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ABSTRACT

Numerous studies investigating low-dose computed tomography (LDCT) as a

screening tool for lung cancer have either recently been completed or are ongoing.

However, the optimum strategy for detecting nodules in a CT screening programme

is still unknown. To date screening trials have varied substantially in their reading

strategies. Each of these strategies may lead to different rates of true and false

positive detection. The ideal strategy would maximise detection of lung cancers

while minimising unnecessary costly and potentially harmful investigations. The

type of strategy chosen also has significant implications for the number of

radiologists required for a screening programme, and their workload.

The investigations contained in this thesis are aimed at identifying an optimal

and pragmatic reading strategy for LDCT screening.

First, the potential role of radiographers as readers for LDCT screening was

investigated. Following training and an assessment of continuous feedback learning,

the performance of radiographers reading LDCT screening examinations was

prospectively compared against radiologists; the performance of these radiographers

was comparable to that of radiologists in the published literature, but inferior to that

of radiologists reading the same scans. However, using radiographers as concurrent

readers helped to improve radiologists' sensitivities in nodule detection, with an

increase in false positive detections that is still below that reported for computer-

aided detection (CAD) systems.
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When evaluated as first readers against a clinically-approved CAD system,

radiographers showed that they could achieve sensitivities comparable to or

exceeding that of CAD, with a lower number of average false positive detections for

the majority.

The impact of double- and triple-reading strategies using different methods of

arbitration for discordant findings was compared. Using more than one reader did not

invariably improve pulmonary nodule detection accuracy for experienced thoracic

radiologists, and resulted in increased false positive detections when double-reading

with independent arbitration or triple-reading were used.
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CHAPTER 1: INTRODUCTION

"On one point, however, there is nearly complete consensus ofopinion, and that is
that primary malignant neoplasms of the lungs are among the rarest forms of
disease

-Isaac Adler, Professor Emeritus at the New York Polyclinic,
"Primary malignant growths of the lungs and bronchi: a pathological and clinical
study", Longmans, Green and Co., New York, 1912.

1.1 Lung cancer

1.1.1 Prevalence and incidence of lung cancer

Tumours of the lung were rare at the beginning of the 20lh century. The

renowned physician Sir William Osier devoted only two pages to "New Growths in

the Lung" in the second edition of his "Principles and Practice of Medicine" in 1895,

stating that "primary growths are rare" [l]. In the first comprehensive monograph on

the topic, published in 1912, Isaac Adler, Professor Emeritus at the New York

Polyclinic, found only 374 verifiable cases of lung cancer in the published literature

worldwide [2], However, the incidence of lung cancer in the Western world

accelerated through the mid-20th century, almost exclusively due to an increase in

smoking prevalence during the first half of that century, itself driven by the

expansion of commercial cigarette production [3], Lung cancer is now the most

common cancer worldwide, with an estimated 1.61 million new cases, accounting for

approximately 12.7% of all new cancer cases globally in 2008, and remains the most

common cause of death from cancer for both men and women internationally [4],
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In the UK, lung cancer is the second most common cancer, but remains the

commonest cause of cancer death. In 2010, there were 34,859 deaths from lung

cancer in the UK, accounting for 24% of all male cancer deaths and 21% of all

female cancer deaths [5], Survival in the UK is poorer than many countries in Europe

[6], with only 8.2% of men and 9.3% of women alive at five years in England [7].

The late presentation of lung cancer in the UK [8, 9] is an important reason for this

poor survival: according to the National Lung Cancer Audit Report 2005, 43% of

patients with non-small cell lung cancer in England and Wales presented with stage

IIIB or greater, and would have been unsuitable for surgical resection [10].

The peak incidence and mortality trends closely reflect the trends in

maximum exposure to cigarette smoke over time. In the UK, smoking was at its most

prevalent in the generation of men born around 1910-1911, and in women born

around 1925-1930 [11], Consequently, the overall incidence of lung cancer in males

aged 60-69 rose to a peak in the late 1970s, with a peak of 440 cases per 100,000

men in 1977, while a delayed peak of 880 cases per 100,000 men older than 80 years

of age was seen in 1985. Since then, however, the incidence of lung cancer in men in

the UK has been declining, mirroring global trends: between 2009 and 2011, the

European age-standardised rates for males aged 60-69 and older than 80 were 193

and 574 per 100,000 men, respectively [12],

Although the incidence of lung cancer in women is still lower than in men,

there has been a worrying rise in the incidence amongst women across all age groups

since the 1970s. In England, for example, the age-standardised incidence rate of lung

cancer in women has increased by 9.3% in 10 years, from 34.3 per 100,000

population in 1999 to 37.5 per 100,000 population in 2009 [13], Overall, lung cancer
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rates increased by 62% between 1975 and 2011 among women aged 60-69 [12],

Much of the rise is again attributable to smoking prevalence in women amongst

different birth cohorts. There is also evidence suggesting that lung cancer incidence

in women who are lifelong never-smokers is higher than in men [14, 15], However, a

recent analysis concluded that while never-smoking women aged 50-54 and 55-59

years had a statistically significantly higher incidence of lung cancer than never-

smoking men, the overall age-standardised incidence rates of lung cancer in never-

smoking women of European descent are similar to, and not higher, than those in

never-smoking men [16],

1.1.2 Risk factors for lung cancer

Risk factors for lung cancer include smoking, occupational or industrial

exposure to carcinogens (including asbestos exposure), family history, and previous

history of malignancy, especially treatment for previous Hodgkin's lymphoma.

Smoking is by far the greatest risk factor for the development of lung cancer.

Cigarette smoke is known to contain over 60 carcinogens, such as polycyclic

aromatic hydrocarbons, 7V-nitrosamines, aromatic amines, aldehydes, volatile organic

hydrocarbons, and metals [17]. The now irrefutable causative link between smoking

and lung cancer was suspected as early as the 1920s [3], but it was in 1950 that five

case-control studies firmly established an association between lung cancer and

smoking [18-22], In a recent analysis, Parkin concluded that in 2010, 85% of lung

cancers in men and 80% in women in the UK were attributable to smoking [23],

When environmental exposure to cigarette smoke is included, these proportions

26



increased to 87% and 84% for men and women, respectively. However, the

contribution of tobacco exposure to global lung cancer incidence, especially in

women, is thought to be decreasing; for example, up to 53% of lung cancer in

women worldwide is now not attributable to tobacco use [24], Unfortunately, such

analyses of temporal changes in the proportional contribution of tobacco smoke

exposure to lung cancer incidence have been hindered by the limited reliability of

smoking information from population-based registries.

Intensity and duration of smoking are positively correlated with lung cancer

risk and mortality. In one study, the cumulative risk of death from lung cancer by

age 75 among current smokers was about 16%, increasing to 24% for those smoking

at least 25 cigarettes per day [25], Current smokers are 14.7 times more likely to die

of lung cancer than lifelong non-smokers, and 3.6 times compared to former smokers

[26].

Intensity and duration can be combined into a single measure of smoking

activity by calculating pack-years (the number of cigarette packs smoked per day,

multiplied by the number of years of smoking). However, smoking at a lower

intensity for longer is more harmful than smoking at a higher intensity for a shorter

period [27], and using pack-years as a measure of smoking activity can therefore

mask the more important effect of duration.

1.1.3 Pathological classification of lung cancer

Histologically, lung cancer can broadly be divided into non-small cell and

small cell cancer. Non-small cell lung cancer (NSCLC) is by far the most common
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type worldwide, accounting for 85.3% of histologically confirmed lung cancer cases

in the USA between 2004-2008 [28], The most common subtypes of NSCLC are

squamous cell carcinoma and adenocarcinoma, accounting for approximately 32%

and 26% of all cancers in England and Wales in the period between 2006-2008,

respectively [29], However, there has been a change in the relative prevalence of

these histological subtypes over the past three decades in particular. The prevalence

of adenocarcinoma has been rising, such that it is now the most common subtype of

lung cancer in the USA [28], and its incidence is rising in the UK and Europe [30],

This change has been predominantly attributed to smoking low-tar (i.e. filter) and

low-nicotine cigarettes, resulting in smokers smoking more per day and inhaling

more deeply, with a consequent increase in the proportions of carcinogenic N-

nitrosamines within the inhaled smoke [31], The tendency to inhale more deeply on

such cigarettes also exposes the peripheral lung to higher doses of the carcinogens

within cigarette smoke, with the effect that adenocarcinomas occur primarily in the

periphery of the lung [31],

The first standardised classification of lung cancer by histological subtype

was published by the World Health Organization (WHO) in 1967 [32], There have

been three further editions since then, with the most recent histological classification

published in 2004 [33], The classification has considerably evolved through the four

iterations. The third edition, released in 1999, recognised pre-invasive lesions such as

atypical adenomatous hyperplasia (AAH) and tumours of mixed histological subtype

(Figure 1.1) [34], A revised classification of adenocarcinoma was recently

recommended by a joint committee consisting of members from the International

Association for the Study of Lung Cancer (IASLC), American Thoracic Society
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(ATS) and European Respiratory Society (ERS) in 2011 [35]. Chief among its

recommendations was the introduction of new terms to replace the previously used

terms "bronchioloalveolar carcinoma" (BAC) and "mixed type adenocarcinoma", as

these latter categories had encompassed groups of tumours within the

adenocarcinoma spectrum that were quite diverse in radiological and histological

appearance, and in their natural history (see also section 1.5.3.3).
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Figure 1.1. Adenocarcinoma formerly termed mixed subtype. Hematoxylin and eosin
stain at X20 magnification demonstrates an invasive component comprising solid
nests and acinar glands infiltrating fibrous stroma. The tumour also has non-invasive
lepidic components. The term "mixed subtype" adenocarcinoma has now been
discarded. (From reference [34].)

1.1.4 Clinical presentation of lung cancer

Cough is the most common presenting symptom of lung cancer, but occurs

variably in 8-75% of patients [36], Other symptoms include dyspnoea, chest pain,

and haemoptysis. Elowever, patients may commonly present with signs and

symptoms that are not related to the primary tumour. Such symptoms may be

constitutional (such as anorexia and weight loss), or secondary to paraneoplastic
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manifestations or metastatic disease. Up to 43% of patients present late, with

unresectable disease [10, 37], On the other hand, 6-13% of patients may be

asymptomatic at diagnosis [38-40],

The clinical presentation can also be related to the histological subtype [41],

For instance, small cell carcinoma is an aggressive tumour with early metastasis,

while peripheral adenocarcinomas may grow silently and not present until they are

either discovered incidentally on chest radiograph or computed tomography (CT), or

if they present with local invasion, nodal and/or metastatic disease.

1.1.5 Investigations, staging and prognosis

Investigations in lung cancer are aimed at securing the diagnosis, obtaining

staging information, and determining therapeutic options. Staging and diagnosis are

performed using radiological imaging techniques or bronchoscope techniques.

The chest radiograph remains the initial investigation of choice [29], The

chest radiograph may depict: (a) the primary tumour itself, as a solitary pulmonary

lesion; (b) lobar or segmental collapse or consolidation, as a consequence of

bronchial obstruction and inflammation; or (c) abnormalities related to the presence

of local invasion, nodal disease or metastatic disease - for example rib erosion, hilar

lymphadenopathy, or multiple pulmonary nodules. However, chest radiography is

also unreliable in its detection of lung cancer, because it may not be able to detect

small lesions (under 2cm), peripheral lesions may be obscured by bone, and central

lesions arising in the trachea, main and lobar bronchi can be hard to detect due to the

superimposition of mediastinal structures (Figure l.2a) [42],
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The advent of CT has helped to overcome many of the difficulties

encountered in diagnosing lung cancer with the chest radiograph. With its markedly

improved contrast and spatial resolution and its ability to resolve superimposed

structures, thoracic CT avoids most of the obscuring effects that hamper chest

radiography (Figure 1.2b) [43], CT provides improved detection of lesions which are

just a few millimetres in diameter [44], as well as staging information [36],

However, "central" lesions, especially lesions adjacent to the hilum or mediastinum,

may still be easily missed on CT as compared to peripheral lesions [45], without the

benefit of additional reconstruction techniques such as maximum intensity

projections (see section 1.6.2.1).

Figure 1.2. Left lower lobe cancer missed on chest radiograph. (A) Posteroanterior
chest radiograph demonstrates a nodule in the left retrocardiac region that is only
faintly perceptible (arrow). (B) CT section through the left lower lobe demonstrates
the nodule clearly.

Fibreoptic bronchoscopy is an invaluable diagnostic tool for visualising and

sampling central bronchial tumours. Rigid bronchoscopes have been in use since

1897 [46], but were gradually replaced as a primary means of airway visualisation
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with the introduction of the flexible bronchoscope in 1967 [47], Bronchoscopy

enables direct sampling of an endobronchial lesion or indirect sampling by obtaining

bronchial washings or brushings. Furthermore, bronchoscopy allows the

simultaneous sampling of suspicious lymph nodes, using transbronchial needle

aspiration (TBNA) if they are accessible. TBNA may be performed either unguided

("blind") [48] or more recently with ultrasound guidance, using endobronchial

ultrasound (EBUS) [49],

2-[lsF]-Fluoro2-deoxy-D-glucose (FDG) positron emission tomography

(PET) is an imaging tool which identifies malignant neoplasms by taking advantage

of their increased glucose uptake and utilisation, which is proportional to their

metabolic activity [50, 51], The relative uptake of FDG can be calculated from a

static FDG-PET image by the standardised uptake value (SUV). The SUV of a given

tissue is given by:

tracer activity in tissue

(injected radiotracer dose/ patient weight)

where tissue tracer activity is in microcuries per gram, injected radiotracer dose is in

millicuries, and patient weight is in kilograms [51]. FDG-PET integrated with CT

(PET-CT) is now recommended for the non-invasive evaluation of lymph node

involvement and identification of extranodal metastatic disease, if the patient is

suitable for potentially curative treatment [29, 52], Due to its ability to depict intra-

and extrathoracic metastases, FDG-PET may help prevent unnecessary thoracotomy

in up to 20% of patients previously considered operable [53],

CT-guided percutaneous biopsy can be undertaken to obtain histological

tissue from peripheral lesions, provided the lesion is anatomically amenable to
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percutaneous biopsy, and the patient has satisfactory lung function. Obtaining

sufficient tissue for molecular and genetic typing is becoming increasingly important,

with the growing number of molecular targeted therapies available for

adenocarcinoma; thus, core biopsy is preferred over fine needle aspiration.

Alternatively, diagnosis by video-assisted thoracoscope surgery (VATS) biopsy, or

open lung biopsy, may be performed [54],

As with any malignancy, the staging system used for lung cancer allows the

grouping of tumours by their biological behaviour so that the prognostication and

tumours of similar tumours can be standardised and compared. The Tumour, Node,

Metastasis (TNM) staging system, first proposed by Denoix [55], incorporates

different types of staging with different combinations of T, N and M descriptors

forming stage groupings with similar prognoses. It was adapted for use in lung

cancer staging by Dr Clifton Mountain in 1973 [56], with T descriptors broadly

classifiable into size-based and non-size based descriptors. Since then, the TNM

staging of lung cancer has undergone six iterations, with the latest (the 7th edition)

providing the most changes to the system. In this latest edition, new size sub¬

divisions have been created, the status of intrapulmonary metastatic nodules have

been modified, and the concept of intra- and extrathoracic non-nodal metastatic

disease has been introduced, with pleural and pericardial dissemination now

representing M, rather than T descriptors (Table 1.1) [57], These changes have

resulted in new stage groupings (Table 1.2) that have addressed the heterogeneity in

prognosis seen in previous staging editions [58], Also, unlike previous editions, the

7th edition TNM descriptors apply to both NSCLC and small cell carcinoma [59]; a
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different system had previously been used for small cell carcinoma (limited versus

extensive stage).

Most importantly, the latest edition of the TNM staging reinforces the

importance of the size of tumour as an indicator of prognosis. Patients with tumours

staged pathologically as Tla (< 2cm) have a 77% 5-year survival rate, compared to

those that are T3 on the basis of size (> 7cm), who have a 35% 5-year survival [60],

Patients with pathological stage IA disease (Tla or Tib, NO MO) have a 73% 5-year

survival, in comparison to a dismal 2% in those with clinical stage IV disease (i.e.

MlaorMlb) [58].
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Descriptors Definition
Tumour
Tx Primary tumour cannot be assessed, OR primary tumour detected by

sputum/ bronchial washings but not visualized on any imaging
TO No evidence of primary tumour
Tis Carcinoma in situ
T1 Tumour < 3cm in greatest dimension, surrounded by lung or visceral

pleura, without invasion more proximal than the lobar bronchus1
T1a Tumour < 2cm in greatest dimension
T1b Tumour > 2cm but < 3cm in greatest dimension

T2 Tumour > 3cm but < 7cm OR tumour with any of the following features2:
involves main bronchus, > 2cm distal to the carina; invades visceral
pleura; associated with atelectasis/obstructive pneumonitis that extends
to the hilar region without involving entire lung

T2a Tumour > 3cm but < 5cm in greatest dimension
T2b Tumour > 5cm but < 7cm in greatest dimension

T3 Tumour > 7cm OR tumour that directly invades any of the
following: chest wall (including superior sulcus tumours), diaphragm,
phrenic nerve, mediastinal pleura, parietal pericardium; OR tumour in the
main bronchus < 2cm distal to the carina but without involvement of the
carina; OR associated atelectasis or obstructive pneumonitis of the entire
lung OR separate tumour nodule(s) in the same lobe

T4 Tumour of any size that invades any of the following: mediastinum, heart,
great vessels, trachea, recurrent laryngeal nerve, esophagus, vertebral
body, carina; OR separate tumour nodule(s) in a different ipsilateral lobe

Node
Nx Regional lymph nodes cannot be assessed
N1 No regional lymph node metastasis

Metastasis in ipsilateral peribronchial and/or ipsilateral hilar lymph nodes
and intrapulmonary nodes, including involvement by direct extension

N2 Metastasis in ipsilateral mediastinal and/or subcarinal lymph node(s)
N3 Metastasis in contralateral mediastinal, contralateral hilar, ipsilateral or

contralateral scalene, or supraclavicular lymph node(s)

Metastasis
Mx
MO
M1

M1a

M1b

Distant metastasis cannot be assessed
No distant metastasis
Distant metastasis

Separate tumour nodule(s) in a contralateral lobe; OR tumour with
pleural nodules or malignant pleural (or pericardial) effusion
Distant metastasis

Table 1.1. The 7th edition of the TNM staging of lung cancer [57].
includes any superficial spreading tumour (of any size) with its invasive component limited
to the bronchial wall, but which may extend proximally to the main bronchus.
2T2 tumours with these features are classified T2a if < 5cm, or if size cannot be determined,
and T2b if > 5cm but < 7cm.
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NO
7tn Edition N descriptor

N1 N2 N3
T1a IA IIA IIIA MIB

T1b IA IIA MIA MIB

7th edition
T2a IB IIA MIA MIB

T descriptor T2b IIA MB IMA MIB

T3 MB IMA IMA MIB

T4 MIA IIIA 1MB MIB

7tn edition M1a IV IV IV IV
M descriptor

Mib IV IV IV IV

Table 1.2. Stage groupings based on the tumour (T), node (N) and metastasis (M)
descriptors of the 7th edition of the TNM staging of lung cancer [57].

1.1.6 Therapeutic strategies

Therapeutic advances relevant to small tumours and early lung cancer that

may incidentally be discovered on screening asymptomatic high-risk individuals are

discussed, as a detailed discussion of all therapeutic strategies for lung cancer is

beyond the scope of this thesis.

Surgery with curative intent remains the standard of care for all patients with

resectable lung cancer who are surgical candidates [29, 61], In general, these are

patients who have Stage I or II NSCLC. Surgery may also be contemplated for early

stage (stage I or II) small cell lung carcinoma [62], but unfortunately such early

presentation is rare.

Size of tumour in NSCLC is an independent prognostic factor for survival in

patients undergoing surgical resection [63-68], For example, in a retrospective
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analysis of 6644 patients in the Japanese Lung Cancer Registry, Asamura et al. found

that patients with pathologically staged node-negative, metastasis-negative tumours <

2cm had a 5-year survival of 83.7%, as opposed to tumours 2.1-3cm in size (76.0%)

[63], Indeed, the improved prognosis of tumours smaller than 2cm was a significant

impetus for the new size subdivisions in the latest TNM staging edition [60],

The surgical method of choice remains lobectomy for patients who are able to

tolerate it. However, lung-sparing operations, broadly termed sublobar resections, are

now an option for patients with suboptimal fitness. Sublobar resections include

wedge resections and segmentectomy, and can be perfonned via open thoracotomy

or VATS. Wedge resections can be used with smaller peripheral tumours and NO

disease, but do not allow the intra-operative sampling of N1 nodes [69], Interest in

sublobar resection has been prompted by the more favourable prognosis of tumours

smaller than 2cm. For instance, a recent analysis by Carr et al. has suggested that

patients with (7th edition TNM) stage IA who underwent segmentectomy had similar

recurrence rates, mortality, and 5-year cancer-specific survival to those at a similar

stage who underwent lobectomy, despite the fact that the segmentectomy cohort was

older and had a significantly lower mean forced expiratory volume in 1 second [65].

There is an increasing array of non-surgical interventions available for

patients who are either unfit for or have declined surgery. The emergence of

stereotactic body radiation therapy (SBRT) has made radiotherapy with curative

intent a viable option for such patients. SBRT is a technique in which high doses of

radiation using numerous small, highly focussed, and accurate radiation beams are

delivered in only 1 to 5 treatments over 1 to 2 weeks [70], An evaluation of 59

patients by the Radiation Therapy Oncology Group, 44 of whom had T1 tumours
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(i.e. up to 3cm) based on the 6 TNM edition, had revealed that SBRT could deliver

3-year disease-free and overall survival rates of 48.3% and 55.8% respectively [71],

A recent comparison of SBRT and wedge resection for stage 1 NSCLC showed that

although wedge resection resulted in improved survival at 30 months, both

modalities showed comparable cause-specific survival, and SBRT reduced the risk of

local recurrence [72],

Platinum-based chemotherapy, as an adjuvant to surgical resection for

patients with stage II NSCLC where there is N1 node involvement, is of proven

thbenefit [73], The role of adjuvant chemotherapy in patients with TNM 6 edition

stage IB disease has remained controversial. An increase in disease-free survival may

be seen in patients with tumours 4cm or greater, but no statistically significant

survival difference at 74 months has been observed in patients receiving

chemotherapy, as compared to those who have not [74], Furthermore, patients who

were classified as stage IB in the 6th edition of TNM staging have now been upstaged

to later stages (stages IIA or IIB) in the 7th edition; the application of chemotherapy

regimens based on the prior editions to patients who are stage IB according to the

new edition is thus unproven, and, outside of clinical trials, such chemotherapy is no

longer recommended [73],

Percutaneous ablative therapy with radiofrequency ablation (RFA),

microwave ablation (MWA) and percutaneous cryoablation therapy (PCT) for small

lung tumours have also been considered as options for patients unsuitable for

surgery. RFA (Figure 1.3) and MWA are heat-based methods that achieve cell death

through thermocoagulation, while PCT causes cell death by ice crystal formation in

the target tissue. In general, technical success of ablation is more likely with tumours
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that are 3cm or smaller in diameter. An analysis of 64 patients with clinical stage I

NSCLC showed that while 3-year cancer-specific survival for a cohort of surgically

unfit patients was best with sublobar resection (90.6%), a comparable survival

benefit was still seen with RFA (87.5%) and PCT (90.2%) [75], However, long-term

data from larger populations regarding these modalities is not yet available. Given

the larger and favourable evidence base for SBRT at present, percutaneous ablative

therapies are not currently recommended as first choice non-surgical interventions,

but may still be considered in patients who are not candidates for SBRT or sublobar

resection [76],

Figure 1.3. Radiofrequency ablation (RFA). (A) Radiofrequency ablation probe,
through which radio waves are emitted. (B) CT section demonstrating the probe within
a right lower lobe tumour during an RFA procedure. Images courtesy of Dr Sisa
Grubnic, St George's Hospital, London.

1.1.7 Physiological considerations

Physiological evaluation is crucial to determining safety to undergo both

diagnostic procedures and therapy. The forced expiratory volume in one second
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(FEV1) and the diffusing capacity of the lung with carbon monoxide (DLco) are both

important predictors of postoperative morbidity and death [77, 78], However, FEV1

and DLco correlate poorly with each other [79], and a reduced DLco can predict

morbidity in patients undergoing lobectomy and pneumonectomy, even in the

absence of obstructive lung disease [80], For these reasons, current guidelines

recommend that both the predicted postoperative FEV1 and DLco should be

calculated in patients being considered for lung cancer resection [81, 82],

1.2 Principles and practice of population-based screening for

cancer

1.2.1 General principles

In 1951, the United States Commission on Chronic Illness defined screening

as "the presumptive identification of unrecognised disease or defects by means of

tests, examinations, or other procedures that can be applied rapidly" [83], This

definition recognises two components to screening:

1) A modality that can be used to identify an abnormality (or biomarker) that

may signify pathology; and

2) The speed (and by implication, ease) with which that modality can be

applied.

Screening is thus aimed at either the asymptomatic individual to detect a

preclinical phase of the target condition, or the symptomatic individual in whom the

condition has not yet been recognised. Screening can instigate diagnosis, but is
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distinct from diagnosis [84], because the abnormality detected is not in itself

diagnostic of the target condition.

In a seminal publication in 1968, Wilson and Jungner set forth 10 key

principles that could be considered "guides to planning case-finding" {sic), that were

applicable to screening at any level (Table 1.3) [85], In addition, Wilson and Jungner

elaborated some practical aspects of screening programmes, including data

collection, handling and storage. In essence, these principles define criteria for the

disease, test, treatment, case-finding and cost-effectiveness in an ethical framework,

such that the Hippocratic principle ofprimum non nocere (first, do no harm), and the

prima facie principle ofjustice - in this case, distributive justice as applied to limited

resources that should be used fairly [86] - are adhered to.

Modern modifications to Wilson and Junger's criteria have been proposed

[87, 88], Andermann et al. summarised some of the modifications that have been

suggested (Table 1.4). In the main, the updated criteria suggest that a target

population be explicitly defined, and the aims, evaluation, and quality assurance

methods of a screening programme be defined at the outset. Wilson and Jungner

discussed mass screening (unselected screening of the whole population) as opposed

to selective screening of high-risk groups, but did not make defining a target

population a guiding principle.
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1. The condition to be screened should be an important health problem

2. An acceptable treatment should exist.

3. Facilities for diagnosis and treatment should be available.

4. There should be a recognisable latent or early symptomatic stage.

5. A suitable test or examination should exist.

6. The test should be acceptable to the population.

7. The natural history of the condition, including the evolution from latent to declared
disease, should be adequately understood.

8. There should be agreement on whom to treat.

9. The costs of case-finding (including diagnosis and treatment of patients
diagnosed) should be economically balanced in relation to possible expenditure
on medical care as a whole.

10. Case-finding should be a continuing process and not a once-off endeavour.

Table 1.3. Key principles of screening for disease, as described by Wilson and Junger
[85].

1. The screening programme should respond to a recognized need.

2. The objectives of screening should be defined at the outset.

3. There should be a defined target population.

4. There should be scientific evidence of screening programme effectiveness.

5. The programme should integrate education, testing, clinical services and
programme management.

6. There should be quality assurance, with mechanisms to minimize potential risks of
screening.

7. The programme should ensure informed choice, confidentiality and respect for
autonomy.

8. The programme should promote equity and access to screening for the entire
target population.

9. Programme evaluation should be planned from the outset.

10. The overall benefits of screening should outweigh the harm.

Table 1.4. Modified principles of screening for disease, as summarised by Andermann
et al [87].
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In the UK, the principles described by Wilson and Jungner, and the

subsequent modern modifications, have formed the basis for 22 contemporary

criteria for the appraisal of a screening programme itself, as described by the UK

National Screening Committee (Table 1.5) [89],

The Condition

1. The condition should be an important health problem

2. The epidemiology and natural history of the condition should be adequately
understood and there should be a detectable risk factor, disease marker, latent
period or early symptomatic stage.

3. All the cost-effective primary prevention interventions should have been
implemented as far as practicable.

4. If the carriers of a mutation are identified as a result of screening the natural
history of people with this status should be understood, including the
psychological implications.

The Test

5. There should be a simple, safe, precise and validated screening test.

6. The distribution of test values in the target population should be known and a
suitable cut-off level defined and agreed.

7. The test should be acceptable to the population.

8. There should be an agreed policy on the further diagnostic investigation of
individuals with a positive test result and on the choices available to those
individuals.

9. If the test is for mutations the criteria used to select the subset of mutations to be
covered by screening, if all possible mutations are not being tested, should be
clearly set out.

The Treatment

10. There should be an effective treatment or intervention for patients identified
through early detection, with evidence of early treatment leading to better
outcomes than late treatment.

11. There should be agreed evidence based policies covering which individuals
should be offered treatment and the appropriate treatment to be offered.

12. Clinical management of the condition and patient outcomes should be optimised
in all health care providers prior to participation in a screening programme.
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The Screening Programme

13. There should be evidence from high quality Randomised Controlled Trials that the
screening programme is effective in reducing mortality or morbidity. The
information that is provided about the test and its outcome must be of value and
readily understood by the individual being screened.

14. There should be evidence that the complete screening programme (test,
diagnostic procedures, treatment/ intervention) is clinically, socially and ethically
acceptable to health professionals and the public.

15. The benefit from the screening programme should outweigh the physical and
psychological harm.

16. The opportunity cost of the screening programme should be economically
balanced in relation to expenditure on medical care as a whole (ie. value for
money). Assessment against these criteria should have regard to evidence from
cost benefit and/or cost effectiveness analyses and have regard to the effective
use of available resource.

17. All other options for managing the condition should have been considered (eg.
improving treatment, providing other services), to ensure that no more cost
effective intervention could be introduced or current interventions increased within
the resources available.

18. There should be a plan for managing and monitoring the screening programme
and an agreed set of quality assurance standards.

19. Adequate staffing and facilities for testing, diagnosis, treatment and programme
management should be available prior to the commencement of the screening
programme.

20. Evidence-based information, explaining the consequences of testing, investigation
and treatment, should be made available to potential participants to assist them in
making an informed choice.

21. Public pressure for widening the eligibility criteria for reducing the screening
interval, and for increasing the sensitivity of the testing process, should be
anticipated. Decisions about these parameters should be scientifically justifiable to
the public.

22. If screening is for a mutation the programme should be acceptable to people
identified as carriers and to other family members.

Table 1.5. Contemporary criteria used by the UK National Screening Committee for the
appraisal of a screening programme [89].
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1.2.2 Assessment of screening effectiveness

1.2.2.1 Outcome-related measures

Outcome-related measures of screening include survival, disease-specific

mortality, all-cause mortality, absolute risk reduction and relative risk reduction.

Survival rates, usually expressed as the percentage of subjects alive at 1 or 5

years, are a convenient outcome measure, especially for studies assessing therapeutic

benefits or prognosis. However, survival is subject to the multiple biases of lead-

time, length and overdiagnosis (see section 1.2.3.1) and is hence potentially

inaccurate when assessing screening [90],

Disease-specific mortality evaluates death that is directly attributable to the

condition being screened, while all-cause mortality is a measure of deaths in a

particular cohort as a whole. Intuitively, it would seem disease-specific mortality is

the best measure of the effectiveness of screening. However, disease-specific

mortality crucially relies on the accurate classification of the cause of death, without

bias towards the particular condition under study. This has led to the idea that all-

cause mortality could be a better measure of outcome, as it circumvents the problem

of inaccurate recording of cause of death. For a given condition to be able to

demonstrate a significant reduction in all-cause mortality, however, the prevalence of

that condition in the population would have to be high, and for this reason screening

rarely demonstrates such an effect [91], and all-cause mortality could be considered

too stringent an outcome measure [92], The debate regarding which measure is more

accurate still continues, as reflected in two opposing articles in a recent issue of the

British Medical Journal [92, 93],
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Fatality rate (or case-fatality rate) is defined as the number of cancer deaths

divided by the total number of cancers detected, and expressed as a percentage.

Fatality rates thus provide a comparison of cancer deaths against those with the

disease, as opposed to mortality, where the comparison is against the entire screened

population.

Mortality rates and fatality rates can sometimes yield apparently conflicting

data about the efficacy of screening, if the cumulative incidence of cancer differs

among populations in a randomised trial [90], Additionally, it is important to focus

the measurement of efficacy on the time period during which a benefit from

screening is likely to be evident. For example, the Malmo breast screening trial found

no significant difference in cumulative mortality rates between the screened and

unscreened populations [94], However, using data from this trial, Henschke et al.

argued that cumulative mortality is an insensitive measure that masks true benefit,

and that annual fatality rate, which reflects the timing of death relative to the start of

screening, is more sensitive [95], Annual fatality rate in screened and non-screened

cohorts would be equal during the early years of screening introduction, as the

majority of cancers detected in the early rounds of screening would be cancers that in

any case were about to manifest clinically. However, as screening continued, less

aggressive cancers would be detected early, and so the annual fatality rate in the

screened group would fall. Once screening ceased, the annual fatality rate in the

screened group would again rise, until it equalled that of the non-screened cohort.

Absolute risk reduction is the difference in risk of developing lung cancer

between the screened and non-screened cohorts [96], Relative risk reduction is the
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percentage reduction in risk between the screened and non-screened cohorts, given

by:

(risk in screened cohort) - (risk in unscreened cohort) x 100
(risk in unscreened cohort)

1.2.2.2 Detection-related measures

Detection-related performance measures include cancer detection rate

(including early stage detection rate), sensitivity, specificity, positive predictive

value, false positive rate, and false negative rate.

Cancer detection rate is the number of cancers detected as a proportion of the

total number screened. Another meaningful metric of cancer detection is the

proportion of early stage cancers (for example, Stage 1 lung cancers).

Sensitivity is the ability of the screening test to detect a positive case. The

higher the sensitivity, the lower the proportion of false negative cases, and hence the

lower the false negative rate (i.e. the probability of a false negative). Put another

way, the false negative rate can be expressed by (1 - sensitivity).

Conversely, specificity is the ability of the screening test to detect a negative

case. The higher the specificity, the lower the proportion of false positive cases, and

hence the lower the false positive rate (i.e. the probability of a false positive). Put

another way, the false positive rate can be expressed by (1 - specificity) [97],

Sensitivity and specificity are characteristics of the screening test itself, and

are unaffected by the prevalence of the particular condition in the population [97],

However, they do rely on there being a gold standard for diagnosis. The ideal
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screening test would have a high sensitivity (for a low false negative rate) and

specificity (for a low false positive rate).

Finally, the positive predictive value of a test reflects the number of cases

with a positive test that have the disease, as a proportion of the total number of

positive tests. Unlike sensitivity and specificity, the positive predictive value is

proportional to disease prevalence.

The measurement of the detection-related performance measures above is

further detailed in section 2.8.1.

1.2.2.3 Cost-effectiveness

Cost-effectiveness describes the situation where the most benefit is

gained from the least cost. In order to prove its cost-effectiveness, a medical

intervention such as a screening programme must be able to justify its cost by

providing an increased benefit in comparison to alternative strategies [98], The cost

of the intervention can thus be thought of in terms of an opportunity cost - that is, the

benefit that could be obtained by the next best use of the resources that have instead

been allocated to that intervention [99],

In its simplest form, the average cost-effectiveness ratio is calculated by

dividing the cost of a given intervention by a measure of its effectiveness. However,

such a ratio does not take into account the cost of alternative strategies. In

comparison, the incremental cost effectiveness ratio (ICER) does take alternative

strategies into account, and is given by:

(cost of intervention) - (cost of alternative)
(effectiveness of intervention) - (effectiveness of alternative)

[100],
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The justification for an intervention also depends on the "utility" of the

intervention - that is, the preference that individuals have for a given outcome [101],

In turn, these "preferences" are the levels of satisfaction, desirability or distress

associated with a particular health outcome [102], If increased life expectancy is the

sole outcome, cost-effectiveness can be determined on the basis of whether or not

increased life expectancy has been delivered by the intervention. However, many

medical interventions (including screening) may affect measures other than life

expectancy alone, such as pain or disability; as such, cost-effectiveness analyses

increasingly incorporate measures of both life expectancy and preferences. A popular

measure in this regard is quality-adjusted life years (QALYs). A QALY is an overall

measure of health outcome that weighs life expectancy against an estimate of a

person's health-related quality of life. QALYs attempt to address the trade-offs

between mortality, morbidity, and the preferences of patients and society by

combining these factors into a single measure [102]. In the UK, the National Institute

for Health and Care Excellence generally views an intervention with an ICER of less

than £20,000 per QALY gained as cost-effective [103],

Favourable cost-effectiveness has been found in breast screening [104, 105],

while mixed results have been reported for lung cancer screening [106-109], For

example, Wisnivesky et al. reported that screening could be expected to increase

survival by 0.1 year at an incremental cost of approximately 230 US dollars, using

data from the Early Lung Cancer Action Project (ELCAP) [106], In contrast,

Mahadevia et al. found that the ICERs for current, quitting and former smokers were

116,300, 558,600, and 2,322,700 US dollars per QALY gained (approximately £73

261, £351,890 and £1,463,186) respectively. They concluded that barriers such as

49



cost of CT and participant anxiety over indeterminate nodules did not make

screening with low-dose CT cost-effective at present [108],

1.2.3 Potential problems in screening

Like all medical interventions, screening has the potential for both benefit

and harm. Unlike other medical interventions, however, it is performed on an

individual in whom disease is not yet recognised. Thus, the difficulties that may be

encountered in screening must be borne in mind when interpreting screening trial

results and assessing its effectiveness.

1.2.3.1 Types of screening bias

Lead-time bias - Lead-time bias exists when the timing of detection/

diagnosis has not been accounted for when comparing survival rates. Lead-time bias

is inherent in measurement of survival because screen-detected cases are by

definition ones that are in a preclinical phase, in contrast to symptomatic cases. As

such, if survival is measured from the time of detection, the survival of a screen-

detected case will invariably be longer than that of a symptomatic case, simply by

virtue of it being detected earlier, even if both screened and non-screened cases die

from the disease at the same point in time (Figure 1.4) [91],
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Figure 1.4. Depiction of lead-time bias. (From reference [91].)

Length bias - Whereas lead-time bias is a function of timing of detection,

length bias could occur if screen-detected tumours are biologically less aggressive.

These tumours would have intrinsically better survival rates than symptomatic cases.

Overdiagnosis bias - Overdiagnosis refers to the diagnosis of a cancer that

would otherwise not cause death [110], either because the individual is more likely to

die from other causes, or the tumour behaves less aggressively. Overdiagnosis can

lead to higher incidence and higher survival in a screened cohort, but still have no

effect on mortality, since the screen-detected cancers are not contributing to

mortality [90],

1.2.3.2 Adherence and contamination

In any screening programme, the rate of adherence needs to be quantified -

that is, the proportion of respondents who complied with the screening regimen and

were followed up. A low rate of adherence can affect the power to detect a

significant mortality effect. Similarly, in the context of a randomised control trial

comparing screening with no screening, contamination refers to the proportion of
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subjects in the non-screening arm who undergo the screening intervention (which

they may do independent of the trial) [111]. High contamination also affects the

power of a screening study because reduced mortality may be seen in both the

screened and non-screened cohorts if the screening intervention is effective.

1.2.3.3 Adverse effects

The potential harms of screening can occur due to both false positive and

false negative results. A false positive result can lead to two adverse consequences:

morbidity arising from investigation of the detected abnormality, and also undue

anxiety. Both of these consequences have been quantified in mammographic

screening, and are not insignificant (see section 1.2.4). In the context of

overdiagnosis, undue harm to the screened individual may also be caused by true

positive results triggering the treatment of a lesion that is relatively indolent.

In contrast, a false negative result may provide false reassurance, and act as

license for an individual to continue engaging in risk-taking behaviour [92], Such an

individual may also suffer morbidity in later years when disease manifests clinically,

as they may feel that the screening process has failed them [112].

Another potential adverse effect of screening from both an individual and a

health resource allocation perspective is opportunity costs. For the screened

individual, these include lost wages or expenses incurred by participating in

screening [91], while at the population level these would include the diversion of

resources away from other healthcare priorities.
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1.2.4 Cancer screening in practice

Screening for cancer has had varying degrees of success. The National Health

Service currently runs three programmes to screen for breast, cervical and colon

cancer [113]. Here the example of mammographic screening is considered, to

illustrate the potential problems and adverse effects discussed earlier.

The first large scale assessment of screening for breast cancer was undertaken

in the Health Insurance Plan (HIP) randomised control trial in New York, initiated in

1963. This trial randomised 62,000 women aged 40-64 years old to receive either a

combination of annual double-view mammography and clinical breast examination,

or usual care (no screening). It demonstrated a 25% reduction in breast cancer-

specific mortality in the screened cohort after 18 years of follow-up [114],

Subsequently, four trials from Sweden (The Two Counties, Malmo, Stockholm and

Gothenburg trials) [115-118], which compared mammography alone to no screening,

as well as trials in Edinburgh [119] and Canada [120], provided compelling evidence

of reduction in breast cancer-specific mortality. However, 49 years after the initiation

of the HIP trial, questions are still asked with respect to the length of follow-up,

biases in randomisation, and the benefit of screening in the 40-49 age group [121],

On the basis of the accumulating evidence of benefit at the time, the National

Health Service Breast Screening Programme (NHS BSP) was initiated in 1988 [122],

Similar national programmes have been initiated in other countries, such as Sweden

[123] and the Netherlands [124], The NHS BSP initially invited women aged 50-64

for single view mammography, but it has since been continuously modifying its

practice. Currently, two-view mammography is being offered to women aged 50-70,
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with plans to extend routine three-yearly invitations to those aged 47-49 and 71-73

by 2016 [125],

However, conflicting evidence regarding the mortality benefit from breast

screening continues to cast doubt over its effectiveness. For instance, Nystrom et al.

quoted a 24% reduction in mortality in an overview of five Swedish trials [126], In a

recent review of breast screening trials for the Cochrane database, Gotzsche and

Nielsen found problems with misclassification of death that led to inaccurate

estimates of cancer-specific mortality, and inadequate randomization in four of the

eight trials evaluated. They concluded that while mammographic screening is likely

to reduce mortality, the effect is probably closer to a 15% relative risk reduction in

cancer-specific mortality rather than the higher levels previously described, and

could also result in an absolute increase in overdiagnosis of 0.5% [127], This view of

increased overdiagnosis has been disputed by evidence from the Swedish two-county

trial and the NHS BSP [128], However, an independent UK review recently

concluded that 43 deaths from breast cancer would be prevented and 129 cases of

breast cancer would be overdiagnosed for every 10,000 UK women aged 50 years

invited to screening for the next 20 years, i.e. one breast cancer death prevented for

about every three overdiagnosed cases [129],

The psychological impact of breast screening has been evaluated in detail. In a

systematic review of 54 papers from 13 countries, Brett et al. concluded that women who

were recalled for further investigations suffered significant short-term, and possibly

long-term anxiety. The increased risk of anxiety was associated with multiple factors,

including pain during mammograms and previous false positive rates [130],
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From the above discussion, it can be seen that the breast screening experience

holds important lessons for other screening modalities that are still building an evidence

base, including low-dose CT (LDCT) screening for lung cancer.

1.3 History and practice of lung cancer screening

1.3.1 Screening principles as applied to lung cancer

Lung cancer meets the majority of the principles for screening set forth by

Wilson and Jungner (Table 1.2) [85], Considering each principle in turn:

1) It is an important health problem with a significant human and financial

cost (section 1.1.1).

2) and 3) There are acceptable surgical and non-surgical treatments, with

facilities for diagnosis and treatment available (section 1.1.6). However,

access to some diagnostic tests and treatments may be concentrated in large

centres and vary regionally.

4) and 8) Stage I cancers can be recognised in a preclinical phase, and have

improved survival (section 1.1.5). There are also international guidelines as to

who should be offered treatment [29, 61],

5) and 6) LDCT is a possible test with a low amount of radiation (section

1.4). However, it is unclear if LDCT is acceptable to the population as a

whole.

7) The understanding of the natural history of the various histological

subtypes of lung cancer continues to improve. However, new advances in
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molecular and genetic subtyping are forcing reappraisal and reclassification

of some forms of lung cancer, for example adenocarcinoma [35], New

staging information has helped to redefine stage groups for lung cancer which

more accurately reflect prognosis [58],

9) and 10) The feasibility and cost-effectiveness of "case-finding", i.e.

recruitment to a lung screening programme, are aspects being evaluated in

multiple LDCT lung screening trials at present. Cost-effectiveness has been

evaluated in observational studies of lung cancer screening [106-109], but not

explored fully in randomised control trials.

1.3.2 Lung cancer screening with chest radiography

There have been several trials initiated between the 1950s and 1990s to

evaluate lung screening with chest radiography, all but one of which (The Tokyo

Metropolitan Government Study) involved exclusively men [90]. Two of the earliest

screening studies on chest radiography and sputum cytology screening for lung

cancer were performed in the UK, and also exclusively targeted men [131, 132].

Five large randomised trials of varying design have been conducted. Three of

these trials, the Memorial Sloan Kettering Lung Project (MSKLP), the Johns

Hopkins Lung Project (JHLP) and the Mayo Lung Project (MLP) together

constituted the Cooperative Early Lung Detection Program of the National Cancer

Institute (NCI) [133], targeting male heavy smokers aged 45 and over. The other two

trials were the Czech Study on Lung Cancer Screening and the Prostate, Lung,

Colorectal and Ovarian (PLCO) randomised trial.
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The MSKLP and the JHLP both randomised participants to a single screen

with an annual chest radiograph, or a dual screen consisting of an annual radiograph

and sputum cytology examination every 4 months, over 5 years. Both trials in effect

had two different interventions and so arguably they did not contain an effective

control group. No effect on any outcome parameter (stage distribution, resectability,

survival or mortality) was observed in either trial after 5 years [ 134, 135],

In the third component of the NCI study, the MLP, participants initially

underwent a prevalence screen with a single chest radiograph and sputum study;

those with no cancer were then randomised to a four-monthly chest radiograph and

sputum cytology study, or a control group where annual chest radiograph and sputum

cytological examination were recommended but not enforced (i.e. an "advice"

group). Again, the control group here may thus not have been sufficiently rigorous.

The MLP also suffered from a poor adherence rate. At initial follow-up, there were

no differences in mortality, but 5-year survival in the screened group was more than

double that of the control group. However, there was an excess of 46 lung cancer

cases (i.e. a 29% higher incidence) in the screened group [136], After 20.5 years of

median follow-up, the survival benefit in the screened arm not only persisted but was

greater (by about 3 times); again, lung cancer deaths were not statistically

significantly different in the two groups, but were in fact higher in the intervention

arm (4.4 per 1000 in the screened group and 3.3 per 1000 in the control arm) [137],

Furthermore, the persistence excess cancer rate in the screened group (17% after

more than 20 years follow-up) indicates that overdiagnosis (see section 1.2.3.1) may

have been a contributory factor [138],
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The PLCO trial is the largest randomised control trial (RCT) to date to assess

chest radiography screening. It was initiated in 1993 and has only recently completed

follow-up and analysis [139], The PLCO randomised 154,901 participants aged 55-

74 (men and women) to receive either an annual chest radiograph or no intervention

("usual care") over 4 years. This trial was population-based, and thus unlike the

previous chest radiography trials, did not target a high-risk group. The trial was

designed to detect a 10% or greater reduction in lung cancer-specific mortality with

at least 90% power. After 13 years, no mortality difference was observed between

the groups, with 1213 lung cancer deaths in the screened group, versus 1230 in the

control group. Unlike the MLP, no statistically significant difference in incidence

was found between the two groups (6% higher incidence in the screened group), but

the large majority of lung cancers in the screened group were detected outside of

screening.

Thus, the overall conclusion from the trials assessing screening with chest

radiography has been that there is no significant reduction in mortality, and

overdiagnosis is a significant concern.

1.3.3 Lung cancer screening with low-dose computed tomography

(LDCT)

1.3.3.1 Observational trials assessing screening with LDCT

The lack of benefit from screening with chest radiography not only led to

recommendations against screening, but arguably also extended caution to screening

with alternative strategies, including CT [ 140].
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LDCT had emerged as a potential screening tool by the end of the 1980s

[141], The first trial to assess LDCT was the Early Lung Cancer Action Project

(ELCAP) in the 1990s that enrolled 1000 volunteers with a 10 pack-year smoking

history to undergo two-view (posteroanterior and lateral) chest radiography and an

LDCT scan. Enrollees with between 1 and 6 nodules had each nodule evaluated for

size, location, calcification, shape and edge. Patients with more than 6 nodules were

considered to have diffuse nodular disease. Nodules measuring up to 20mm that had

smooth edges with benign patterns of calcification were classified as benign. For

non-calcified nodules, a follow-up algorithm based on diameter was devised [142],

Using this algorithm allowed the detection of 27 (2.7%) lung cancers with LDCT, as

opposed to 7 (0.7%) with chest radiography. Also, 23 of the 27 (85.2%) cancers on

LDCT as opposed to 4 of 7 (57 .1%) on chest radiography were stage I, with 26 of the

27 LDCT-detected cancers being resectable.

The success of ELCAP provided the springboard for the International

ELCAP (I-ELCAP) [143], as well as 10 other studies initiated between 1993 and

2000 [144-153], However, these were all single-arm observational cohort studies, as

opposed to RCTs, and therefore their ability to detect a true effect of LDCT on

mortality was limited [91]. Consequently, a multitude of recently concluded or

ongoing RCTs assessing LDCT either against usual care, or some other intervention

were initiated. A selection of these is now discussed.
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1.3.3.2 Randomised control trials assessing LDCT screening

Tables 1.6 and 1.7 summarise the nodule management algorithms of recent

randomised control trials assessing LDCT. In general, these trials have follow-up

algorithms that are based on that of ELCAP.

Diameter

(mm)
Volume

(mm3)
NLST [154] NELSON [155] DLCST [156] UKLS [157]

<2 < 15 None LDCT at 12 None

months
3 15-50 LDCT at 12

months
4 LDCT at
5 50-500 3,6,12 or 24 LDCT at 3 Combination LDCT at 3
6 months, months; of VDT months;
7 depending on assessment of assessment assessment of
8 lesion size VDT; if VDT < and FDG- VDT;
9 and level of 400 days- refer PET for if VDT < 400
10 suspicion of to pulmonologist nodules 5- days- refer to

malignancy VDT=400-600 15mm pulmonologist;
days- LDCT at 9 if VDT > 400
months days- LDCT at
VDT > 600 9 months

days- LDCT at 9
months

15 >500 LDCT at Referral to Referral to
>20 3,6,12 or 24 pulmonologist multi-

months, for work-up disciplinary
depending on team for work¬
lesion size up
and level of

suspicion of
malignancy;
FDG-PET,
dynamic
contrast-
enhanced

CT, and/or
biopsy

Table 1.6. Management algorithms for solid nodules in the NLST, NELSON, DLCST
and UKLS trials.
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Diameter Volume DANTE [158] ITALUNG [159] MILD [160]
(mm) (mm3)

Smooth Non-smooth

margin margin

< 2 < 15 LDCT at LDCT at 3,6 None None
3 15-50 3,6 and 12 and 12

months; if months; if
4 unchange unchanged,
5 50-500 d, further further CT at LDCT at 3 Nodules 60-

CT at 24 24 months months; if > 250mm3- LDCT
months 1mm increase at 3 months; if

6 Oral in diameter, volume increased
7 antibiotics, FDG-PET or by > 25%,

LDCT in 6-8 invasive suspected
weeks; if no procedure malignancy
regression,

8 follow-up CT FDG-PET; if
9 or invasive PET-positive, Nodules >

procedure FNA 250mm3- FDG-
recommended. PET or lung

10 Oral antibiotics, LDCT in If PET-negative, biopsy
15 >500 6-8 weeks; if no repeat CT in 3

regression, FDG-PET months.

> 20 Discretionary oral
antibiotics, then LDCT or
standard contrast-
enhanced CT, and FDG-
PET

NB: for cases

with suspected
inflammatory
nodules,
antibiotics and

repeat CT in 4
weeks

performed

Table 1.7. Management algorithms for solid nodules in the DANTE, ITALUNG and
MILD trials.
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The National Lung Screening Trial (NLST) was a 33-centre prospective RCT

in the United States that randomised high-risk participants to LDCT or single-view

chest radiography. The NLST was allied to the PLCO trial, and this was part of the

reason why the NLST used radiography, and not usual care in the control group

[161]. Three rounds of annual screening were performed, and interim analyses were

conducted from April 2006 through to 2010, encompassing the last round of

screening in 2007. The study was designed to have 90% power to detect a 21%

reduction in mortality, independent of the number of rounds of screening [162], A

positive result in the NLST constituted a finding suspicious for lung cancer, defined

on LDCT as non-calcified nodule(s) (NCNs) >4mm in greatest transverse dimension,

or any other suspicious finding. The NLST protocol was not prescriptive, but some

recommendations for follow-up of positive screens based on contemporary standard

practice were provided [154],

The NLST used outreach methods such as direct mailings and advertisements

in the mass media, to enrol 53,454 enrolees between August 2002 and April 2004.

The NLST participants were younger, substantially better educated, and were less

likely to be current smokers, compared to the general population as assessed by the

Tobacco Use Supplement of the US Census Department Continuous Population

Survey for 2002-2004 [163], but were otherwise representative of the general

population. The interim analysis performed in October 2010 revealed 356 deaths

from lung cancer in the LDCT arm of the trial, compared to 443 in the chest

radiography arm, corresponding to cumulative lung cancer mortality rates of 247 and

309 deaths per 100,000 person-years, respectively. This 20.0% reduction in lung

cancer-specific mortality was statistically significant, exceeding that expected by
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chance. A lower but still statistically significant decrease in all-cause mortality of

6.7% was also observed in the LDCT cohort. The majority of patients were

diagnosed at an early stage, with 93% of stage 1 lung cancer patients detected by CT

undergoing surgery with curative intent [164],

However, the false positive rate of screens varied between 95% and 98% on

LDCT in the three screening rounds, compared to between 93% and 96% on

radiography. Also, the proportion of confirmed cancers increased in the final

screening round (5.2% versus 2.4% in the second round), although the proportion of

cases designated positive decreased (16.8% versus 27.9%). The reasons for this are

still unclear [164], Although the NLST does not directly compare LDCT with usual

care, a recent sub-analysis of NLST-matched participants in the PLCO trial has

revealed no significant difference in lung cancer mortality between CXR screening

and usual care [139]; this has been taken to indirectly imply no significant difference

between CT and usual care.

The NELSON (Nederlands-Leuvens Longkanker Screenings Onderzoek) trial

in the Netherlands and Belgium has been ongoing since 2003 [165], In contrast to the

NLST, NELSON randomised participants to screening with LDCT or 'usual care',

i.e. no screening at all. Rather than pre-defined eligibility criteria, NELSON used a

population-based questionnaire to determine what the optimum risk-based selection

criteria would need to be to achieve a balance between risk profile, sample size and

required rates of participation and retention [165], This approach to recruitment

seemed to provide better concordance of characteristics between the trial and general

populations [166], NELSON offered four rounds of screening: participants

underwent screening at baseline, one year, three years and finally 5.5 years later
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[167], Further, participants will be followed up over a longer period of 10 years in

total.

NELSON is the first study to incorporate volume doubling time (VDT)

calculations using semi-automated volumetry into a prescriptive nodule management

algorithm. Nodules are classified into four categories: categories I and II are

considered negative [benign or NCN less than category III, respectively], category III

indeterminate (a solid NCN, or solid component of a part-solid nodule with a volume

of 50-500mm ; a non-solid nodule or non-solid component of a part-solid nodule

with a mean diameter of > 8mm; or a solid pleural-based nodule 5-10mm in

minimum diameter i.e. perpendicular to the pleura), and category IV positive (a solid

NCN, or solid component of a part-solid nodule with a volume > 500mm \ or a solid

pleural-based nodule > 10mm in minimum diameter) [155], Participants with

indeterminate nodules are invited back for a subsequent low-dose CT at 3 months

(baseline screening) or 6-8 weeks (subsequent incidence screening). Cases where the

VDT is less than 400 days are then considered positive, and further diagnostic

strategies are then pursued. Finally, a VDT of > 600 days was considered negative.

The threshold of a VDT < 400 days was chosen as lung cancers with a VDT greater

than this may be overdiagnosed cases that do not contribute to mortality [168-170],

The rationale for a shorter initial interval of follow-up CT during incidence screening

was that any new malignant nodule that had appeared over the 1 year between

baseline and first incidence screen must have a short VDT, and therefore, would be

shown to be growing rapidly even after a brief period of follow-up. Combining

volumetric assessment with a standardised growth measurement in this way
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potentially limited the unnecessary investigation of indeterminate but ultimately

stable nodules.

NELSON also differs from the NSLT in that two independent readers initially

interpreted LDCT studies, unlike the single reader strategy used in the NLST. On

baseline screening, 8623 NCNs were detected in approximately half of all

participants, and 98% of these nodules were solid. According to the NELSON nodule

definitions, 196 participants had 260 nodules that were positive, in which 70 lung

cancers were finally detected. This detection rate of 0.9% was lower than that of

other published trials [142, 152, 171-173], but the proportions of Stage I disease in

the baseline, second and third screening rounds were similar to that of other trials

(64.9%, 70.7% and 62.3% respectively) [167], Results of the fourth screening round

and mortality data are still awaited. Recruitment characteristics and key results from

the NLST and NELSON trials are compared in Table 1.8.
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NLST [164] NELSON [169, 174]
Parameter assessed Mean diameter Volume and diameter

Screening round 1 2 3 1 2

No. recruited 53454 15822

No. screened by LDCT 26309 24715 24102 7557 7289

Positivity rate1(%) 27.3 27.9 16.8 20.8 7.8

No. of lung cancers in
LDCT arm

270 168 211 70 54

Lung cancer detection
rate (%)

1.0 0.7 0.9 0.9 0.5

Stage I cancer (%) 63.0 (across 3 screening rounds) 64.9 70.7

Invasive procedures
(%)2

% with no lung cancer

1.7 1.1 1.3

29.8 (across 3 screening rounds)

1.2

27.2

0.8

21.3

Positive predictive
value (%)

3.8 2.4 5.2 4.6 9.5

Table 1.8. Characteristics and key results of the NLST and NELSON trials.

1
Positivity rate is defined as the number of subjects with a positive finding, divided by the

total number of subjects screened in the LDCT arm, expressed as a percentage. Note that
the nodule management strategy of the NELSON study allowed studies to be called
indeterminate and subjected to follow-up scans, but for the purposes of standardization with
other trials, indeterminate scans have been considered as positive and included in the
calculation of the positivity rate.

2The ways in which invasive procedures have been defined and reported so far has varied
between trials. For example, the rates of invasive procedures for NLST shown here include
bronchoscopy, while those of NELSON do not.

Four smaller European randomised control trials that have recently published

results are comparing LDCT with usual care in some form. These are the Danish

Lung Cancer Screening Trial (DLCST), The Detection And Screening of early lung

cancer by Novel imaging Technology and molecular Essays (DANTE) study, the

Italian Lung (ITALUNG) trial, and the Multicentric Italian Lung Detection (MILD)

trial. The DLCST was initially allied to the NELSON study, with a similar nodule

management protocol [156]. The DANTE study is using an initial baseline screening
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chest radiograph to then randomise participants to LDCT screening or usual care. All

four trials have incorporated FDG-PET into their algorithms (Tables 1.4 and 1.5). In

addition, the DANTE and ITALUNG trial incorporated discretionary antibiotic use

and follow-up imaging into their nodule follow-up pathways. The MILD trial is

unique in two respects: it is only following a maximum of four NCNs, and it is

further randomising those in the screened cohort to repeat LDCT in 1 or 2 years

[160],

The DANTE and ITALUNG studies have reported lower percentages of stage

I cancers at baseline analysis compared to earlier observational studies [158, 159],

Furthermore, the DANTE, DLCST and MILD trials have revealed no significant

difference in mortality between screened and control cohorts, but the short median

follow-up duration (less than 5 years) means these results should be interpreted with

caution [160, 175, 176],

1.3.3.3 Potential questions to be answered by LDCT trials

The current European randomised screening trials are well-placed to answer

questions regarding differences in lung cancer detection and mortality rates in

different populations, the optimal nodule measurement and management strategy, the

duration and interval of screening, LDCT reading strategies, and cost-effectiveness.

1.3.3.4 The UK Lung Screening Trial

In comparison to some other European countries, the UK has been slow to

commence a national LDCT screening trial. An RCT comparing LDCT with usual

care has been planned since 2000, by the UK Cancer Coordinating Committee for

Research (UKCCR) [ 177], but faced various delays. However, a pilot study of the
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UK lung cancer screening trial (UKLS) is now underway, and aims to randomise

4000 participants to a single LDCT or usual care arm, with a shorter total follow-up

period of 18 months. The recruitment and nodule management strategies of the study

have been based on the NELSON trial, but with important differences. Individuals

aged 50-75 will initially be approached via a questionnaire, and a cohort with a

higher risk profile than that of NELSON will be selected based on a five-year lung

cancer predictive risk model devised by the Liverpool Lung Project [178], Unlike

NELSON, nodules measuring 15-50mm3 will be targeted for follow-up, in view of

the single screen design.

The participants will undergo only a single screening LDCT unless follow-up

is required based on the management algorithm. This 'single-screen design' is felt to

be the most cost-effective and rapid method of answering the primary question - does

LDCT reduce lung cancer mortality [157]? While it is not reflective of an actual

iinplementable screening programme in which repeated screening would occur, the

ideal interval for screening may be theoretically determined. The single-screen

design has also been used in other screening studies [179],
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1.4 Screening with low-dose computed tomography:

technical considerations

1.4.1 Computed tomography systems

The technique of computed tomography was pioneered by Sir Geoffrey

Hounsfield in 1973 [180], Modern CT scanners fundamentally have an x-ray source

emitting a fan beam and rotating on a gantry, through a ring composed of a detector

array. The patient is moved through the ring during the image acquisition, and the x-

rays penetrate the patient and are incident on the detector. The signals from the

detector are reconstructed by a computer, and the resulting image is a cross-sectional

display that corresponds to the degree of attenuation of the x-rays by the various

materials within the scanned volume. The attenuation of a given material is a

function of its density - the higher the density, the greater the attenuation. The

density of a material on CT is calculated by its relative difference from the

attenuation of water (arbitrarily assigned a value of 0), on a logarithmic scale, called

a CT number (or Hounsfield number), and expressed in Hounsfield Units (HU).

The newest generations of CT scanners have multiple rows of detectors, and

are called multidetector CT (MDCT) or multislice CT. The multiple rows allow

thinner collimation and overlapping coverage in the longitudinal (z) axis, and so can

perform volumetric scanning (continuous scanning of the whole volume). This has

enabled near isotropic resolution - that is, all three dimensions of the volumetric data

element (or voxel) are nearly equal [181]. Isotropy has facilitated accurate three-

dimensional image reconstructions without distortion along the z-axis.
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The lungs already have an inherently high contrast resolution on CT because

the attenuation of the lung predominantly consists of two materials of markedly

different density (air and the vasculature). The increased z-axis coverage of MDCT,

coupled with greatly improved gantry rotation speeds, now allows the thorax to be

scanned within one breath-hold. Thus contemporary CT scanning of the lungs has

both high spatial and contrast resolution.

1.4.2 Radiation exposure

The dose delivered by a conventional chest CT can be greater than 100 times

that of a posteroanterior chest radiograph [182], As with any medical exposure to

ionising radiation, the dose to the patient from CT should always follow the ALARA

(as low as reasonably achievable) principle: the delivery of the minimum radiation

dose possible to achieve an image of diagnostic quality, so that the hazards of

ionising radiation are minimised.

CT dose depends on a number of acquisition parameters and patient factors.

The energy of the x-ray beam for any given CT acquisition depends upon the anode-

cathode voltage (in kilovolts, and may be stated as its peak value, kVp, or now more

usually as kV), the tube current (in milliamperes, mA), and the tube current-time

product (in milliampere-seconds, mAs), which is the product of tube current and the

exposure time per gantry rotation. Lowering the kV reduces the effective energy and

number of photons of the x-ray spectrum, while lowering the mAs reduces the

number of photons but does not change the effective energy of the spectrum [183], A
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reduced number of photons will result in a decreased dose, but will also affect image

quality due to an increase in image noise.

Scanner geometry can affect absorbed dose because of differences in the

distance between the focal spot of the radiation source and the scanner isocentre;

according to the inverse square law, radiation intensity is inversely proportional to

the square of the distance between the source and the point of measurement. MDCT

scanners have a shorter focal spot to isocentre distance compared to single-slice CT

scanners, and so may result in increased dose if all other factors are kept constant

[184],

Helical pitch is defined as the ratio of table feed per gantry rotation to the

nominal width of the x-ray beam. Thus, an increased pitch results in a decreased scan

time and reduced dose. Pitch, section collimation and table speed are all intertwined:

for a given collimation, a faster table speed will increase pitch. However, an

increased pitch can result in decreased spatial resolution, since it decreases the

duration of radiation exposure for a particular anatomical section scanned [185],

Similarly, a thicker collimation is more dose-efficient; this is because a thicker

collimation on MDCT can limit a phenomenon known as "overbeaming", whereby a

proportion of the x-ray beam falls beyond the edge of the detector rows and so does

not contribute to image quality [185], However, a thicker collimation can also limit

the thickness of the reconstructed image. In this way, trade-offs between dose and

image optimization must be carefully balanced.

Patient factors that affect radiation dose include body weight and shape. The

attenuation of a given x-ray beam increases with the thickness of the material in its
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path, and thus, with increasing body mass index, there is a decrease in the detected x-

ray intensity. To compensate, an increased tube current and kilovoltage may be

employed for a person with a higher body mass index, thereby increasing the

effective dose [186], However, as body shape varies, the intensity detected can vary

along the z-axis according to the thickness of the part of the body scanned [ 187],

Modern CT scanners have automated exposure control (AEC) functions that allow

modulation of the exposure to compensate for some of these patient factors [188],

Common descriptors of CT dose are the CT dose index over the volume

scanned (CTDIvoi), which takes the axial scan spacing and helical pitch into account,

and the dose-length product (DLP), which is the product of CTDIvoi and the length

covered. The DLP is measured in milligray-centimetres (mGy-cm). A conversion

factor for the chest can be used to estimate the effective dose, in millisieverts (mSv).

[189], There is variability in the effective dose delivered by a standard dose CT

thorax, primarily due to the variation in tube current-exposure time product. For

instance, a thoracic CT performed with a 4-slice MDCT at 120 kVp tube voltage,

4x 1 mm detector configuration, 0.5s rotation time, a pitch of 1.75, and effective mAs

of 100 can result in an effective dose of 6.8 mSv [190], The risk of radiation-induced

malignancy from such a standard-dose CT chest examination has been estimated at

approximately 1 in 4000 [191],
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1.4.3 Low-dose CT technique

The feasibility of low-dose CT (LDCT) in the thorax was reported by Naidich

et al. in 1990 [141], They compared CT images obtained at 120kV, 140 mA, 2

second scan time, and 10mm thick sections reconstructed with a standard algorithm,

to two different low-dose protocols: in the first protocol, they altered only the tube

current to 10 mA and acquired images at 5 different levels selected from the initial

standard dose CT. In the second protocol, they acquired a half-scan at 10 mA that

was performed with an acquisition time that was two-thirds that of a full scan.

Acceptable visualization was obtained at all chosen levels [141],

Subsequently, other investigators have proven that LDCT is acceptable for

viewing normal structures [192, 193] and for a variety of pathological conditions

[194, 195], including pulmonary nodule detection (see section 1.6.2.1). The dose

reduction using such protocols is significant: For example, Remy-Jardin et al.

estimated that using a low-dose protocol (120 kVp, 60-100 mAs depending on body

weight) provided a dose of 1,9mSv and 2.4mSv across a 30-cm section of the thorax

for male and female patients respectively, compared to 3.4 mSv and 4.4 mSv

respectively at standard dose [194], LDCT thus provides a viable imaging strategy at

reduced dose in those subjects requiring serial CT surveillance. It is worth noting that

some authors have taken the view that due to a lack of a precise definition, the term

"low-dose CT" should be abandoned in favour of accurate reporting of dose

parameters [196],
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1.4.4 Image reconstruction, post-processing and reading

Thoracic CT images are normally reconstructed using a high-frequency

reconstruction algorithm (also called a reconstruction kernel) that maximises the

inherent high contrast ratio within the lungs [197], A volumetric MDCT study can be

reconstructed at varying slice thickness - thinner slices provide more resolution but

have increased noise, whereas the converse is true for thicker slices. As for all CT

studies, the grayscale is optimized for the structures being analysed, by altering the

window settings of the image. For the lungs, a frequently used window setting is

with the centre level at -600 HU, with a width of 1500 HU [198],

Modern CT images are viewed on softcopy on a Picture Archiving and

Communications (PACS) workstation, which improves a radiologist's workflow,

given the large number of images generated by MDCT. A variety of reconstructions

can be performed using the raw data at the scanner console or from thin slices on

most PACS workstations. Multiplanar reconstructions (MPRs) can be performed in

any orthogonal and non-orthogonal plane [199], Maximum intensity projection

(MIP) reconstructions are obtained by summing the pixels with the highest CT

numbers within a given voxel. In this way, the conspicuity of high attenuation

structures is increased (Figure 1.5) (see also section 1.6.2.1). Conversely, minimum

intensity projection (minIP) improves visualisation of low attenuation structures, and

so for example, makes air within bronchi below the subsegmental level more readily

visible [200].
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Figure 1.5. Maximum intensity projection (MIP). (A) 1mm-collimation CT image
demonstrates a nodule in the right lower lobe adjacent to a vessel, but that is quite
easy to miss. (B) 5mm MIP reconstruction depicts the adjacent vessel more clearly
and increases nodule conspicuity.

1.4.5 CT measurement methods for lung nodules

The size of a lung nodule can be measured using diameter, area or volume,

though traditionally the diameter of a nodule has been the most widely used method

in clinical practice. This diameter can either be a uni-dimensional measurement of

the maximum diameter of the lesion, or using length and width to provide a mean

diameter, as recommended by the Fleischner Society [44], Bi-dimensional

measurements can also be performed to obtain a cross-sectional area; in turn, this

cross-sectional area can be multiplied by sectional increment to obtain a volume

measurement [201 ]. Different modifying equations to account for section-to-section

variability in nodule shape can be applied for spherical, elliptical or irregularly-

shaped nodules [202],

For three-dimensional segmentation of lung nodules, volume rendering is

first performed. Volume rendering is a 3D technique that applies a histogram-derived

tissue classification based on attenuation to the entire CT dataset. By mapping CT

attenuation values to opacity, brightness and colour, structures of different density

75



can be selectively concealed or revealed [203], The exact technique and algorithm

differs between manufacturers, but in principle segmentation of a nodule can be

performed, to define the structure of interest and exclude structures such as vessels

and adjacent lung parenchyma (Figure 1.6). A measurement algorithm can be

initiated with a mouse click, to calculate the nodule volume [204], As this requires

high computational power, volumetric analysis is not routinely available on PACS

workstations, but is available on dedicated workstations provided by CT

manufacturers. The volumetric segmentation method used in the UKLS and in this

thesis is described in more detail in Chapter 2, section 2.7.2.

Figure 1.6. 3D segmentation and volume calculation of a small lung nodule using
LungCARE software (Siemens Medical Solutions, Erlangen, Germany). Segmentation
is initiated simply by clicking on a nodule on the CT image.
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1.4.6 Overview of computer-aided detection and diagnosis

Investigations into using computer-aided detection (CAD) in thoracic CT

began in earnest in the 1990s [205], Currently, CAD in thoracic CT is used to

describe a spectrum of activities encompassing detection, interpretation, decision¬

making, quantitative analysis and enhanced visualization [206], The term CADx is

sometimes also used to distinguish computer-aided diagnosis from other aspects of

CAD. However, for the purposes of this discussion they will be considered as

synonymous.

CAD has three basic components: an imaging processing step, a segmentation

step, and finally a feature extraction or classification step. Ko and Naidich provided

an illustration of how these components may be involved in nodule detection and

interpretation [207], The initial image processing is necessary to separate the thoracic

cage from the surrounding lung, using downsampling (a technique whereby pixel

width is changed to make the image matrix smaller) and subsequent application of a

threshold based on attenuation to remove air from the surrounding tissues within the

image. Subsequently, the pleura can be removed, and the lung parenchyma can then

be segmented so that the CAD algorithm can analyse candidate regions for the

presence of nodules and normal structures (Figure 1.7). Regions of interest (ROIs)

are drawn over potential target candidates and interrogated using a method known as

feature extraction or classification, which relies on a database of predetermined

features such as sphericity [207],
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Figure 1.7. Lung segmentation and detection in a CAD algorithm. The lung border has
been traced, with the black crosses indicating the most anterior, posterior, lateral, and
medial pixels of each lung. The pixels of both lungs are used to calculate the centre of
the thorax (white cross over trachea), and the pixels of the individual lungs are used
to calculate the respective right and left lung centres (white crosses in the respective
lungs). Candidate regions have then been detected by the computer, and colour-
coded white for nodules and black for vessels. (From reference [207].)

Multiple feature classification methods are available, and most use a set of

features such as size, shape and intensity, to form the inputs into the algorithm, and

generate a single output (malignant or benign). These methods include artificial

neural networks, support vector machines, linear discriminant analysis and traditional

and belief decision trees. The data used to generate the feature classification is

derived from expert panels forming a consensus of "truth" as to what constitutes a

nodule, except for neural networks, which can adapt and leam. However, approaches

using the distribution of interpretations (rather than the final consensus answer)

performed by a radiologist are also possible, provided multiple aspects of those

interpretations have been adequately captured [208], Thus, the reference standard

used by a particular CAD algorithm is heavily dependent on the robustness of its

"truth" dataset. The Lung Image Database Consortium (LIDC) has recently
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completed the compilation of a large database of corroborated lesions, where the

various features of lesions that have been defined as nodules and non-nodules by

multiple radiologists have been recorded in detail, to assist in the development of

more robust reference standards [209].

1.5 The pulmonary nodule

1.5.1 Relevant pulmonary anatomy

The normal right lung consists of three lobes: the upper, middle and lower

lobes. The normal left lung consists of two lobes, the upper and lower lobes. The

trachea divides into right and left bronchi, which in turn divide into the lobar bronchi

and then ramify into segmental bronchi. Each segmental bronchus is part of a

separate functionally independent unit of lung termed a bronchopulmonary segment.

There are usually 10 bronchopulmonary segments in the right lung and eight on the

left, as described by Jackson and Huber in 1946, and Boyden in 1955 (Table 1.9)

[210],

The segmental bronchi then repeatedly divide until the terminal bronchiole is

encountered, which is the most peripheral bronchiole without alveoli. At the end of

each terminal bronchiole is the acinus, consisting of respiratory bronchioles that lead

into alveolar ducts, which in turn lead into the alveoli.
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Jackson and Huber 1946 Boyden 1955

Right upper lobe:
Apical S1
Anterior S2
Posterior S3

Right middle lobe:
Lateral S4
Medial Ss

Right lower lobe:
Superior Se
Medial basal S'
Anterior basal SB
Lateral basal Sa
Posterior basal S1U

Left upper lobe:
Upper division:

Apicoposterior S1&J
Anterior S2

Lower (lingular division):
Superior lingular S
Inferior lingular S

Left lower lobe:

Superior Sb
Anteromedial S'&8
Lateral basal S9

Posterior basal S1U

Table 1.9. Nomenclature of normal bronchopulmonary segmental anatomy. (Modified
from [210].)

The term pulmonary lobule (previously secondary pulmonary lobule) refers

to the smallest unit of lung that is bound by connective tissue septa, as described by

Miller (Figure 1.8) ([211].
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Bronchioles
(wall thickness 0.15 mm)

Pulmonary veins
+ Lymphatics

(0.5 mm)

\

\
Interlobular septa

(0.1 mm)

Pulmonary arteries
(1 mm)

k Visceral pleura
(0.1 mm)

1 cm

Figure 1.8. The normal pulmonary lobule. (From reference [212].)

Each pulmonary lobule is about 1-2.5cm in diameter and polyhedral in shape

[213], and contains between 3 and 24 acini depending on its size [214], At the centre

of each pulmonary lobule is a bronchiole and adjacent artery, while pulmonary

venous branches and lymphatics lie within the interlobular septa [213],

In the right lung, the lower lobe is divided from the upper and middle lobes by

the right oblique or major fissure. The upper lobe is divided from the middle lobe by

the horizontal or minor fissure, which extends anteriorly from the oblique fissure in

the axial plane. On the left the upper and lower lobes are also divided by the left

oblique fissure, orientated more vertically than the right. The oblique and minor

fissures may be incomplete in 12.5-90% [215, 216] of cases, respectively. Some
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form of accessory fissure dividing a segment from the remainder of the lobe may be

encountered in 22-32% [217, 218],

The connective tissue which supports the lung is termed the interstitium. The

interstitium as described by Weibel consists of the peribronchovascular interstitium

(a strong sheath surrounding the large bronchi and arteries emanating from the

hilum); the centrilobular interstitium (a peripheral continuation of the

peribronchovascular interstitium); the subpleural interstitium (from which the

interlobular septa that form the boundaries of the pulmonary lobule project); and the

intralobular septa (which connects the centrilobular interstitium and interlobular

septa) [219],

1.5.2 Pulmonary nodules

1.5.2.1 Historical aspects

Isaac Adler recognised the presentation of a lung cancer as a "single nodule,

usually quite small", but viewed it as a rare occurrence [220], The following year,

Wenkebach provided one of the first discourses on radiographic patterns of lung

pathology. He emphasised the sharp boundaries and homogeneous nature of tumours

of the lung on chest radiography as a distinguishing characteristic from "infiltrations"

such as pneumonia [221], It was not until the mid-2011' century, however, that

numerous reports begun to describe the difficulties in managing "the solitary

pulmonary mass", "nodule" or "coin lesions" [222-224], By the 1970s, radiographic

criteria for the definition of a solitary pulmonary nodule had been established. These

included an oval or round shape, a diameter of 4-6cm or less in diameter,
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homogeneous density, surrounded by lung, and with delineated margins [225], The

advent of conventional whole lung tomography [226] and subsequently thoracic CT

[227] increased the detectability of pulmonary nodules. Subsequent refinements in

CT technique with thick-section spiral CT [228] and MDCT, with its thinner sections

[229] have made the increased detection of pulmonary nodules inevitable.

1.5.2.2 Definition, types and location of pulmonary nodules

Nodules may be defined by their size, attenuation, location and/or radiologic

pattern. The Fleischner Society defines a pulmonary nodule as "a rounded opacity,

well or poorly defined, measuring up to 3cm in diameter" [230], A micronodule is an

opacity measuring less than 3mm in diameter. A solid nodule has homogeneous

soft-tissue attenuation, while a ground-glass nodule (also termed a non-solid nodule)

has a hazy attenuation - lower than soft tissue, but not obscuring the bronchial or

vascular structures within it. A part-solid nodule (also termed a semi-solid nodule)

contains both solid and ground-glass density [230, 231], The term subsolidnodule

encompasses both pure ground-glass nodules and part-solid nodules (Figure 1.9)

[232].

Figure 1.9. A part-solid nodule with a predominantly solid component.
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Centrilobular nodules are located a few millimetres away from the pleural

surface or interlobular septa as their name implies [233]. Perilymphatic nodules lie

within the peribronchovascular, subpleural or centrilobular interstitium, as well as

within the interlobular septa [212], The terms subpleural, perifissuraljuxtapleural

and juxtavascular have also been used to describe nodule location [234, 235] but do

not have standardised definitions.

The pattern of nodularity can be a helpful descriptor. Tree-in-bud nodularity

refers to branching centrilobular nodularity that is due to either endobronchial

impaction by inflammatory material or fluid, or a peribronchial abnormality such as

fibrosis. Multiple causes for tree-in-bud nodularity have been described, but most

relate to infection and bronchiolitis [236], Miliary nodularity refers to the random

distribution of micronodules throughout the lung, usually seen in disseminated

haematogenous spread of tuberculosis or metastases.

1.5.2.3 Causes of pulmonary nodules

Some of the causes of a solitary pulmonary nodule are listed in Table 1.10.

These can broadly be categorised into neoplastic and non-neoplastic causes. Non¬

neoplastic causes can further be divided into inflammatory, vascular, congenital and

miscellaneous causes [237, 238],
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Aetiology Disease

Neoplastic:
Malignant Primary lung cancer

Metastatic disease1 (including colon, breast, prostate, testicular,
renal cell carcinoma, melanoma, and osteosarcoma)
Primary carcinoid
Primary lymphoma

Benign Hamartoma

Non-neoplastic:
Inflammatory:

Infectious Granulomatous (mycobacterial, fungal)
Abscess

Septic embolus1
Bacterial

Non-infectious Sarcoidosis1, Wegener granulomatosis1, Idiopathic bronchocentric
granulomatosis, Rheumatoid arthritis1,Amyloidosis 1
Intrapulmonary lymph node

Vascular Infarct

Congenital Intraparenchymal bronchogenic cyst
Bronchopulmonary sequestration/
congenital pulmonary airway malformation

Table 1.10. Some causes of pulmonary nodules. Modified from Brandman et al. [238]
and Erasmus et al. [237].
1
These conditions commonly cause multiple nodules.

It is important to note that an opacity that is considered a nodule on chest

radiograph may not be a true nodule at all. Instead, it may be due to an external

object, due to composite shadows from the overlap of two structures, or

"psuedotumour" due to fluid in a fissure, for example. In the case of external objects

this can usually be resolved by ensuring the confounding objects are removed, while

different projections or repeat films at different inspirations can be obtained to

analyse composite shadows. CT can help resolve apparent persistent nodular

opacities on a chest radiograph that are in fact caused by fluid or composited bony

structures.
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The prevalence of solitary pulmonary nodules on LDCT of high-risk patients in

screening studies has been estimated at between 8 to 57%, but differences in the

definition of a nodule and in reporting methods (e.g. no clear separation of those with

multiple versus single nodules, reporting of percentage of patients with nodules,

rather than the number of nodules itself) is at least partly responsible for this wide

variation [239],

1.5.3 Differentiating benign and malignant nodules on CT

The initial radiological differentiation of benign from malignant nodules

relies on morphological evaluation of size, contour, internal characteristics and

location, in combination with clinical probability of malignancy. If a nodule remains

indeterminate after this evaluation, assessment of growth and sometimes functional

characteristics are necessary.

1.5.3.1 Size

In general, a small nodule is more likely to be benign, and indeed 80% of

benign nodules are less than 2cm in diameter. However, up to 42% of nodules

measuring less than 2cm may be malignant, as shown in a series of 634 solitary

pulmonary nodules assessed by CT [240], A systematic review of eight trials

(including ELCAP) has reinforced the notion that nodules measuring under 5mm are

almost always benign [239], The likelihood of malignancy increases as size

increases, with odds ratios for malignancy increasing from 0.74 for nodules

measuring 1.1-2.0cm, to 3.67 and 5.23 for nodules measuring 2.1-3.0cm and >

3.0cm, respectively [241],
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1.5.3.2 Shape and contour

A sharp well-defined margin may be seen in both benign and malignant

nodules, and is thus not a particularly helpful discriminator. In a series of 85

malignant and 11 benign nodules, Zwirewich et al. reported that a sharp margin was

seen with almost equal frequency (85% of malignant and 82% of benign nodules)

[242], However, a spiculated or irregular margin, especially with distortion of the

adjacent vessels (described as a "corona radiata" appearance) is known to correlate

well with malignancy. Kuriyama et al. showed that fine spiculations, pleural

retraction, and peripheral vessel convergence (analogous to the "corona radiata")

were strong indicators of malignancy in peripheral lung cancers [243], However,

these edge characteristics are not sufficiently sensitive or specific for benignity or

malignancy in isolation.

1.5.3.3 Internal characteristics

Internal characteristics include calcification, cavitation, attenuation (fat, solid

or ground-glass), bubble-like lucencies (sometimes referred to as "pseudocavitation")

and air bronchograms. Benign lesions are associated with rather dense and discrete

calcification in four characteristic patterns. Central, diffuse, solid or laminated

calcification may be seen in calcified granulomas, such as histoplasmosis or

tuberculosis, while "popcorn" calcification indicates chondroid calcification within a

hamartoma (Figure 1.10) [237], Hamartomas are benign neoplasms composed of

mesenchymal tissues such as fat and connective tissue, typically combined with

respiratory epithelium [244], Absence of such discrete calcification is not indicative

of malignancy, as benign lesions often have no calcification. On the other hand, foci

of calcification on CT may be seen in malignant lesions, either due to a focus of pre-
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existing granuloma that has been subsequently encompassed by tumour, or due to

dystrophic calcification. In a series of 353 patients undergoing CT for lung cancer,

20 (6%) showed some evidence of calcification [245],

Figure 1.10. Hamartoma demonstrating "popcorn" calcification on a coronal CT image
with bone window settings. (From reference [238].)

In addition to "popcorn" calcification, the presence of intralesional fat on

thin-section CT points towards a hamartoma. In one series of 47 histologically-

proven hamartomas, fat was seen on CT in 18 (38%), and fat and calcium in 10

nodules (21.3%), using a definition of -40 HU to -120 HU on CT. However, only

about half of hamartomas contain fat [246],

Both benign and malignant lesions may cavitate. The thickness of the cavity

wall can provide a clue to aetiology: cavitary nodules on chest radiograph with a wall

thickness less than 4mm were benign in 92% of cases, while those with a wall

thickness greater than 16 mm were malignant in 95% of cases in one series [247],
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However, cavities with an intermediate thickness of 5 to 15mm were malignant in

just over half of cases in that investigation, underscoring the lack of sensitivity and

specificity of this sign in the majority of cavitary nodules.

Ground-glass nodules may be seen in both inflammatory and neoplastic

conditions, with different radio-pathologic correlations. Multifocal centrilobular

ground-glass nodularity may be seen in respiratory bronchiolitis-interstitial lung

disease, for example [248], It is now recognised that the subtype of adenocarcinoma

formerly termed bronchioloalveolar carcinoma (BAC) has a range of heterogeneous

ground-glass CT appearances. These include ground-glass nodules (with or without

associated features such as bubble-like lucencies or psuedocavitation, and air

bronchograms), part-solid nodules with varying proportions of solid and ground-

glass attenuation, and multifocal consolidation [249], In a seminal paper, Noguchi

proposed six subtypes of "small" (2cm or less in greatest dimension)

adenocarcinoma of the lung, labelled A-F. Types A-C were termed replacement

adenocarcinomas, as they represented progressive forms of localised BAC with

increasing degrees of invasion, while types D-F were subtypes of invasive

adenocarcinoma that could arise de novo [250], There is limited evidence suggesting

that these subtypes correlate with different but overlapping radiological appearances

[251], The heterogeneity of cancers classified as BAC are partly behind its removal

in the recent reclassification of adenocarcinoma [35], Using the new terms, ground-

glass and part-solid nodules that are malignant represent an overlapping pathological

and radiological spectrum of adenocarcinoma-in-situ (AIS), minimally-invasive

adenocarcinoma (MIA), lepidic predominant adenocarcinoma (LPA) and invasive

adenocarcinoma (Figure 1.11) [252],
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Figure 1.11. Internal characteristics of two different subsolid nodules in the same
patient. (A) CT image demonstrates a pure ground-glass nodule, which was revealed
to be an adenocarcinoma-in-situ (AIS) on surgical resection. (B) A larger and more
dense nodule with some air bronchograms and pleural retraction was also resected
and corresponded to a lepidic predominant adenocarcinoma (LPA).

1.5.3.4 Location

As a general rule, malignant nodules are more likely to be found in the upper

lobes [253]; however, this feature is not specific for malignancy. Intrapulmonary

lymph nodes (IPLNs) are a group of nodules that can be recognised by their location,

as long as they meet other morphologic criteria. Some histopathology-corroborated

CT features of IPLNs have been described in studies with relatively small samples

[235, 254-256], Typically, an IPLN is up to 12mm in maximum diameter, is

polygonal or coffee-bean shaped, lies within 15mm of a pleural surface, has a smooth

surface, and often has at least one linear opacity connecting it to the pleural surface,

reflecting an interlobular septum [235, 255], IPLNs are relatively uncommon in the

upper lobes. In an analysis of LDCT scans from screening subjects, Ahn et al.
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postulated that the lack of malignancy in perifissural nodules seen in their cohort was

possibly due to the fact that they were IPLNs, as the majority of these nodules were

triangular or ovoid (44% and 42% respectively), and had a septal connection (73%)

[234],

1.5.3.5 Growth assessment

The demonstration of a growing nodule remains one of the most useful

discriminators of malignancy. Cancers may grow at different rates and in different

patterns. The two mathematical models most often used to describe cancer growth

are the exponential model and the Gompertzian model.

The exponential model presupposes that the cancer has a constant rate of

doubling, most conveniently calculated by the doubling time [257], The time taken

for one volume doubling, the volume doubling time (VDT) can be calculated using

the formula:

VDT = At x In 2
In (V2/V1)

where VI is the volume of a given nodule at time tl, V2 is the volume at time t2

when it is next measured, and At is the interval between tl and t2 [258],

However, the exponential model does not provide an adequate explanation for

the types of tumour growth seen in vivo. For example, doubling times are known to

exceed cell cycle times [259], The Gompertzian model allows for an exponential

growth phase in the early stage, which then saturates and reaches a plateau with
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increasing tumour size, possibly due to some form of negative feedback inhibiting

growth [260],

In experimental studies, lung cancers in vivo have been found to grow at quite

different rates, and in patterns that conform to neither model of growth alone. Lindell

et al. studied the growth patterns of 18 screening-diagnosed lung cancers of different

subtypes, using long- and short-axis diameter CT measurements to estimate volume

[261], They found that while the majority of lesions grew at a constant rate, there

were also cancers that grew very slowly - these were mostly seen in the BAC and

adenocarcinoma groups (Figure 1.12). Furthermore, 22% of lesions showed a

decrease in volume at some point on both visual estimates and calliper assessments.

A 1.700 ] _BAC(n = 7) .1,600" --- Adenocarcinoma (n = 7) »

1 5QQ . Squamous cell carcinoma (n = 2) j
NSCLC-NOS (n = 2) i

1,400 « j
• Deceased, lung cancer (n=3)

1.300* A Deceased, IPF (n*1) i
1,200* * Living, recurrence (n=1) ,

qpiMoam Time from first to last detection of tumor (days)

Figure 1.12. Growth curves of 18 non-small cell lung cancers (NSCLC) followed over
five years. Many adenocarcinomas demonstrate periods of quite slow growth,
followed by a rapid accelerated growth, as well as periods of decreases in size.
NSCLC-NOS= non-small cell lung cancer not otherwise specified. (From reference
(261].)
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Size and growth of a nodule can be measured using diameter or volume.

Volumetric analysis is intuitively more sensitive to changes in size as compared to

diameter measurement, since volumetry captures the lesion in its entirety, and not

just a cross-sectional area [258, 262], The improved sensitivity of volumetry for

growth is highlighted by the fact that for a completely spherical nodule to undergo

one volume doubling, there needs to be only a 26% increase in diameter. Volume

change is now the main parameter of assessment in the NELSON, DLCST, MILD

and UKLS trials [155-157, 160],

The VDT of malignant nodules is highly variable, in the range of 20 and 400

days [202, 258, 261, 263-265], with shorter VDTs noted for small cell lung cancers.

A recent analysis of 111 lung cancers detected after an initial negative baseline

screen (i.e. incident cancers) in the I-ELCAP trial found that such cancers had a

median VDT of 98 days [266]. A solid nodule that has demonstrated stability (i.e. no

growth) over 2 years has generally been considered to be benign [44], However,

ground-glass nodules that may represent in-situ or minimally invasive forms of

adenocarcinoma (formerly BAC) may have much longer doubling times that could

exceed two years (730 days) and so falsely be considered benign. Lor example,

Hasegawa et al. demonstrated that the mean VDT varied between 817 days in pure

ground-glass lesions, to 149 days in solid lesions, in a screening-derived cohort of

proven lung cancers [263], Slower growth in such lesions should not be mistaken for

benignity [267], Indeed, a recent analysis of 42 prevalent and 21 incident non-small

cell lung cancers from the Pittsburgh Lung Screening Study has demonstrated that

prevalent cancers were more likely to have a longer VDT (> 365 days) and contain a

higher proportion of cancers in the adenocarcinoma spectrum [268], On the other
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hand, nodules with VDT of greater than 400 days may represent overdiagnosed cases

[168],

1.5.3.6 Density change

Because growth may not be an accurate predictor of malignancy in ground-

glass or part-solid nodules, the assessment of change in density (with an increasing

solid component) may be more useful in these lesions [269, 270], Henschke et al.

reported that the frequency of malignancy in a high-risk population was higher in

part-solid nodules compared to pure ground-glass nodules (63% vs 18%) [271], De

Hoop et al. recently proposed that mass (i.e. the product of density, as measured by

CT attenuation number and volume) be used as a novel method to determine growth

in ground-glass nodules. They found that this parameter could predict growth earlier

than either density or size alone, and seemed to have a lower interobserver variability

than that of volume [272],

1.5.3.7 Functional characteristics

Functional evaluation can be performed with FDG-PET and PET-CT, or

dynamic contrast-enhanced CT. Magnetic resonance (MR) assessment is currently

only performed in experimental studies.

FDG-PET can demonstrate increased metabolic activity indicating malignancy

in non-calcified nodules > 10mm in diameter with a sensitivity of 96.8% and

specificity of 77.8% [273], Accordingly, the American College of Chest Physicians

(ACCP) recommends that nodules measuring at least 8 to 10mm with a low to

moderate pre-test probability for malignancy should be referred for FDG-PET for

further characterisation, but there is little value to be gained in FDG-PET work-up
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for smaller nodules [274], The role of integrated PET-CT in nodule characterisation

has yet to be extensively evaluated [275], but new insights may be gained from the

Italian screening studies [DANTE, MILD, ITALUNG and the Continuous

Observation of Smoking Subjects (COSMOS) studies] incorporating PET and PET-

CT into their algorithms for nodule management. For example, Veronesi et al. found

that the diagnostic sensitivity of PET-CT in such cases was 88%, but increased to

100% for solid non-calcified > 10mm, in an analysis of the COSMOS study [276], In

a later analysis they have suggested that decreasing the maximum standardised

uptake value (SUVmax) (see section 1.1.5) to 1.5 from 2.0 improves sensitivity

without compromising specificity in NCNs < 10mm, but this strategy will require

further validation [173],

Dynamic contrast-enhanced CT is a technique which uses measurable contrast

enhancement above a defined threshold as a surrogate for the increased vascularity

within malignant nodules. The threshold for classifying enhancement as malignant

can be varied between 15 HU and 30 HU with corresponding sensitivities and

specificities of 98% and 58%, and 99% and 54% respectively [275, 277], This

method has shown good correlation with angiogenesis, as measured by vascular

endothelial growth factor (VEGF) of nodules on subsequent immunohistochemical

staining of pathological samples [278], In the screening setting, it has only been used

thus far in the COSMOS study, where a subset of 54 subjects with intraparenchymal

but not perihilar nodules measuring > 8mm underwent dynamic contrast-enhanced

CT, resulting in 100% sensitivity but a low 59% specificity for lung cancer [173],
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1.5.4 Follow-up strategies for the indeterminate pulmonary nodule

Strategies to follow up the indeterminate pulmonary nodule are necessarily

conservative, since the vast majority of small nodules are benign. These strategies

must maximize the chances of lung cancer detection, minimize false positive rates,

avoid unnecessary anxiety to the patient, and avert undue harm as a result of repeated

radiation exposure or unnecessary invasive procedures, while also being cost-

effective. The Fleischner guidelines for small (< 8mm) non-calcified solid pulmonary

nodule management is the most well-known strategy (Table l. 11) that is applicable

to persons 35 years or older, and is based on the mean diameter (length and width) of

a nodule [44], The Fleischner guidelines establish intervals for CT follow-up based

on diameter categories.

Diameter

(mm)
Low-risk High-risk

< 4 No follow-up CT at 12 months; if unchanged, no
further follow-up

4-6 CT at 12 months; if unchanged, no
further follow-up

CT at 6-12 months, then at 18-24
months if unchanged

6-8 CT at 6-12 months, then at 18-24
months if unchanged

CT at 3-6 months, then 9-12 months,
and 24 months if unchanged

> 8 CT at 3, 9 and 24 months if
unchanged, FDG-PET, dynamic
contrast-enhanced CT, and/or biopsy

CT at 3, 9 and 24 months if
unchanged, FDG-PET, dynamic
contrast-enhanced CT, and/or biopsy

Table 1.11. Fleischner Society recommendations for the management of small
pulmonary nodules. Adapted from MacMahon et al. 2005 [44].

However, the Fleischner guidelines do not distinguish between solitary or

multiple pulmonary nodules. The exact prevalence of individuals with multiple

pulmonary nodules in the population is unclear; in the high-risk populations involved
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in screening studies between 29-32% in those with at least one non-calcified nodule

had multiple nodules [142, 159].

Recently, the Fleischner society has also published guidelines for the

management of subsolid nodules [232], These guidelines advocate longer periods of

follow-up and greater intervals between follow-up CT scans, with distinct

recommendations made for the follow-up of solitary ground-glass nodules, solitary

part-solid nodules, and multiple subsolid nodules.

1.5.5 Geographical and ethnic variations

Indeterminate pulmonary nodules do not seem to have a higher prevalence in

any one geographic location [239], A study from Western Australia concluded that

the prevalence of small nodules was significantly lower (39%) than an equivalent

cohort from the Mayo Clinic Lung Screening Project (51%), but this study was

performed on only 49 asymptomatic smokers [279], It is expected that calcified

pulmonary nodules would be seen in areas with endemic granulomatous diseases

such as histoplasmosis or tuberculosis, and in populations with a high incidence of

pneumoconioses. However, recent data from the NLST has shown no variation in

false positive rates between screening centres within and outside the US

"histoplasmosis belt", suggesting that such geographical differences may not

substantially contribute to variation in nodule frequency [280],
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1.6 Reader performance in pulmonary nodule perception on

CT

1.6.1 Reference standards and reader variation in nodule perception

A nodule first needs to be perceived, i.e. correctly detected and interpreted,

before the strategies to designate it as benign or malignant as outlined in the

preceding section can be used. Kundel et al. state that perception has at least three

components: search, pattern recognition and decision-making [281], Applying these

components to CT nodule reading, a nodule must:

1 .First be detected (a function of search);

2.Then be identified as different in contrast to normal structures or opacities (a

function ofpattern recognition); and finally

3. Have a decision made on it, as to whether it constitutes a true "nodule" and

needs follow-up, in terms of the likelihood of malignancy and with or without

the help of a nodule management strategy (decision-making).

It is well known that radiologists fail to detect lung cancers on chest

radiographs that were visible as pulmonary nodules in retrospect, to varying degrees

[282, 283], Although some of the technical factors that would make missing such

nodules on chest radiograph (e.g. overlapping vascular structures or obscuring ribs)

are not a significant problem on thoracic CT due to its cross-sectional nature and

high spatial and contrast resolution, there are still a host of other factors that lead to

variation in performance for nodule perception (discussed in the next section). To be

able to quantify such differences in perception, a reference standard for the number
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of "true" nodules in any given scan is crucial. Ideally, the reference standard would

be the "gold" standard with actual histopathological corroboration of each nodule.

Indeed some authors have argued that clinical, follow-up and histopathological proof

should be the basis of "truth" for such interpretation: in one of the earliest

investigations of "truth" in 1978, Revesz et al. highlighted the problem posed by

using reference standards that approximate the "truth" [284], They investigated the

accuracy of three different chest radiographic techniques, based on radiologists'

interpretations as compared to five different reference standards: majority vote

(majority of expert panel agree), consensus opinion (all experts agree), expert

judgment (a further expert arbitrating), feedback review, and clinical/pathologic

proof. They found that each of the radiographic techniques could be proven to be

superior to the other depending on which definition of truth was used, the implication

being that any diagnostic test could be falsely thought to be accurate if measured

against a particular truth standard, i.e. the truth is subjective.

However, it would not only be impractical but also unethical to seek

histopathological corroboration for multiple nodules found on a CT scan, the vast

majority of which are likely to be benign [239], Instead, reference standards using a

majority or consensus of opinions are probably the most popular form of "truth". It

could be argued that if a test measures favourably against different surrogate

reference standards, it would serve as a more robust validation of that test in the

absence of a definitive truth.

Two studies from the Lung Image Database Consortium (LIDC) have elegantly

illustrated the above concept. Armato et al. asked four radiologists to analyse 25

thoracic CT studies for nodules > 3mm in diameter, and created 24 different expert
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"truth" sets based on combinations of pairs and triplets of these radiologists, against

which the sensitivity of each radiologist was measured [285], They showed that

sensitivity varied widely between 51-83.2%, depending on the definition of "truth".

Another study used a similar design of different combinations of four radiologists as

a reference standard for CAD performance assessment [286], Between the most

liberal (any 1 of 4 readers) and strictest (all 4 readers in consensus) definitions of

reader agreement as the reference standard, the number of "true" nodules > 3 mm

decreased 48% (from 174 to 90) and CAD sensitivity for nodules > 3 mm increased

from 70% to 79%, while a much larger decrease (84%) was seen in the number of

nodules < 3mm. These studies also highlight two further issues: first, the sensitivity

of a reader (whether human or CAD) increases as the truth panel used becomes more

restrictive, since the denominator of agreed nodules becomes smaller. Secondly, by

using the same dataset to both define the reference standard and test readers, a level

of uncertainty as to the validity of the reference standard may be introduced, i.e.

there may be "chance" agreement between test and reference standard reading [287],

This uncertainty may be reduced by using different datasets to establish the reference

standard and to test readers, or by resampling the expert panel with a different dataset

to ensure consistency at a different point in time.

Reader performance or CAD studies generally report the establishment of their

own reference standard [288-294], In light of the above discussion it is imperative to

view all reported sensitivity data in the context of the "truth" standard used. All CAD

systems should also ideally report the type of truth panels on which their algorithms

were based [295],
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1.6.2 Factors influencing reader performance

1.6.2.1 Influence of technical factors

Several investigators have already demonstrated the feasibility of low-dose

CT for the detection of pulmonary nodules, predominantly by lowering tube current-

time product [296-303], The feasibility of pulmonary nodule detection is probably a

consequence of the inherent high contrast within the lung, which enables it to tolerate

reductions in signal-to-noise ratio. A recent study showed a decrease in sensitivity

for only one reader out of three, when tube current-time product was lowered to

5mAs compared to 300mAs [304], Despite this, there can be decreased detection if

tube current-time products are decreased to lower than 20mAs, particularly for

nodules less than 5mm in experimental settings [299],

The measurement of diameter with electronic callipers is subject to

considerable intra- and inter-reader variability [305-307], Revel et al. showed that,

when measuring nodules 2cm or less in a non-screening cohort, the limits of intra-

and inter-observer variability were 1.32mm and 1.73mm respectively. This means

that a nodule could confidently be said to have grown only if its diameter had

increased beyond these limits [307], For example, because only a 26% increase in

diameter of a spherical nodule is required to represent a single volume doubling

[308], it could be falsely concluded that a nodule measuring 5mm at baseline and

then 6.3mm at 3 month follow-up has doubled in volume, when it is in fact stable

and the difference is due to measurement error. This has implications for the

confidence assigned to the interpretation of manual nodule measurements made by

readers.
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Volumetric analysis, especially semi-automated volumetry, also demonstrates a

degree of interobserver variability, but less so compared to that of diameter

measurements. Volume measurements can be expected to be more accurate than uni-

or bi-dimensional measurements alone, since a volumetric measurement evaluates

the entirety of a nodule [201, 258, 309], In a study of 322 synthetic nodules

implanted in porcine lungs, Bolte and colleagues demonstrated that volumetry could

estimate true lesion size to within a mean deviation of-9.2% for semi-automated and

-0.3% for manual-corrected volumetry [310], Volumetric software-derived

measurements also demonstrate good reproducibility [258, 31 1,312] and high inter¬

observer agreement [311,313,314], The measurement error between volumetric

measurements of the same nodule is up to about 27%, with the majority of

volumetric measurements demonstrating variability of less than 10% [311,313],

Many studies have evaluated different technical parameters that may be responsible

for variation in volume reproducibility. The conclusions of these studies can be

summarised as follows:

• There is less variability in volumetry as the size of measured nodules increases

[315-318];

• Volumetric segmentation is less accurate when nodules are non-spherical and

have irregular margins (Figure 1.13) [317, 319];

• Measurement reproducibility is increased with decreasing section thickness

[316, 320]; and

• Using different segmentation algorithms within the same software package can

increase inter-observer variability [321],
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Figure 1.13. 3D volumetric segmentation of a non-spherical nodule. Segmentation
performed on the same nodule yields different volumes due to its irregular shape.

The volumetric analysis of non-solid nodules or the ground-glass component of

subsolid nodules is still suboptimal, but improvements in segmentation algorithms

for this purpose are ongoing [322],

Nodule detection also varies with slice thickness; reduced slice thickness with

MDCT has led to an increased ability to detect small pulmonary nodules. Fischbach

et al. used two readers to evaluate 100 CT thoracic examinations that had been

reconstructed at 1,25mm and 5mm slice thickness [229], They found that although

nodules greater than 10mm in diameter were equally well depicted at both slice

thicknesses, there was a significant improvement in detection of nodules < 5mm.

Also, interobserver agreement was high for nodules detected at 1,25mm but only

moderate for those detected at 5mm.

The use of maximum intensity projections (MIP) can also contribute to

increased detection. This was first demonstrated by Gruden et al., in a study of 25

patients with pulmonary metastases (all 3-9mm in diameter), whose scans were

reviewed by 5 radiologists of varying experience [323], They showed that the use of

103



10mm thick, 8mm interval MIP cine reconstructions significantly improved the

detection of central nodules that can potentially be obscured by vasculature for senior

radiologists, while the detection of peripheral nodules was improved for the junior

radiologists, hence mitigating the effect of reader experience in nodule detection.

Valencia et al. subsequently demonstrated that the use of 10mm thick axial and

coronal MIP images resulted in increased detection of nodules less than 5mm, as

compared to 1mm and 10mm axial images, whereas the detection of nodules greater

than 5mm was not statistically significantly different between all reconstruction

types [324], An investigation performed on LDCT screening images has suggested

that MIP review may also be the least time-consuming reading technique as

compared to axial 1mm review and to CAD as a second reader, while simultaneously

providing the highest sensitivity for detection of all nodules among the three methods

[325],

A technique of volume rendering that uses different densities to depict vessels

and nodules has been suggested as superior to MIP [326], However, such a volume

rendering technique has not been used widely, whereas a MIP function is now quite

easily integrated into 3D reconstruction packages within a PACS system such that a

radiologist can view MIPs as part of his or her reporting workflow.

CT reporting using cine review of softcopy images on a workstation

("scrolling") is now the norm. Thus, intuitively it can be expected that an increased

cine frame rate would result in a decreased sensitivity for pulmonary nodule

detection. Copley et al. investigated four different cine speeds (1,5, 10 and 15

frames per second) for a single craniocaudal evaluation of the lungs for pulmonary

nodules. They found that there was a trend towards reduced detection of pulmonary
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nodules with increasing cine speeds that was independent of observer experience

(expert radiologists or junior residents formed their reading panel); however, this

trend was not statistically significant and no MIPs were used during the reading

process [327],

The presence of co-existent pulmonary disease also affects perception of

nodules, but leads to errors of interpretation rather than detection. In a study of 32

missed lung cancers in a Japanese LDCT screening programme, 13 cancers that had

mean diameters of 15.9mm (range 6-26mm) were reported but misinterpreted as

findings other than lung cancer on 16 CT scans (i.e. 16 lesions wrongly interpreted).

14 out of these 16 lesions had features that mimicked benign disease, and were

associated with underlying tuberculosis, emphysema, fibrosis, silicosis and asbestosis

[328],

1.6.2.2 Influence ofpsychophysical factors

Psychophysics is the exploration of the relationship between physical image

quality and diagnostic performance [329], Much of the literature informing this field

has involved plain film radiography, and not CT. However, a brief overview of

psychophysical factors is useful in understanding factors affecting reader

performance.

The fundamental unit of visual processing is a fixation, during which the image

projected onto the retina is processed. Various models to explain how such visual

processing occurs have been devised, but none comprehensively explains visual

processing. As discussed earlier, Kundel et al. took the view that perception involves

search, pattern recognition, and decision-making. Intertwined with these perceptual
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components are object knowledge and background knowledge [281], Object

knowledge influences pattern recognition: the observer must be aware of the features

of the target lesion before a search for this can begin. Background knowledge refers

to understanding of the features of the normal structures, such as the expected

anatomy and course of bronchi and arteries, or the location of fissures. In this way,

any object that is not part of the "background" normal lung would be perceived as

abnonnal.

A similar model put forward by Lesgold et al. describes cognitive and

perceptual components of search [330], The perceptual component controls where

the eye moves, but depends on the knowledge base, which is informed by the

cognitive component. This is analogous to object and background knowledge,

because the cognitive component creates a prototype of "normal" such that

deviations from that prototype can be analysed to see if it fits a target.

Visual search can also be understood using the "global-focal" model, which

hypothesizes that the two processes of global analysis andfocalfeature analysis

interact during visual search [331], Global analysis uses sensory input from the

whole retina to give a general overview of a scene, while focalfeature analysis is

concentrated on the detailed interpretation of the sensory input in the central retinal

fields, along the axis of gaze [329], These two processes can occur during scanning

an image either during a single fixation, or a fixation cluster (a number of fixations at

a particular location of the image). Pattern analysis occurs during global analysis,

while integration of all features occurs to give a detailed analysis during focal feature

analysis.
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The "global-focal" model can be integrated into another decision-making

model of visual perception, the Gregory-Rock model (Figure 1.14). In this model,

global and focal feature analyses inform a rapid phase of "literal" or "bottom-up"

perception, while a slower phase of "preferred" or "top-down" perception is

informed by knowledge of the outside world, similar to the object knowledge

described above [329],

Global Analysis ~ ► Literal Perception Very Fast (msec)

~~T " r~ Prompt
Search Strategy

Stimulus Knowledge
Driven Driven.

Fixate

~~T~ (—Dominant
Focal Analysis ► Retinal Analysis Abnormalities

^ Fast (sec)
Covert Decisions

^ ^— Prompt
Preferred Perception

Image Analysis slow (min)
Overt Decisions

Figure 1.14. A model of visual perception that integrates the "global-focal" and
Gregory-Rock models. (From reference [329].)

Satisfaction of search is an important source of errors of detection. Satisfaction

of search describes the phenomenon where in the absence of a specific target, a

general free-search (i.e. undirected) visual task is performed, with no defined

expectation as to the outcome of the task [332]. As such, the observer has no
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reference point from which he or she can decide to call a study normal, and may

selectively divert attention to different fixation clusters, thereby missing some

targets. If there are an unknown number of targets, the detection of one target will

make the detection of subsequent ones less likely [333], Of course, CAD readers do

not suffer from satisfaction of search.

1.6.2.3 Influence of the number of readers

Only a handful of studies have evaluated the influence of double- versus single-

reading on pulmonary nodule detection, and with the exception of one recent study,

these have looked at non-screening populations. Wormanns et al. evaluated the

performance of three readers in reading scans of nine patients with pulmonary

metastases [334], They simulated double-reading on both standard-dose (SDCT) and

low-dose (LDCT) by using all possible pair combinations of the three readers.

Sensitivity for nodule detection (the majority of which were less than 5mm)

increased from 63% to 74% on SDCT and 64% to 79% on LDCT for single and

double readers respectively. However, they concluded that 20% of nodules still

remained undetected.

A number of European randomized screening trials are using double-reading

with consensus to evaluate pulmonary nodules, but only the NELSON trial has

provided an analysis thus far. Wang et al. retrospectively looked at 74 lung cancers

that were detectable at baseline (prevalence) screening [ 174], At that stage of

screening the NELSON trial used two readers: a local radiologist and a second

unblinded central radiologist. In discordant cases consensus was attempted, and an

expert third radiologist's opinion was used in the event of non-consensus. They
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compared the detection of nodules using this double-reading process to the findings

of the initial single reader, and found that although the detection rate of nodules

increased by 19%, the cancer detection or recall rates did not increase significantly,

with 2.7% additional subjects with lung cancer found. They concluded that there was

no benefit in using consensus double-reading, because the use of volumetry in the

NELSON nodule management algorithm is more objective. However, this conclusion

was probably premature, due to their small sample size (as the authors concede) and

also because in order for volumetry to be performed, all important nodules must

already have been detected. In other words, volumetry helps with interpretation, but

not with detection itself.

1.6.2.4 Influence of reader experience and education

The visual processes described in section 1.6.2.2 occur differently in an

untrained observer and an experienced radiologist. By studying eye positions,

Kundel and La Follette found that the scan paths of first year medical students were

localised to central parts, whereas trained radiologists used a circumferential pattern

of scanning while simultaneously moving their eyes to a target lesion faster [335], As

the majority of missed lung nodules on chest radiographs are fixated in the central

visual field, this difference in perception between expert and novice may have

implications for nodule detection rates [281],

However, the effect of the level of reader experience in nodule detection on CT

is still debatable. For instance, Marten et al. found that two experienced radiologists

outperformed two inexperienced radiologists in nodule detection [336], In contrast,

Awai et al. found no significant difference in nodule detection sensitivity between
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five board-certified radiologists and five radiology residents with only two years of

training [337], They argued that the residents would have accumulated sufficient

cross-sectional anatomical CT knowledge to perform a nodule detection task as well

as an experienced radiologist. In two other studies, the most inexperienced reader in

fact had the highest sensitivity on axial (1-1,25mm slice thickness) image review

[325,338].

Thus far, there are no studies evaluating the role of radiographers in pulmonary

nodule reading on LDCT. The lack of radiographer studies is not surprising, given

that radiographers do not undertake CT reporting. However, as LDCT lung cancer

screening is actually a very specific task, it is useful to look at the feasibility of

radiographers in LDCT screening, especially when considering the limited evidence

for improved detection with increased experience.

A precedent for radiographer reading exists in mammographic screening, where

several countries, including the UK and Netherlands, involve trained radiographers

in reading screening studies [339-341], These radiographers (or advanced

practitioners) undergo continuous self- and external-assessment. A study from the

Netherlands compared the effect of two periods of screening with different reading

methodologies. The first period involved double-reading by two radiologists who

read simultaneously to reach consensus. In the second period, independent double-

reading by radiographers (reading simultaneously) followed by an independent

double-reading by two radiologists (who were blinded to the radiographers'

opinions) was performed, and results were compared with the first period [341], In

the event that no consensus could be reached by the radiologists, a third radiologist

would provide arbitration. Cases were referred for workup if any single reader (either
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radiographer or radiologist) remained adamant that workup was necessary. The

radiographer reading resulted in a higher referral rate (1.43% vs 1.02%) and a non-

statistically significant higher cancer detection rate per 1000 women screened (5.25

vs 4.86), but decreased the positive predictive value due to the higher number of

false positives. Thus, an independent double-reading radiographer approach can

increase the sensitivity of a breast cancer detection programme, but at the expense of

diminished specificity.

1.6.2.5 Influence of methods of consensus and arbitration

Traditionally discrepancies in observer readings have been dealt with either by:

• combining radiologists' readings (which assumes all discordant readings are

due to differences in detection) [334, 342, 343];

• a process of consensus where readers discuss individual discrepancies [159],

The latter method deals with both discrepancies due to detection and

interpretation, and is commonly accepted both as a valid method of resolving

discrepancy, and of deriving the reference standard in radiological studies

[208, 344], However, consensus interpretation is itself subject to inherent

limitations such as "groupthink" [344];

• using an independent "expert" arbiter (where one [334], two [289, 290, 293,

294, 336, 337] or even three [345, 346] experts have been used);

• using "internal" arbitration where a reader is independently shown and asked to

form an opinion on nodules identified by other readers and not by

themselves; or
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• using a combination of these methods.

Thus far, few studies have evaluated the impact of different methods of consensus

and arbitration on observer performance.

1.6.3 Comparisons between radiologists and computer-aided detection

(CAD)

Multiple studies have been performed assessing the role of CAD in

combination with radiologists in pulmonary nodule detection (Table 1.12). While

the results of the individual studies vary, there are four important conclusions that

can be drawn from these studies:

l .CAD is not effective as a first reader (whereby a CAD reading is performed

and then presented to a radiologist for acceptance or rejection of CAD

findings, without the radiologist also independently reading the study);

2.CAD is effective as a second reader (whereby a CAD reading is performed

after an initial radiologist's independent reading, so that the radiologist can

then accept or reject any additional CAD findings);

3.The beneficial effect of CAD holds for both inexperienced and experienced

readers, but may be greater when used in combination with an experienced

reader; and

4.The sensitivity of CAD increases with increasing nodule diameter.
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Author Journal No. Of Nodules Sensitivity
of CAD

Armato et al.

[347]
Medical Physics 2001 28(8): 1552-
1561

171 70%

Ko et al. [348] Radiology 2001 218(1 ):267-273 370 81%

Wormanns et al.

[288]
European Radiology 2002
12(5):1052-1057

153 38%

Rubin et al. [289] Radiology 2005 234(1 ):274-283 195 86%

Bae et al. [349] Radiology 2005 236(1 ):286-293 164 95%

Kim et al. [350] Radiology 2005 236(1 ):295-299 126 95%

Marten et al.

[351]
Clinical Radiology 2005
60(2):196-206

135 76%

Yuan et al. [352]
American Journal of

Roentgenology 2006 186(5): 1280-
1287

628 73%

Das et al. [291] Radiology 2006 241(2):564-571 116 74%

Sahiner et al.

[353]
Academic Radiology 2009
16(12)1518-1530

241 54-76%1

Table 1.12. A selection of trials investigating the sensitivity of computer-aided
detection.

'Sensitivities in this study were 54%, 64%, 68% and 76% for nodules of 3, 4, 5 and 6mm,
respectively.

CAD can potentially be calibrated to a particular specificity and sensitivity,

depending on the desired goal (increased detection or minimization of false

positives). For example, in a study by Rubin et al., independent double-reading by

radiologists was simulated and compared to CAD as a second reader [289],

Simulated double-reading by two radiologists resulted in a mean of 2.8-3.0 false

positive detections per patient (depending on the reader pair), and improved

sensitivity to 63% on average, from 50% for a single reading. In comparison, the
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mean sensitivity for a radiologist-CAD first reader-second reader modelled

combination, assuming all true positive CAD detections were accepted by the

radiologist, would be 76%, 79%, 84% and 85% for maximum false positivity

thresholds of 3,5,10 and 15 false positive detections allowed, respectively. Thus,

even at the strict threshold of 3 false positive detections allowed for CAD, the

sensitivity of the reader-CAD combination was higher than that of a radiologist

alone.

There are also conflicting reports of the varying benefit of CAD according to

reader experience. Marten et al. investigated four radiologists, two experienced (8

and 6 years experience) and two inexperienced (residents with 6 months experience)

who read 18 MDCT scans containing a total of 96 nodules according to their

reference standard [336], Thereafter, a CAD evaluation was performed. CAD

significantly outperformed the inexperienced radiologists, but did not significantly

outperform the experienced radiologists. Combinations of the readers and CAD

revealed that an experienced radiologist-CAD combination significantly

outperformed a single reader and an experienced-inexperienced reader combination,

while an inexperienced reader-CAD combination did not outperform an experienced

reader or CAD. The authors concluded that an inexperienced reader-CAD

combination was thus probably inadequate as an alternative to a single experienced

reader. However, the readers in their study were not allowed to take advantage of

image manipulation tools such as MIPs, and so may have been at a disadvantage.

The study sample was also small, and studies were performed at standard and not

low-dose. Another study with a much larger population has illustrated the utility of

CAD as a second reader for both experienced and inexperienced radiologists [293],
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Recently, there has also been interest in using CAD as a concurrent rather than

second reader. In concurrent reading, the first round of radiologist reading is

removed; instead, the study is read by the CAD, the radiologist then reviews the

CAD marks, and confirms or deletes them accordingly, followed by an independent

reading by the radiologist. This method has undergone only limited evaluation, with

conflicting reports with regards to its effect on reading times and sensitivity [294,

354],

There is thus scope for further investigation of the optimum reader paradigm

where an assisted reader, be it CAD or a radiographer, is involved.

1.6.4 Economic aspects

The question of the most cost-effective reading strategy goes hand-in-hand with

analyses of reader performance, both in screening and regular clinical practice. Some

evidence for the cost-effectiveness of double-reading again comes from

mammographic screening. For example, in an analysis from the Netherlands,

Groenewaud et al. suggest that while a double-reading with a "referral if any reader

suggests" strategy could result in four times as high referral rates and an increase of

biopsies or other invasive procedures, the cost-effectiveness of €4,190 per life-year

gained may still be economically acceptable [105], Interestingly, a recent analysis

from the UK concluded that at current false positive rates prompting recall, CAD in

mammographic screening would not be a cost-effective alternative to double-reading

[355], The issue of cost-effective reading strategies remains largely unexplored in
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LDCT screening but needs addressing before a national lung screening programme

can be recommended.

1.7 Aims of thesis

This thesis aims to identify an optimum and pragmatic reading strategy in lung

cancer screening using computed tomography, by investigating:

1 .The training of radiographers as readers;

2.The performance of radiographers in direct comparison with radiologists;

3. The use of radiographers as concurrent readers to assist radiologists;

4. The performance of radiographers compared to a CAD system; and

5.The impact of double- and triple- reading strategies, and of different methods

of arbitration for discordant findings, on radiologists' performance.
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CHAPTER 2: GENERAL METHODOLOGY

2.1 Introduction

This chapter describes the methods used to construct the training and evaluation

datasets used in Chapters 3 and 7, the recruitment and selection criteria for the

United Kingdom Lung Cancer Screening (UKLS) pilot trial participants that formed

the study groups for Chapters 4 to 6, the image acquisition and post-processing

techniques used, nodule reading protocols, and statistical methods. Methodology that

was specific to a chapter will be described in that chapter itself.

2.2 Ethical approval for the UKLS

Ethical approval for the UKLS trial was granted by the National Research

Ethics Service Committee, NHS R&D, the National Information Governance Board

for Health and Social Care, and the Administration of Radioactive Substances

Advisory Committee (ARSAC) (application no. 0521, reference ECC 2-02(a)/2011,

approved 15.03.2011). In addition, all participating sites had undergone site specific

assessment conducted by their local R&D department.

Informed consent had been obtained from all participants. In consenting to the

trial, participants also consented to trial CT screening, investigations, treatment,

follow-up and data collection. The investigations performed for this thesis formed

part of the investigations into CT screening undertaken within the UKLS pilot trial.
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2.3 Construction of a training dataset from the NELSON study

Two-hundred and sixty-three consecutive LDCT screening studies were

initially procured from the NELSON study following approval from the NELSON

investigators (see Appendix 1). These studies had been performed at Utrecht

Hospital, Netherlands. Two-hundred and two of these studies were reported by

NELSON radiologists to contain a total of 701 nodules (696 solid and five sub-solid

nodules).

To ensure adequate representation of part-solid and nodules greater than

500mm3, this initial dataset was enriched by a further 10 cases containing 20 ground-

glass nodules and 20 Category 4 nodules, also obtained from the NELSON study.

The selected NELSON cases were all pre-anonymised: each study had been

given a unique reference number, and no patient identifiable data was visible. Data

pertaining to image reconstruction parameters, and metadata, such as scanner type,

were retained.

Volumetric datasets containing contiguous images were obtained via

encrypted hard disk, in Digital Imaging and Communications (DICOM) format and

in accordance with the data protection protocols of both the NELSON and UKLS

studies. All studies were then transferred from hard disk to the internal hard drive of

the digital workstation used at the three participating trial sites (Royal Brompton

Hospital, London; Liverpool Heart & Chest Hospital, Liverpool; and Papworth

Hospital, Cambridge).
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2.4 Participants in the UKLS pilot study

2.4.1 Recruitment methods

Participants (male and female) aged 50 to 75 years of age were selected

randomly from National Health Service (NHS) or Strategic Health Authority (SHA)

records, and approached with an invitation letter and a questionnaire to assess their

risk for lung cancer. The responses to the questionnaire were entered into the

Liverpool Lung Project (LLP) Risk Prediction Model for each patient to calculate

their risk of developing lung cancer [157, 157], The LLP Risk Prediction Model

calculates the absolute risk of lung cancer over a defined period, based on age, sex,

smoking duration, family history of lung cancer, history of non-pulmonary malignant

tumour, history of pneumonia, and occupational exposure to asbestos; it has been

internally and externally validated [356],

2.4.2 Selection criteria

Inclusion criteria were those patients who have a 5% risk of developing lung

cancer in 5 years, based on the LLP Risk Prediction Model. Exclusion criteria were

those subjects who: were unable to give consent; had a co-morbidity that would

unequivocally contraindicate either screening or treatment if lung cancer were

detected; had a CT scan performed within one year of the invitation to be screened;

were unable to lie flat; weighed greater than 200 kg (too large for the CT scanner).
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2.5 UKLS Low-dose CT screening

2.5.1 Participating sites

LDCT scans were performed and read at two participating local sites

(Liverpool Heart & Chest Hospital, Liverpool and Papworth Hospital, Cambridge).

Scans were then transmitted to a central site (Royal Brompton Hospital, London - see

section 2.6.2) for a second reading and arbitration in the event of discrepant findings.

2.5.2 Scanning technique

Participants' weight and height were ascertained prior to scanning to allow

selection of appropriate exposure factors. Imaging was performed during suspended

maximal inspiration. No intravenous contrast material was administered. The lung

parenchyma (lung apices to bases) was scanned in its entirety in a single

craniocaudal acquisition. The field of view (FOV) selected was the smallest diameter

as measured from the widest point of the outer rib to outer rib large enough to

accommodate the entire lung parenchyma (usually no more than 35cm). Thin

detector collimation (0.5 - 0.625mm) was used with a pitch of 0.9-1.1. Exposure

factors were tailored to patient height and weight (Table 2.1). CT dose index

(CTDIvol) was kept below 4 mGy, with the effective radiation dose below 2 mSv.

All appropriate dose modulation was used according to manufacturer's guidelines

and local practice.
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Body weight (kg)

<50 50-90 >90

Voltage (kVp) 100 120 140

Tube current-
time product (mAs)

Adjusted depending on scanner type to achieve target CTDIvol

CTDIvol (mGy) 0.8 1.6 3.2

Effective dose

taking into account <0.7 <1.0 <1.6
scout view (mSv)

Table 2.1. Exposure factors used in the UKLS trial, modified from Baldwin et al. [157],

2.5.3 Image reconstruction

Images were reconstructed at lmm thickness with 0.7 increment, using both

moderate and high spatial frequency kernels.

2.5.4 Quality control

Ten randomly selected cases from both sites were reviewed every month at

the central site with respect to adequacy of craniocaudal coverage, field of view,

degree of inspiration, motion artefacts, radiation exposure parameters, radiation dose,

and reconstruction algorithms. Feedback was provided to local sites.

2.6 Data collection

2.6.1 UKLS database

The UKLS database was managed and maintained by the UKLS project team.

It was a web-based database that was built on the Nelson Management System
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(NMS) design [155], and accessible upon registration with the UKLS project

manager. Access rights were configurable such that readers in the study were not

able to view the recordings of other readers unless they were involved in consensus

or arbitration. The database held all trial information for the participants. The

participant's surname and demographic details were visible to the reader to ensure

accurate identification.

2.6.2 Data storage and retrieval

All scans performed at the local sites were transferred to the reading

workstation at the local site (Syngo, Siemens Medical Solutions, Erlangen, Germany)

as well as to the local Picture Archiving and Communications System (PACS). At

the same time, the scans were also transferred via encrypted network transfer to the

Image Exchange Portal (Burnbank Systems, Ipswich, England) and then downloaded

onto the Syngo workstation at the central site, as well as to the central site PACS

server, ensuring backup of data at both local and central sites.

A UKLS reader opened the study in "LungCARE", the volumetric

segmentation package used for reading (LungCARE, version Somaris/5 VB 10A,

Siemens Medical Solutions). Each detected nodule was evaluated and recorded in the

UKLS database using a non-commercial database electronic soft-copy entry

proforma (Artex Nodule input for UKLS version 4.4, Logiton, Netherlands) (Figure

2.1). Options for nodule categorisation and segment location were available from

drop-down menus, while the slice position of the nodule was entered using free-text.

Once a reading for a particular nodule had been completed, the information from the
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proforma was copied and pasted into a structured DICOM report in an Extensible

Markup Language (XML) format. The XML file was then transferred to a local

network drive, so that the file could be uploaded to the patient's record on the UKLS

database via a PC with web access. The XML file contained information regarding a

nodule's size, table position location, lung and segment location, category and

volume.

<#. Artex Nodule input for UKLS 4.4

Nodule type

Lungsegment

Location

Nodule shape

Nodule category

Image number

Probably intrapulmonary lymph node |~~

Edge Definition r

Estimate of malignancy I

Unreliable volume

3]

r

Manual measurements solid nodule / solid component partial solid nodule

Maximal diameter on X/Y-axis

Diameter perpendicular to maximal diameter onX/Y axis

Maximal diameter on Z-axis

Manual measurements non-solid nodule/ whole partial solid nodule

Maximal diameter onX/T-axis

Diameter perpendicular to maximal diameter onXY-axis

Maximal diameter on Z-axis

mm

mm

mm

Growth parameters

Growth Category jAuto "31 Scandate |"
If new [
Remarks

If missed/ignored in previous scan, retrospective measurements

Volume mm3 Maxdiam |

Z~\ Nodule changed from non-solid to (partial) solid f~

Clinically significant incidental findings (please attach report REAding)
I- Mass (mediastinal chest wall breasts)f~ Pneumonia

r Segmental or larger atelectasis

P Lymphadenopathy > 1 cm

r Bone destruction

r Significant emphysema

Adrenal mass

r Liver mass

r Renal mass

Copy

r Pleural fluid

(~ Aortic aneurysm >6 cm

f~" Other

Reset !

Figure 2.1. The database electronic soft-copy entry proforma used for UKLS nodule
recording.
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2.7 CT interpretation

2.7.1 Nodule definitions

Nodules were defined as follows:

Category 1 Benign nodules: Nodules fulfilling one of the following criteria; a

benign pattern of calcification, fat, measuring less than 3 mm in diameter or volume

< 15 mm3. Intrapulmonary lymph nodes (IPLNs) if the following criteria were

fulfilled: lie within 5 mm of the pleura, < 8 mm in diameter, smooth border, ovoid or

non-spherical, and at least one interlobular septum radiating from surface of nodules.

Category 2 If solid and intraparenchymal with a maximum diameter of 3.1 -4.9 mm

or a volume of 15-49 mm3; if solid and pleural or juxtapleural with a maximum

diameter of 3.1-4.9 mm; if non-solid or part-solid with a maximum non-solid

component diameter of 3.1-4.9 mm, and, where there was a solid component, this

had a diameter of < 3 mm and/or volume of < 15 mm .

Category 3 If solid and intraparenchymal with a volume of 50-500 mm3; if solid and

pleural or juxtapleural with a diameter 5.0-9.9 mm; if non-solid with a maximum

diameter of > 5mm; if part-solid with a maximum non-solid component diameter of

> 5mm, and with a solid component volume of 15-500 mm3 or solid component

diameter of 3.0- 9.9 mm.

Category 4 If solid and intraparenchymal with a volume > 500 mm3; if solid and

pleural or juxtapleural with a diameter of > 10 mm; if part-solid and the solid

component had a diameter of> 10 mm or had a volume > 500 mm .
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2.7.2 Semi-automated volumetric nodule segmentation method

The volumetric segmentation method was performed using LungCARE

(Siemens Medical Solutions, Erlangen, Germany) and is similar to the technique

described in other studies using this software [313], First, the reader marked a

candidate nodule with a mouse click. Then the programme automatically defined a

volume of interest around the candidate nodule, which could be further analyzed by

using volume-rendered displays or a coronal reformation. The candidate nodule

could then be either approved or discarded. The evaluation of a nodule with a second

mouse click initiated an automated volume measurement programme. The

programme used a fixed-attenuation threshold of -400 HU to extract a three-

dimensional connected "structure of interest". This structure of interest consisted of

the nodule and, if present, connected structures such as vessels or parts of the chest

wall. Subsequently, a small spherical three-dimensional template that originated from

the click point was gradually expanded; its cross-correlation with the segmented

nodule was computed for each step. The peak value of the cross-correlation curve

was determined, and an empirical cut-off value close to the peak value was used to

separate the nodule from potential adjacent structures. In this manner, an optimum

three-dimensional template was generated. Finally, the nodule was segmented by

fusing the optimum three-dimensional template and the structure of interest; this was

followed by spatial reasoning to remove adjacent structures. The segmented nodule

was then shown in yellow on the volume-rendered display of the volume of interest

(Figure 2.2).
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Figure 2.2. Example of marking and annotation of a nodule within LungCARE by a
radiologist on an anonymised LDCT study. The CT is presented in a 2 x 2 viewing
partition with a default window setting level -500 HU, width 1500 HU, and arranged in
the following manner: (A) top left panel, maximum intensity projections (MIPs) with a
default setting of 10mm thickness, showing a nodule marked with a yellow outline box
in the left lower lobe; (B) top right panel, 1mm-collimation axial images; (c) bottom left
panel, 0.7mm-collimation coronal images; and (D) bottom right panel, displaying
volumetric segmentation of a nodule once that nodule is selected with a mouse click.

2.7.3 Follow-up protocols

The follow-up protocols for the nodules were based on initial volume and

volume doubling time (VDT), as shown in Figure 2.3.
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Figure 2.3. Follow-up algorithm of the UKLS trial, from Baldwin et al. [157]. MDT=
multidisciplinary team.
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2.8 Statistical methods

2.8.1 Measures of observer performance

In investigations of image interpretation, the observer, rather than the

imaging equipment itself, may be considered as the diagnostic test under scrutiny

[357],

2.8.1.1 Sensitivity

Sensitivity is the proportion of subjects with a condition (for example, a

pulmonary nodule) who have a positive test [97], It is calculated by the formula:

(true positives) xlOO
(true positives) + (false negatives)

The higher the sensitivity, the lower the proportion of false negative cases. As such, a

highly sensitive test can be considered a good "rule out" test.

2.8.1.2 Specificity

Specificity is the proportion of people without a disease who have a negative

test [97], It is calculated by the formula:

(true negatives) xlOO
(false positives) + (true negatives)

The higher the specificity, the lower the proportion of false positive cases A highly

specific test can be considered a good "rule in" test.
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Sensitivity and specificity are measures of a diagnostic test which are unaffected by

disease prevalence.

2.8.1.3 Positive predictive value

The positive predictive value of a test is the probability of disease given a

positive test [358], It is calculated by the formula:

(true positives) xlOO
(true positives) + (false positives)

2.8.1.4 Negative predictive value

The negative predictive value of a test is the probability of absence of disease

given a negative test [358], It is calculated by the formula:

(true negatives) xlOO
(true negatives) + (false negatives)

Unlike sensitivity and specificity, both positive and negative predictive values are

affected by the prevalence of disease.

2.8.1.5 Average false positive detections per case

The average number of false positive detections (FPs) per case for a given

reader is calculated by dividing the total number of FPs by the total number of cases

read. The average FPs per case is a parameter that is often quoted for computer-aided
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detection (CAD) systems, when it is usually described as the "false positive rate"

[359], However, as explained in section 1.2.2.2, the false positive rate is actually

defined as the probability of obtaining a false positive result, and is given by (1-

specificity) [97]; use of the term "false positive rate" in the CAD literature is

therefore potentially confusing. As such, the terms "average number of false positive

detections per case" or "average FPs per case" will be used in this thesis with respect

to false positive detections, for the purposes of clarity.

2.8.2 Comparison between groups

The type of test used to compare the differences between groups depends on

whether the data are:

• independent or paired (i.e. related);

• categorical or continuous; and

• normally or non-normally distributed.

2.8.2.1 Categorical data

The chi-square test of homogeneity is used to compare two groups of

subjects that have been sampled from two independent populations and a binary

outcome (e.g. positive or negative) is used for classification [360], It tests the null

hypothesis that there is no difference between the observed and expected frequencies

of a result. The expected frequency is calculated according to the null hypothesis in

each cell of a 2 x 2 contingency table for the binary outcomes. If the expected
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frequencies are close to the observed frequencies, the model according to the null

hypothesis fits the data well; thus, the null hypothesis should not be rejected.

However, the chi-square test may not be accurate when sample sizes are

small [360], In such instances, Fisher's exact test is preferred. Although there is no

definite cut-off defined for when the Fisher's exact test should be used, a useful rule

is to apply this test when the total sample size is less than 30 [360] or the expected

cell count within any cell in the 2 x 2 contingency table is less than five [361],

McNemar's test is used to compare paired observations of categorical data,

for example the comparison of the observations of different readers on the same

subject. The data are not independent (as they are being performed on the same

subject) and thus the chi-square test would not be appropriate. Unlike the chi-square

test, the McNemar's test only considers those pairs of observations which are

discordant (e.g. true positive and false negative, false positive and true negative),

while ignoring the concordant pairs. For such situations, the null hypothesis is that

the proportions of positive results are the same for two observations by two different

readers, versus the alternative hypothesis that they are not the same [360],

2.8.2.2 Continuous data

The independent samples t-test is a parametric test for comparing the means

between observations from independent samples [362], The non-parametric

equivalent is the Mann Whitney U test [363], When observations are paired, the

paired student's t-test and the Wilcoxon signed rank test are the parametric and non-

parametric equivalents for comparing the mean difference, respectively [364],
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2.8.3 Measures of agreement

Observer variation of categorical data, such as in the classification of nodules,

can be measured by the kappa coefficient (multirater k), which represents the

agreement obtained between two readers beyond that expected by chance [365], The

kappa coefficient is calculated by

k = Pa - Pe / 1-Pe

where PA is the proportion of cases for which agreement exists, and Pe is the

proportion of cases in which raters would agree by chance. The weighted kappa

coefficient adjusts for the extent to which disagreement occurs when a grading

system consisting of more than two categories is used [365],
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CHAPTER 3: TRAINING RADIOGRAPHERS IN LUNG

NODULE DETECTION

3.1 Introduction

Radiologists are arguably best suited to the task of lung nodule identification

on CT because they have medical knowledge, an understanding of CT anatomy, and

reading experience. However, it could be reasoned that these attributes help mainly

with the interpretation and the assignment of some level of clinical significance to a

particular finding, rather than to the detection of that finding itself. As discussed in

section 1.6.1, the detection of a lung nodule is mainly a matter of perception. If the

task of detection could be reliably and consistently performed by a suitably trained

non-radiologist, there would in theory be a greater pool of readers available for CT

lung cancer screening. Radiologists could then focus on the important tasks of

interpretation of findings, recommendations for follow-up and arbitration, rather than

on nodule detection alone.

An alternative reader to a radiologist is a radiographer (or technologist as

they are referred to in the USA). Radiographers are an obvious first choice for this

task, as they have a basic understanding of both technical and anatomical aspects of

thoracic CT. Radiographers have already been assessed as readers in screening

mammography [339, 366] and screening CT colonography [367, 368], After a

period of training, key performance indicators can be identified for such tasks [369],

However, no precedent for radiographers reading thoracic CTs currently exists, and
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therefore the optimum type and duration of training they require to develop the skills

necessary for this task is unknown.

It is generally accepted that feedback provided by tutors is integral to medical

training [370], Feedback is a process that allows two-way interaction between a

learner and tutor, so that learning takes place in a non-evaluative and non-

judgemental environment, allowing both the learner and tutor to identify areas for

modification and reinforcement in their learning.

The aim of the current investigation was to evaluate the effect of continuous

feedback as a means of training radiographers in the task of lung nodule detection.

3.2 Materials and Methods

3.2.1 Training dataset and subsets

The methods of CT acquisition, procurement of scans from the NELSON

study, and data anonymisation and storage have been described in Chapter 2. From

the 202 CT studies initially procured for the training dataset (section 2.3), 100 studies

containing a variable number of nodules were chosen at random. The training dataset

was arbitrarily divided into 10 training subsets, each containing 10 CT scans. Each of

these scans had been read by one NELSON reader at the local scanning site, a

NELSON reader at a central site, and in cases where there had been disagreement, by

a third NELSON reader. The final consensus answer for the nodules identified by the

NELSON readings in these studies had all been recorded on a spreadsheet that

accompanied the CTs from the NELSON database. Each nodule identified by the
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NELSON reading was visually confirmed by one of two thoracic radiologists [Dr A.

Devaraj (AD) or me (AN)]. As the NELSON nodule protocol did not specifically

discriminate between intrapulmonary lymph nodes (IPLNs) and nodules, these

radiologists (AD or AN) also recorded IPLNs.

3.2.2 Selection of radiographers

Four radiographers who were able to commit at least four hours a week over

a five-month period were selected as readers. All four radiographers had experience

in thoracic CT scan acquisition and thus had a basic understanding of acquisition

parameters and thoracic CT anatomy. Readers 1 to 3 had 10 or more years'

radiography experience, while reader 4 had 4 years.

3.2.3 Introductory tutorial

The radiographers were first given a PC-based presentation (prepared by AD)

covering the basic principles of thoracic CT anatomy and low-dose CT acquisition.

They were then shown 20 CTs containing examples of different types of lung

nodules as well as focal opacities such as pleural thickening and atelectasis that can

mimic lung nodules. They were provided with the UKLS definitions of lung nodules,

as described in section 2.7.1. The images of these various opacities were obtained

from 20 CT studies from the original pool of 202 LDCT studies that had been

obtained from the NELSON study, but that had not been included in the 100 scans

forming the training dataset for the current study.
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The radiographers were also tutored in the use of the LungCARE software on

the Syngo workstation (Siemens Medical Solutions, Erlangen, Germany), and were

trained to use the software's measurement tools as well as image manipulation tools

such as magnification and maximum intensity projection (MIP), to ensure they were

sufficiently able to optimise their nodule detection technique.

3.2.4 Radiographer reading

Each radiographer was provided with the unique identifier numbers of the 10

anonymised CT studies comprising each training subset. Radiographers were only

given one subset at a time to analyse, and were all given the CTs and the subsets in

the same order.

Radiographers were asked to identify all category 2, 3 and 4 nodules, and

only to identify category 1 nodules if they met all criteria for intrapulmonary lymph

nodes (see section 2.7.1). For each nodule, radiographers were asked to record the

slice position, location (right or left lung), and category of the nodule. The

radiographers performed semi-automated volumetric analysis on any segmentable

solid nodule or solid component of a part-solid nodule on the LungCARE software.

For non-solid nodules, the radiographers categorised the nodules based on the

maximum diameter. All recordings were entered on a spreadsheet created using

Microsoft Excel (version 2007, Microsoft Corp., Redmond, CA).

The time taken for each radiographer to complete each subset of 10 scans was

recorded to the nearest 0.25 hours.
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3.2.5 Evaluation of radiographer answers and feedback to

radiographers

After each radiographer had completed a subset of 10 scans, one of the two

radiologists (AD or AN) reviewed each opacity that had been identified by the

radiographers. All opacities were classified by the radiologist into one of four levels

(Table 3.1). This process was performed in the presence of that radiographer, and so

acted as feedback for the radiographer, providing him or her with the opportunity to

ask questions on a case-by-case basis. The radiographers could only move on to the

next subset of 10 scans after completion of this feedback process.

Classification
level

Description Explanatory notes

1 Agreement with NELSON
readings

Extra nodule

Missed nodule

If a nodule recorded by the
radiographer matched the slice
position, location and size (volume
or diameter) of the NELSON
reading, the nodule was recorded
as being in agreement.

If a genuine nodule that was not
part of the NELSON reading was
identified by the radiographer, it
was considered an extra positive
finding.

A verified nodule (whether
discovered on the NELSON

reading or by at least one other
radiographer) that had not been
identified by the radiographer was
considered a missed nodule.

"Overcall" An opacity not thought to represent
a nodule or a nodule that was too
small (i.e. category 1 and not
matching criteria for an IPLN) was
considered an 'overcall'. The
nature of the opacity was recorded
by the radiologist (see Table 3.5).

Table 3.1. Classification of opacities identified by radiographers.
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3.2.6 Reference standard

After four radiographers had completed the analysis of all 100 cases, all extra

findings identified by at least one radiographer (but not by the NELSON readers)

were reviewed by two radiologists in consensus. Thus in summary, the reference

standard for this study consisted of:

1. An initial evaluation by at least 2 NELSON readers;

2. A validation of that evaluation by one of two participating radiologists (AD

or AN) in this study;

3. A two-stage refinement process consisting of radiographer identification of

extra findings and consensus interpretation of those extra findings by two

radiologists.

3.2.7 Statistical analysis

The sensitivity, specificity, average number of false positive detections per

case, and the ratio of true positive to false positive detections for each radiographer

as compared to the reference standard was calculated for the 100 scans in total. The

ratio of true positive to false positive detections per unit hour for each radiographer

was also calculated. The sensitivity and specificity of each radiographer was also

calculated for each subset of 10 scans. A two-tailed Fisher's exact test was used to

compare the sensitivities and specificities from one subset to the next for a given

radiographer. All analysis was performed using Medcalc (version 12.5.0.0, MedCalc

138



Software, Mariakerke, Belgium). A P value of less than 0.05 was assumed to be

statistically significant.

3.3 Results

3.3.1 General data

All 100 subjects in the CT test cohort were male, aged 53-79 years old. A

total of 417 opacities were identified in 91 out of the 100 CT studies. A range of 1 to

23 opacities were identified per scan. The range of opacities per subset of 10 studies

varied between 14 and 79. Figure 3.1 illustrates the distribution of opacities by each

set. In the remaining 9/100 studies, no opacities were identified by radiographers.

Figure 3.1. Number of opacities identified per subset of 10 CT studies.
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The mean time taken for each subset by radiographers 1,2,3 and 4 was 3.1,

2.2, 2.4 and 2.3 hours respectively, corresponding to a mean time per subject of 18,

13, 14 and 14 minutes respectively.

3.3.2 Reference standard

A total of 282 opacities were considered identifiable nodules (IPLNs or

category 2 to 4 nodules) in 83/100 CT studies. 76 (27.0%) were designated IPLNs,

150 (53.2%) category 2, 51 (18.1%) category 3, and 5 (1.8%) category 4 nodules. In

total, 17/100 CT studies had no opacities designated as positive nodules in the

reference standard; these included the 9 CT studies with no positive findings

identified by any radiologist or radiographer, and 8 CT studies with at least one false

positive finding by a radiographer.

3.3.3 Overall performance of individual radiographers

The overall performance of each radiographer over the 100 scans is shown in

Table 3.2. The mean sensitivity and specificity were 60.5% and 68.4% respectively.

The average number of false positive detections per case for all four readers was

0.46.
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Radiographer
1 2 3 4

Sensitivity (%) 78.0 75.5 39.7 48.6

Specificity (%) 74.3 65.3 70.1 63.9

Average no. of FP 0.37 0.50 0.43 0.52
detections per case
Ratio of TP:FP detections 5.95 4.26 2.60 2.63

Table 3.2. Overall performance of individual radiographers over the 100 scans.
TP= true positive; FP= false positive.

When the amount of time for task performance was considered, the ratios of

true positive (TP); false positive (FP) detections per unit hour for radiographers 1, 2,

3 and 4 were 1.9, 1.9, 1.1 and 1.1 respectively.

3.3.4 Effect of feedback on radiographer performance

The sensitivities of each radiographer for each subset of 10 scans are

illustrated in Table 3.3. Statistically significant increases in sensitivity were observed

for radiographers 3 and 4 between subsets 4 and 5 only (increases of 38.3% and

40.3% respectively). Nevertheless, radiographers 3 and 4 showed a slight trend

towards improvement in the later subsets (Figure 3.2).
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Radiographer
12 3 4

Subset Sens (%) P Sens(%) P Sens (%) P Sens(%) P

1 86.4 NA 81.8 NA 22.7 NA 54.5 NA

2 73.7 0.44 68.4 0.47 42.1 0.31 31.6 0.21

3 84.8 0.31 73.9 0.76 34.8 0.59 34.8 1.00

4 65.9 0.05 75.0 1.00 20.5 0.16 27.3 0.50

5 82.4 0.13 67.6 0.61 58.8 0.0008 67.6 0.0005

6 82.1 1.00 85.7 0.14 35.7 0.08 60.7 0.60

7 75.9 0.75 72.4 0.33 48.3 0.42 69.0 0.59

8 79.2 1.00 75.0 1.00 58.3 0.58 54.2 0.39

9 81.8 1.00 63.6 0.69 36.4 0.29 27.3 0.17

10 72.0 0.69 88.0 0.17 48.0 0.72 60.0 0.15

Table 3.3. Sensitivities of radiographers for each subset. P values are for the
difference in sensitivity between the particular subset and the one preceding it, using
the two-tailed Fisher's exact test. P values in bold indicate statistically significant
differences.
Sens = sensitivity. P = P value. NA = not applicable.
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Figure 3.2. Variation in sensitivity between subsets for radiographers 1 to 4.
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The specificities of each radiographer for each subset of 10 scans are

illustrated in Table 3.4. Statistically significant decreases in specificity were

observed for Radiographer 2 between subsets 3 and 4, 5 and 6, and 9 and 10 (47.7%,

33.3% and 65.0% respectively), and for Radiographer 4 between subsets 4 and 5

(73.3%). Statistically significant increases in specificity were seen for Radiographer

2 between subsets 4 and 5, and for Radiographer 3 between subsets 3 and 4 (75.0%

and 42.4% respectively).

No particular trend was observed for the changes in specificity for any

radiographer (Figure 3.3).

Radiographer

ibset Spec(%) P Spec (%) P Spec(%) P Spec(%) P

1 64.3 NA 64.3 NA 92.9 NA 50.0 NA

2 57.1 1.00 71.4 1.00 85.7 1.00 42.9 1.00

3 72.7 0.41 72.7 1.00 57.6 0.22 78.8 0.08

4 75.0 1.00 25.0 0.03 100.0 0.04 100.0 0.31

5 80.0 1.00 100.0 0.0003 66.7 0.12 26.7 0.001

6 50.0 0.13 66.7 0.03 75.0 0.69 58.3 0.13

7 75.0 0.24 62.5 1.00 56.3 0.43 50.0 0.72

8 100 0.11 58.3 1.00 58.3 1.00 75.0 0.25

9 85.7 0.37 100.0 0.11 85.7 0.33 85.7 1.00

10 80.0 1.00 35.0 0.006 70.0 0.63 70.0 0.63

Table 3.4. Specificities of radiographers for each subset. P values are for the
difference in specificity between the particular subset and the one preceding it, using
the two-tailed Fisher's exact test. Rvalues in bold indicate statistically significant
differences.

Spec= specificity. P = P value. NA = not applicable.
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Figure 3.3. Variation in specificity between subsets for radiographers 1 to 4.

3.3.5 Characteristics of false positive findings

The types of false positive findings identified by each radiographer varied

widely between each radiographer (Table 3.5). In general, false positive findings

were most frequently due to a combination of pleural or fissural thickening,

atelactasis, presumed scarring and overcalling vascular structures.
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Radiographer
1 2 3 4

Type of false positive finding No. (%)

Pleural/fissural thickening, pleural plaques 9 (24.3) 11 (22.0) 4 (9.3) 11 (21.2)

Atelectasis 6 (16.2) 7 (14.0) 9 (20.9) 9(17.3)

Presumed scarring 7 (18.9) 7 (14.0) 10 (23.3) 7(13.5)

Linear opacity 0 (0.0) 3 (6.0) 2 (4.7) 1 (1.9)

Calcified nodule 3(8.1) 0 (0.0) 3(7.0) 2(3.8)

Nodule < 3mm in diameter 0 (0.0) 8 (16.0) 4(9.3) 7(13.5)

Vascular structure 7 (18.9) 10 (20.0) 9 (20.9) 8(15.4)

Diaphragm/diaphgramatic fat 1 (2.7) 2 (4.0) 0 (0.0) 1 (1.9)

Mucus plug 2 (5.4) 2 (4.0) 1 (2.3) 3(5.8)

Others

(motion artefact / osteophyte-related opacity)
2 (5.4) 0 (0.0) 1 (2-3) 3(5.8)

Total 37 50 43 52

Table 3.5. Types of false positive findings. Numbers in parentheses indicate the
proportion of false positive findings in that category as a percentage of the total false
positive findings for a particular radiographer.

3.3.6 Characteristics of false negative findings

Table 3.6 illustrates the wide variation in the types of nodules missed

between the 4 radiographers. The majority of nodules missed by all radiographers

were small (category 2) or IPLNs.
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Radiographer

Nodule category

1 2 3 4

No. (%)

1 (i.e. IPLN) 18(29.0) 17(24.6) 45 (26.5) 38 (26.2)

2 41 (66.1) 39 (56.5) 94 (55.3) 84 (57.9)

3 3 (4.8) 11 (14.5) 28 (16.5) 22 (15.2)

4 0 (0.0) 2 (2.9) 3(1.8) 1 (0.7)

Total 62 69 170 145

Table 3.6. False negative findings. Numbers in parentheses indicate the proportion of
false negative findings in that category as a percentage of the total false negative
findings for a particular radiographer.

3.4 Discussion

The mean and range of sensitivities for pulmonary nodule detection by

radiographers in this study were largely comparable to the wide range (between 21%

and 70%) reported for radiologists in the literature [289, 290, 293, 334, 336, 338,

371], However, a learning effect on sensitivity and specificity over the sequential 10

subsets was not demonstrated. Training would intuitively be expected to enhance

performance. In an article examining this issue, Wood stated that "with practice...the

novice will build a mental library of patterns of normality and abnormality, along

with a library of information. Frequent feedback and affirmation will ensure that this

experience grows" [372], The lack of a conspicuous learning curve in the current

study may be due to the small number of scans in each subset, as well as varying

levels of difficulty that may have existed within each subset. However, this level of

difficulty is not something that is easy to quantify or standardise.
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The fact that the first two readers had a higher sensitivity than radiographers

3 and 4 could be due to differences in inherent ability. Over time it might have been

expected that the poorer sensitivity of readers 3 and 4 in comparison to readers 1 and

2 would have improved. Indeed, a small but inconsistent trend in this direction was

observed for radiographers 3 and 4 in the later subsets, but their sensitivity still did

not match that of the two most sensitive radiographers.

The lack of a learning curve has been shown in other detection performance

studies. Burling et al. did not manage to find a learning effect for the selection of the

correct management strategy or for lesion detection in an evaluation of five

radiographers performing CT colonography interpretation, and similarly concluded

that this may have been due to the underpowered nature of their study [373].

Kinnunen et al. found no improvement effect of training for four groups of

radiologists in the radiographic diagnosis of midfacial trauma [374],

As the current study is the first, to my knowledge, to evaluate radiographers

in a potential LDCT lung cancer screening setting, comparative evidence for

radiographer perfonnance in this field is unavailable. However, there is some

evidence to support a hypothesis of innate perceptual skill from studies involving

radiographer or "naive" readers in mammography and CT colonography settings.

Davies et al. evaluated expertise in categorising mammograms, showing that a group

of 3 "naive" readers with no radiographic experience performed as well as three

radiographers (who had exposure to mammograms but no formal training in reading

them) and that their performance exceeded that expected by chance, after only a few

hours of training [375], Studies evaluating various training methods for
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radiographers in CT colonography have demonstrated a similar training effect for

detecting polyps [367, 368, 373, 376].

In the current study, the length of radiographers' "experience" did not seem

to affect sensitivity; indeed, the radiographer with the longest duration of

"experience" (Radiographer 3) had the lowest sensitivity. This is not unexpected

since any radiographer, independent of his or her seniority, would be assumed to be

starting from the same baseline as far as pulmonary nodule detection on CT is

concerned.

Studies using radiologists with different levels of experience have shown

conflicting results in terms of the level of reader experience on nodule detection

ability. For instance, Awai et al. demonstrated that the area under the free-response

receiver-operator characteristic (ROC) curve was not significantly different when

comparing five board-certified radiologists (who did not specialise in thoracic

radiology) against five radiology residents [337], Brochu et al. found there was a

significant difference in the sensitivities of 3 radiologists with different levels of

experience for the detection of pulmonary nodules in an LDCT screening setting, but

that it was the radiologist with the least experience that had the greatest sensitivity

(70%) compared to two other thoracic radiologists with 15 and 20 years' experience

respectively (sensitivity 54% and 38% respectively) [338], Brown et al. found that

when six non-radiologists, four non-thoracic radiologists and six thoracic radiologists

read 8 LDCT cases for pulmonary nodules, the mean detection rates were 62%, 62%

and 72% for the non-radiologists, non-thoracic radiologists and thoracic radiologists,

respectively, indicating that experience did not have a substantial impact on nodule
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detection [345], Again, these findings reinforce the idea that nodule detection ability

is more closely related to an inherent perceptual ability unique to each individual.

An attempt was made to understand the types of opacities that cause

difficulty in classification leading to false positives, as well as the characteristics of

nodules that were missed by radiographers. It appears that radiographers, perhaps

predictably, had difficulty in detecting smaller nodules, and were more likely to

"overcall" opacities due to pleural thickening, pleural plaques, atelectasis, or

prominent vascular structures.

It is important to recognise that the mean times taken by the radiographers per

CT study (range 13-18 minutes) in this study were longer than that taken by the

radiologists in more or less comparable studies, for instance by Rubin et al. (range

4.7-9.8 minutes) and Roos et al. (range 4.9-12.3 minutes); the longer reading times

could have helped increase radiographer sensitivity. In a CT colonography setting, it

has been demonstrated that radiographers (but not radiologists) have an increased

accuracy with longer reading times [377], and vice-versa [373], This has also been

shown to a certain extent in the present study: Reader 1, who took the longest time,

had the highest sensitivity. However, the ratio of true positive to false positive

findings is more instructive when determining the likelihood that a nodule of tme

significance versus one of less or no significance will be detected, and in this regard,

readers 1 and 2 had similar ratios per unit time, indicating that overall Reader 2 made

the most efficient use of time. An increase in reading time may have cost-

effectiveness implications if the use of radiographers is contemplated in a lung

cancer screening programme, as the volume of CTs read by a radiographer could be

substantially less than that of an experienced radiologist. However, the fact that the
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additional time spent appears to increase the number of true positive detections (i.e.

sensitivity) rather than the number of false positive detections is still reassuring in the

specific context of a screening programme.

This study has a few limitations. First, like all nodule detection studies

without histopathological proof, the determination of a nodule as a true positive

necessarily depends on a less than "golden" reference standard. In this case, a

reference standard was used that was a composite of the radiographers' readings, as

well as a total of four radiologists' readings. In terms of bias considerations, two of

the four radiologists determining the reference standard were also training the

radiographers and providing feedback; inevitably the radiologists' own

interpretations of findings would have influenced that of the radiographers and of the

reference standard. However, as has been concluded by Annato et al., variation in

opinion as to what constitutes a "true nodule" in a reference standard is extensive

[378, 379], and as such this variation would be present in any reference standard that

was derived from radiologists' interpretations.

As discussed earlier, the subsets may have been too small to demonstrate a

learning effect. However, as the CT studies in the training set were chosen at

random, the number of nodules within each subset was not predetermined, inevitably

leading to some subsets with smaller number of nodules. Such variation in the

number of nodules would of course also be encountered in clinical practice.

Although the length of time taken for the radiographers to read each subset

was recorded, this was not done for the radiologists who originally read these studies,

as those evaluations were performed as part of the original screening trial and time
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data was not collected in the NELSON trial. It is therefore not possible to make a

direct observation regarding the time-effectiveness of the radiographers as compared

to radiologists.

3.5 Summary

• Radiographers' performance in lung nodule detection, after a short period of

training and using continuous feedback, was variable but for some individuals

was similar to that reported for radiologists.

• A learning effect could not be demonstrated, indicating that an innate

perceptual ability is likely to be a significant determinant of performance.

• The performance of radiographers as readers in a lung cancer screening

programme thus needs to be formally evaluated against that of radiologists;

this will be the subject of the next investigation.
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CHAPTER 4: PROSPECTIVE COMPARISON OF
TRAINED RADIOGRAPHERS WITH EXPERIENCED
THORACIC RADIOLOGISTS FOR CT LUNG NODULE
DETECTION

4.1 Introduction

A CT lung screening programme requires a reading radiologist to dedicate a

significant amount of time to the task of lung nodule detection. Should a national

lung screening programme be launched, the number of radiologists reading lung

screening CTs would, in terms of current working practices, need to increase,

especially if the reading protocol involved more than one reader with consensus and

arbitration.

As discussed in Chapter 3, one possible method of circumventing the increase

in radiologist-hours required for screening is to use radiographers as part of the CT

reading process. Having provided radiographers with a basic level of training, it is

imperative that their performance is assessed against the established methodology of

various screening trials, in which radiologists perform all reading. The aim of this

investigation was therefore to evaluate the performance of radiographers in lung

nodule detection on CT, compared with radiologists in the setting of the UK Lung

Cancer Screening (UKLS) pilot trial.
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4.2 Materials and Methods

4.2.1 Study design and case selection

This study was performed prospectively. Two-hundred and ninety

consecutive CT studies performed for the UK.LS pilot trial were read for this study

between November 2011 and April 2012. All CT studies were performed at one of

two participating sites, according to trial protocols as specified in section 2.5.

4.2.2 Classification of nodules

Nodules were classified according to the UKLS definitions described in

section 2.7.1. The electronic database entry proforma (Artex VOF, Logiton,

Netherlands) used for recording nodules as described in section 2.6.2 also allowed

for intrapulmonary lymph nodes (IPLNs) to have an additional unique designation so

that these could be identified separately.

4.2.3 CT evaluation by radiologists

Each CT examination was read by a single radiologist at each of the two

participating sites (Radiologist A at Local Site 1 and Radiologist B at Local Site 2,

both with more than 10 years of specialist thoracic imaging experience). The CTs

were then transmitted to the central reading site on the same day via the Image

Exchange Portal (Burnbank Systems, Ipswich, England) described in section 2.6.2

for a second independent reading (by Radiologist C, 10 years' experience), and read

as described in section 2.7.2.
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The access rights to the UKLS database of the two reading radiologists at the

participating sites were configured such that they were not able to view the

recordings of other readers, but the central radiologist (Radiologist C) could access

these readings as he had to identify any discrepant findings that required arbitration.

The central radiologist only viewed the readings of the local site radiologists once he

had completed his own reading.

4.2.4 Selection of reading radiographers

Four radiographers who were able to commit at least four hours a week over

the study period were selected as readers. Radiographer 1 read CTs at Local Site 1,

and Radiographer 2 read CTs at Local Site 2. Two radiographers (Radiographers 3

and 4) read CTs at the central site. As such, each CT study was read by two

radiologists and at least one radiographer, with a maximum of two radiographers

(one local site radiographer and one central site radiographer).

All four radiographers had experience in thoracic CT scan acquisition.

Radiographers 3 and 4 had participated in the investigation described in Chapter 3

and had thus already undergone training, while Radiographers 1 and 2 were trained

using a method similar to that described in Chapter 3. However, as no useful learning

effect had been noted in Chapter 3 using feedback after every 10 training cases read,

the radiographers instead read 80 training cases (the same training cases used in

Chapter 3) - 20 cases where reading was directly supervised by the local site reading

radiologist, followed by 60 cases of self-directed training by radiographers with

indirect supervision from the local site reading radiologist.
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Prior to commencing reading, all four radiographers and all three radiologists

also achieved at least 80% sensitivity (as compared to nodules identified by

NELSON radiologists) on a test set of 25 different cases that were gleaned from the

NELSON training dataset described in section 2.3. This training target was set at a

higher level than that achieved by most radiologists in the literature (between 21%-

70%, as described in section 3.4) because the CT studies were being read

prospectively for clinical, and not solely experimental, purposes. As such, the ability

of a reader to detect a high proportion of potentially clinically relevant nodules had

to be ensured.

4.2.5 Reference standard

After the second reading, the radiologist at the central site (Radiologist C)

reviewed, weekly, all nodule candidates identified by radiologists for each subject on

the database to identify any discrepancies. Arbitration on discrepancies was provided

at the central site by a thoracic radiologist with more than 20 years of experience,

and the final consensus view was recorded on the database. All agreed category 2 to

4 nodules and intrapulmonary lymph nodes were included in the reference standard.

In addition, the maximum diameter of each nodule comprising the reference standard

as recorded on the UKLS database was recorded.

4.2.6 Classification of discrepancies

For each CT, a list of each reader's reading was generated and compared

against the reference standard. A nodule was considered to have been missed by a
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reader if it was included in the reference standard but not recorded by that reader. In

addition note was made of nodules classified as IPLNs by the reference standard but

recorded as category 2 to 4 by the reader, and vice versa.

4.2.7 Statistical analysis

The sensitivity (the percentage of reference standard nodules identified) and

the average false positive detections (FPs) per case (expressed as mean and standard

deviation) were calculated:

• for each reader, for all cases read by him or her;

• for each radiographer and radiologist within a particular radiographer-

radiologist combination (10 combinations in total), taking into account only

cases read by that combination, to enable direct comparison between that

radiographer and radiologist (comparisons of sensitivity and average FPs

were performed using McNemar's test and paired student's t-test,

respectively);

• for each reader in the first 10 weeks (PI), and compared to that in the second

10 weeks (P2) of the study (comparisons of sensitivity and average FPs per

case were perfonned using the Chi-square test and independent samples

student's t-test, respectively).

A post-hoc analysis of differences between radiographer and radiologist

sensitivity when considering only reference standard nodules at two higher diameter

thresholds (> 5mm and > 6mm) was subsequently conducted , to investigate the

effect of increasing the threshold for nodule positivity on radiographer performance.
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The agreement between each radiographer and the reference standard for the

classification of IPLNs and category 2 to 4 nodules was assessed using the weighted

kappa statistic (multirater k), as detailed in Chapter 2. Kappa values were defined as

follows: a k less than or equal to 0.2, poor agreement; 0.21-0.40 fair agreement;

0.41 -0.6 moderate agreement; 0.61 -0.80, good agreement; and 0.81-1.00, very good

agreement [380], All analysis was performed using Medcalc (version 12.5.0.0,

MedCalc Software, Mariakerke, Belgium). A P value of less than 0.05 was assumed

to be statistically significant.

4.3 Results

4.3.1 Reference standard

Eighty-one (27.9%) of the 290 CT studies did not contain any nodules. The

reference standard thus consisted of 599 nodules in the remaining 209 (72.1%) CT

studies. The majority of CTs had 1 (35.4%), 2 (23.0%) or 3(21.5%) nodules per CT

(Figure 4.1). The median number of nodules per scan was 2, with a range of 1 to 18

nodules. The mean diameter of reference standard nodules was 5.2 ± 2.9mm (median

4.4mm, range 1.6-30.0mm).
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Figure 4.1. Distribution of the number of nodules per CT scan.

The breakdown of nodules in the reference standard according to UKLS size

category and type is illustrated in Table 4.1. The majority were solid nodules

(62.1%), with just under a third (32.6%) classified as IPLNs. 98.2% of nodules were

category 1 to 3.

Solid

Size Category (non-IPLN)

Nodule type

Part-solid Non-solid IPLN1 Total

1 NA NA NA 195 (32.6) 195 (32.6)

2 247 (41.2) 2 (0.3) 7(1.2) n/a 256 (42.7)

3 115 (19.2) 4 (0.7) 18 (3.0) n/a 137 (22.9)

4 10(1.7) 1 (0.2) 0(0) n/a 11 (1.8)

Total 372 (62.1) 7(1.2) 25 (4.2) 195(32.6) 599 (100.0)

Table 4.1. Distribution of nodules according to UKLS size category and nodule type.
Figures in parentheses are percentages of the total number of nodules. Minor
inconsistencies in summation of the percentages is due to rounding of percentages to
1 significant figure. IPLN= intrapulmonary lymph node. NA= not applicable.
1IPLNs are category 1 by definition in the UKLS.
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4.3.2 Overall performance of radiographers and radiologists

Radiographers 1, 2, 3 and 4 had sensitivities of 67.6%, 77.8%, 79.4% and

61.6% respectively (mean sensitivity 71.6 ± 8.5%). Radiologists A, B and C had

sensitivities of 88.9%, 87.0% and 74.0% respectively (mean sensitivity 83.3 ± 8.1%).

The average FPs per case for radiographers 1, 2, 3 and 4 were 1.2 ± 2.1, 2.9

± 2.8, 0.6 ± 1.0 and 1.1 ± 1.3 respectively, while that of radiologists A, B and C were

0.5 ± 0.8, 0.7 ± 1.0 and 0.2 ± 0.5 respectively.

4.3.3 Comparison of radiographer and radiologist performance

The sensitivities of each radiographer compared to those of the corresponding

radiologists within a particular radiographer-radiologist combination are illustrated in

Table 4.2. Radiographers 1 and 2 could only be compared with their corresponding

local site radiologists (i.e. radiologists A and B respectively) and the central site

radiologist (radiologist C). Radiographer sensitivity was significantly lower than

radiologist sensitivity in 7 of 10 radiographer-radiologist combinations (range of

difference, 9.7%-32.8%, P < 0.05), and not significantly different in 3/10

combinations.
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Sensitivity
Radiographer-
radiologist
combination

No. of
CTs
read

Radiographer
(%)

Radiologist
(%)

Difference

(%)
Rvalue

1-A 130 67.6 88.0 20.4 0.0008

1-C 130 67.6 74.5 6.9 0.30

2-B 139 77.8 87.4 9.6 <0.0001

2-C 139 77.8 74.5 -3.3 0.20

3-A 68 81.0 92.2 11.2 0.01

3-B 87 78.5 88.2 9.7 0.0087

3-C 155 79.4 76.2 -3.2 0.32

4-A 64 53.8 86.6 32.8 <0.0001

4-B 49 68.7 85.5 16.8 0.0051

4-C 113 61.6 72.0 10.4 0.0119

Table 4.2. Comparison of radiographer and radiologist sensitivity for the 10
radiographer-radiologist combinations. A negative value for the difference in
sensitivity indicates a lower radiologist sensitivity compared to a radiographer. P
values are those derived from the McNemar's test. P values in bold are statistically
significant.

Radiographers had significantly higher average FPs per case than radiologists

in 8/10 combinations (range of difference, 0.4-2.6, P < 0.05), and there was no

significant difference in the remaining two combinations (Table 4.3).
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Average FPs per case

Radiographer-
radiologist combination

Radiographer Radiologist Difference P value

1-A 1.1 ±1.3 0.5 ±0.8 -0.6 <0.0001

1-C 1.1 ±1.3 0.1 ±0.5 -1.0 <0.0001

2-B 2.8 ±2.8 0.7 ± 1.1 -2.1 <0.0001

2-C 2.8 ±2.8 0.2 ±0.5 -2.6 <0.0001

3-A 0.9 ± 1.4 0.5 ±0.8 -0.4 0.0176

3-B 1.4 ±2.5 0.6 ± 1.0 -0.8 0.0015

3-C 1.2 ± 2.1 0.1± 0.5 -1.1 <0.0001

4-A 0.4 ±0.8 0.5 ±0.8 0.1 0.2009

4-B 0.8 ± 1.2 0.8 ± 1.3 0 0.71

4-C 0.6 ± 1.0 0.2 ±0.5 -0.4 0.0001

Table 4.3. Comparison of radiographer and radiologist average FPs per case for the 10
radiographer-radiologist combinations. A negative value for the difference indicates a
lower radiologist average FPs per case compared to a radiographer. P values are
those derived from the paired student's t-test. P values in bold are statistically
significant.

4.3.4 Reader performance in the first 10 weeks versus second 10 weeks

The two radiographers with the lowest overall sensitivity (Radiographers l

and 4) showed a significant improvement in sensitivity between the first and second

10-week period (sensitivity 50.0% in PI versus 74.1% in P2 for Radiographer 1,

41.8% in P1 versus 67.2% in P2 for Radiographer 4, P < 0.005), but their sensitivity

in P2 still did not reach the level of Radiographers 2 and 3, who showed no

significant difference in their sensitivity between the two periods. Radiologists'

sensitivity did not significantly differ between the two periods. No radiographer or

radiologist demonstrated a significant difference in average FPs per case between the
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two periods. As such, the improved sensitivity of Radiographers 1 and 4 in the

second 10 weeks did not come at the expense of increased average FPs per case.

4.3.5 Characterisation of intrapulmonary lymph nodes and nodules

Radiographers showed moderate to good agreement with the reference

standard for the classification of IPLNs and category 2 to 4 nodules (Table 4.4).

Radiographer Weighted kappa statistic Level of agreement

A 0.634 good

B 0.554 moderate

C 0.571 moderate

D 0.603 moderate

Table 4.4. Agreement between radiographer and the reference standard for IPLN and
nodule classification.

4.3.6 Comparisons of sensitivity using alternate diameter thresholds

There were 236 reference standard nodules that were 5mm or greater in

diameter. When considering only these nodules, the number of radiographer-

radiologist combinations with significantly lower radiographer sensitivity decreased

to 4/10 combinations (range of difference, 17.2%-37.3%, P < 0.05) (Table 4.5). No

significant difference was seen in the remaining 6/10 combinations.
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Radiographer-
radiologist
combination

No. of
nodules
> 5 mm

diameter

Radiographer
(%)

Sensitivity
Radiologist Difference

(%) (%)
Rvalue

1-A 87 63.2 80.5 17.2 0.0041

1-C 87 63.2 82.8 19.5 0.0053

2-B 128 82.0 89.1 7.0 0.1508

2-C 128 82.0 83.6 1.6 0.8501

3-A 45 80.0 88.9 8.9 0.3438

3-B 82 79.3 89.0 9.8 0.1153

3-C 127 79.5 85.0 5.5 0.2482

4-A 51 41.2 78.4 37.3 0.0005

4-B 42 78.6 88.1 9.5 0.4240

4-C 93 58.1 79.6 21.5 0.0011

Table 4.5. Comparison of radiographer and radiologist sensitivity for the 10
radiographer-radiologist combinations for nodules > 5mm diameter. P values are
those derived from the McNemar's test. P values in bold are statistically significant.

There were 165 reference standard nodules that were 6mm or greater in

diameter. As with nodules that were 5mm or greater in diameter, the number of

radiographer-radiologist combinations with significantly lower radiographer

sensitivity also decreased to 4/10 combinations (range of difference, 18.3%-40.6%, P

< 0.05) (Table 4.6). No significant difference was seen in the remaining 6/10

combinations.
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Radiographer
-radiologist
combination

No. of
nodules
>6mm
diameter

Radiographer
(%)

Sensitivity
Radiologist Difference

(%) (%)
P value

1-A 60 65.0 83.3 18.3 0.0127

1-C 60 65.0 85.0 20.0 0.0169

2-B 91 79.1 90.1 11.0 0.05

2-C 91 79.1 82.4 3.3 0.66

3-A 30 83.3 90.0 6.7 0.63

3-B 60 75.0 88.3 13.3 0.08

3-C 90 77.8 85.6 7.8 0.14

4-A 37 40.5 81.1 40.6 0.0015

4-B 29 75.9 89.7 13.8 0.34

4-C 66 56.1 80.3 24.2 0.0009

Table 4.6. Comparison of radiographer and radiologist sensitivity for the 10
radiographer-radiologist combinations for nodules > 6mm diameter. P values are
those derived from the McNemar's test. P values in bold are statistically significant.

4.4 Discussion

The mean and range of sensitivities of radiographers and radiologists in this

study group were comparable to figures reported for radiologists (Table 4.7) [289,

290, 293,334,336,338,371],
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Authors Year
No. and type of

readers

Sensitivity (%)
Mean Range

Marten et al. 2004 4 radiologists 40 21-57

Brochu et al. 2007 3 radiologists 54 38-70

Rubin et al. 2005 3 radiologists 50 41-60

Roos et al. 2010 3 radiologists 53 44-59

Wormanns et al. 2005 3 radiologists 64 NR

Beigelman-Aubry et al. 2007 2 radiologists 52 46-58

Fraioli et al. 2007 3 radiologists 57 46-68

Current study 2012 3 radiologists 83 74-89
4 radiographers 72 62-79

Table 4.7. Sensitivities of radiologists in a selection of nodule detection studies. NR=
not reported.

Caution should always be exercised when comparing sensitivities between

nodule detection studies, as differences in the derivation and stringency of the

reference standard [285], and in the types of patients undergoing CT examinations

(e.g. patients with multiple metastases versus lung screening studies) may profoundly

affect sensitivity. Nevertheless, it is reassuring that not only did the mean sensitivity

of radiologists in the current study exceed those of previous studies, but

radiographers had sensitivity comparable to radiologists in reported previous studies.

The importance of a high rate of nodule detection- i.e. high sensitivity - is

underscored by the fact that most failures in lung cancer diagnosis are due to errors

of detection rather than interpretation [381, 382]. Considering this in isolation, the

desideratum of any CT screening programme is to have readers with the highest

possible sensitivity, and in this context radiographers cannot be considered ideal first
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readers for lung screening, since their overall performance in the majority of cases

was statistically significantly lower than that of the radiologists reading the same

CTs.

However, initial experience from the UKLS pilot trial has indicated that the

vast majority of nodules smaller than 5mm in diameter (i.e. category 2 nodules)

demonstrate no growth on volumetry within a 12-month period. As such, it may be

prudent to raise the threshold for considering a nodule positive, to avoid unnecessary

follow-up. A recent retrospective analysis from the I-ELCAP trial has reinforced this

notion, suggesting that using diameter thresholds of 6mm, 7mm and 8mm could

decrease further work-up by 36%, 56% and 68% respectively, while resulting in a

maximum delay in lung cancer diagnosis of 9 months in 0%, 5% and 5.9% of cases

respectively [383], It could thus be argued that the sensitivity of radiographers in a

screening programme need not be as high as that of radiologists across the whole

spectrum of nodules, but should be optimised for larger nodules. This notion

prompted the post-hoc analysis of radiographer sensitivity confined to reference

standard nodules that were 5mm and greater (the current definition of a positive

result in I-ELCAP), and 6mm and greater in diameter. Radiographer sensitivity

became more closely aligned with that of radiologists using these higher diameter

thresholds in the majority of combinations, but there were still four combinations

where radiographers were less sensitive at both diameter thresholds. Nevertheless,

such comparability between radiographer and radiologist sensitivity, when viewed in

conjunction with their satisfactory ability to accurately categorise nodules according

to precise definitions, suggests that a radiographer could function adequately as an
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aid to nodule detection rather than a first reader, in the same way that computer-aided

detection (CAD) does.

The average false positive detections per case of the radiographers in this

study were significantly higher than those of radiologists. However, it is reassuring

that radiographers in general did not exceed 3 average FPs per case, and are thus

comparable to CAD systems, where average FPs per case between 0.3 and 15 per

case have been reported [384], When viewed in this context, the higher average FPs

per case of radiographers compared to radiologists in this study does not disqualify

them from being used as aids to reading.

In contrast to the lack of a learning effect observed in Chapter 3, an

improvement in sensitivity of the two least sensitive radiographers between the first

and second 10-week periods in the present study was noted, and occurred despite the

lack of a formalised programme of feedback. It is thus likely that exposure to more

nodules over a longer period may help to improve the sensitivity of less sensitive

readers. Importantly, the improved sensitivity did not come with the penalty of

increased average false positive detections per case.

This study has a few limitations. First, the reference standard presumed that

any nodule detected by a radiographer but not by a radiologist was not a true

positive. This was a necessary condition within the UKLS trial because

radiographers are not currently validated as readers in lung screening, and so it could

therefore be argued that it would have been unethical for any radiographer findings

to direct clinical care. However, this does potentially mean that there were less true

positives and more false positives within the radiographer readings, thereby
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potentially exaggerating their false positive detection rate. Even so, this reference

standard still serves as a valid relative standard against which to measure

radiographer performance. Also, radiographers were not provided with continuous

feedback in this study, which might have been useful to assess the effect of feedback

over a larger set of nodules than that used in Chapter 3. Such an assessment was not

the primary objective of this study, but it is worth noting that radiographers were

comparing their own readings with those in the consensus, once consensus had been

achieved, and so were enacting a form of self-directed learning. However, this effect

cannot be quantified.

4.5 Summary

• Radiographers' in this study displayed, on average, a lower sensitivity for

nodule detection and higher false positive detections per case compared to

radiologists reading the same CTs.

• Radiographers are thus probably not sensitive enough to be used as first

readers.

• However, the fact that the performance of some radiographers compared

favourably with radiologists, especially when larger nodules were considered,

suggests that radiographers could fulfil the role of an assistant reader.
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CHAPTER 5: THE EFFECT OF RADIOGRAPHERS AS
CONCURRENT READERS ON THE PERFORMANCE
AND READING TIME OF EXPERIENCED
RADIOLOGISTS IN LUNG CANCER SCREENING

5.1 Introduction

The use of radiographers as human aids to radiologists for the task of lung

nodule detection remains untested. In contrast, computer-aided detection (CAD)

software as a second reader for this task has been extensively evaluated and shown to

improve sensitivity, as discussed in detail in section 1.6.3.

Despite this extensive evaluation, CAD has not been universally adopted in

lung nodule detection, and has also not been prospectively evaluated in any of the

randomised control trials in CT lung cancer screening. The reticence to use CAD

may be due to the practicalities of integrating it with CT reporting workflow, but

these difficulties are not insurmountable. A greater encumbrance may be the need for

two rounds of reading by a radiologist when using CAD as a second reader - the

radiologist has to first independently read the study, present it to the CAD system,

and then re-evaluate the study with the specific aim of assessing the CAD marks, in

order to arrive at a final set of agreed findings. This has led to interest in using CAD

as a concurrent reader. In concurrent reading, the first round of radiologist reading is

removed; instead, the study is processed by the CAD and presented to the radiologist,

who accepts or rejects the CAD marks, and finally performs an independent search

for any missed nodules. Although this method has undergone only limited
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evaluation, it has been shown to decrease reading times without compromising

sensitivity [294, 354],

The aim of the present investigation was thus to prospectively compare the

performance of radiologists reading CTs independently (i.e. unaided) with their

performance when using radiographers as concurrent readers, with respect to

sensitivity, false positive detection, and reading times, in an actual lung screening

setting.

5.2 Materials and Methods

5.2.1 Study design and case selection

This study was performed prospectively. Between June and October 2012,

the baseline CT studies of 369 consecutive participants in the LDCT arm of the

UKLS trial were read for this study. All CT studies were performed at one of two

participating sites, according to trial protocols as specified in section 2.5.

5.2.2 CT evaluation by radiologists

Each CT study was read by a single radiologist at one of the two participating

sites, namely Radiologist A at Local Site 1 and Radiologist B at Local Site 2, both

with more than 10 years of specialist thoracic imaging experience. The studies were

then transmitted to a central reading site as described in section 2.6.2 for a second

independent reading by Radiologist C, 10 years' experience, and read as described in

section 2.7.2. Radiologists A, B and C were the same radiologists as in Chapter 4. In
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addition, a second central reading radiologist with 7 years' experience, Radiologist

D, also participated in this study.

Nodule classification and recording was exactly the same as described in

sections 2.6.2 and 4.2.2.

5.2.3 Selection of reading radiographers

The same radiographers as in Chapter 4 participated in this study:

Radiographer 1 read CTs at Local Site 1, Radiographer 2 read CTs at Local Site 2,

and Radiographers 3 and 4 read CTs at the central site.

5.2.4 Concurrent reading workflow

In concurrent reading, the following steps were perfonned:

1. Each CT was first read by a radiographer on the LungCARE workstation,

who uploaded his or her report to the UKLS database under a personal login,

as explained in section 2.6.2.

2. The radiographer's stored nodule recordings (in the fonn of a DICOM

structured report, or DICOM SR) were then made available to the reading

radiologist. For each recording, the radiologist had one of three options. He

could accept a particular finding if he agreed with it, and leave the

radiographer recording unmodified. He could reject a finding if he disagreed

with it (i.e. he thought the finding did not represent a nodule), in which case

he would delete the recording. Finally, he could amend the recording if he
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agreed that the finding represented a nodule, but disagreed with its

categorisation (for example, he thought it was a subsolid nodule where a

radiographer had classified it as solid), in which case he would re-report the

nodule using the electronic soft-copy entry proforma (Artex VOF, Logiton,

Netherlands) (see section 2.6.2) and copy and paste his own report into the

nodule report.

3. After reviewing the radiographer's recordings, the radiologist performed

another search to identify any additional nodules missed by the radiographer.

4. The radiologist then saved his recordings as a new DICOM SR, and uploaded

this report to the UKLS database.

In this way, the radiologist still only performed a single reading of the CT. Figure

5.1 summarises the concurrent reading process as compared to first reading and

second reading.

2nd round:

Radiologist reviews radiographer marks

1" round:

Radiographer reads

Figure 5.1A.
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1" round:

Radiographer reads

Radiologist also reads independently

2nd round:

Radiologist reviews radiographer marks

CT Scan

Radiologist

J
1

Radiographer

Radiologist

Figure 5.1 B.

CT Scan
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Figure 5.1C.

Figure 5.1. The process of reading in first (5.1A), second (5.1B) and concurrent (5.1C)
reading with radiographers.
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5.2.5 Selection of CT studies for independent single reading versus

concurrent reading

It was decided that the most practical strategy of comparing the concurrent

reading and independent single (i.e. unaided) reading performance for each

radiologist would be for him to read a number of CTs using one method, and then to

switch to the other method after two months. In this way, the radiologist would be

reading in actual screening conditions, potential variability in CT studies (such as the

number and type of nodules per CT) would be adjusted for, and central and local site

radiologists could all be assessed. As such, for the first two months (June-August),

the local radiologists (Radiologists A and B) were instructed to read independently,

while the central radiologists (Radiologists C and D) read concurrently, and the

reading methods were switched between the sites over the second two months

(August-October).

5.2.6 Reading times

Radiologists and radiographers were instructed to record the method and the

times, to the nearest minute, on the CTs they read. The decision to record to the

nearest minute, rather than second, was made so that a meaningful change in reading

time (i.e. measurable in minutes, not seconds) that would translate into a potential

real saving in an actual screening setting could be detected. Recording to the nearest

minute was also less disruptive to reading workflow.

Reading time recordings were saved together with the radiologists' reports on

the UKLS database. Recognising that recording reading times for every CT when
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reading large numbers of screening studies during the UKLS could be difficult, the

aim was to ensure at least two-thirds of CTs read had a recorded reading time.

5.2.7 Reference standard

After both local and central readings had been performed, the radiologists at

the central site (Radiologist C or D) reviewed all identified nodule candidates for

each subject on the database to identify any discrepancies. Arbitration on

discrepancies was provided at the central site by a thoracic radiologist with more

than 20 years of experience, and the final consensus answer was recorded on the

database. All agreed category 2 to 4 nodules and intrapulmonary lymph nodes were

considered positive in the reference standard. The reference standard was thus

composed of any nodules which had been identified and agreed on by both

radiologists, as well as any nodule that had been identified by at least one radiologist,

and subsequently ratified by the expert arbiter, including those radiographer-

identified nodules that had been agreed or amended by a radiologist during

concurrent reading.

5.2.8 Statistical analysis

The numbers of concurrently and independently read CTs were calculated for

each radiologist. Comparisons of the number of reference standard nodules between

concurrent and independent reading datasets for each radiologist were performed

using the two-tailed Mann-Whitney Test (a non-parametric distribution of nodules

was assumed).
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Sensitivity, the absolute number of false positive detections (FPs) and

average FPs per case (expressed as mean and standard deviation) were separately

determined for the cohorts of CTs read independently and concurrently per

radiologist. The sensitivity of each radiologist was calculated by dividing the number

of true positive nodules detected by the total number of nodules in the reference

standard for the cases read by that radiologist. Average FPs per case was calculated

by dividing the total number of FPs by the total number of cases read by that

radiologist. Differences in proportions were compared using the Chi-squared test or

the Fisher's exact test in the case of smaller sample sizes (see section 2.8.2.2) [360,

361] as appropriate.

Differences in reading times between concurrent and independent reading for

each reader were compared using the independent samples t-test. A post-hoc analysis

to determine the correlation between numbers of nodules and reading time was

subsequently performed using Spearman's rank correlation, and differences in

correlation coefficients analysed for statistical significance.

All analysis was performed using Medcalc (version 12.5.0.0, MedCalc

Software, Mariakerke, Belgium). A P value of less than 0.05 was assumed to be

statistically significant.
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5.3 Results

5.3.1 Reference standard

A total of 369 LDCT studies were read during the study period. 123 (33.3%)

of the 369 CT studies did not contain any nodules. The reference standard thus

consisted of 694 nodules in the remaining 246 (67.7%) CT studies. Figure 5.2

illustrates the distribution of the number of nodules per CT study. The majority of

CTs had 1 (23.6%), 2 (16.3%), 3 (8.9%) or 4 (6.8%) nodules. The median number of

nodules per CT was 1, with a range of 1 to 17 nodules. The majority of reference

standard nodules were solid nodules (51.3%) and intrapulmonary lymph nodes

(42.1%) (Table 5.1). Ninety-six point eight percent of nodules were category 1 to 3.

Distribution of nodules
140

120

« 100

is 80
o® 60
o

20

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

No. of nodules

Figure 5.2. Distribution of the number of nodules per CT study.
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Nodule type

Size

category

Solid

(non-IPLN)
Part-solid Non-solid IPLN1 Total

1 NA NA NA 292 (42.1) 292 (42.1)

2 219 (31.6) 2 (0.3) 11 (1.6) NA 232 (33.4)

3 119 (17.1) 8 (1.2) 21 (3.0) NA 148 (21.3)

4 18 (2.6) 1 (0.1) 0 (0.0) NA 19 (2.7)

U2 0 (0.0) 0 (0.0) 3 (0.4) NA 3 (0.4)

Total 356(51.3) 11 (1.6) 35 (5.0) 292 (42.1) 694 (100.0)

Table 5.1. Distribution of nodules according to UKLS size category and nodule type.
Figures in parentheses are percentages of the total number of nodules.
1lntrapulmonary lymph nodes (IPLNs) are category 1 by definition in the UKLS.

2U=uncategorised. Three nodules were categorised as non-solid nodules (Category C)
but could not have their sizes calculated due to a database error.

NA= not applicable.

5.3.2 Number of cases and number of nodules by reading method

The number of cases read by each radiologist varied from 83 to 119 using

independent reading and from 69 to 122 using concurrent reading (Table 5.2).

However, there was no significant difference between the numbers of reference

standard nodules per case in the independent versus concurrent reading cohorts for

any of the four radiologists (Figure 5.3).

Radiologist
A B C D

Independent 83 119 94 84

Reading
Method

Concurrent 88 79 122 69

Rvalue 0.83 0.18 0.41 0.74

Table 5.2. Numbers of cases read by each radiologist using each reading method. P
values are for differences between the number of reference standard nodules per case
between independent and concurrent reading, derived from the Mann-Whitney test.
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Figure 5.3D.

Figure 5.3. No. of reference standard nodules per case for each reading method for
Radiologists A-D.
CR= concurrent reading, IR= independent reading.

5.3.3 Sensitivity of radiologists

The overall sensitivity of each radiologist for the different reading methods is

detailed in Table 5.3. The mean sensitivity for radiologists reading independently

was 77.5 ± 11.2%, increasing to 90.8 ± 5.6 % with the use of concurrent reading. For

all but one radiologist (Radiologist D), statistically significant higher sensitivity was

achieved with concurrent reading compared to independent reading.
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Radiologist
A B C D

Independent 78.9 79.8 62.2 89.2

Methoc? Concurrent 90 4 98.2 84.5 90.1
Difference 11.5 18.4 22.3 0.9

P value 0701 <0.0001 <0.0001 197

Table 5.3. Sensitivity of radiologists for each reading method. Except for P values,
figures shown are percentages. Rvalues are those derived from the Chi-square test. P
values in bold indicate statistically significant results.

5.3.4 False positive detections (FPs)

There was a wide variation in the average FPs per case. While the overall

mean of average FPs per case increased from 0.33 ± 0.20 with independent reading

to 0.60 ± 0.53 with concurrent reading, average FPs per case ranged between 0.06

and 1.38, increasing with concurrent reading for Radiologists A, B and C (and

statistically significant for Radiologists B and C), but decreasing for Radiologist D

(Table 5.4).

Radiologist
B C

D .. Independent 0.31 ± 0.75 0.47± 1.10 0.06 ± 0.25 0.48 ± 0.96Reading ^
Method

concurrent 0.37+0.65 1.38 ± 1.46 0.21 ± 0.61 0.42 ± 0.76

Difference 0.06 0.91 0.15 -0.06

Rvalue 156 <0.001 O03 (169

Table 5.4. Average FPs per case for each reading method. A negative difference
indicates a lower average FP per case with concurrent compared to independent
reading. Rvalues are those derived from the independent samples t-test. Rvalues in
bold indicate statistically significant results.
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5.3.5 Reading times

Radiologists A, B, C and D recorded their reading times for 100%, 77%,

75%, and 90% of their concurrently read cases, respectively, and for 83%, 71%, 85%

and 89% of their independently read cases, respectively. The mean reading times per

case for concurrent reading ranged from 6.2 minutes to 8.6 minutes, compared to 7.0

to 12.4 minutes for independent reading (Table 5.5).

Concurrent reading was faster than independent reading for all radiologists,

but this increase in reading speed was not statistically significant for Radiologist C.

Furthermore, the maximum decrease in mean reading time was just under 4 minutes

(Radiologist A).

Reading
method

A

Radiologist
B C D

Independent 12.4 (11.1,13.5) 8.8 (7.8, 9.8) 7.0 (6.5, 7.5) 8.3 (7.4, 9.3)

Concurrent 8.6 (7.9, 9.3) 6.2 (5.5, 7.0) 6.9 (6.4, 7.4) 7.0 (6.2, 7.8)

Difference -3.8 -2.6 -0.1 -1.3

P value <0.0001 0.0001 0.65 0.03

Table 5.5. Mean reading times of radiologists for each reading method. Numbers
shown are time in minutes, except for P values. Numbers in parentheses are 95%
confidence intervals for the mean. A negative difference indicates a shorter time with
concurrent compared to independent reading. P values are those derived from the
independent samples t-test. P values in bold indicate statistically significant results.
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5.3.6 Relationship between number of nodules per CT and reading time

The finding that concurrent reading was quicker despite there being no

significant difference between the number of reference standard nodules per CT led

to a post-hoc analysis to investigate the relationship between the number of nodules

per CT and reading time. As could be expected, there was a significant correlation

between the number of reference nodules per subject and the time taken for each CT,

and for Radiologists A, C and D, this correlation was stronger for independently read

CTs (Table 5.6). However, the strengthening of this correlation was only statistically

significant for Radiologist D.

Radiologist
A B C DReading

Method

Independent

Concurrent

P value

0.612 (<0.0001)

0.572 (<0.0001)

0.71

0.420 (0.0001)

0.546 (<0.0001)

0.34

0.432 (0.0001)

0.422 (<0.0001)

0.94

0.766 (<0.0001)

0.523 (<0.0001)

0.01

Table 5.6. Rank correlation between number of nodules per patient and time taken.
Figures shown are Spearman's coefficient of rank correlation (Spearman's rho), and
figures in parentheses are Rvalues for significance level. Rvalues in the final row are
for significance levels of the difference between correlation coefficients for
concurrent and independent reading per radiologist. Bold font indicates a statistically
significant P value.
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5.4 Discussion

The current investigation is, to my knowledge, the first evaluation of

radiographers as concurrent readers for pulmonary nodule detection in CT lung

cancer screening. It has shown that the sensitivity of the majority of radiologists in

this study group improved by using radiographers as concurrent readers, with a

statistically significant reduction in mean reading time, but accompanied by a

simultaneous increase in false positive detections.

The improvement in sensitivity in this study was seen for all except the most

sensitive radiologist, but the range of sensitivities of radiologists in this study was

reassuringly comparable to that reported for radiologists (between 40% to 83%), as

discussed earlier in sections 3.4 and 4.4. As such, there is every reason to expect that

concurrent reading with radiographers could improve the sensitivity of the majority

of expert thoracic radiologists.

The mean sensitivity achieved by the radiologists reading independently in

this study (77.5 ± 11.2%) was lower than that in Chapter 4 (82.5 ± 7.7%), although a

statistical comparison of these means is difficult due to the different numbers of

cases read. However, the reference standards in the two investigations were also

different: the reference standard in the current investigation included all

radiographer-identified nodules that had been agreed by at least one radiologist and

an arbiter, or both radiologists, while radiographers' readings were not considered by

radiologists and so not included in the reference standard in Chapter 4. As such, the

denominator of the total number of positive nodules in the current standard may be

larger, so apparently lowering sensitivity during independent reading.
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Of course, the increased average false positive detections per case that

accompanied the increases in sensitivity with concurrent reading is once again a

salutary reminder of the trade-off between sensitivity and "overcalling" of nodules,

especially for the two readers with the greatest sensitivity improvements

(Radiologists B and C). Given the design of the present study, it is not possible to

ascertain whether a radiologist may have designated the same false positives as a

radiographer in the absence of a radiographer mark. However, the fact that the same

radiographers in the current study demonstrated in general higher average FPs per

case compared to radiologists in Chapter 4 implies that radiographers are probably

the main drivers of false positive detections in the concurrent reading scenario.

Intuitively, it could be expected that the increase in FP detection is particularly due to

radiographers identifying a large number of small opacities as nodules, and

subsequent reticence of the radiologists to reject such marks once presented with

them. Certainly, a previous study with CAD has shown that a radiologist's

confidence in designating a small nodule as positive was enhanced when presented

with a CAD mark, even if it did not improve overall accuracy [385],

It is important to put the increase in average FPs per case into perspective

when considering concurrent reading with radiographers as an alternate strategy to

independent reading, as compared to CAD. CAD results in average FPs per case of

3.7 to 4.15 when including nodules as small as 3mm, the size-cut off used for

inclusion in the UKLS and the present study [354, 386]. This rate is much higher

than the highest rate with concurrent reading in the present study (Radiologist B,

1.38). Nevertheless, the consequences that can be triggered by false positives (such
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as increased number of CTs requiring arbitration, follow-up, and increased anxiety to

patients) must be acknowledged.

Concurrent reading also proved statistically significantly faster than

independent reading for three of the four radiologists. However, the statistical

significance of the decrease in time may not translate into a clinically relevant time-

saving benefit for every radiologist; in this study, Radiologist A would save just

under 4 minutes per subject with concurrent reading, whereas Radiologist C was

hardly affected by it. Nevertheless, when extrapolated to the 187,500 or so CTs per

year that would need to be read in a UK national screening programme (Dr A

Devaraj, written communication, 22nd February 2013), a time saving of 4 minutes per

CT for each radiologist becomes significant. More importantly, concurrent reading

did not increase the mean reading time.

The reasons for the variation in time-saving are probably very much

radiologist-dependent. Much of the time that may be saved when using radiographers

in concurrent reading may be attributable to the time taken to fill in the nodule input

proforma for each opacity. Although the time taken to report each nodule for each

reader was not recorded (as this would not be practical), it takes approximately 0.5

minutes to complete the reporting of a single nodule, from volumetric segmentation

to filling in and electronically pasting the proforma into the nodule report, whereas

the review of a radiographer mark takes only a few seconds. However, this time-

saving could be nullified by the need to review a large number of identified opacities,

especially if modifications to the interpretation need to be made. This may explain

why the correlation between the number of nodules per CT and reading time was

poorer for concurrent reading. Whereas an increase in nodules per CT can be
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expected to cause an increase in reading time when reading independently, the

interaction of numbers of nodules and the number of marks requiring changes or

deletion may all contribute to a less linear relationship between nodule number and

reading time in concurrent reading.

In contrast to concurrent reading using radiographers, there is some evidence

for concurrent reading using CAD in lung nodule detection, with evaluations in two

studies [294, 354], Both of these studies assessed CAD as a second reader and as a

concurrent reader, using a concurrent reading sequence similar to the current

investigation, and performing concurrent and independent reading on the same CTs

after an interval of 12-16 weeks and 2 months respectively. However, both studies

also have important methodological differences.

Beyer et al. evaluated four radiologists reading 50 CTs performed for varying

clinical indications under experimental conditions [294], Independent and concurrent

reading were performed on the same CTs 12 to 16 weeks apart. An individual who

was not part of the reading process timed the radiologists. They found that while

concurrent reading reduced reading time (by a mean of only 19.8 ± 14.5 seconds), in

contrast to the current investigation, pooled sensitivity using concurrent reading with

CAD resulted in either lower (for nodules < 1.75mm) or equivalent (for nodules >

1,75mm) sensitivity compared to independent reading. They hypothesised that this

apparently paradoxical result could have occurred due to the interaction of two

effects: (1) a decreased vigilance, as a result of a shortened reading time, and (2) an

increase in sensitivity due to additional CAD-identified nodules. Their reference

standard was established by including all CAD marks accepted by all radiologists,

and review by a consensus panel of two radiologists of all opacities detected by at
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least one radiologist (whether or not detected by the CAD system). All CAD marks

not detected by any radiologists did not form part of the reference standard. As such,

their reference standard was not dissimilar to the current study. However, as

explained earlier, the findings of the present study do not support their hypothesis:

radiologists' sensitivity increased with concurrent reading, and there were more false

positives, possibly signalling an increased, not decreased vigilance. If anything, the

increased stringency of their reference standard as result of using two arbiters in

consensus would have made the denominator of total positive nodules smaller, and

so should have resulted in overall increased sensitivity compared to the readers in the

present study, as has been previously illustrated by Armato et al. [285] and discussed

in Chapter 1.

In contrast, Foti et al. found that concurrent reading with CAD increased

sensitivity for nodule detection in 100 patients with pulmonary metastases, but not to

a level reaching statistical significance [354], and with an increased mean reading

time (by 60 seconds). However, the two radiologists performing concurrent reading

were different to the two radiologists who performed the initial independent reading.

They have thus compared two different pairs of radiologists with no statement

regarding the baseline independent sensitivity of the radiologists performing

concurrent reading, and so their conclusions should be interpreted with caution. It

was also unclear from their study whether the reading time stated included the time

taken for CAD to process the study, but given the small increase in reading time, it is

unlikely that the CAD processing time was taken into account.

The present study has some limitations. The concurrent and independent

reading cohorts consisted of different patients, unlike the previous studies mentioned
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above [294, 354], However, this was the most practical way of performing this study

prospectively, with real lung screening cases being read under actual reporting rather

than experimental conditions, and as such has practical applicability. To minimise

potential variations in the number of nodules per CT (in other words, the "level of

difficulty" of each CT) affecting the cohorts, a strategy of switching the reading

methods after 2 months was adopted. It is reassuring that the number of reference

standard nodules per subject between reading methods was not different for any of

the four radiologists. The strategy of switching between reading methods would also

have mitigated variations in each radiologist's performance during one or other

period.

Timing was performed by each individual, to the nearest minute, and not

second. A greater statistically significant reduction in time could potentially have

been seen if reading times had been recorded to the second, but it was important in

this study to detect time reductions that would translate into clinically meaningful

reductions, i.e. minutes, not seconds. There was no way to blind each radiologist to

the reading method he was using, by definition, and so there could have been a

selection bias of the radiologists in choosing which cases they recorded times for.

Again, this was the most practical way to record timing given the large volumes of

CTs to be reported.
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5.5 Summary

• This study demonstrated that radiologists' sensitivity in lung nodule detection

could be improved with the use of radiographers as concurrent readers.

• An increase in false positive detections with radiographer-assisted concurrent

reading occurred, but this increase was still below that reported for CAD

systems.

• Concurrent reading with radiographers was also faster than single reading,

but on a per case basis the time saved was relatively modest.
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CHAPTER 6: PERFORMANCE OF RADIOGRAPHERS
COMPARED TO COMPUTER-AIDED DETECTION

(CAD) IN LUNG NODULE DETECTION FOR LUNG
CANCER SCREENING

6.1 Introduction

In the preceding chapters, it has been inferred that radiographers have similar

sensitivities and lower average false positive detection rates per case than some

computer-aided detection (CAD) systems in the published literature. The aim of this

investigation was to directly compare radiographer performance with that of a CAD

system for screening studies performed in the UKLS trial.

6.2 Materials and Methods

6.2.1 Study design and case selection

Between April and June 2012, the baseline CT examinations of 108

consecutive participants in the LDCT arm of the UKLS trial were read. This time

period was chosen to ensure that these examinations had not been included in the

investigations performed for Chapters 4 and 5.

6.2.2 LDCT evaluation, arbitration and consensus

The same radiographers in Chapters 4 and 5 performed CT reading

prospectively: Radiographer 1 at Local Site 1, Radiographer 2 at Local Site 2, and

Radiographers 3 and 4 at the central site. In addition, the same UKLS radiologists
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who had read examinations in Chapters 5 and 6 had also read these examinations.

Nodules were classified according to the UKLS definitions described in section

2.7.1, and the procedure for nodule recording was exactly the same as described in

sections 2.6.2 and 4.2.2.

Radiographers and radiologists performed evaluations independently and

uploaded these to the UKLS database, and radiologists did not refer to radiographers'

recordings during the course of their reading. To create a database of all recorded

nodules, the category and location of opacities identified by each radiographer and

radiologist (available on the UKLS database) were separately recorded on a

Microsoft Excel spreadsheet (version 2007, Microsoft Corp., Redmond, CA).

6.2.3 Computer-aided detection (CAD) software

The CAD system used for this study (Visia CT Lung System version 3.1,

Mevis Medical Solutions, Bremen, Germany; formally known as the ImageChecker

CT Lung system, R2 Technology, California) is approved by the US Food and Drug

Administration (F.D.A.) for commercial use in the detection of lung nodules.

The CAD algorithm detected and analysed focal opacities by first isolating

the lung parenchyma using threshold-based segmentation methods. The software

then used techniques such as 3D region-growing and attenuation thresholding to

identify groups of voxels with attenuation numbers above a pre-specified threshold,

and created regions of interest (ROIs) in each image corresponding to these groups.

These ROIs represented potential candidate lesions for the software to analyse. Most

of the candidate lesions represented blood vessels and airway walls; thus, the
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software needed to distinguish these from true abnormalities. It did this by

calculating geometric parameters for each ROI including size, shape, density and

location. These features were used to classify each lesion by comparison with a

reference database of expected appearances of nodules and vessels. The software

then used a decision-making tree to assign a likelihood rating to a lesion, as to

whether it represented a true lesion. The CAD system would only highlight a lesion

to the reader with a mark (Figure 6.1) if the likelihood rating exceeded a pre-defined

threshold.

Figure 6.1. Nodule mark in the left lower lobe by the Visia CAD system.

The Visia CT Lung System was configured to detect solid nodules if greater

than 4mm and less than 30mm in diameter, but it could detect smaller and larger

nodules if they were dense, well-defined and completely surrounded by aerated lung

It was also calibrated to have an average false positive detection (FP) per case of 2.0

It was not designed to detect part-solid or non-solid lesions. It was able to generate

volumetric measurements of each lesion. A user could also click on (and annotate)
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other potential nodule candidates not highlighted by the CAD. If the system accepted

such a candidate, it would generate volumetric measurements of this candidate as

well. Even if it was not able to accept the candidate and generate volumetric

measurements, the system still allowed the additional nodule to be annotated and

measured using callipers. A final report was then generated which indicated the slice

number, whether it was detected by CAD or the user, and size and density

parameters.

The CAD system had two components: a server and a workstation. The server

ran on a 64-bit Windows XP Professional operating system (Microsoft systems,

Richmond, Virginia) that was based on a network server at the Royal Brompton

Hospital. The workstation ran on a normal Windows-based PC.

6.2.4 CAD evaluation and comparison with radiographers and

radiologists

The selected 108 CTs were imported from PACS in Digital Imaging and

Communications (DICOM) format for processing on the workstation. Once

processed, the CAD results were sent to the server, and CAD marks were available

for review on the workstation.

Readings from radiographers and radiologists were visually matched to the

CAD readings on the CAD workstation. Opacities that CAD had identified were

designated CAD-positive. In order to accurately compare CAD readings against

those of radiographers and radiologists, only nodules that the CAD should be

expected to identify were included for comparison. However, readers in the UKLS
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would designate any nodule greater than 3mm as positive according to UKLS

definitions, while the CAD, with its minimum diameter threshold of 4mm, would not

necessarily do so. Opacities that had been identified by at least one radiographer or

radiologist but that had been missed by CAD were thus measured. If they exceeded

the size thresholds or they were subsolid, they were excluded. Any cases of diffuse

infection thought secondary to infection (by the arbitrating radiologist) were also

excluded. Thus, only nodules that were solid and met size criteria were considered

CAD-negative, and radiographer - or radiologist-positive as appropriate. The

exclusion of nodules that the CAD could not be expected to identify, based on its

operating parameters, ensured that the final dataset of nodules considered positive

was not biased towards the radiographers and against the CAD system.

6.2.5 Reference standard

Any opacity agreed by both local and central radiologists was designated a

reference standard nodule and required no arbitration. Opacities were presented for

arbitration if they had been identified by only one radiologist, or by only a

radiographer or CAD and not by at least one radiologist. Arbitration of these

discrepancies was provided at the central site by a thoracic radiologist with more

than 20 years of experience (the same arbiter as for Chapters 4 and 5).

6.2.6 Statistical analysis

As this study evaluated the performance of radiographers against CAD, the

readings of radiologists were excluded from comparison. The number of cases read
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by each radiographer was calculated. For each radiographer and for CAD, sensitivity

was calculated by dividing the number of true positive nodules identified by the total

number of true positive nodules in the reference standard. Sensitivity for subgroups

of nodules measuring < 5mm & > 5mm respectively was also calculated. The

average FPs per case (expressed as mean and standard deviation) was calculated by

determining the total number of FP detections for each case, summing this number

and dividing it by the total number of cases read. Each radiographer was compared

against CAD only for the cases read by both. Sensitivity was compared using

McNemar's test, and average FPs per case were compared using the paired samples

t-test.

All analysis was performed using Medcalc (version 12.5.0.0, MedCalc

Software, Mariakerke, Belgium). A P value of less than 0.05 was assumed to be

statistically significant.

6.3 Results

6.3.1 Included studies

Of the 108 baseline CT examinations performed during this study period, 9

cases had to be excluded. Four cases were excluded due to technical difficulties that

led to the CAD server being unable to process the CTs. Three cases were excluded

because they contained no nodules suitable for CAD analysis (i.e. no solid nodules

between 4mm and 30mm in diameter). Two cases were excluded because they were

deemed to contain infection-related diffuse nodularity by the arbitrating radiologist.
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As such, the final number of cases that were eligible for CAD analysis was 99

examinations. Radiographers 1, 2, 3 and 4 read 40, 36, 47 and 43 cases respectively.

6.3.2 Reference standard

Thirty-two (32.3%) of the 99 CT studies did not contain any nodules. The

reference standard thus consisted of 180 nodules in the remaining 67 CT studies. The

majority of CTs had 1 (29.3%), 2 (14.1%), 3 (5.1%) or 4 (6.1%) nodules per study

(Figure 6.2). The median number of nodules per CT was 1, with a range of 1 to 8

nodules.

The mean diameter of reference standard nodules was 6.6 ± 3.3mm (median

5.7mm, range 2.8-25.2mm).

Of the 180 reference standard nodules, 125 (69.4%) were identified by at

least one radiologist, 24 (13.3%) by at least one radiographer but not by any

radiologist or CAD, 21(11.7%) by CAD only, and 10 (5.6%) by both CAD and at

least one radiographer but not by any radiologist.
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Figure 6.2. Frequency distribution of the number of nodules per CT study.

6.3.3 Comparison of sensitivity

The mean sensitivity of radiographers was 70.1 ± 13.0 % (range, 53.3%-

85.0%) compared to an overall CAD sensitivity of 58.9%. Only Radiographer 2 had

a significantly higher sensitivity compared to CAD (85.0% versus 63.3%

respectively, P < 0.05) for the same cases read, while the sensitivities of the

remaining three radiographers did not differ significantly from CAD (Table 6.1).
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1
Radiographer

2 3 4

No. of cases read 40 36 47 43

71.8 85.0 70.4 53.3Sensitivity of
radiographer (%)

Sensitivity of CAD 5g 2 63 3 5yA 63 3
( /o)

Difference 12.6 21.7 13.3 -10.0

P value 0.19 0.02 0.07 0.26~

Table 6.1. Sensitivity of radiographers compared to CAD. P values are derived from
McNemar's test. P values in bold indicate statistically significant results.

When subgrouped according to reference standard nodules with diameter <

5mm and > 5mm respectively, no statistically significant difference was found

between radiographer and CAD sensitivity (Table 6.2).

Radiographer
2 3

Size (mm) <5 >5 <5 >5 <5 >5 <5 >5

Radiographer
sensitivity 77.3 69.4 87.0 83.8 71.0 70.1 52.0 54.3
(%)

CAD

sensitivity 54.5 61.2 52.2 70.3 48.4 61.2 48.0 74.3
(%)

Difference

(%)

P value

22.7 8.2 34.8 13.5 22.6 8.9 4.0 20.0

0.23 0.56 0.06 0.27 0.14 0.35 1.00 0.12

Table 6.2. Sensitivity of radiographers compared to CAD for nodules <5mm and >
5mm. P values are derived from McNemar's test.
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6.3.4 Comparison of average false positive detections per case

The average FPs per case by the CAD system across all 99 CT examinations

was 2.19. When comparing only the same cases read by both CAD and a particular

radiographer, the average FPs per case was lower than that of CAD for all four

radiographers, and was statistically significantly lower for three of the four

radiographers (Table 6.3). No radiographer exceeded more than 2 FPs per case, on

average.

Radiographer
2 3

Average Radiographer 0.65 ± 1.25 1.58 ±2.03 1.15 ±1.41 0.16 ±0.43
FPs per

case CAD 2.10 ±2.28 2.19 ±2.82 2.36 ± 2.67 2.09 ± 2.20

Mean 1.45 0.61 1.21 1.93
difference

P value 0.0002 0.10 0.0004 <0.0001

Table 6.3. Average FPs per case for each radiographer as compared to CAD. Rvalues
are those derived from the paired samples t-test. Rvalues in bold indicate statistically
significant results.

6.4 Discussion

The radiographers in this study demonstrated sensitivities that were

comparable, and possibly superior, to that of a commercially available CAD system

reading the same CTs for the detection of pulmonary nodules in baseline lung cancer

screening CT examinations. This comparable sensitivity was maintained even when

nodules were subgrouped according to a higher diameter threshold of 5mm or greater

- that is, the same higher threshold diameter at which radiographers had already

demonstrated greater alignment with radiologists' sensitivity in Chapter 4. In
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addition, the majority of radiographers demonstrated a significantly lower average

number of FP detections per case than the CAD system.

CAD systems have been extensively investigated as second readers in

double-reading scenarios to aid radiologists and shorten reading times. Various

studies have demonstrated the ability of CAD to either improve the performance of

experienced radiologists, or to augment the performance of junior radiologists or

residents such that it becomes comparable to accredited radiologists [288, 289, 291,

293, 336, 337, 346-348, 353, 371, 387], However, an acknowledged trade-off in the

increased sensitivity of a CAD system is the penalty of increased false positive

detections (FPs).

CAD systems vary widely in their reported baseline sensitivities. A literature

review by Li et al., for example, showed that the variation in sensitivity between nine

systems was as much as 21.4% (between 69.8% and 91.2%), with average FPs of

between 0.3 and 15 per case reported [384], This variation between systems can be

expected due to differences in detection techniques, CT acquisition and

reconstruction parameters, and the databases of "ground truth" that have been used in

the establishment of thresholds for lesion identification. A further source of

variability is introduced by the use of different reference standards in different

studies, which can have a profound impact on sensitivity [285], Thus, comparison

between different studies using different CAD systems is extremely difficult, and

efforts to combine these algorithms and encourage more open assessment are

underway [295],
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However, even when the same CAD system is evaluated in different studies,

markedly variable results have been reported. This is best illustrated by three

evaluations of predecessor versions of the CAD system (previously known as

ImageChecker) used in the current study. Lee et al. investigated the ImageChecker

CT LN-1000 CT and reported a CAD sensitivity of 60%, with an average of 1.56 FPs

per subject [387], However, Das et al. compared the ImageChecker system to the

Nodule Enhanced Viewing (NEV) system (Siemens Medical Solutions, Forchheim,

Germany) and quoted a sensitivity of 73% and an average of 6 FPs per case [291],

Godoy et al. assessed the performance of ImageChecker CT V2.0 for pathologically

proven lung cancers that manifested as nodules greater than 4mm, finding a

sensitivity of 87.7% and average FPs of 0.9 per case [388], The current results

(sensitivity 58.9%, average FP detections of 2.15 per subject) thus most closely

approximate those of Lee et al., but such variation again can be attributable to

differences in reference standards. For example, Lee et al. excluded CT examinations

with multiple nodules (more than 6 nodules) from analysis while this has not been

done in the current study, unless such nodularity was in keeping with infection.

There are also conflicting reports of the impact of CAD-identified FPs on

readers' confidence in nodule designation. In a mammography study, a CAD system

operating at high average FPs per case lowered confidence in the system, because

readers had to review a large number of CAD marks, and so were reluctant to accept

these marks [389], As such, there may be an element of the CAD "crying wolf' on

too many occasions, resulting in more CAD rejections, whether true or false positive.

However, Nietert et al. recently demonstrated that when radiologists had less than

100% "confidence" in designating a particular opacity as a nodule, their
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"confidence" was significantly enhanced by the presence of a CAD mark, although

this did not help improve reader accuracy [385], Indeed, readers' FP rates per case

seem to increase with CAD as a second reader [387, 390], The pattern of increase is

also interesting: if an increasing number of CAD detections is sequentially presented

to a reader, an initial sharp increase in true positive detections is subsequently

attenuated, and FP detections increase, suggesting that there is an optimum FP

operating point beyond which the benefit of CAD is negated [290], Of course, this

operating point would again differ between systems.

Given the many wide variations that can occur with a CAD system, the

alternative of using a radiographer as a human aid to detection should thus not be

discounted. As demonstrated in this study, the sensitivity of radiographers for

detecting solid nodules that would warrant follow-up was comparable to that of

CAD. Furthermore, the number of nodules identified by only radiographers or only

CAD but not by any radiologist was almost equal, suggesting that the additive effect

of either method on the sensitivity of a radiologist would probably be equal (although

each method would result in different nodules being called and missed).

The argument for using CAD rather than radiographers as aids in pulmonary

nodule detection are the same as against using any human reader, in that fatigue may

interfere with the nodule reading task, there may be a high turnover of personnel,

more person-hours are required overall, and greater demands may be placed on

infrastructure (e.g. more reporting workstations needed). However, the radiographers

in the current study read the CT examinations prospectively in the course of the

UKLS pilot trial, and not under experimental conditions. Despite this their sensitivity

at the very least matched the CAD system, suggesting that a radiographer's vigilance
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can be maintained without adversely affecting performance. Importantly, the

maintained sensitivity of radiographers did not come at the expense of higher

average FP detections per case.

The notion that a CAD system can be recalibrated, by adjusting the average

FPs per case and sensitivity such that it is more aligned with a particular group of

readers, has been explored under experimental conditions [289, 290], However, these

parameters are not adjustable in commercial software such as the CAD system in this

study, and so such re-alignment is presently a fallacy. Also, the reference standards

for CAD nodule identification - the databases of "ground truth" that have been used

in the establishment of thresholds and feature classification - are not known to the

reader, and cannot be re-adjusted. In contrast, findings can be discussed with

radiographers, and the reasons for rejections of nodule marks explained. All

radiographers in a particular screening programme can be evaluated on the same

training and testing datasets, and re-training is possible. In this way, direct

"calibration" by a radiologist is more feasible for radiographers than it presently is

for CAD. A radiologist is arguably more likely to have confidence in an assisted

reader when that reader can be aligned with the radiologist in this manner. Of course,

such "calibration" by a radiologist with inherently low sensitivity could also have a

detrimental effect on radiographer's sensitivity, underscoring the need to ensure that

reading radiologists in a screening programme meet a minimum acceptable level of

sensitivity at the outset.

Another important advantage of using radiographers is that their time-saving

role extends not only to nodule detection, but to logistical tasks such as matching

nodules between readers on a database, as well as nodule matching on baseline and
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follow-up subjects. Although nodule matching software for comparing studies is

available and accurate [391], human confirmation of matching accuracy will still be

required. This time-saving should not be underestimated in a screening programme,

as experience from the UKLS pilot trial suggests considerable effort needs to be

expended on such tasks.

Radiographers can also alert the radiologist to findings (such as a large

nodule) that need urgent referral. CAD systems such as the one used in this study do

not currently have the functionality to generate alerts for urgent findings.

This study has some limitations. Only solid nodules were included, as the

CAD algorithm was not optimized to detect non- or part-solid nodules. The impact of

CAD (whether as a concurrent or second reader) on radiologists' sensitivity in the

setting of an actual lung screening trial cannot be directly evaluated, as there was no

precedent or ethical approval for CAD to be used in such a decision-making capacity

in the UKLS pilot trial. As with all studies on nodule detection in the absence of

histopathological proof, the reference standard was determined by radiologists'

agreement.
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6.5 Summary

• Sensitivity of radiographers for CT pulmonary nodule detection was

comparable, and possibly superior, to that of the CAD system in this study.

• The comparable sensitivity of radiographers was maintained both for nodules

smaller than 5mm, and nodules equal to or greater than 5mm.

• The majority of radiographers had significantly lower average false positive

detections per case compared to CAD.

• Radiographers may thus be able to act as aids for nodule detection that are at

least as sensitive as CAD, and with a potentially lower false positive penalty.
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CHAPTER 7: THE IMPACT OF THE NUMBER OF
READERS AND METHODS OF ARBITRATION ON
READER PERFORMANCE IN LUNG NODULE
DETECTION

7.1 Introduction

The numbers of readers used in lung cancer screening studies with low dose

CT have varied. Some have used single reading [ 151, 164, 392] whereas the majority

have used double-reading strategies [142, 146, 150, 156, 158-160, 174, 393], The

rationale behind using two readers is that lung nodule detection rates are improved

[334, 336] and hence potentially fewer lung cancer are missed. However few studies

have evaluated the impact of reader numbers on lung nodule identification, and these

have been limited in certain ways.

First, the reference standards in previous studies of nodule detection

performance have varied in their derivation. The reference standard usually

incorporates the readings of observers, as well as an expert opinion. The expert

opinion may be that of a single radiologist only [334], or a consensus opinion of two

[289, 290, 293, 294, 336, 337] or sometimes even three [345, 346] experienced

radiologists. The variation in experience of these experts may in turn influence the

reference standard [394], Additionally, the expert or experts may either perform an

initial independent search ("free-search") for nodules themselves, followed by a

review of all positive findings identified by the observers (directed search), or they

may only perform the latter.
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In addition the issue of resolving discordant readings has not been fully

addressed in previous studies. Discordant readings arise because one radiologist has

missed (a discrepancy in detection) or deliberately chosen to ignore (a discrepancy in

interpretation) a finding. Discrepancies between radiologists can be resolved in a

variety of ways, including:

1. Combining radiologists' readings (which assumes all discordant

readings are positive findings, regardless of whether the discordance

is due to differences in detection or interpretation) [334, 342, 343];

2. A process of consensus where readers discuss individual discrepancies

[159, 393] to determine if these findings should be designated

positive, thus facilitating debate when there are discordances in both

detection and interpretation. This method is commonly accepted both

as a valid method of resolving discrepancy [208, 344], However,

consensus interpretation is itself subject to inherent limitations such as

"groupthink" [344];

3. Using an independent arbiter;

4. Using a form of "internal" arbitration where a reader is independently

shown and asked to form an opinion on nodules identified by other

readers and not by themselves [285, 395]; and

5. A combination of these methods [142, 156, 174],

The previous chapters have shown that radiographers can assist radiologists

in lung nodule detection. However, regardless of whether radiologists read

independently or concurrently, the final interpretation of an opacity rests with
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radiologists, and thus more needs to be known about the impact of the numbers of

readers and of methods of resolving discrepancy.

Therefore, the purpose of the current investigation was to evaluate the impact

of double- and triple-reading on lung nodule detection accuracy, and to assess the

effect of different methods of arbitration on this detection accuracy.

7.2 Materials and methods

7.2.1 Construction of the reading dataset

The CT studies used in this study were all obtained from the NELSON study,

as described in Chapter 2. From the 202 procured scans, 100 CT studies were

randomly chosen that contained a variable mix of nodules (as identified by NELSON

readers). Fifteen of these studies could not be processed by the LungCARE

application and were excluded. Thus, 85 CT scans formed the total dataset for this

investigation, hereon referred to as the reading dataset.

7.2.2 CT reading

7.2.2.1 Reader training and image manipulation

Five expert thoracic radiologists who work in different institutions were

invited to take part in this study. The radiologists had different levels of radiology

experience: Reader A, 19 years; Reader B, 13 years; Reader C, 7 years; Reader D, 21

years; and Reader E, 9 years.
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All radiologists were given a tutorial on usage of the LungCARE software on

the Syngo workstation, including image manipulation and measurement tools. The

radiologists were also given examples of the nodules they were being asked to mark

based on the nodule definitions below. These examples were taken from NELSON

CT examinations which had been obtained during the procurement exercise but

which were not part of the reading dataset, to avoid recall bias.

Studies loaded into LungCARE were presented in a 2 x 2 viewing partition

with a default window setting level -500 HU, width 1500 HU, and arranged in the

following manner: top left panel, maximum intensity projections (MIPs) with a

default setting of 10mm thickness; top right panel, lmm-collimation axial images;

and bottom left panel, 0.7mm-collimation coronal images. The bottom right panel

was initially blank, and was used to display volumetric segmentation of a selected

nodule (Figure 7.1).
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Figure 7.1. Example of marking and annotation of a nodule within LungCARE by a
radiologist on an anonymised LDCT study.

Readers were free to alter MIP thickness and window settings. Readers were

not asked to record volumetric measurements of each nodule, nor any nodule

characteristics, so that there was no interruption to their workflow.

Nodules were marked and annotated by a reader using the "set marker" and

"annotate" options respectively, both accessible on a right mouse click. The

"annotate" feature provided a free text box where readers inserted their

categorisation of an opacity according to the definitions in Table 7.1 below. Each

reader saved their readings as a DICOM structured report (DICOM SR) with their

initials as a unique identifier.
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7.2.2.2 Nodule characterisation and reading timeframe

The radiologists performed two rounds of reading each.

First reading (R1)

During the first reading (Rl), each radiologist performed a free search of the

entire CT dataset, and classified all opacities as positive or negative (Table 7.1). A

nodule was defined according to the Fleischner Society Glossary of Terms for

Thoracic Imaging - that is, a rounded or irregular opacity, well or poorly defined,

measuring up to 3cm in diameter [230],

Category Definition
Definite non-calcified solid nodule > 3mm in maximum transverse

diameter;

OR

any non-solid or part-solid nodule;

Positive
OR

an intrapulmonary lymph node, that satisfied all 5 criteria of:
-a smooth margin
-an ovoid or triangular (but not round or spherical) shape
- < 8mm in maximum transverse diameter
- within 5mm of the pleura (or lies within an interlobar or accessory

fissure)
- at least one interlobular septum radiating from its surface

A non-nodular opacity, that did not have all the characteristics of a
nodule or intrapulmonary lymph node (e.g. a linear or curvilinear
opacity);

OR

Negative A very small opacity, that met the definition of a nodule but was <
3mm

(NB: Radiologists were asked to ignore opacities that they judged to
be an obvious benign opacity (e.g. scar-like opacities or nodules with
a benign pattern of calcification)

Table 7.1. Definition of opacities.
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The purpose of requiring radiologists to mark opacities that were considered

negative was to subsequently allow the distinction to be made between opacities that

were missed and those that had been deliberately ignored.

Following the completion of Rl, the DICOM SR of each reader was reviewed

in LungCARE to identify each recorded opacity. As LungCARE provides only z-axis

and not x- and y-axis coordinates, each opacity was visually matched to the marks on

LungCARE using a separate open-source DICOM software package (Osirix version

4.1.1, Osirix Foundation, Geneva, Switzerland) capable of recording all 3 spatial

coordinates, so that each nodule had a unique set of identifying coordinates. In this

way, two nodules within the same axial slice could be spatially distinguished and not

mistaken for each other.

The designation of each opacity as positive or negative was also recorded for

each reader on Osirix. The spatial coordinates and designations of each opacity were

tabulated for each reader using a commercially available PC database (Microsoft

Excel version 2007, Microsoft Corp., Redmond, CA, USA). Once all detected

opacities were matched and tabulated in this manner, it was possible to generate, for

each radiologist, a list of opacities that had not been recorded by him or her, but had

been identified by at least one other radiologist.
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Second reading (R2)

In the second reading (R2), each radiologist was directed to opacities that had

not been recorded by them but had been identified as a positive nodule by at least

one other radiologist, and asked to categorise them as positive or negative. Each

radiologist was not shown the number of other radiologists who had identified the

opacity. This was done to prevent a "forced" consensus, whereby a radiologist's

opinion might inadvertently be influenced by the opinion of the majority.

7.2.3 Derivation of the reference standard

It was decided at the outset that for a panel of five radiologists, agreement

between any four radiologists after R2 as to the positivity or negativity of a nodule

would constitute the reference standard. A reference standard requiring all five to be

in agreement was regarded as being too stringent, and would have resulted in a small

number of nodules within the reference standard. In turn, this could have spuriously

elevated sensitivity [285] and could also have excluded potentially important

nodules. A reference standard requiring only three radiologists to be in agreement, on

the other hand, was regarded as unsatisfactory, as it would have required only a small

majority to be in agreement.
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7.2.4 Simulation of reader combinations and methods of arbitration

With five radiologists it was possible to simulate 10 pairs of double-readers

and 20 combinations of triple readers. The complex permutations and combinations

that arose from these pair and triplet-combinations are illustrated in section 7.3.

7.2.4.1 Double-reading

In double-reading, there are a variety of methods available to deal with

discordant readings. As indicated in the introduction, a method commonly used is

"consensus" whereby readers discuss (often alongside one another) discrepancies and

decide upon a final answer. However, this method was not used because of its

inherent limitations [344], Instead four possible ways of dealing with discrepancies

in double-reading were evaluated:

1. Double-reading with no arbitration:

In this scenario, any finding deemed positive in the first round of

reading by one OR other radiologist in the pair was considered

positive for that pair, without any need for arbitration. In other words

readers' positive nodules were combined.

2. Double-reading with only internal arbitration:

In this scenario, a reader's interpretation of nodules identified by

another radiologist but not by him or her was taken into account. After

the second round of reading (R2), opacities which were considered

positive by both parties were deemed as positive. Opacities that still

had discrepant designations were considered negative.
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3. Double-reading with only external arbitration:

In this scenario, each radiologist within a pair was assumed to only

have performed a single round of reading (Rl), and would not have

had the opportunity to view the other radiologists' detections. An

opacity identified by both radiologists was accepted as positive

without any arbitration. Any opacity designated a nodule by only one

radiologist was referred for external arbitration by an independent

thoracic radiologist with 10 years of experience.

4. Double-reading with internal arbitration followed by external

arbitration:

In this scenario, readers' interpretation after both R1 and R2 was

taken into account (akin to method 2 above), but this time with

external arbitration of outstanding discrepancies by an independent

reader (the same independent thoracic radiologist as in method 3

above).

7.2.4.2 Triple reading

Triple reading was modelled by combining each pair after R2 with one of the

remaining three readers. For each pair, there were 3 possible triplet combinations,

giving rise to 30 triplet combinations in total. For a particular triplet, an opacity was

regarded as positive if it had been identified by at least two of the three radiologists.
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7.2.5 Measurement of opacity size

The maximum and minimum transverse diameters of each opacity were

recorded, and the average diameter calculated. These measurements were performed

separately by a radiology resident with three years of general radiology experience,

to ensure that this task did not distract any of the five radiologists in performing their

primary functions of detection and interpretation during the two rounds of reading.

7.2.6 Statistical analysis

The total number, median and range of all opacities and of reference standard

nodules identified in the 85 CT studies was calculated. Average nodule diameter for

both reference standard nodules and negative opacities was expressed as mean,

standard deviations, median and range.

Sensitivity and specificity were calculated as explained in Chapter 2. The

following comparisons of the sensitivities and specificities of the different methods

of reading and arbitration were made:

1. Double-reading with no arbitration versus single reading

2. Double-reading with only internal arbitration versus single reading

3. Double-reading with only external arbitration versus single reading

4. Double-reading with only external arbitration versus double-reading

with only internal arbitration
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5. Double-reading with internal arbitration followed by external

arbitration versus single reading

6. Double-reading with internal arbitration followed by external

arbitration versus double-reading with only internal arbitration only

7. Triple reading versus double-reading with internal arbitration.

All comparisons were made using McNemar's test. All analysis was

performed using Medcalc (version 12.5.0.0, MedCalc Software, Mariakerke,

Belgium). Results were considered statistically significant if the P value was less

than 0.05.
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7.3 Results

7.3.1 General data

All subjects were male, aged 53-79 years old (mean 62.6 years, median 63).

Three of the 85 CTs contained no opacities identified by any of the five radiologists

A total of 528 opacities were identified by all radiologists in the remaining 82 CTs,

corresponding to 6.44 nodules per subject. A range of 0 to 22 opacities (median 5)

were identified per subject. The distribution of subjects according to the number of

opacities is shown in Figure 7.2.

16

14

012345678 9 1011 121314151617181920 2122

No. of identified opacities per subject

Figure 7.2. The number of identified opacities per subject.
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7.3.2 Reference standard

Of the 528 opacities, 186 (35.2%) met the reference standard criteria (i.e.

agreed as a nodule by any four of five radiologists) in 64/85 patients (75.3%). The

nodules comprising the reference standard had a mean diameter of 4.6 ± 1,6mm

(median 4.4mm, range 2.1mm to 15.6mm). The negative opacities had a mean

diameter of 3.5 ± 1.3mm (median 3.4mm, range 1.5 to 13.3mm).

7.3.3 Performance of individual radiologists

The sensitivity and specificity of the individual radiologists is shown in Table

7.2. The mean and median sensitivity were 64.5% and 58.6% respectively; the mean

and median specificity were 84.6% and 89.3% respectively.

Radiologist A B C D E

Sensitivity (%) 86.6 74.7 52.2 50.5 58.6

Specificity (%) 66.7 85.2 89.3 91.6 90.4

Table 7.2. Performance of individual radiologists.
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7.3.4 Summary of comparisons

The effects of double- and triple reading and methods of arbitration are

summarised in Table 7.3.

Comparison Effect on sensitivity Effect on specificity

Double-

reading
No arbitration

vs single
reader

Internal
arbitration vs

single reader

External
arbitration vs

single reader

External
arbitration vs

internal
arbitration

Internal and
external

arbitration vs

single reader

Internal and
external

arbitration vs

internal
arbitration

Increase Decrease Unchanged Increase Decrease Unchanged

20/20 0/20

8/20

4/10

9/10

2/20

11/20 4/20

2/10

0/20

10/20

5/20

4/10

0/20 20/20

16/20

4/20

0/10

18/20 0/20 2/20 4/20

1/20

6/20

10/10

10/20

0/20

3/20

10/20

0/10

6/20

0/10 1/10 0/10 10/10 0/10

Triple
reading
vs internal
arbitration

30/30 0/30 0/30 0/0 30/30 0/30

Table 7.3. Summary of effects of double- and triple reading methods on sensitivity and
specificity. Figures are proportions of pairs (for double-reading) or triplets (for triple
reading).
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7.3.5 Performance of double-reading and arbitration

The effect of double-reading using the four scenarios is presented in Tables

7.4-7.15. For each reader, four different pair combinations were possible; thus, a total

of 20 pair-combinations were assessed.

7.3.5.1 Double-reading without arbitration

Sensitivity significantly improved for all readers across all pair-combinations

(Table 7.4). The median sensitivity improved from 58.6% (range 50.5%-86.6%) to

83.6% (range 66.7%-92.5%). There was a corresponding significant decrease in

specificity for all readers, with median specificity decreasing from 89.3% (range

66.7%-91.2%) to 77.1% (range 57.7%-84.9%) (Table 7.5).

7.3.5.2 Double-reading with only internal arbitration

Double-reading with internal arbitration had a variable effect on sensitivity as

compared to a single reader (Table 7.6). Sensitivity significantly increased for 8 of

the 20 pair-combinations (median 16.4%, range 9.1%-32.3%), decreased in 2 pair-

combinations (mean 20.7%, range 16. l%-25.3%), and did not change in the

remaining 10.

The improvement in specificity was more consistent: specificity increased

significantly for 16 pairs (median 7.7%, range 4.6%-29.3%), decreased in 1 pair

(4.6%), and did not change in 3 pairs (Table 7.7).
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After double-reading without arbitration

B
o>

T3
(0
V
£

A B

Reader

C D E

5.4 5.9 4.8 4.3
(0.002) (0.0010) (0.039) (0.008)

17.2 9.1 5.9 8.6

(<0.0001) (<0.0001) (0.001) (<0.0001)

40.3 31.7 17.7 23.1

(<0.0001) (<0.0001) (<0.0001) (<0.0001)

40.9 30.1 19.4 16.1

(<0.0001) (<0.0001) (<0.0001) (<0.0001)

32.2 24.7 16.7 8.1

(<0.0001) (<0.0001) (<0.0001) (0.0001)

Table 7.4. Changes in sensitivity using double-reading without arbitration. For a given
pair, each figure represents the percentage change in sensitivity as compared to the
single reader, with P values (McNemar's test) in parentheses. P values in bold font
indicate statistically significant change.

After double-reading without arbitration
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-9.0

(<0.0001)
-5.8

(<0.0001)
-5.5

(<0.0001)

oredouble-read arbitratioi
u.

0)
T3
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0)

OH

B

C

-24.6
(<0.0001)

-31.6

(<0.0001)
13.3

(<0.0001)

-9.3

(<0.0001)
-7.0

(<0.0001)

-7.0

(<0.0001)

-6.7

(<0.0001)

-8.1

(<0.0001)
H-m

0)
CO

D
-30.7

(<0.0001)
-13.3

(<0.0001)
-9.3

(<0.0001)
-6.7

(<0.0001)

E
-29.3

(<0.0001)
-11.9

(<0.0001)
-9.3

(<0.0001)
-5.5

(0.0001)

Table 7.5. Changes in specificity using double-reading without arbitration. For a given
pair, each figure represents the percentage change in specificity as compared to the
single reader, with P values (McNemar's test) in parentheses. P values in bold font
indicate statistically significant changes.
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After double-reading with internal arbitration
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Reader

B

1.6

(0.5465)

13.4

(<0.0001)

9.1 6.5

(0.0002) (0.0139)

32.3 20.4

(<0.0001) (<0.0001)

27.4 19.4

(<0.0001) (<0.0001)

-25.3

(<0.0001)

-16.1

(<0.0001)

-1.1

(0.8875)

-5.4

(0.2453)

-3.8 -0.5

(0.1904) (1.000)

-3.8 3. 2

(0.2109) (0.2636)

-2.7 -1.8

(0.3588) (0.7893)

9.1
(0.0008)

1.1
(0.8312)

Table 7.6. Changes in sensitivity using double-reading with only internal arbitration.
For a given pair, each figure represents the percentage change in sensitivity as
compared to the single reader, with Rvalues (McNemar's test) in parentheses. P
values in bold font indicate statistically significant changes.

After double-reading with internal arbitration
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(<0.0001)
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(<0.0001)
19.1

(<0.0001)

-1.1 11.9 11.6 5.8

(0.6171) (<0.0001) (<0.0001) (0.0008)

6.7 7.8 8.4 7.5

(<0.0001) (<0.0001) (<0.0001) (<0.0001)

1.4 5.3 6.1 4.6

(0.4414) (0.0013) (<0.0001) (0.0014)

-4.6 0.6 6.4 5.8

(0.027) (0.8597) (0.0003) (<0.0001)

Table 7.7. Changes in specificity using double-reading with only internal arbitration.
For a given pair, each figure represents the percentage change in specificity as
compared to the single reader, with Rvalues (McNemar's test) in parentheses. P
values in bold font indicate statistically significant changes.
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7.3.5.3 Double-reading with only external arbitration

Double-reading using only external arbitration also had a variable effect on

sensitivity as compared to a single reader (Table 7.8). Sensitivity significantly

increased for 11 of the 20 pair-combinations (median 14.0%, range 5.9%-26.9%),

decreased in 4 pair-combinations (median 7.8%, range 4.8%-10.2%), and did not

change in the remaining 5 pair-combinations.

However, specificity increased significantly for only 4 pairs (median 14.3%,

range 12.8%-15.7%), decreased in 6 pairs (median 6.4%, range 4.9%-10.4%), and

did not change in 10 pairs (Table 7.9).

When compared to double-reading with only internal arbitration, double-

reading with only external arbitration improved sensitivity in 4 of 10 pairs (median

12.9%, range 9.1%-17.7%), decreased sensitivity in 2 of 10 pairs (median 7.0%,

range 6.5%-7.5%), and did not change sensitivity in the remaining 4 pairs (Table

7.10). However, significantly decreased specificity was seen for all 10 pairs (median

6.4%, range 4.6%-13.6%) (Table 7.11).
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After double-reading with external arbitration
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(<0.0001) (<0.0001)

25.8 18.8

(<0.0001) (<0.0001)

19.9 14.0

(<0.0001) (<0.0001)

-7.5

(0.0013)

-1.6

(0.6291)

8.1

(0.0041)

5.9

(0.0266)

-10.2 -8.1

(0.0005) (0.0041)

-5.4 -2.2

(0.0525) (0.5563)

6.5 12.4

(0.0973) (0.0025)

11.3

(0.0002)

3.2

(0.2101)

Table 7.8. Changes in sensitivity using double-reading with only external arbitration.
For a given pair, each figure represents the percentage change in sensitivity as
compared to the single reader, with P values (McNemar's test) in parentheses. P
values in bold font indicate statistically significant changes.
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-10.4 -4.9

(<0.0001) (0.0147)

-9.6 -5.2

(<0.0001) (0.0046)

15.7

(<0.0001)

1.7

(0.2632)

0.3

(1.0000)

-0.3

(1.0000)

14.5

(<0.0001)

1.4

(0.4414)

2.6

(0.2002)

-0.3

(1.0000)

14.2

(<0.0001)

0

(0.8501)

0.9

(0.7656)

-1.4

(0.4244)

Table 7.9. Changes in specificity using double-reading with only external arbitration.
For a given pair, each figure represents the percentage change in specificity as
compared to the single reader, with Rvalues (McNemar's test) in parentheses. P
values in bold font indicate statistically significant changes.
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Sensitivity

Reader
Pair

Only internal
arbitration (%)

Only external
arbitration (%)

Absolute

percentage
change

P value

(McNemar's
test)

AB 88.2 81.7 -6.5 0.019

AC 61.3 79.0 17.7 <0.0001

AD 82.8 76.3 -6.5 0.082

AE 86.0 78.5 -7.5 0.0108

BC 58.6 73.1 14.5 0.0003

BD 71.0 69.4 -1.6 0.7277

BE 78.0 72.6 -5.4 0.0776

CD 49.5 58.6 9.1 0.0171

CE 53.2 64.5 11.3 0.0043

DE 59.7 61.8 2.1 0.4807

Table 7.10. Comparison of the sensitivity of double-reading with only external
arbitration to double-reading with only internal arbitration. P values in bold font
indicate statistically significant changes.

Specificity

Reader
Pair

Only internal
arbitration (%)

Only external
arbitration (%)

Absolute

percentage
change

Rvalue

(McNemar's
test)

AB 84.1 79.4 -4.7 <0.0001

AC 95.9 82.3 -13.6 <0.0001

AD 93.0 81.2 -11.8 <0.0001

AE 85.8 80.9 -4.9 <0.0001

BC 97.1 87.0 -10.1 <0.0001

BD 96.8 86.7 -10.1 <0.0001

BE 91.0 85.2 -5.8 <0.0001

CD 97.7 91.9 -5.8 <0.0001

CE 96.8 90.1 -6.7 <0.0001

DE 96.2 90.1 -6.1 <0.0001

Table 7.11. Comparison of the specificity of double-reading with only external
arbitration to double-reading with only internal arbitration. P values in bold font
indicate statistically significant changes.
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7.3.5.4 Double-reading with internal arbitration followed by external

arbitration

Introducing external arbitration on the pair combinations only when there

were outstanding discrepancies after internal arbitration demonstrated increased

sensitivity for 18 out of 20 pairs over a wide range (median 18.5%, range 4.3%-

40.9%), and did not change in the remaining 2 pairs. Sensitivity did not decrease for

any reader (Table 7.12).

This method increased specificity in only 4 pair-combinations (median 9.1%,

range 5.5%-12.8%), and decreased specificity in 10 pair-combinations (median

8.4%, range 4.1 %-17.1 %), with no change in the remaining 6 pairs (Table 7.13).

When compared to double-reading with only internal arbitration, double-

reading with internal followed by external arbitration significantly improved

sensitivity in 9 out of 10 pairs (median 8.6%, range 3.8%-26.3%) (Table 7.14), but at

the expense of diminished specificity in all 10 pairs (median 11.4%, range 7.0%-

16.5%) (Table 7.15).
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After double-reading with internal and external arbitration
Reader

B

0)
"D
re
v

CH

B

D

E

4.3

(0.0215)
1.1

(0.8445)
4.8

(0.0117)
3.2

(0.1460)

16.1

(<0.0001)
7.0

(0.0146)
4.8

(0.0352)
7.5

(0.0013)

35.5

(<0.0001)
29.6

(<0.0001)
18.8

(<0.0001)
24.7

(<0.0001)

40.9

(<0.0001)
29.0

(<0.0001)
20.4

(<0.0001)
17.2

(<0.0001)

31.2
(<0.0001)

23.7
(<0.0001)

18.3

(<0.0001)
9.1

(0.0001)

Table 7.12. Changes in sensitivity using double-reading with internal followed by
external arbitration. For a given pair, each figure represents the percentage change in
sensitivity as compared to the single reader, with Rvalues (McNemar's test) in
parentheses. Rvalues in bold font indicate statistically significant changes.

After double-reading with internal and external arbitration
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c
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A 5.5 12.8 11.6 6.7

If
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r

-13.0 0.9 -0.6 -5.2
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re
CQ c -17.1 -10.4 -4.1 -4.1

(<0.0001) (<0.0001) (0.0140) (0.0140)

Table 7.13. Changes in specificity using double-reading with internal followed by
external arbitration. For a given pair, each figure represents the percentage change in
specificity as compared to the single reader, with Rvalues (McNemar's test) in
parentheses. Rvalues in bold font indicate statistically significant changes.
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Sensitivity

Reader
Pair

Only internal
arbitration (%)

Internal and
external

arbitration (%)

Absolute

percentage
change

Rvalue

(McNemar's
test)

AB 88.2 90.9 2.7 0.4984

AC 61.3 87.6 26.3 <0.0001

AD 82.8 91.4 8.6 0.0002

AE 86.0 89.8 3.8 0.0233

BC 58.6 81.7 23.1 <0.0001

BD 71.0 79.6 8.6 0.0002

BE 78.0 82.3 4.3 0.0133

CD 49.5 71.0 21.5 <0.0001

CE 53.2 76.9 23.7 <0.0001

DE 59.7 67.7 8.0 0.0003

Table 7.14 Comparison of the sensitivity of double-reading with internal followed by
external arbitration, to double-reading with only internal arbitration. R values in bold
font indicate statistically significant changes.

Specificity

Reader
Pair

Only internal
arbitration (%)

Internal and
external

arbitration (%)

Absolute

percentage
change

Rvalue

(McNemar's
test)

AB 84.1 72.2 -11.9 <0.0001

AC 95.9 79.4 -16.5 <0.0001

AD 93.0 78.3 -14.7 <0.0001

AE 85.8 73.3 -12.5 <0.0001

BC 97.1 86.1 -11.0 <0.0001

BD 96.8 84.6 -12.2 <0.0001

BE 91.0 80.0 -11.0 <0.0001

CD 97.7 90.7 -7.0 <0.0001

CE 96.8 86.4 -10.4 <0.0001

DE 96.2 86.4 -9.8 <0.0001

Table 7.15 Comparison of the specificity of double-reading with internal followed by
external arbitration, to double-reading with only internal arbitration. P values in bold
font indicate statistically significant changes.
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7.3.6 Performance of triple reading

With triple reading, a universal improvement in sensitivity occurred for each

of the 10 pairs, across each of its 3 possible combinations (median 23.9%, range

6.5%-47.8%) (Table 7.16). However, as with double-reading with external

arbitration (either alone or following internal arbitration), a universal decrease in

specificity for all combinations was also observed, with a mean reduction of 10.5%

(Table 7.17).

After triple reading
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re
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re
re

DC

AB

AC

AD

AE

BC

BD

BE

CD

CE

DE

Additional reader forming triplet
B C

38.7

(<0.0001)
23.7

(<0.0001)
17.2

(<0.0001)
47.8

(<0.0001)

44.6

(<0.0001)
34.4

(<0.0001)

36.0

(<0.0001)

11.8

(<0.0001)

9.1

(<0.0001)

39.2

(<0.0001)
37.1

(<0.0001)
34.9

(<0.0001)

9.2

(<0.0001)

14.5

(<0.0001)

11.8

(<0.0001)

17.7

(<0.0001)
12.4

(<0.0001)

6.5
(0.0015)

36.0

(<0.0001)

8.1

(0.0003)

30.1

(<0.0001)

7.5

(0.0005)

30.6

(<0.0001)

7.0

(0.0009)

36.5

(<0.0001)

11.3

(<0.0001)

31.7

(<0.0001)
14.5

(<0.0001)

34.4

(<0.0001)

24.9

(<0.0001)

Table 7.16. Changes in sensitivity using triple reading, compared to double-reading
with only internal arbitration. Figures are percentage changes in sensitivity, with P
values (McNemar's test) in parentheses. P values in bold font indicate statistically
significant changes.
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After triple reading
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-18.3
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-16.5
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-17.1

(<0.0001)

-15.1

(<0.0001)

-11.3
(<0.0001)

-6.1

(<0.0001)

-10.1

(<0.0001)
-18.3

(<0.0001)

-5.2

(<0.0001)

-5.5

(<0.0001)

-5.5

(<0.0001)

-5.2

(<0.0001)
-4.3

(0.0003)

-6.1

(<0.0001)

-8.4

(<0.0001)

-8.4

(<0.0001)

-5.5
(<0.0001)

-6.4

(<0.0001)

-4.6

(0.0002)

-9.6

(<0.0001)

-15.7

(<0.0001)

-15. 7

(<0.0001)

-10.4

(<0.0001)
-12.2

(<0.0001)

-5.5
(<0.0001)

-4.1

(0.0005)

Table 7.17. Changes in specificity using triple reading, compared to double-reading
with only internal arbitration. Figures are percentage changes in sensitivity, with P
values (McNemar's test) in parentheses. P values in bold font indicate statistically
significant changes.

7.4 Discussion

The results of this investigation show that the effect of double-reading on the

performance of individual experienced radiologists is immensely variable, depending

on the method used to deal with discordant readings.

Double-reading without arbitration was shown to universally increase

sensitivity for nodule detection. The impetus for improving nodule detection alone -
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without necessarily an interpretation component - is strong when one considers that

most failures of lung cancer diagnosis are due to failures of detection [381, 382], The

findings of the present investigation support the notion that increasing the number of

readers in detection tasks improves the sensitivity of detection, simply by combining

the evaluation of both readers. This observation is consistent with those of

Wormanns et al., in one of the few studies of double-reading in pulmonary nodule

detection. That study, performed in a group of patients with pulmonary metastases

rather than a lung cancer screening population, found that mean sensitivity for

detection using independent double-reading without any arbitration improved

sensitivity from 64% for a single reader to 79% on LDCT [334],

A similar effect of double-reading on sensitivity when using this independent

double-reading strategy has been observed in mammographic screening, with

increased cancer detection rates [342, 343], However, the penalty for an increased

sensitivity is usually an increase in false positive detections, resulting in a decreased

specificity and positive predictive value [341], This decrease in specificity has been

replicated in the current study, and has particular relevance to lung cancer screening

with CT, which is known to generate large of numbers of false positive detections

even with single readers [164],

For this reason, lung cancer screening studies and other evaluations of

double-reading in nodule detection have also incorporated some form of arbitration

or consensus, so that there is a mechanism to decide what should be designated a

positive or an "actionable" finding. Double-reading in lung cancer screening has

been in use since the Early Lung Cancer Action Project (ELCAP) [142] and has also

been used in multiple European randomised control trials, including the NELSON
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trial. In both the ELCAP and NELSON trials, two readers initially tried to achieve

consensus through discussion. The NELSON study used two readers, one at a

peripheral reading site and one at a central site, and in cases of discrepancy the

central reader would attempt to achieve consensus with the first through discussion.

If no consensus could be reached, arbitration by a third reader of 20 years'

experience was used, with the majority decision of the three readers used as the final

result [169, 174], In these studies attempting consensus, the use of discussion could

potentially result in forced or "coerced" consensus, where the opinions of more

experienced radiologists supersede those of less experienced ones [344], As noted by

Bankier et al., participation in a group consensus effort may have a modifying effect

on an individual radiologist's opinion, diminishing the value of a consensus

agreement (which they termed "groupthink"). In any case, the merit of consensus

discussion on the nature of a small opacity is questionable; such opacities have very

few defining characteristics, and so do not lend themselves to discussion.

Thus, instead of using consensus by discussion, three different methods of

resolving discrepancies using double-reading with arbitration were modelled. First,

with double-reading using only internal arbitration, radiologists were shown nodules

that they had missed during the first round of reading, providing them with the

opportunity to record nodules that they may have failed to detect during the initial

read. This method had the advantage of allowing "internal" arbitration regarding an

opacity without requiring all radiologists to be present simultaneously, and also

without any particular radiologist forming a dominant opinion that may inadvertently

coerce the agreement of other radiologists. It also prevented radiologists from

altering the categorisation of nodules which they had initially detected on free search.
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Using this method had a variable effect on sensitivity. The variability of the

results of this method of arbitration was understandably a reflection of the baseline

sensitivity of the individual readers comprising the pair. A very sensitive reader

could significantly improve the sensitivity of a pair, as demonstrated by the 7 pairs

involving readers A or B using this method. However, the effect of less sensitive

radiologists on the very sensitive radiologists is not easy to predict: in the present

investigation, reader C significantly weakened the sensitivity of readers A and B (the

two most sensitive readers) while readers D and E had no effect.

These findings thus underscore the importance of establishing the baseline

performance characteristics of any reader in a multiple reader setting. Notably, the

sensitivities of the individual readers (50.5% to 86.6%) in the current study were

similar to those in previous studies [289, 293, 325, 334], and so there is no reason to

suspect that these findings are unique to the expert readers in the present study.

Despite this variability in performance, there are two trends revealed by this

method of double-reading with internal arbitration that are complementary and

potentially advantageous to a lung cancer screening programme. First, sensitivity

was either unchanged or improved in the majority of pair-combinations. Second,

specificity was improved in the majority of combinations.

Next double-reading with external arbitration was simulated, where the

opinion of the third independent reader was sought in all cases that were discordant

after round 1. This had a markedly variable effect on sensitivity and specificity as

well, compared to a single reader. Furthermore, this method was not superior to

simply using internal arbitration alone. In the third method, double-reading with
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internal followed by external arbitration was simulated. On the whole this led to

increased sensitivity, compared to a single reader, and compared to internal

arbitration alone. However, this increased sensitivity came at the expense of either

unchanged or diminished specificity, when compared to a single reader in the

majority of combinations.

Finally, triple reading was investigated. Triple reading seemed to be

universally reliable in improving sensitivity, but again at the expense of specificity,

as compared to double-reading with internal arbitration only.

There are two implications of these results for lung screening in practice.

First, if external arbitration does not consistently improve sensitivity, while leaving

specificity diminished or unchanged, reliance on this method is questionable.

Second, the highly labour- and time-intensive natures of this strategy are additional

reasons for caution when applying these methods to lung screening practice. It is

worth noting here that "double"-reading in cases where some fonn of external

arbitration is used is in fact fallacious; such cases invariably will have to involve the

services of a third reader, and so are really also forms of triple reading. The

identification of discrepant nodules requiring arbitration and the recording of final

readings during external arbitration are administrative tasks that can lengthen the

total time taken for this process.

The potential lack of benefit of double-reading has been demonstrated by

Ying Wang et al. In a retrospective analysis of 74 proven lung cancer cases from the

prevalence screening round of the NELSON study, they concluded that double-

reading detected only 2 (2.7%) more lung cancers with a 0.2% reduction in
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specificity [174], This conclusion is probably premature given the small sample size.

It may also not be applicable to the task of lung nodule detection in general, given

that the main criteria for assessment of nodules in the NELSON study is growth as

demonstrated by semi-automated volumetry, a relatively reproducible parameter

[311, 313]; as previously discussed in section 1.6.2.3, volumetry helps with

interpretation, but not with detection itself. Nevertheless, this adds to the evidence

regarding variable effects of multiple reading strategies shown by the current study.

The findings in the present investigation also have implications for the widely

varying reference standards used in studies on lung nodule identification. A single

expert radiologist acting as a reference standard would be questionable; it is arguable

whether any one radiologist can have the "final word" in defining such a standard,

since sensitivity (as demonstrated by previous studies and reinforced by the results of

the present investigation) and agreement among radiologists with respect to nodule

characteristics are highly variable [142, 396, 397], In studies on computer-aided

diagnosis (CAD) as compared to radiologists, the reference standards were

established by two expert radiologists in consensus who reviewed the marks made by

CAD software and readers, and were free to add their own detection marks [289,

293, 336], In defining these standards, no methods of arbitration have been

described; it is conceivable that differing reference standards could be produced by

different methods of arbitration, with consequently different performance

characteristics demonstrated. It is thus important that all studies reporting nodule

detection accuracy outline in detail methods used to resolve discrepancies.

This study has a few limitations. The reference dataset has only been

established through consensus, without histological data; thus, the true significance
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of all nodules is not known. However, in screening practice histological

corroboration of the vast majority of nodules would not be available, and as such a

consensus standard is the only initial surrogate standard available to enable decision¬

making. Nevertheless, it should be noted that the sensitivity and specificity described

here are with reference to such a standard.

Also, the reference dataset was created through the involvement of the same

radiologists that were under investigation, a potential source of error which is

difficult to correct for [287], Although it has been suggested that the reference

standard should be created by another group of radiologists who are not being tested

[287] this also has its limitations because there is no reason to suppose that another

group of independent expert radiologists will perform any better than the group

under evaluation and so provide a more accurate estimate of ground "truth". Also,

the readers were from different institutions and so no "institutional" bias in terms of

attitude towards over- or undercalling nodules should be expected. Furthermore, each

radiologist was aware that they were involved in a nodule detection exercise, and

hence the potential for heightened vigilance existed. However, such vigilance also

exists in the setting of lung cancer screening. Finally, the exact values for double-

reading with external arbitration do depend to a certain extent on the sensitivity of

the external arbiter itself. The importance of this factor in turn would depend on

whether the external arbiter had higher or lower sensitivity specifically for the task of

interpretation as opposed to detection, since the process of external arbitration

requires that he or she be directed only to discordant findings and asked to provide an

interpretation, rather than performing the task of detection as well. However, the
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magnitude of this effect in this study cannot be measured because the sensitivity of

the external arbiter was not directly assessed.

It was not possible to analyse the level of disagreement between readers due

to differences in nodule measurement. It is known that interobserver agreement

improves with increasing nodule size [396], but size-based analysis was not the

primary aim of this study. Readers were instructed to classify opacities with

characteristics of a nodule that were greater than 3mm as positive, but were not asked

to record their measurements for each nodule, because (a) this would have been too

time-consuming and detract from the primary task of nodule detection and

evaluation, and (b) the interobserver variability inherent to both diameter [307] and

volumetric [314] measurements of nodules would still have existed as a limitation of

any size-based analysis.
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Summary

The performance of experienced thoracic radiologists for the task of lung

nodule detection is not invariably improved by increasing the number of

readers, and is significantly affected by the method of arbitration used.

If double-reading is to be practised, perhaps the most effective and least

labour-intensive method is double-reading with only internal arbitration, as

maintained or increased nodule detection with an unchanged or improved

specificity, without requiring the services of a third reader.

The effects of double-reading and arbitration methods must be recognised

when devising reading strategies, defining reference standards that rely on

consensus, and assessing reader performance against these standards.
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CHAPTER 8: CONCLUSION

Over the past fifteen years, lung cancer screening trials using CT have

convincingly shown that CT can detect more lung cancers than chest radiography

[142, 143, 150, 164, 398]; furthermore, that these cancers are more likely to be at an

early stage and, most recently, that a reduction in mortality can be achieved [164],

While further results from different randomised control trials are awaited to confirm

such a mortality reduction, the pessimism arising from the lack of benefit seen in

earlier screening trials using chest radiography has slowly given way to enthusiasm

for screening with CT. However, as yet there has been no detailed consideration of

the pragmatic reading strategies required when extrapolating CT lung cancer

screening from the trial setting to a national screening programme. The

investigations contained in this thesis have provided a number of insights into the

implications of different CT reading strategies for nodule detection accuracy and for

radiologists' workload should such a programme be implemented.

The evaluation of radiographers as readers in CT lung cancer screening has,

to my knowledge, not previously been reported. In Chapter 4, following a short

period of standardised training, radiographers were able to achieve sensitivities

for nodule detection that were comparable to radiologists in literature, but were

inferior to radiologists reading the same studies. Importantly, however, the range

of differences seen between radiographers and radiologists was not dissimilar to

that seen between radiologists in previous studies. The implication of these

findings is that while radiographers on the whole are not sensitive enough to be used

as first readers (a characteristic they share with CAD systems), some radiographers'
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detection abilities compare favourably with those of radiologists, potentially

allowing them to act as assistant readers. Furthermore, radiographers were clearly

able to follow strict size (predominantly volumetry-based) and morphological criteria

to designate opacities as nodules and intrapulmonary lymph nodes.

In order to determine whether radiographers could fulfil the role of assistant

readers, their effect as concurrent readers on radiologists' performance was

subsequently assessed in Chapter 5. Concurrent reading, rather than second reading,

was chosen because it is a more pragmatic method of implementing radiographer-

assisted reading in a screening programme - a radiologist could perform his or her

review of the radiographer's marks in the same sitting as a "free search" for

additional nodules. Concurrent reading has also recently been evaluated using CAD,

but with conflicting effects on sensitivity and reading time reported [294, 354]. Two

important conclusions arose from this investigation. Firstly, concurrent reading

conferred an increase in sensitivity for all but the most sensitive radiologist.

Secondly, concurrent reading was able to reduce reading time, by as much as 4

minutes. Such a time-saving, coming as it did with the benefit of increased

sensitivity, has positive implications for a national screening programme; the number

of radiologists required for such a programme could be substantially reduced by

using radiographer-assisted concurrent reading, or alternatively, a radiologist would

require less time to read an equivalent number of studies in a session. The

importance of these effects in encouraging both radiographers and radiologists to

participate in a screening programme should not be underestimated. Radiographers

would participate in the knowledge that their contribution is simultaneously

enhancing sensitivity and screening throughput. Radiologists, meanwhile, would
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arguably be more willing if they could focus their expertise on the tasks of

interpretation and decision-making rather than simply detection in screening, while at

the same time being able to read faster.

It was also inferred from the investigations in Chapters 4 and 5 that the

performance characteristics of radiographers may be similar to those of a CAD

system. To address this question directly, the performance of radiographers was

directly compared against a commercially approved CAD system in Chapter 6.

Radiographers demonstrated that they were at least as sensitive as CAD for

nodule detection. Arguments against a radiographer rather than computer assistant

often centre on the fact that a human is expensive, prone to fatigue and inconsistent,

but such arguments are at least partly one-sided; as previously discussed in Chapter

6, CAD systems, including the one evaluated in this thesis, are also prone to marked

differences in sensitivity and average false positive detections per case [359],

Ultimately, the strength of a screening programme rests on its ability to

maximise early lung cancer detection while minimising false positive detection, and

this in turn depends both on the performance of its readers and its mechanism for

arriving at a robust consensus on nodules that require follow-up. This aspect of lung

nodule detection has not been sufficiently addressed in previous studies on nodule

detection or CT lung screening; the advantages of double-reading have been taken at

face value, and methods of arbitration have differed substantially without

acknowledging their potential impact [159, 169, 289, 336, 337, 345, 346], The

modelling of different methods of arbitration in Chapter 7 exposed the stark variation

in performance characteristics that may be encountered when different methods of

resolving discrepancies and different numbers of radiologists are used for nodule
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detection and interpretation. Significantly, the comparison of models revealed that

the addition of an external arbiter does not invariably improve sensitivity for

nodule detection, and may leave specificity decreased or unchanged, making

reliance on such a mechanism of arbitration questionable. In contrast, a

mechanism of "internal arbitration" maintained or improved both sensitivity

and specificity. Such a mechanism of arbitration provides a second round of reading

in which radiologists within a pair independently decide on the significance of

nodules that they had missed, without discussion and the potential for a "forced"

agreement, and without the services of a third reader. Using such a method, only

nodules agreed by both radiologists in a pair would be included in a consensus.

However, the logistics of applying such a method of arbitration to lung screening

practice are challenging, as each radiologist would be required to read the same case

twice, at separate sittings. As such, this investigation provides insights into the

delicate balance that must be achieved by the reading strategy of a lung cancer

screening programme. In the pursuit of improved sensitivity, the variation in

different methods of double-reading has to be borne in mind, in addition to an

awareness that "double"-reading when using some form of arbitration is really a

misnomer: external arbitration requires a third reader and a total of three rounds of

reading, while internal arbitration requires two readers but a total of four rounds of

reading.

A recurring theme through all the investigations in this thesis is the accepted

trade-off between sensitivity and false positive detection, whether the reader is a

radiologist (reading alone, in combination with other radiologists, or with a

concurrently reading assistant radiographer), a radiographer, or a CAD system. An
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important finding is that although radiographers reading alone, and radiologists

performing radiographer-assisted concurrent reading, had higher average false

positive detections per case than independently reading radiologists alone, these

average false positive detections per case were still lower than those of CAD

systems in the literature, and of the CAD system evaluated in Chapter 6. A

recent investigation has demonstrated the potential for CAD's benefit as a second

reader to be negated once a certain false positive detection threshold is reached

[290], When viewed in this light, the relatively lower false positive detection with

radiographer-assisted concurrent reading is welcome, as it suggests that the false

positive detections arising from such a reading paradigm will not compromise the

benefit accrued from its increased sensitivity.

In demonstrating the variation in nodule detection performance between

readers, the investigations in Chapters 3 through to 7 have also reinforced notions of

an inherent perceptual ability unique to each individual, even if the visual search

patterns they use may differ depending on their level of training [335], However,

Chapters 3 and 4 have also captured the potential importance of exposure to a task

over a longer period of time, for readers with a lower baseline perceptual ability.

While a significant learning effect across the 10 small subsets read was not

demonstrated overall for the radiographers in Chapter 3, the two less sensitive

radiographers in Chapter 4 were able to improve their sensitivity while keeping

their average false positive detections per case static, when undertaking a 10-

week period of reading more CTs. It is important to note that while these

radiographers in the UKLS pilot study were not given direct feedback, they were

comparing their own readings with those in the consensus, once it had been achieved,
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and so were enacting a form of self-directed learning that would be crucial to the

success of assisted reading in a screening programme. Also, the fact that less

sensitive radiographers could improve distinguishes them from a CAD system,

where, even if an upgrade is performed, the dataset and algorithms for derivation of

an improved performance remain impervious to the standard radiologist.

The investigations in Chapter 4 and 6 also provide some insight into what to

expect with radiographer reading should higher size thresholds be used for nodule

positivity in future screening programmes, as recently suggested [383], If such an

approach is adopted, not only would radiographer sensitivity be maintained when

compared to radiologists or to CAD, but radiographer and radiologist sensitivity

would probably become more aligned.

The limitations of each investigation have been highlighted in individual

chapters, the most obvious, but insurmountable, limitation being the lack of

histopathological corroboration of nodules to serve as the standard of reference.

However, as histopathological information would not be available for the vast

majority of nodules in screening practice, a consensus standard is the only surrogate

standard available to enable decision-making, and serves to illustrate the

comparisons between the various reading strategies that have been explored.

In summary, the investigations in this thesis have described the performance

of different CT reading strategies for nodule detection in lung cancer screening,

including the previously unreported role of radiographers as readers. In the future,

some of these observations could be used to inform the choice of optimal reading

strategy for a national screening programme in the UK.
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Appendix 1: Permission to obtain NELSON nodules

Email correspondence October 2011

RE: NELSON nodules/board

21/10/2011
Hansell David <davidhansell@rbht.nhs.uk>

to Mali, W., Pim, Anand, me

Dear Dr Mali,
So very many thanks for your reply. That is all very clear. Acknowledgement of
"Nelson nodules" was taken as read (in fact, the provenance of the cases would have
to be stated in the Methods section, at the very least).
As you have suggested, we will route any further questions we have about
permission/acknowledgement/authorship thro' the excellent Pim.
Thanks again,
DavidMH

From: Mali, W. [W.Mali@umcutrecht.nl]
Sent: 20 October 2011 10:57

To: Hansell David

Cc: Pim de Jong
Subject: RE: NELSON nodules/board

Dear dr Hansell, thank you for your mail.
I am glad the cases were helpful for you.
I think it is fine when these cases are used for the thesis too.

I don t think we have to be co authors but perhaps you can acknowledge
The Nelson study for supplying you with the cases.
Whenever you have more questions about the Nelson study
Or want to contact us please feel free to approach Pim de Jong
He is my trusted collaborator at the UMCUtrecht and can help you.

Best regards Willem Mali

Van: Hansell David [mailto:davidhansell@rbht.nhs.uk]
Verzonden: donderdag 13 oktober 2011 8:55
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Aan: Mali, W.
Onderwerp: NELSON nodules/board

Dear Dr Mali,

Please forgive this out of the blue approach. We have not met but Mathias Prokop
suggested I contact you.

I am involved with the UK lung cancer screening pilot study (Prof John Field is the
Priniciple Investigator) and as you may be aware Dr Pirn de Jong has been hugely
helpful in providing our Dr Arjun Nair with some CTs from Utrecht which have been
put to good effect in training our radiographers.

Dr Nair is with us for the next year or two and, with myself and a co-supervisor Dr
Anand Devaraj, we are putting together a plan for his thesis - which will revolve
around the successful, or otherwise, training of non-radiologists for reading
screening CTs (approximately 7 chapters, i.e. 7 different investigations). Because
recruiting of UKLS cases only starts in the next 3 weeks time it will be a few months
before we have sufficient UK studies to make use of, so it would be useful but not

absolutely crucial, if we could use some of the Nelson cases for studies in the first
two of his chapters.

We understood clearly from the outset, from Pirn de Jong and Mathias Prokop, that
we would need the sanction of the Nelson Board to use Nelson CTs in any study
which is why 1 am writing to you. I understand that you are on the Nelson Board and
since the CTs are Utrecht cases I thought it would be appropriate to route any such
request through you. Would that be okay? Of course, if one or other of the
investigations using "Nelson nodules" is fit for publication we would be pleased to
have relevant coauthors as suggested by you/the Board. I think the plan for Dr
Arjun's thesis will be completed in the next couple of weeks so at that point we
would have the outline of each investigation for your/Nelson Board's approval.

Again, my apologies for this sudden onslaught. I look forward to hearing from you.

Kind regards,
David Hansell

Royal Brompton Hospital
London UK

De informatie opgenomen in dit bericht kan vertrouwelijk zijn en is uitsluitend
bestemd voor de geadresseerde. Indien u dit bericht onterecht ontvangt, wordt u
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verzocht de inhoud niet te gebruiken en de afzender direct te infonneren door het
bericht te retourneren. Het Universitair Medisch Centrum Utrecht is een

publiekrechtelijke rechtspersoon in de zin van de W.H.W. (Wet Hoger Onderwijs en

Wetenschappelijk Onderzoek) en staat geregistreerd bij de Kamer van Koophandel
voor Midden-Nederland onder nr. 30244197.

Denk s.v.p aan het milieu voor u deze e-mail afdrukt.

This message may contain confidential information and is intended exclusively for
the addressee. If you receive this message unintentionally, please do not use the
contents but notify the sender immediately by return e-mail. University Medical
Center Utrecht is a legal person by public law and is registered at the Chamber of
Commerce for Midden-Nederland under no. 30244197.

Please consider the environment before printing this e-mail.

DISCLAIMER:

The information contained in this email may be subject to public disclosure under the
NHS Code of Openness or the Freedom of Information Act 2000. Unless the
information is legally exempt from disclosure, the confidentiality of this email, and
your reply cannot be guaranteed.

The information and material in this email is intended for the use of the intended

addressee or the person responsible for delivering it to the intended addressee. It may
contain privileged or confidential information and/or copyright material.

If you receive this email by mistake please advise the sender immediately by using
the reply facility in your email software or notify Royal Brompton & Harefield NHS
Trust Help Desk on +44(0) 20 7351 8696

Communication is not sent through a secure server; Royal Brompton & Harefield
NHS Trust cannot accept responsibility for the accuracy of outgoing electronic mail.
Any views or opinions expressed are solely those of the author and do not represent
the view of Royal Brompton & Harefield NHS Trust unless specifically stated.
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Appendix 2: Cost quote for Visia CT Lung System
version 3.1 (Mevis Medical Solutions, Bremen,
Germany)

Sales Quotation

MEDICAL SOLUTIONS Quote Number X Quote Date
Q-090611-0 09/06/11

C Quote to:
dr. Anand devaraj
St George's hospital
Blackshaw Road
London SW17 oqt
UK

"

SHIP TO:

St George's Hospital
Blackshaw Road
london SW17 OQT
UK

UnwL.it
Price

Part No Qiy. Amount

VCT-3100-SA

vims'" CT Lung System srttn Nodule CAD
(Version 3.1) with AutoPoinf* Temporal
Comparison and Pulmonary Artery Patency
Exam (PE"~) Feature®

Descriptor The vwa~ CT Lung System (v3.1)
promisee excsusve FDA-de3red ung nodule
corrpccer-aWed-detectJOT' (CAD; and automatic
measurement tools tor chest nurtJ-siee CT
(MSCTy includes Vista'" server (v3.1) and
wortstaoon {v'3-C.i sofware AutoPomf"
temporai conpansor fe3tire, Pulmonary Artery
Patency Exam .iPE*1* i feature, remote
instariacor, ana appications tramng ana 1-year
warranty

Wortstatten cuent Licenses 3 included

(NOTE, idsfa™ CTLung System O a scftware-
ontysauOon Customer must prwtae server
ana wortcsaoofl AanfMre compliant wXft system
requirements. I

Onelte Installation and applications training

vials'" CT Lung System service Agreement

DeserpBon The vtsia CT Lung System (v3.1)-
System Support Agreement includes telephone
technics support, remote Diagnostics and
system maintenance, 3rd software updates ana
upgrades to easang 'unctlonaltty

Service Agreement Term: 1 Year

1^13.000.

25%
camcai
Partner

Discourr

€ 1,800

€ 5,500

€ 1,800

? 5,500

Sales Tax:

Terms Net 3C days FOE Factory
Frei^tt prepaid ana added
Quote va*d for 30 aays

Wananty Mevis Medical Solutions, inc warrants these products
to be fee fom aefecte in materia* and workmanship ftx a penoa
of one (1) year from date or deHvery

s pedal Conditions Cases ax wu ce adaea f me Euyer s not
ax exempt Pease mauae your tax exemption manner or oca
ax rate on yoir purchase order as applicable.

Quote Prepared By

Signature

To place an order for me produces ana or services included n
mis quocalon. please sign and dale tt*6 document in the spaoe
prov-ded or suflrht a purchase order vta mall or fax to
MeVis Medea Solutions, inc
N27 W2X075 Pajj CI Ste 10C
Pewaufcee, Wl USA 53072
Phone 262-691-953C Far 262-691-9531

Quote Accepted By

Signature

Date
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