190 research outputs found

    Lung nodules: size still matters

    Get PDF
    The incidence of indeterminate pulmonary nodules has risen constantly over the past few years. Determination of lung nodule malignancy is pivotal, because the early diagnosis of lung cancer could lead to a definitive intervention. According to the current international guidelines, size and growth rate represent the main indicators to determine the nature of a pulmonary nodule. However, there are some limitations in evaluating and characterising nodules when only their dimensions are taken into account. There is no single method for measuring nodules, and intrinsic errors, which can determine variations in nodule measurement and in growth assessment, do exist when performing measurements either manually or with automated or semi-automated methods. When considering subsolid nodules the presence and size of a solid component is the major determinant of malignancy and nodule management, as reported in the latest guidelines. Nevertheless, other nodule morphological characteristics have been associated with an increased risk of malignancy. In addition, the clinical context should not be overlooked in determining the probability of malignancy. Predictive models have been proposed as a potential means to overcome the limitations of a sized-based assessment of the malignancy risk for indeterminate pulmonary nodules

    Computed tomography reading strategies in lung cancer screening

    Get PDF

    Lung cancer screening

    Get PDF
    Randomised controlled trials, including the National Lung Screening Trial (NLST) and the NELSON trial, have shown reduced mortality with lung cancer screening with low-dose CT compared with chest radiography or no screening. Although research has provided clarity on key issues of lung cancer screening, uncertainty remains about aspects that might be critical to optimise clinical effectiveness and cost-effectiveness. This Review brings together current evidence on lung cancer screening, including an overview of clinical trials, considerations regarding the identification of individuals who benefit from lung cancer screening, management of screen-detected findings, smoking cessation interventions, cost-effectiveness, the role of artificial intelligence and biomarkers, and current challenges, solutions, and opportunities surrounding the implementation of lung cancer screening programmes from an international perspective. Further research into risk models for patient selection, personalised screening intervals, novel biomarkers, integrated cardiovascular disease and chronic obstructive pulmonary disease assessments, smoking cessation interventions, and artificial intelligence for lung nodule detection and risk stratification are key opportunities to increase the efficiency of lung cancer screening and ensure equity of access.</p

    Computational methods for the analysis of functional 4D-CT chest images.

    Get PDF
    Medical imaging is an important emerging technology that has been intensively used in the last few decades for disease diagnosis and monitoring as well as for the assessment of treatment effectiveness. Medical images provide a very large amount of valuable information that is too huge to be exploited by radiologists and physicians. Therefore, the design of computer-aided diagnostic (CAD) system, which can be used as an assistive tool for the medical community, is of a great importance. This dissertation deals with the development of a complete CAD system for lung cancer patients, which remains the leading cause of cancer-related death in the USA. In 2014, there were approximately 224,210 new cases of lung cancer and 159,260 related deaths. The process begins with the detection of lung cancer which is detected through the diagnosis of lung nodules (a manifestation of lung cancer). These nodules are approximately spherical regions of primarily high density tissue that are visible in computed tomography (CT) images of the lung. The treatment of these lung cancer nodules is complex, nearly 70% of lung cancer patients require radiation therapy as part of their treatment. Radiation-induced lung injury is a limiting toxicity that may decrease cure rates and increase morbidity and mortality treatment. By finding ways to accurately detect, at early stage, and hence prevent lung injury, it will have significant positive consequences for lung cancer patients. The ultimate goal of this dissertation is to develop a clinically usable CAD system that can improve the sensitivity and specificity of early detection of radiation-induced lung injury based on the hypotheses that radiated lung tissues may get affected and suffer decrease of their functionality as a side effect of radiation therapy treatment. These hypotheses have been validated by demonstrating that automatic segmentation of the lung regions and registration of consecutive respiratory phases to estimate their elasticity, ventilation, and texture features to provide discriminatory descriptors that can be used for early detection of radiation-induced lung injury. The proposed methodologies will lead to novel indexes for distinguishing normal/healthy and injured lung tissues in clinical decision-making. To achieve this goal, a CAD system for accurate detection of radiation-induced lung injury that requires three basic components has been developed. These components are the lung fields segmentation, lung registration, and features extraction and tissue classification. This dissertation starts with an exploration of the available medical imaging modalities to present the importance of medical imaging in today’s clinical applications. Secondly, the methodologies, challenges, and limitations of recent CAD systems for lung cancer detection are covered. This is followed by introducing an accurate segmentation methodology of the lung parenchyma with the focus of pathological lungs to extract the volume of interest (VOI) to be analyzed for potential existence of lung injuries stemmed from the radiation therapy. After the segmentation of the VOI, a lung registration framework is introduced to perform a crucial and important step that ensures the co-alignment of the intra-patient scans. This step eliminates the effects of orientation differences, motion, breathing, heart beats, and differences in scanning parameters to be able to accurately extract the functionality features for the lung fields. The developed registration framework also helps in the evaluation and gated control of the radiotherapy through the motion estimation analysis before and after the therapy dose. Finally, the radiation-induced lung injury is introduced, which combines the previous two medical image processing and analysis steps with the features estimation and classification step. This framework estimates and combines both texture and functional features. The texture features are modeled using the novel 7th-order Markov Gibbs random field (MGRF) model that has the ability to accurately models the texture of healthy and injured lung tissues through simultaneously accounting for both vertical and horizontal relative dependencies between voxel-wise signals. While the functionality features calculations are based on the calculated deformation fields, obtained from the 4D-CT lung registration, that maps lung voxels between successive CT scans in the respiratory cycle. These functionality features describe the ventilation, the air flow rate, of the lung tissues using the Jacobian of the deformation field and the tissues’ elasticity using the strain components calculated from the gradient of the deformation field. Finally, these features are combined in the classification model to detect the injured parts of the lung at an early stage and enables an earlier intervention

    Assessing Value in Lung Cancer Treatment: A Detailed Cost-Benefit Analysis of Clinical Management Strategies

    Get PDF
    [eng] INTRODUCTION: Lung cancer represents a serious health problem because, although it is one of the most common types of cancer, it is also the one with the highest mortality. This high mortality is due to the asymptomatic nature of the disease during the early stages of its development, which in turn leads to late detection, when the cancer is already at an advanced stage; The tumor has already spread and therefore cannot be treated with surgery. Therefore, the only therapeutic possibility depends on systemic treatment, which has a worse prognosis for the disease as well as an increase in cost and resources. This doctoral thesis exposes the possibility that surgical treatment of lung cancer is more cost-effective than medical treatment. HYPOTHESIS: The main hypothesis of this doctoral thesis states that surgery to treat lung cancer is more cost-effective than medical treatment. It is based on two ideas: first, that surgery is more cost-effective than medical therapy; second, that surgical resection, following the guidelines of the Multidisciplinary Cancer Committee, could be cheaper than performing lung biopsies before surgery. OBJECTIVES: 1) General: Highlight the economic advantage of surgery over medical therapies in the treatment of lung cancer. 2) Specific: 1. Demonstrate that surgery for lung cancer is clinically and economically more viable than medical therapies. 2. To prove that surgical resection, following the guidelines of the Multidisciplinary Committee on Cancer, is more cost-effective than CT-guided lung biopsies.[spa] INTRODUCCIÓN: El cáncer de pulmón representa un grave problema de salud debido a que, si bien es uno de los tipos de cáncer más comunes, también es el de mayor mortalidad. Esta alta mortalidad se debe al carácter asintomático de la enfermedad durante las primeras etapas de su desarrollo, lo que a su vez conduce a una detección tardía, cuando el cáncer ya se encuentra en un estadio avanzado; el tumor ya se ha diseminado y por lo tanto no puede tratarse con cirugía. Por tanto, la única posibilidad terapéutica depende del tratamiento sistémico, que tiene un peor pronóstico de la enfermedad además de un aumento del coste y de recursos. Esta tesis doctoral expone la posibilidad de que el tratamiento quirúrgico del cancer de pulmón sea más rentable que el tratamiento médico. HIPOTESIS: La hipótesis principal de esta tesis doctoral afirma que la cirugía para tratar el cáncer de pulmón es más costo-efectiva que el tratamiento médico. Se basa en dos ideas: primero, que la cirugía es más rentable que la terapia médica; segundo, que la resección quirúrgica, siguiendo las directrices del Comité Multidisciplinario de Cáncer, podría ser más económica que realizar biopsias pulmonares antes de la cirugía. OBJETIVOS: 1) General: Resaltar la ventaja económica de la cirugía sobre las terapias médicas en el tratamiento del cáncer de pulmón. 2) Específicos: 1. Demostrar que la cirugía para el cáncer de pulmón es clínica y económicamente más viable que las terapias médicas. 2. Probar que la resección quirúrgica, siguiendo las directrices del Comité Multidisciplinario de Cáncer, es más costo-efectiva que las biopsias pulmonares guiadas por TAC

    Advanced machine learning methods for oncological image analysis

    Get PDF
    Cancer is a major public health problem, accounting for an estimated 10 million deaths worldwide in 2020 alone. Rapid advances in the field of image acquisition and hardware development over the past three decades have resulted in the development of modern medical imaging modalities that can capture high-resolution anatomical, physiological, functional, and metabolic quantitative information from cancerous organs. Therefore, the applications of medical imaging have become increasingly crucial in the clinical routines of oncology, providing screening, diagnosis, treatment monitoring, and non/minimally- invasive evaluation of disease prognosis. The essential need for medical images, however, has resulted in the acquisition of a tremendous number of imaging scans. Considering the growing role of medical imaging data on one side and the challenges of manually examining such an abundance of data on the other side, the development of computerized tools to automatically or semi-automatically examine the image data has attracted considerable interest. Hence, a variety of machine learning tools have been developed for oncological image analysis, aiming to assist clinicians with repetitive tasks in their workflow. This thesis aims to contribute to the field of oncological image analysis by proposing new ways of quantifying tumor characteristics from medical image data. Specifically, this thesis consists of six studies, the first two of which focus on introducing novel methods for tumor segmentation. The last four studies aim to develop quantitative imaging biomarkers for cancer diagnosis and prognosis. The main objective of Study I is to develop a deep learning pipeline capable of capturing the appearance of lung pathologies, including lung tumors, and integrating this pipeline into the segmentation networks to leverage the segmentation accuracy. The proposed pipeline was tested on several comprehensive datasets, and the numerical quantifications show the superiority of the proposed prior-aware DL framework compared to the state of the art. Study II aims to address a crucial challenge faced by supervised segmentation models: dependency on the large-scale labeled dataset. In this study, an unsupervised segmentation approach is proposed based on the concept of image inpainting to segment lung and head- neck tumors in images from single and multiple modalities. The proposed autoinpainting pipeline shows great potential in synthesizing high-quality tumor-free images and outperforms a family of well-established unsupervised models in terms of segmentation accuracy. Studies III and IV aim to automatically discriminate the benign from the malignant pulmonary nodules by analyzing the low-dose computed tomography (LDCT) scans. In Study III, a dual-pathway deep classification framework is proposed to simultaneously take into account the local intra-nodule heterogeneities and the global contextual information. Study IV seeks to compare the discriminative power of a series of carefully selected conventional radiomics methods, end-to-end Deep Learning (DL) models, and deep features-based radiomics analysis on the same dataset. The numerical analyses show the potential of fusing the learned deep features into radiomic features for boosting the classification power. Study V focuses on the early assessment of lung tumor response to the applied treatments by proposing a novel feature set that can be interpreted physiologically. This feature set was employed to quantify the changes in the tumor characteristics from longitudinal PET-CT scans in order to predict the overall survival status of the patients two years after the last session of treatments. The discriminative power of the introduced imaging biomarkers was compared against the conventional radiomics, and the quantitative evaluations verified the superiority of the proposed feature set. Whereas Study V focuses on a binary survival prediction task, Study VI addresses the prediction of survival rate in patients diagnosed with lung and head-neck cancer by investigating the potential of spherical convolutional neural networks and comparing their performance against other types of features, including radiomics. While comparable results were achieved in intra- dataset analyses, the proposed spherical-based features show more predictive power in inter-dataset analyses. In summary, the six studies incorporate different imaging modalities and a wide range of image processing and machine-learning techniques in the methods developed for the quantitative assessment of tumor characteristics and contribute to the essential procedures of cancer diagnosis and prognosis

    Computer-aided Diagnosis of Pulmonary Nodules in Thoracic Computed Tomography.

    Full text link
    Lung cancer is the leading cause of cancer death in the United States. The five-year survival rate is 15% because most patients present with advanced disease. If lung cancer is detected and treated at its earliest stage, the five-year survival rate has been reported as high as 92%. Computed tomography (CT) has been shown to be more sensitive than chest radiography in detecting abnormal lung lesions (nodules), especially when they are small. However, each thin-slice thoracic CT scan can contain hundreds of images. Large amounts of image data, radiologist fatigue, and diagnostic uncertainty may lead to missed cancers or unnecessary biopsies. We address these issues by developing a computer-aided diagnosis (CAD) system that would serve as a second reader for radiologists by analyzing nodules and providing a malignancy estimate using computer vision and machine learning techniques. To segment the nodules, we extended the active contour (AC) model to 3D by adding new energy terms. The classification accuracy, quantified by the area (Az) under the receiver operating characteristic curve, was used as the figure-of-merit to guide segmentation parameter optimization. The effect of CT acquisition parameters on 3DAC segmentation was systematically studied by imaging simulated nodules in chest phantoms. We conducted simulation studies to compare the relative performance of feature selection and classification methods and to examine the bias and variance introduced due to limited training sample sizes. We also designed new feature descriptors to describe the nodule surface, which were combined with texture and morphological features extracted from the nodule volume and the surrounding tissue to characterize the nodule. Stepwise feature selection was used to search for the subset of most effective features to be used in the linear discriminant analysis classifier. The CAD system achieved a test Az of 0.86±0.02 in a leave-one-case-out resampling scheme for 256 nodules from 152 patients. We conducted an observer study with six thoracic radiologists and found that their average Az in assessing nodule malignancy increased significantly (p<0.05) from 0.83±0.03 without CAD to 0.85±0.04 with CAD. These results indicate the potential usefulness of CAD as a second reader for radiologists in characterizing lung nodules.Ph.D.Biomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/60814/1/tway_1.pd

    Machine Intelligence for Advanced Medical Data Analysis: Manifold Learning Approach

    Get PDF
    In the current work, linear and non-linear manifold learning techniques, specifically Principle Component Analysis (PCA) and Laplacian Eigenmaps, are studied in detail. Their applications in medical image and shape analysis are investigated. In the first contribution, a manifold learning-based multi-modal image registration technique is developed, which results in a unified intensity system through intensity transformation between the reference and sensed images. The transformation eliminates intensity variations in multi-modal medical scans and hence facilitates employing well-studied mono-modal registration techniques. The method can be used for registering multi-modal images with full and partial data. Next, a manifold learning-based scale invariant global shape descriptor is introduced. The proposed descriptor benefits from the capability of Laplacian Eigenmap in dealing with high dimensional data by introducing an exponential weighting scheme. It eliminates the limitations tied to the well-known cotangent weighting scheme, namely dependency on triangular mesh representation and high intra-class quality of 3D models. In the end, a novel descriptive model for diagnostic classification of pulmonary nodules is presented. The descriptive model benefits from structural differences between benign and malignant nodules for automatic and accurate prediction of a candidate nodule. It extracts concise and discriminative features automatically from the 3D surface structure of a nodule using spectral features studied in the previous work combined with a point cloud-based deep learning network. Extensive experiments have been conducted and have shown that the proposed algorithms based on manifold learning outperform several state-of-the-art methods. Advanced computational techniques with a combination of manifold learning and deep networks can play a vital role in effective healthcare delivery by providing a framework for several fundamental tasks in image and shape processing, namely, registration, classification, and detection of features of interest

    Lung cancer screening: clinical implications

    Get PDF
    • …
    corecore