0tlz−1)R =
RL∑
k=0

H [k]z−k (15)

where ω0 = ωU−ωL

2M (9). Therefore, the information about
the time delays tl can be extracted from the roots of the
filter H(z). The corresponding pulse shapes can be then
estimated by solving for the coefficients cl,r in (13). In the
following, we give an outline of the algorithm, while a more
detailed analysis of the annihilating filters can be found in
[10] [15] [16].

B. Algorithm outline

1. Compute the spectral coefficients Y [n] from the set of
samples

yn =< hb(t − nTs), y(t) >, n = 1, . . . , N (16)

where Ts = 1/Rs and N ≥ 2L.
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2. Find the coefficients H [k] of the annihilating filter

H(z) =
L∏

l=1

(1 − e−jω0tlz−1)R =
R∑

k=0

H [k]z−k (17)

which satisfies

H [n] ∗ Y [n] =
RL∑
k=0

H [k]Y [n − k] = 0, ∀n ∈ Z (18)

In matrix form, the system (18) is equivalent to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.

..
.
.. · · ·

.

..
Y [1] Y [0] · · · Y [−(RL − 1)]
Y [2] Y [1] . . . Y [−(RL − 2)]

...
...

. . .

Y [RL] Y [RL − 1] · · · Y [0]
...

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎝
H[0]
H[1]

...
H[RL]

⎞⎟⎟⎟⎠ = 0.

(19)

Since there are RL+1 unknown filter coefficients, we need
at least RL + 1 equations, therefore, the number of DFT
coefficients we have to compute is at least 2RL + 1.
3. Find the values of tl by finding the roots of H(z). At
this point, it is worth noting that while this is true in the
noiseless case, in the presence of noise, it is more desirable
to estimate the time delays from L roots of H(z) which are
closest to the unit circle.
4. Solve for the coefficients cl,r by solving the system of
linear equations in (13),

Y [n] =
L∑

l=1

R−1∑
r=0

cl,rn
re−jωntl (20)

A block diagram of the system implementing the above
algorithm is shown in Figure 1.

C. Algorithm in the Presence of Noise

In the theoretical case of noiseless data, any subspace of
sufficient dimension1, can be used to estimate all the rel-
evant parameters. In practice, noise will be present, and
this can be dealt with by oversampling and using stan-
dard techniques in noisy spectral estimation, such as the
singular value decomposition (SVD) [16]. Besides, in the
presence of noise, it is desirable to estimate the channel
from a frequency band where a signal-to-noise ratio (SNR)
is highest. This brings us to a more practical version of the
above algorithm, which yields robust estimates by prop-
erly exploiting the properties of the signal subspace [15]
[17] [19].

Consider again the system of equations (19). By setting
H [0] = 1, the system can be rewritten as Y ·h = −y, where

1By “sufficient dimension”, we assume the dimension of the sub-
space (per unit of time) that allows us to represent the space of signals
of interest.

the matrices Y, h and y are defined as

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

..

.
..
. · · ·

..

.
Y [0] Y [−1] · · · Y [−(RL − 1)]
Y [1] Y [0] . . . Y [−(RL − 2)]

...
...

. . .

Y [RL − 1] Y [RL − 2] · · · Y [0]

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(21)

h = ( H[1] H[2] · · · H[RL] )T (22)

y = − ( Y [1] Y [2] · · · Y [RL] )T (23)

The key is to observe two properties of the matrix Y. The
first one is that in the case of a channel with L propaga-
tion paths, Y can be approximated with a rank-L matrix
[15] by computing its singular value decomposition, that is,
Y = UsΛsVs

H + UnΛnVn
H , where Us and Vs contain

L principal left and right singular vectors of Y. The sec-
ond property is that both Us and Vs satisfy the so-called
shift-invariant subspace property [19],

Us
p

= Usp
·Φ and Vs

p
= Vsp

· ΦH (24)

where Φ is a diagonal matrix having elements ejω0ptl =
ejω0 t̂l along the main diagonal, while (·)p

and (·)
p

denote
the operations of omitting the first p rows and the last p
rows of (·) respectively. Therefore, the time delays {tl}L

l=1

can be uniquely determined from the eigenvalues λl of the
operator that maps Usp

onto Us
p

(or alternatively, Vsp

onto Vs
p
),

tl =
t̂l
p

=
N∠λl

2πp
(25)

The advantage of using values of p larger than p = 1 is
that the separation between the estimated time delays t̂l
is effectively increased p times. This is of particular in-
terest in the case of estimating closely spaced dominant
components in low signal-to-noise-ratio (SNR) regimes (e.g.
SNR < −5dB) when such an approach can improve the
resolution performances significantly [15]. Once the time
delays have been estimated, the coefficients cl,r are then
found by solving the system (20).

Note that the information about the signal poles, and
thus the time delays, can be directly extracted from the
matrix Y. That is, the above presented approach avoids
the root finding part and relies only on a right deployment
of matrix manipulations.

IV. Performance Evaluation

A. Analysis of Noise Sensitivity

The statistical properties of the estimates obtained us-
ing high-resolution methods have been studied extensively,
primarily in the context of estimating the frequencies of
superimposed complex sinusoids from noisy measurements
[16] [19]. The exact expressions for the mean-square-error
(MSE) of the frequency estimates are quite complex [17],
and in general do not allow for an explicit dependence of
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� h̃(t) �

ỹ(t) ⊗
∑

n δ(t − nT )
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ỹ(nT )

FFT �
Y [k]

Timing Est �
t̂l

Poly Est �
ĉl,r

DIGITAL

Fig. 1. Receiver block diagram.

the MSE on the parameters of interest, such as the poly-
nomial degree R or the number of distinct frequencies L.
Therefore, we give a simplified expression for the MSE in
the case of a single exponential, which corresponds to the
estimate of the time delay t1 of the dominant path. Assum-
ing that the signal and noise are uncorrelated, the MSE of
the annihilating filter method can be expressed as [17],

E{∆t21} ≈
{

1
ω2

0

2(2R+1)
3(N−R)2R(R+1)

1

SNR , for R ≤ N/2
1

ω2
0

2(−(N−R)2+3R2+3R+1)
3(N−R)R2(R+1)2

1

SNR , for R > N/2
(26)

where SNR is the signal-to-noise ratio at the output of the
anti-aliasing filter at the receiver. Therefore, a choice of the
polynomial degree directly affects the estimation perfor-
mance. In general, a good choice for R is between N/10 and
9N/10, while the minimum MSE is achieved for R = N/3
or R = 2N/3, leading to

E{∆t21} ≈ 1
ω2

0

9
N3

1
SNR

(27)

This is very close to the Cramer-Rao bound (CRB) [24],
which represents the lowest achievable MSE by any unbi-
ased estimator, and is given by

CRB =
1
ω2

0

6
N3

1
SNR

(28)

We should note that the expressions for performance
bounds (27) and (28) are obtained using the first order per-
turbation analysis and are generally valid only for medium
to high signal-to-noise ratios [19]. However, these expres-
sions provide a good basis for evaluating the performance
at different sampling rates. Namely, the dependence of the
root-mean-square-error (RMSE) on the number of samples
N is on the order of O(1/N3/2). Therefore, by decreasing
the sampling rate K times, RMSE increases roughly by a
factor of K3/2, provided that the SNR does not change.
In Section V, we will show that even for very low values
of SNR and sub-Nyquist sampling rates, our method gives
much better performances compared to the matched-filter
approach.

B. Computational Complexity

A major computational requirement of the devel-
oped algorithm is associated with the singular-value-
decomposition step in (19), which is an iterative algorithm
with the computational order of O(N3) per iteration where

N denotes the total number of samples used for estimation.
In [14] [15], we suggested alternative methods of lower com-
putational requirements, which avoid explicit computation
of the SVD and rely only on simple matrix multiplications.
Among them are the Power method, which can be used
to estimate only Ld = 1 one dominant component, and the
method of Orthogonal iteration, which can estimate Ld > 1
paths. The computational complexity of such methods is
on the order of O(LdN

2), and they generally converge in
less than 10 iterations. In contrast, matched-filter tech-
niques [6] require O(N2

n) operations, where Nn denotes the
number of samples taken at the Nyquist rate. Furthermore,
although the matched-filter approach can be used for syn-
chronization purposes, its time resolution is limited by the
sampling rate.

V. Simulation Results

In this section, we show some simulation results that
illustrate the performances of our algorithm. All results are
based on averages of over 500 trials, each with a different
realization of additive white Gaussian noise.

A. UWB Timing Performance

We first consider the case of the channel model given by
(3), assuming L = 70 propagation paths with eight dom-
inant paths (containing 85% of the total power), as illus-
trated in Figure 2(a). The transmitted UWB pulse is a
first-derivative Gaussian impulse with the duration of (ap-
proximately) Tp = 6 samples2, while the transmitted sig-
nal is modulated with a PN sequence of length 127. The
time delay between the transmitted pulses is 120 samples,
while the average time delay between the received domi-
nant components is 8 samples. In Figure 2(b), we show
root mean square errors (RMSE) of time delay estimation
for the dominant components vs. SNR (defined here as
the ratio between the energy of the received sequence and
a power spectral density of noise). Since we are consider-
ing the case of estimating closely spaced components for
a wide range of SNR’s, we used the approach presented
in Section III-C, where the parameter p is chosen to be
p = 30. The error is plotted for different values of the
sampling rate. The results indicate that the method yields
highly accurate estimates (that is, within a fraction of the
pulse duration) for a wide range of SNR’s, and this with
sub-Nyquist sampling rates. For example, with the sam-

2Time is expressed in terms of number of samples, where one sample
corresponds to the period of Nyquist-rate sampling.
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Fig. 2. Timing recovery in UWB systems (a) Received UWB signal made up of 70 pulses, with 8 components being dominant
(containing approximately 85% of the total power). The transmitted UWB pulse is an ideal first-derivative Gaussian impulse. (b)
Root-mean square error (RMSE) of delay estimation (in terms of number of samples) of the dominant components vs. SNR. The error
is plotted for different values of the sampling rate Ns, where Nn denotes the Nyquist rate. (c) Effects of quantization on the RMSE of
delay estimation for 3-7 bit receiver architectures. The sampling rate is one fourth the Nyquist rate (Ns = Nn/4). (d) RMSE of delay
estimation of the dominant components vs. average spacing between the components (normalized to the pulse duration), for different
number of bits used for quantization. We assumed that SNR = −5dB. Dashed lines correspond to the RMSE in the presence of a strong
sinusoidal interference (SIR = −20dB).

pling rate of one fourth the Nyquist rate (Ns = Nn/4) and
SNR = −5dB, the time delay of the dominant components
can be estimated with an RMSE of approximately 1 sam-
ple.

We next analyze the effects of quantization on the es-
timation performance. In particular, we consider 3-7 bit
architectures and for each case, we plot the RMSE ver-
sus received SNR. The sampling rate is assumed to be
one fourth the Nyquist rate (Ns = Nn/4). Clearly, as the
number of bits increases, the overall performance improves.
Generally, the 5-bit architecture already yields a very good
performance. In the case when the number of bits is very
low (e.g. 3 bits), quantization noise becomes dominant and
determines the overall numerical performance, and this for
all considered values of SNR.

In Figure 2(d), we show the RMSE of time delay estima-
tion along the dominant paths versus the average spacing
between the dominant components. The RMSE is plotted
for different values of the number of quantization bits in

the case when SNR = −5dB and Ns = Nn/4. As expected,
the performance of delay estimation improves as the spac-
ing between components is increased. Note that estimates
of closely spaced paths are more sensitive to quantization
[25], and increasing the sampling rate gives better perfor-
mance. For example, when the sampling rate is one third
the Nyquist rate, it is possible to estimate the components
with an RMSE of less than 1 sample, even in the case when
the average spacing between the components is only a frac-
tion of the pulse duration.

In the same figure, we show the performance of the
method in the presence of a strong sinusoidal interference.
Although modulating the transmitted signal with a PN se-
quence is generally sufficient to suppress the interference,
in the case when a signal-to-interference ratio (SIR) is very
low, the processing gain may not be high enough to ensure
the desirable performance. Since we solve the estimation
problem in the frequency domain, we can take advantage
of the fact that the sinusoidal signal is a Dirac (δ impulse)
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Fig. 3. Channel Estimation Performance (a) Received multipath signal (with 4 dominant components) made up of pulses having different
pulse shapes. (b) Received noisy signal (blue) and the noiseless pulses (red). (c) Estimated shape of the first pulse. (d) Estimated shape
of the second pulse. (e) Estimated shape of the third pulse. (f) Estimated shape of the fourth pulse. The received signal is sampled at
one fourth the Nyquist rate. We used a polynomial of order R = 20 to approximate the DFT coefficients of the received signal.

in frequency, and exclude the DFT coefficients that corre-
spond to frequency bands of interfering signals. The results
are shown for the case when SIR = −20dB, which clearly
indicate robustness of the method to strong narrowband
interference.

B. Channel Estimation Performance

We next consider the case of the channel model given
by (5). Specifically, we assume that a coded sequence of
first-derivative Gaussian impulses is periodically transmit-
ted, while a received (single) UWB signal is made up of
multiple pulses having different shapes. We considered the
case when there are 4 dominant closely spaced components,
as illustrated in Fig. 3(a). The received noiseless and noisy
UWB signals for SNR = 0dB are shown in Fig. 3(b).
The received signal is sampled uniformly at one fourth the
Nyquist rate and the samples are averaged over 30 sym-
bols. We first estimated the time delays of the dominant
components by finding the roots of the annihilating filter.
As already pointed out in Section III, the signal poles (and
thus the unknown time delays) can be estimated by choos-
ing L = 4 zeros closest to the unit circle. Once the time
delays of the pulses have been estimated, the corresponding
pulse shapes are obtained by polynomial approximation of
the DFT coefficients. In this case, we used a polynomial of
degree R = 20, which clearly yields a very good approxi-
mation of the received waveforms.

Effects of the sampling rate Ns and the degree of the
polynomial R on the estimated pulse shape are illustrated
in Figure 4. The sampling rate is varied between Ns =
0.1Nn and Ns = 0.25Nn, while the polynomial degree is
chosen between R = 10 and R = 20. In general, by in-
creasing the sampling rate and fitting the DFT coefficients
with a polynomial of a larger degree, we obtain better esti-
mates. For example, very good approximation of the pulse
shape can already be obtained by sampling the signal at
one fifth the Nyquist rate and using a polynomial of order
R = 20, as illustrated in Figure 4(e). It is also interesting
to note that as the value of R decreases, better performance
can be achieved with lower sampling rates, which can be
seen in Figures 4(e)-(f).

VI. Conclusions

We presented a method for subspace channel estima-
tion in ultra-wideband systems, which takes advantage of
our recent sampling results for certain classes of para-
metric non-bandlimited signals. Our approach uses well-
known spectral estimation techniques and allows for high-
resolution channel estimation from the signal subspace. We
summarize the appealing features of our framework:
• Allows for high-resolution channel estimation using sub-
Nyquist uniform sampling.
• Reduced sampling rate leads to reduced computational
and power requirements.



8

−300 −200 −100 0 100 200 300

−1.5

−1

−0.5

0

0.5

1

x 10
−4 Ns=Nn/10;  R=20 

−300 −200 −100 0 100 200 300

−2

−1

0

1

2

3

x 10
−4 Ns=Nn/5;  R=20 

−300 −200 −100 0 100 200 300

−2

−1

0

1

2

3

x 10
−4 Ns=Nn/4;  R=20 

(a) (b) (c)

−300 −200 −100 0 100 200 300

−3

−2

−1

0

1

2

3

x 10
−4 Ns=Nn/4;  R=15 

−300 −200 −100 0 100 200 300

−3

−2

−1

0

1

2

3

4

x 10
−4 Ns=Nn/4;  R=10 

−300 −200 −100 0 100 200 300

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−4 Ns=Nn/10;  R=10 

(d) (e) (f)

Fig. 4. Pulse shape estimation Estimated pulse shape (third pulse only) for different sampling rates Ns as well as different values of the
polynomial degree R. (a) Ns = 0.1Nn, R = 20 (b) Ns = 0.2Nn, R = 20 (c) Ns = 0.25Nn, R = 20 (d) Ns = 0.25Nn, R = 15 (e)
Ns = 0.25Nn, R = 10 (f) Ns = 0.1Nn, R = 10.

• Uses fast algorithms and structured linear systems.
• Frequency bands used for estimation and sampling rates
can be adapted to channel conditions.
Additionally, our framework allows for identification of
more realistic channel models without resorting to com-
plex algorithms. It is particularly suitable in applications
such as estimation of wideband channels, precise position
location or ranging. It can also be used in other wideband
systems, such as CDMA, primarily for timing synchroniza-
tion and localization purposes.
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