602 research outputs found

    Global assessment of sand and dust storms

    Get PDF
    The specific objectives of the assessment are to: 1) Synthesise and highlight the environmental and socio-economic causes and impacts of SDS, as well as available technical measures for their mitigation, at the local, regional and global levels; 2) Show how the mitigation of SDS can yield multiple sustainable development benefits; 3) Synthesize information on current policy responses for mitigating SDS and 4) Present options for an improved strategy for mitigating SDS at the local, regional and global levels, building on existing institutions and agreements

    Assessment of Biomass Burning and Mineral Dust Impacts on Air Quality and Regional Climate

    Get PDF
    East Asia is frequently influenced by dust storms and biomass burning. This study conducts a comprehensive investigation of its kind based on data analysis with surface measurements, satellite products, and model simulations. The objective of this study is to improve the understanding of the impacts of biomass burning and dust on air quality and regional climate. The study period covers March and April from 2006 to 2010. Biomass burning from Peninsular Southeast Asia (PSEA) has significant annual variations by up to 60% within the study period. The impact of biomass burning on air quality is mainly confined within the upper air due to the uplift motion driven by lee-side trough along eastern side of Tibet Plateau. The Weather Research and Forecasting and Community Multiscale Air Quality (WRF/CMAQ) system successfully reproduces the spatial distributions and temporal variations of air pollutants. Simulation bias falls in the range of 10%~50%, mainly due to the uncertainties within the emission inventory. This study reveals that the default WRF/CMAQ model has doubt counting of the soil moisture effect and subsequently underestimates dust emission by 55%. The microphysical parameterization and the speciation profile are revised to characterize the emission and mass contribution of dust better. Heterogeneous dust chemistry is also incorporated. These modifications substantially improve the model performance as indicated by the comparison between model simulations and observations. This study reveals that biomass burning has significant warming effect due to the presence of the underlying stratocumulus cloud. Biomass burning aerosol cools the near surface air by -0.2K, and significantly warms the upper air by up to +2K. Dust aerosol cools the near surface air by -0.9K and warms the upper air by +0.1K. This is the first investigation into the coexistence of biomass burning and dust over East Asia. This coexistence changes the aerosol direct radiative effect efficiencies of both biomass burning and dust by ±10%

    Spatial and temporal analysis of dust storms in Saudi Arabia and associated impacts, using Geographic Information Systems and remote sensing

    Get PDF
    Dust storm events occur in arid and semi-arid areas around the world. These result from strong surface winds and blow dust and sand from loose, dry soil surfaces into the atmosphere. Such events can have damaging effects on human health, environment, infrastructure and transport. In the first section of this PhD dissertation, focus on the suitability of the existing of five different MODIS-based methods for detecting airborne dust over the Arabian Peninsula are examined. These are the: (a) Normalized Difference Dust Index (NDDI); (b) Brightness Temperature Difference (BTD) (Band 31–32); (c) BTD (Band 20–31); (d) Middle East Dust Index (MEDI) and (e) Reflective Solar Band (RSB). This work also develops dust detection thresholds for each index by comparing observed values for ‘dust-present’ versus ‘dust-free’ conditions, taking into account various land cover settings and analysing associated temporal trends. The results suggest the most suitable indices for identifying dust storms over different land cover types across the Arabian Peninsula are BTD31–32 and the RSB index. Methods such as NDDI and BTD20 – 31 have limitations in detecting dust over multiple land-cover types. In addition, MEDI was found to be an unsuccessful index for detecting dust storms over all types of land cover in the study area. Furthermore, this thesis explores the spatial and temporal variations of dust storms by using monthly meteorological data from 27 observation stations across Saudi Arabia during the period (2000–2016), considering the associations between dust storm frequency and temperature, precipitation and wind variables. In terms of the frequency of dust in Saudi Arabia, the results show significant spatial, seasonal and inter-annual. In the eastern part of the study area, for example, dust storm events have increased over time, especially in Al-Ahsa. There are evident relationships (p < 0.005) between dust storm occurrence and wind speed, wind direction and precipitation. This thesis also describes the impact of dust on health, and specifically on respiratory admissions to King Fahad Medical City (KFMC) for the period (February 2015 – January 2016).This study uses dust data from the World Meteorological Or-ganization (WMO) for comparing and analysing the daily weather conditions and hospital admissions. The findings indicate that the total number of emergency respiratory admissions during dust events was higher than background levels by 36% per day on average. Numbers of admissions during ‘widespread dust’ events were 19.62% per day higher than during periods of ‘blowing dust’ activity. The average number of hospital admissions for lower respiratory tract infections (LRTI) was 11.62 per day during widespread dust events and 10.36 per day during blowing dust. The average number of hospital admissions for upper respiratory tract infections (URTI) was 10.25 per day during widespread dust events and 7.87 per day during blowing dust ones. I found clear seasonal variability with a peak in the number of emergency admissions during the months of February to April. Furthermore, qualitative evidence suggests that there is a significant impact on hospital operations due to the increase in patients and pressure on staffing and hospital consumables in this period. Taken together, these findings suggest the (BTD 31–32) and (RSB) are the most suitable indices of the five different MODIS-based methods for detecting airborne dust over the Arabian Peninsula and over different land cover. There are important spatial and temporal pattern variations, as well as seasonal and inter-annual variability, in the occurrence of dust storms in Saudi Arabia. There is also a seasonal pat-tern to the number of hospital admissions during dust events. This is research in-tended to fill the knowledge gap in the dust detection filed. Here I address the knowledge gap by evaluating the identified dust methods over the whole Arabian Peninsula and by considering different land cover. To my knowledge, this is the first study analysed the temporal trends in indices values considering dust and dust-free conditions. Previous work has only focused on 13 stations for analysing dust storms over Saudi Arabia. Therefore, this study has analysed the seasonal and inter-annual and spatial variation by using data from 27 observations in Saudi Arabia. This study addresses the relationship between dust storm frequency and the three meteorological factors (i.e. temperature, precipitation and wind variables) which have not yet been clarified in previous studies. In addition, this research fills the gap in the literature by investigating the correlation between different types of dust events such as (wide-spread dust and blowing dust) and their effects on the hospital admissions for upper and lower respiratory tract issues for pediatric in Riyadh city

    Global aeolian dust variations and trends: a revisit of dust event and visibility observations from surface weather stations

    Get PDF
    This study revisits the use of horizontal visibility and manually reported present weather (ww) records from the NOAA Integrated Surface Database (ISD) for characterizing the aeolian dust variability and recent trends over the globe and three largest source regions (North Africa, Middle East, and East Asia). Due to its qualitative nature, ww is combined with visibility to derive a new variable, VI, which has higher correlations with the dust emission and burden from satellite observations and global aerosol reanalyses than does the dust event frequency (FR) derived from ww only. Both FR and VI capture the intensive dust activity associated with the prolonged North American drought during the 1950s and Sahelian drought during the 1980s. Correlation analysis suggests soil moisture has a lagged effect on the global dustiness, with a maximum r = −0.3 when soil moisture leads VI by 14 months. Through a critical assessment of the ww continuity and ww-visibility consistency of various report types in ISD, the SYNOP data are used for global dust trend detection from 1986 to 2019. Globally, FR and VI decreased at a rate of −0.23 % yr−1 and −8.0 × 10−4 km−1 yr−1, respectively, from 1986 to 1996/1997 when dust reached a minimum, followed by a slower rebound at a rate of 0.085 % yr−1 and 1.9 × 10−4 km−1 yr−1, respectively. The nonlinear behavior of global dustiness is qualitatively consistent with satellite observations and global aerosol reanalyses. Regionally, North Africa experienced increased dust activity during the past decade after staying below average for most of the 1990s–2000s, in response to reduced soil moisture and increased wind speed following the transition of North Atlantic Oscillation (NAO) from strong negative to recurring positive phases since 2011. In the Middle East, dust has been increasing since 1998 due to a prolonged drought in the Tigris-Euphrates basin associated with strong negative Pacific Decadal Oscillation (PDO) phases. As PDO turned positive and weak negative after 2015, the amelioration of drought has led to decreased dust activity in recent years. The dust variability in East Asia is primarily driven by wind speed, which explains the dust decline from 1986 to 1997, and the absence of dust trends during the past two decades. This study constitutes an initial effort of creating a homogenized weather station-based dust-climate dataset in support of wind erosion monitoring, dust source mapping, and dust-climate analysis at local to global scales

    Regional Impact of Snow‐Darkening on Snow Pack and the Atmosphere During a Severe Saharan Dust Deposition Event in Eurasia

    Get PDF
    Light-absorbing impurities such as mineral dust can play a major role in reducing the albedo of snow surfaces. Particularly in spring, deposited dust particles lead to increased snow melt and trigger further feedbacks at the land surface and in the atmosphere. Quantifying the extent of dust-induced variations is difficult due to high variability in the spatial distribution of mineral dust and snow. We present an extension of a fully coupled atmospheric and land surface model system to address the impact of mineral dust on the snow albedo across Eurasia. We evaluated the short-term effects of Saharan dust in a case study. To obtain robust results, we performed an ensemble simulation followed by statistical analysis. Mountainous regions showed a strong impact of dust deposition on snow depth. We found a mean significant reduction of −1.4 cm in the Caucasus Mountains after 1 week. However, areas with flat terrain near the snow line also showed strong effects despite lower dust concentrations. Here, the feedback to dust deposition was more pronounced as increase in surface temperature and air temperature. In the region surrounding the snow line, we found an average significant surface warming of 0.9 K after 1 week. This study shows that the impact of mineral dust deposition depends on several factors. Primarily, these are altitude, slope, snow depth, and snow cover fraction. Especially in complex terrain, it is therefore necessary to use fully coupled models to investigate the effects of mineral dust on snow pack and the atmosphere

    Numerical simulation of "an American haboob"

    Get PDF
    A dust storm of fearful proportions hit Phoenix in the early evening hours of 5 July 2011. This storm, an American haboob, was predicted hours in advance because numerical, land-atmosphere modeling, computing power and remote sensing of dust events have improved greatly over the past decade. High-resolution numerical models are required for accurate simulation of the small scales of the haboob process, with high velocity surface winds produced by strong convection and severe downbursts. Dust productive areas in this region consist mainly of agricultural fields, with soil surfaces disturbed by plowing and tracks of land in the high Sonoran Desert laid barren by ongoing draught. Model simulation of the 5 July 2011 dust storm uses the coupled atmospheric-dust model NMME-DREAM (Non-hydrostatic Mesoscale Model on E grid, Janjic et al., 2001; Dust REgional Atmospheric Model, Nickovic et al., 2001; Perez et al., 2006) with 4 km horizontal resolution. A mask of the potentially dust productive regions is obtained from the land cover and the normalized difference vegetation index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The scope of this paper is validation of the dust model performance, and not use of the model as a tool to investigate mechanisms related to the storm. Results demonstrate the potential technical capacity and availability of the relevant data to build an operational system for dust storm forecasting as a part of a warning system. Model results are compared with radar and other satellite-based images and surface meteorological and PM10 observations. The atmospheric model successfully hindcasted the position of the front in space and time, with about 1 h late arrival in Phoenix. The dust model predicted the rapid uptake of dust and high values of dust concentration in the ensuing storm. South of Phoenix, over the closest source regions (similar to 25 km), the model PM10 surface dust concentration reached similar to 2500 mu g m(-3), but underestimated the values measured by the PM10 stations within the city. Model results are also validated by the MODIS aerosol optical depth (AOD), employing deep blue (DB) algorithms for aerosol loadings. Model validation included Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), equipped with the lidar instrument, to disclose the vertical structure of dust aerosols as well as aerosol subtypes. Promising results encourage further research and application of high-resolution modeling and satellite-based remote sensing to warn of approaching severe dust events and reduce risks for safety and health

    Lidar Measurements for Desert Dust Characterization: An Overview

    Get PDF
    We provide an overview of light detection and ranging (lidar) capability for describing and characterizing desert dust. This paper summarizes lidar techniques, observations, and fallouts of desert dust lidar measurements. The main objective is to provide the scientific community, including non-practitioners of lidar observations with a reference paper on dust lidar measurements. In particular, it will fill the current gap of communication between research-oriented lidar community and potential desert dust data users, such as air quality monitoring agencies and aviation advisory centers. The current capability of the different lidar techniques for the characterization of aerosol in general and desert dust in particular is presented. Technical aspects and required assumptions of these techniques are discussed, providing readers with the pros and cons of each technique. Information about desert dust collected up to date using lidar techniques is reviewed. Lidar techniques for aerosol characterization have a maturity level appropriate for addressing air quality and transportation issues, as demonstrated by some first results reported in this pape

    Sources, drivers and sedimentology of Icelandic dust events

    Get PDF
    There is increasing evidence for high magnitude dust storms in high latitude environments. Yet, Aeolian processes in these areas have been largely understudied and therefore our knowledge of these systems is limited. Understanding dust emission processes from the high latitudes regions is of increasing importance because future climate scenarios indicate a reduction in terrestrial ice masses and an expansion in glacial outwash plains which are the main dust sources in high latitude environments. Of these regions, Iceland is the most researched high latitude dust source region, however our understanding of processes which lead to dust events are still poorly understood. This thesis examines the interlinking relationship between dust source and dust particle sedimentology and the physical and meteorological drivers which promote or inhibit dust emission in Iceland. This is achieved through active aeolian monitoring at source during two monitoring periods at Markarfljot, South Iceland. These measurements are complimented using secondary data sources (e.g. meteorological and satellite data), sedimentological mapping and particle analysis and laboratory abrasion experiments. This thesis is the first high resolution multi event record of dust emissions in the high latitudes and concludes by showing that potential dust concentrations and dust particle size are driven by the interlinking relationship between wind speed, sediment texture and surface moisture. Factors that affect the potential sediment availability for dust events are more important in the high latitudes than in the subtropics in driving spatial and temporal variability in dust emission. Measurements presented in this thesis are required to verify and tune regional and global modelling attempts to quantify the potential contribution of high latitude dust in the Earth system. However, further measurements are required to fully understand seasonal changes in dust emissions, across a variety of dust source units within all high latitude dust source regions

    Atmospheric Research 2012 Technical Highlights

    Get PDF
    This annual report, as before, is intended for a broad audience. Our readers include colleagues within NASA, scientists outside the Agency, science graduate students, and members of the general public. Inside are descriptions of atmospheric research science highlights and summaries of our education and outreach accomplishments for calendar year 2012.The report covers research activities from the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office under the Office of Deputy Director for Atmospheres, Earth Sciences Division in the Sciences and Exploration Directorate of NASAs Goddard Space Flight Center. The overall mission of the office is advancing knowledge and understanding of the Earths atmosphere. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential to our continuing research
    corecore